1
|
Bohórquez-Sandoval LJ, Hernandez-Lara A, Gómez-Morte JA, Cuartero J, García-Molano JF, Pascual JA, Ros M. The potential bioavailability of phosphorus and the microbial community involved in agro-industrial composts as organic amendments or growing media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 386:125762. [PMID: 40378796 DOI: 10.1016/j.jenvman.2025.125762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 03/31/2025] [Accepted: 05/08/2025] [Indexed: 05/19/2025]
Abstract
Harnessing agro-industrial residues through composting is gaining importance as a means of phosphorus recovery, as is its reutilization as plant available phosphorus. This research seeks to analyze various combinations of agroindustrial waste and observe the microbial communities contributing to the availability of this element for plants. Six composts were used with different proportions of agroindustrial waste. Phosphorus fractionation was carried out, and the available phosphorus was determined. The molecules involved in phosphorus mineralization and solubilization, alkaline phosphatase activity, organic acids, and microbial communities were also determined. Finally, the potential phosphorus genes (Inorganic P solubilization genes (gcd, ppx, ppqC), and Organic P mineralization genes (phoA, phoD, phnL, phnl, phnJ, phnP, phnH, and phnG)) present in the analyzed composts were established. Compost X2B, composed of vineyard and tomato residues, demonstrated superior performance in providing available phosphorus compared to other composts. This was determined by microbial communities harboring genes involved in the phosphorus cycle, facilitating phosphorus availability.
Collapse
Affiliation(s)
| | - Alicia Hernandez-Lara
- Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, Murcia, 30100, Spain
| | - José Antonio Gómez-Morte
- Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, Murcia, 30100, Spain; Instituto de Ciencias Agrarias, ICA-CSIC, C/ Serrano 115bis, Madrid, 28006, Spain
| | - Jessica Cuartero
- Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, Murcia, 30100, Spain; Swiss Federal Institute for Forest, Snow and Landscape Research WLS, Birmensdorf, 8903, Switzerland
| | - José Francisco García-Molano
- Juan de Castellanos University Foundation, Department of Agricultural and Environmental Sciences, Tunja, 150001, Colombia
| | - José Antonio Pascual
- Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, Murcia, 30100, Spain
| | - Margarita Ros
- Centro de Edafología y Biología Aplicada del Segura (CSIC), Campus Universitario de Espinardo, Murcia, 30100, Spain.
| |
Collapse
|
2
|
Cui H, Hou SN, Wang XY, Li L, Dai XH, Zhu H. Microbial fuel cell-assisted composting yields higher performance on metals passivation, antibiotics degradation, and resistance genes removal. ENVIRONMENTAL RESEARCH 2025; 265:120421. [PMID: 39581252 DOI: 10.1016/j.envres.2024.120421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Little scientific evidence on metal passivation, antibiotic degradation and resistance genes removal, is available under autogenetic electrochemical reactions during composting process. This study established microbial fuel cell (MFC)-assisted composting procedure to ascertain the removal performance and detoxification mechanisms involving metals, antibiotics and their resistance genes. Compared to control treatment, the bioavailability of zinc (Zn) and copper (Cu) in MFC-assisted treatment decreased by 7.8% and 26.9%, while the content of tetracycline (TCL) and oxytetracycline (OCL) reduced by 100% and 89%, respectively. Organics mineralization and humification were responsible for 80% and 70% of the variations in metal passivation and antibiotic degradation during composting process. A decrease of 54% was found for tetW gene, while copA gene increased by 42% in MFC-assisted composting treatment. These findings highlight the detoxification mechanisms underlying metal passivation and antibiotic degradation during composting process, and potentially offer valuable insights for environmental source protection and agricultural sustainable development.
Collapse
Affiliation(s)
- Hu Cui
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Sheng-Nan Hou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Xin-Yi Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lei Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Xiao-Hu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Hui Zhu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
3
|
Shen B, Zheng L, Zheng X, Yang Y, Xiao D, Wang Y, Sheng Z, Ai B. Insights from meta-analysis on carbon to nitrogen ratios in aerobic composting of agricultural residues. BIORESOURCE TECHNOLOGY 2024; 413:131416. [PMID: 39244105 DOI: 10.1016/j.biortech.2024.131416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/09/2024]
Abstract
Given the heterogeneity of raw materials, the diversity of composting processes, and the complexity of biological transformations, systematically exploring the critical role of the initial carbon-to-nitrogen (C/N) ratio in the aerobic composting of agricultural residues is challenging within a single experimental study. This study employs meta-analysis to investigate this role. Statistical analysis of 192 scholarly articles confirmed that most studies adhere to the recommended optimal initial C/N range of 25 and 30, where enhanced compost maturity and nutrient accumulation are observed. The findings indicate that optimal initial C/N ratios vary by agricultural residue type. A C/N ratio of 20 to 30 facilitates controlling the composting duration within 45 days, while a C/N ratio of 30 to 35 necessitates extending the duration beyond 45 days. The study highlights the effectiveness of adjusting the C/N ratio and applying microbial inoculants and physical amendments to optimize composting outcomes and control the composting duration.
Collapse
Affiliation(s)
- Bo Shen
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Central South University of Forestry and Technology, Changsha, Hunan 510004, China
| | - Lili Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Xiaoyan Zheng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Yang Yang
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Dao Xiao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China
| | - Yiqiang Wang
- Yuelushan Laboratory Carbon Sinks Forests Variety Innovation Center, Central South University of Forestry and Technology, Changsha, Hunan 510004, China; Key Laboratory of Forestry Biotechnology of Hunan Province, Central South University of Forestry and Technology, Changsha, Hunan 510004, China.
| | - Zhanwu Sheng
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, Guangdong 524001, China.
| | - Binling Ai
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Haikou Key Laboratory of Banana Biology, Haikou, Hainan 571101, China.
| |
Collapse
|
4
|
Cheng L, Cui H, Ou Y, Wang L, Bao M. Redistribution of phosphorus fraction driven by organic carbon and microbial community during composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123003. [PMID: 39461154 DOI: 10.1016/j.jenvman.2024.123003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/29/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
Available information on the coupling relationship between phosphorus fraction and organic carbon during composting remains limited. Thus, this research investigated the changes of phosphorus fraction, dissolved organic carbon fluorescent components and microbial community in swine manure composting with different carbon sources including the maize straw (MS), garden waste (GW) and distillers' grains (DG), in order to investigate whether the distribution and availability of phosphorus are influenced by different carbon sources used in the composting of swine manure. The result showed that different carbon sources changed phosphorus availability variously mainly by altering the succession of fungal communities and phosphorus functional genes. The dissolved organic material including tyrosine and tryptophan facilitate the mineralization of organic phosphorus (Org-P) into water-soluble phosphorus, thereby improving phosphorus availability. However, humic acid-like carbon components promote the conversion of inorganic-phosphorus to Org-P, which is the direct cause of the reduced phosphorus availability during composting. The results of this study provide support for the development of phosphorus-rich, stable, and clean compost products.
Collapse
Affiliation(s)
- Lei Cheng
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257000, China; College of Plant Protection, Jilin Agricultural University, Changchun, 130118, China
| | - Hu Cui
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yang Ou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Lixia Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China; National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Dongying, 257000, China.
| | - Meiwen Bao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| |
Collapse
|
5
|
Xu Q, Zhang T, Niu Y, Mukherjee S, Abou-Elwafa SF, Nguyen NSH, Al Aboud NM, Wang Y, Pu M, Zhang Y, Tran HT, Almazroui M, Hooda PS, Bolan NS, Rinklebe J, Shaheen SM. A comprehensive review on agricultural waste utilization through sustainable conversion techniques, with a focus on the additives effect on the fate of phosphorus and toxic elements during composting process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173567. [PMID: 38848918 DOI: 10.1016/j.scitotenv.2024.173567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/27/2024] [Accepted: 05/25/2024] [Indexed: 06/09/2024]
Abstract
The increasing trend of using agricultural wastes follows the concept of "waste to wealth" and is closely related to the themes of sustainable development goals (SDGs). Carbon-neutral technologies for waste management have not been critically reviewed yet. This paper reviews the technological trend of agricultural waste utilization, including composting, thermal conversion, and anaerobic digestion. Specifically, the effects of exogenous additives on the contents, fractionation, and fate of phosphorus (P) and potentially toxic elements (PTEs) during the composting process have been comprehensively reviewed in this article. The composting process can transform biomass-P and additive-born P into plant available forms. PTEs can be passivated during the composting process. Biochar can accelerate the passivation of PTEs in the composting process through different physiochemical interactions such as surface adsorption, precipitation, and cation exchange reactions. The addition of exogenous calcium, magnesium and phosphate in the compost can reduce the mobility of PTEs such as copper, cadmium, and zinc. Based on critical analysis, this paper recommends an eco-innovative perspective for the improvement and practical application of composting technology for the utilization of agricultural biowastes to meet the circular economy approach and achieve the SDGs.
Collapse
Affiliation(s)
- Qing Xu
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Yingqi Niu
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Santanu Mukherjee
- School of Agriculture Sciences, Shoolini University of Biotechnology and Management Sciences, Bajhol, PO Sultanpur, Distt. Solan, Himachal Pradesh 173229, India
| | - Salah F Abou-Elwafa
- Agronomy Department, Faculty of Agriculture, Assiut University, 71526 Assiut, Egypt
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen 23000, Viet Nam
| | - Nora M Al Aboud
- Department of Biology, College of Science, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Yukai Wang
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Mingjun Pu
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Yiran Zhang
- State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Huu Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City 700000, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City 700000, Viet Nam
| | - Mansour Almazroui
- Center of Excellence for Climate Change Research, Department of Meteorology, King Abdulaziz University, 21589 Jeddah, Saudi Arabia; Climatic Research Unit, School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Peter S Hooda
- Faculty of Engineering, Computing and the Environment, Kingston University London, UK
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt.
| |
Collapse
|
6
|
Yan J, Ma M, Li F. Phosphorus recovery via struvite crystallization in batch and fluidized-bed reactors: Roles of microplastics and dissolved organic matter. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135108. [PMID: 38972202 DOI: 10.1016/j.jhazmat.2024.135108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/02/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Struvite crystallization, a promising technology for nutrient recovery from wastewater, is facing considerable challenges due to the presence of emerging contaminants such as microplastics (MPs) ubiquitously found in wastewater. Here, we investigate the roles of MPs and humic acid (HA) in struvite crystallization in batch and fluidized-bed reactors (FBRs) using synthetic and real wastewater with a Mg:N:P molar ratio of 1:3:(1-1.3) at an initial pH of 11. Batch reactor (BR) experiment results show that MPs expedited the nucleation and growth rates of struvite (e.g., the rate of crystal growth in the presence of 30 mg L-1 of polyethylene terephthalate (PET) was 1.43 times higher than that in the blank system), while HA hindered the formation of struvite. X-ray diffraction and the Rietveld refinement analysis revealed that the presence of MPs and HA can result in significant changes in phase compositions of the reclaimed precipitates, with over 80 % purity of struvite found in the precipitates from suspensions in the presence of 30 mg L-1 of MPs. Further characterizations demonstrated that MPs act as seeds of struvite nucleation, spurring the formation of well-defined struvite, while HA favors the formation of newberyite rather than struvite in both reactors. These findings highlight the need for a more comprehensive understanding of the interactions between emerging contaminants and struvite crystallization processes to optimize nutrient recovery strategies for mitigating their adverse impact on the quality and yield of struvite-based fertilizers. ENVIRONMENTAL IMPLICATION: The presence of microplastics in wastewater poses a significant challenge to struvite crystallization for nutrient recovery, as it accelerates nucleation and growth rates of struvite crystals. This can lead to changes in the phase compositions of the reclaimed precipitates, with implications for the quality and yield of struvite-based fertilizers. Additionally, the presence of humic acid hinders the formation of struvite, favoring the formation of other minerals like newberyite. Understanding the interactions between emerging contaminants and struvite crystallization processes is crucial for optimizing nutrient recovery strategies and mitigating the environmental impact of these contaminants on water quality and struvite-based fertilizers.
Collapse
Affiliation(s)
- Junna Yan
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Mengyu Ma
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Feihu Li
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China; NUIST Reading Academy, Nanjing University of Information Science and Technology, 219 Ningliu Road, Nanjing 210044, China.
| |
Collapse
|
7
|
Tran HT, Binh QA, Van Tung T, Pham DT, Hoang HG, Hai Nguyen NS, Xie S, Zhang T, Mukherjee S, Bolan NS. A critical review on characterization, human health risk assessment and mitigation of malodorous gaseous emission during the composting process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124115. [PMID: 38718963 DOI: 10.1016/j.envpol.2024.124115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
Composting has emerged as a suitable method to convert or transform organic waste including manure, green waste, and food waste into valuable products with several advantages, such as high efficiency, cost feasibility, and being environmentally friendly. However, volatile organic compounds (VOCs), mainly malodorous gases, are the major concern and challenges to overcome in facilitating composting. Ammonia (NH3) and volatile sulfur compounds (VSCs), including hydrogen sulfide (H2S), and methyl mercaptan (CH4S), primarily contributed to the malodorous gases emission during the entire composting process due to their low olfactory threshold. These compounds are mainly emitted at the thermophilic phase, accounting for over 70% of total gas emissions during the whole process, whereas methane (CH4) and nitrous oxide (N2O) are commonly detected during the mesophilic and cooling phases. Therefore, the human health risk assessment of malodorous gases using various indexes such as ECi (maximum exposure concentration for an individual volatile compound EC), HR (non-carcinogenic risk), and CR (carcinogenic risk) has been evaluated and discussed. Also, several strategies such as maintaining optimal operating conditions, and adding bulking agents and additives (e.g., biochar and zeolite) to reduce malodorous emissions have been pointed out and highlighted. Biochar has specific adsorption properties such as high surface area and high porosity and contains various functional groups that can adsorb up to 60%-70% of malodorous gases emitted from composting. Notably, biofiltration emerged as a resilient and cost-effective technique, achieving up to 90% reduction in malodorous gases at the end-of-pipe. This study offers a comprehensive insight into the characterization of malodorous emissions during composting. Additionally, it emphasizes the need to address these issues on a larger scale and provides a promising outlook for future research.
Collapse
Affiliation(s)
- Huu-Tuan Tran
- Laboratory of Ecology and Environmental Management, Science and Technology Advanced Institute, Van Lang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Technology, School of Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Quach An Binh
- Advanced Applied Sciences Research Group, Dong Nai Technology University, Bien Hoa City, Viet Nam; Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam
| | - Tra Van Tung
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| | - Duy Toan Pham
- Department of Health Sciences, College of Natural Sciences, Can Tho University, Can Tho 900000, Viet Nam
| | - Hong-Giang Hoang
- Faculty of Technology, Dong Nai Technology University, Bien Hoa City, Viet Nam
| | - Ngoc Son Hai Nguyen
- Faculty of Environment, Thai Nguyen University of Agriculture and Forestry (TUAF), Thai Nguyen, 23000, Viet Nam
| | - Shiyu Xie
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Santanu Mukherjee
- School of Biological & Environmental Sciences, Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Nanthi S Bolan
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia
| |
Collapse
|
8
|
Yang H, Li Q. Modifying humus-phosphorus-arsenic interactions in sludge composting: The strengthening of phosphorus availability and arsenic efflux detoxification mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134131. [PMID: 38552390 DOI: 10.1016/j.jhazmat.2024.134131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/06/2024] [Accepted: 03/24/2024] [Indexed: 04/25/2024]
Abstract
Arsenic (As) in sewage sludge poses a significant threat to environmental and human health, which has attracted widespread attention. This study investigated the value of adding sodium percarbonate (SP) on phosphorus (P) availability and As efflux detoxification through HS-P-As interactions. Due to the unique structure of humus (HS) and the similar chemical properties of P and As, the conditions for HS-P-As interaction are provided. This study discussed the content, morphology and microbial communities of HS, P and As by using metagenomic and correlation analysis. The results showed that the humification index in the experiment group (SPC) was 2.34 times higher than that in the control group (CK). The available phosphorus (AP) content of SPC increased from 71.09 mg/kg to 126.14 mg/kg, and SPC was 1.11 times that of CK. The relative abundance of ACR3/ArsB increased. Pst, Actinomyces and Bacillus commonly participated in P and As conversion. The correlation analysis revealed that the humification process was enhanced, the AP was strengthened, and the As was efflux detoxified after SP amendment. All in all, this study elucidated the key mechanism of HS-P-As interaction and put forward a new strategy for sewage sludge resource utilization and detoxification.
Collapse
Affiliation(s)
- Hongmei Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
9
|
Su J, Zhan Y, Chang Y, Chang S, Luo Y, Chen P, Tao X, Chen Y, Yang L, Xu T, Qiao Y, Li J, Wei Y. Phosphate additives promote humic acid carbon and nitrogen skeleton formation by regulating precursors and composting bacterial communities. BIORESOURCE TECHNOLOGY 2024; 399:130617. [PMID: 38513923 DOI: 10.1016/j.biortech.2024.130617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/11/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
This study aimed to compare the effect of different phosphate additives including superphosphate (CP) and MP [Mg(OH)2 + H3PO4] on nitrogen conversion, humus fractions formation and bacterial community in food waste compost. The results showed the ratio of humic acid nitrogen in total nitrogen (HA-N/TN) in CP increased by 49 %. Ammonium nitrogen accumulation was increased by 75 % (CP) and 44 % (MP). Spectroscopic techniques proved that phosphate addition facilitated the formation of complex structures in HA. CP enhanced the dominance of Saccharomonospora, while Thermobifida and Bacillus were improved in MP. Structural equation modeling and network analysis demonstrated that ammonium nitrogen can be converted to HA-N and has positive effects on bacterial composition, reducing sugars and amino acids, especially in CP with more clustered network and synergic bacterial interactions. Therefore, the addition of phosphate provides a new idea to regulate the retained nitrogen toward humification in composting.
Collapse
Affiliation(s)
- Jing Su
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yabin Zhan
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Yuan Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Su Chang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Yan Luo
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China
| | - Peizhen Chen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Xingling Tao
- Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yunfeng Chen
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Li Yang
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China
| | - Ting Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, Beijing 100193, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
10
|
Li H, Yang Z, Zhang C, Shang W, Zhang T, Chang X, Wu Z, He Y. Effect of microbial inoculum on composting efficiency in the composting process of spent mushroom substrate and chicken manure. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120145. [PMID: 38306857 DOI: 10.1016/j.jenvman.2024.120145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/26/2023] [Accepted: 01/07/2024] [Indexed: 02/04/2024]
Abstract
This work aimed to investigate the microbial mechanisms for the improvement of composting efficiency driven by the compound microbial inoculum (MI) (Bacillus subtilis SL-44, Enterobacter hormaechei Rs-189 and Trichoderma reesei) during co-composting of spent mushroom substrate (SMS) and chicken manure (CM). The treatments used in the study were as follows: 1) MI (inoculation with microbial inoculum), 2) CI (inoculation with commercial microbial inoculum), and 3) CK (without inoculation). The results demonstrated that MI increased the seed germination index (GI) by 25.11%, and contents of humus, humic acid (HA) and available phosphorus (AP) were correspondingly promoted by 12.47%, 25.93% and 37.16%, respectively. The inoculation of MI increased the temperature of the thermophilic stage by 3-7 °C and achieved a cellulose degradation rate of 52.87%. 16S rRNA gene analysis indicated that Actinobacteria (11.73-61.61%), Firmicutes (9.46-65.07%), Proteobacteria (2.86-32.17%) and Chloroflexi (0.51-10.92%) were the four major phyla during the inoculation composting. Bacterial metabolic functional analysis revealed that pathways involved in amino acid and glycan biosynthesis and metabolism were boosted in the thermophilic phase. There was a positive correlation between bacterial communities and temperature, humification and phosphorus fractions. The average dry weight, fresh weight and seedling root length in the seedling substrates adding MI compost were 1.13, 1.23 and 1.06 times higher than those of the CK, respectively. This study revealed that biological inoculation could improve the composting quality and efficiency, potentially benefiting the resource utilization of agricultural waste resources.
Collapse
Affiliation(s)
- Haijie Li
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Zihe Yang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Chuanyu Zhang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Weiwei Shang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Tianlin Zhang
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, PR China
| | - Xiaojian Chang
- Xi 'an Agricultural Technology Extension Center, Xi 'an, 710061, PR China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, PR China.
| | - Yanhui He
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, PR China.
| |
Collapse
|
11
|
Wang J, Jiao M, Zhan X, Hu C, Zhang Z. Humification and fungal community succession during pig manure composting: Membrane covering and mature compost addition. BIORESOURCE TECHNOLOGY 2024; 393:130030. [PMID: 37977497 DOI: 10.1016/j.biortech.2023.130030] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/19/2023]
Abstract
The objective of this study was to elucidate the combined effect of a semi-permeable membrane (M) and mature compost (MC) on humification and fungal community succession in pig manure composting. Compared with the control, the concentrations of humic substances (HSs) increased by 44.54 % (M + 15 % MC) and 43.90 % (M). During the thermophilic phase, Aspergillus (67.26 %) was the dominant genus in the M + 15 % MC treatment. Membrane covering increased the relative abundance (RA) of other phyla (except for Ascomycetes and Basidiomycetes) on the 14th day and Basidiomycetes on the 80th day in M treatment. Humic acid, HSs were positively correlated with the RA of genera Myceliophthora, Kernia, and Mycothermus. Myceliophthora was the key genus in the M + 15 % MC treatment on the 80th day. The results showed that 15 % MC addition under membrane covering optimizes the quality of composting products.
Collapse
Affiliation(s)
- Juan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Minna Jiao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiangyu Zhan
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Cuihuan Hu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
12
|
Yuan H, Zhang Y, Chen Z, Cai S, Zhang Z, Yang P, Peng S, Yu J, Wang D, Zhang W. Molecular transformation pathway and bioavailability of organic phosphorus in sewage sludge under vermicomposting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167796. [PMID: 37838053 DOI: 10.1016/j.scitotenv.2023.167796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/16/2023]
Abstract
Phosphorus reclamation from sewage sludge is essential for sustainable phosphorus management, as large quantities of phosphorus afflux into wastewater treatment plants and are finally enriched in sewage sludge via phosphorus removal technologies. Meanwhile, vermicomposting is a cost-effective biotechnique for sludge stabilization. This work unveiled the molecular transformation pathway and bioavailability of organic phosphorus (OP) in sludge under vermicomposting with solution 31P NMR, FT-ICR MS and enzymatic hydrolysis assay. In conclusion, vermicomposting transformed OP in two stages. In stage I (day 0 to 14), macromolecule CHONP such as phospholipids, phosphoproteins and nucleic acid were decomposed into orthophosphate and high bioavailability OP including flavin mononucleotide, flavin mononucleotide hydrate and N6-isopentenyladenosine 5'-monophosphate under the action of earthworm intestinal flora. This resulted in the bioavailability of OP reaching a maximum of 13.58 mg/L on day 14. In stage II (day 14 to 28), the enzyme in vermicompost began to dominate the transformation of OP. Under the catalysis of phosphate, high bioavailability orthophosphate monoester was decomposed into orthophosphate. Nitrogen-containing aromatic OP polymerization produced humic acid-like OP under the catalysis of ligase. And phytic acid-like OP were produced under the catalysis of transferase. These led to the OP bioavailability decreasing to 5.60 mg/L on day 28. This work provides a new perspective on sludge phosphorus recovery and use.
Collapse
Affiliation(s)
- Hao Yuan
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Yu Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Zexu Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Siying Cai
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Ziwei Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Peng Yang
- School of Civil Engineering and Architecture, Northeast Electric Power University, Jilin 132012, Jilin, China
| | - Siwei Peng
- Datang Environment Industry Group Co., Ltd, Beijing 100097, China
| | - Junxia Yu
- Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430074, China
| | - Dongsheng Wang
- Department of environmental engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
13
|
Zhan Y, Xu S, Hou Z, Gao X, Su J, Peng B, Zhao J, Wang Z, Cheng M, Zhang A, Guo Y, Ding G, Li J, Wei Y. Co-inoculation of phosphate-solubilizing bacteria and phosphate accumulating bacteria in phosphorus-enriched composting regulates phosphorus transformation by facilitating polyphosphate formation. BIORESOURCE TECHNOLOGY 2023; 390:129870. [PMID: 37839642 DOI: 10.1016/j.biortech.2023.129870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
This study aimed to explore the impact of co-inoculating phosphate-solubilizing bacteria (PSB) and phosphate accumulating bacteria (PAB) on phosphorus forms transformation, microbial biomass phosphorus (MBP) and polyphosphate (Poly-P) accumulation, bacterial community composition in composting, using high throughput sequencing, PICRUSt 2, network analysis, structural equation model (SEM) and random forest (RF) analysis. The results demonstrated PSB-PAB co-inoculation (T1) reduced Olsen-P content (1.4 g) but had higher levels of MBP (74.2 mg/kg) and Poly-P (419 A.U.) compared to PSB-only (T0). The mantel test revealed a significantly positive correlation between bacterial diversity and both bioavailable P and MBP. Halocella was identified as a key genus related to Poly-P synthesis by network analysis. SEM and RF analysis showed that pH and bacterial community had the most influence on Poly-P synthesis, and PICRUSt 2 analysis revealed inoculation of PAB increased ppk gene abundance in T1. Thus, PSB-PAB co-inoculation provides a new idea for phosphorus management.
Collapse
Affiliation(s)
- Yabin Zhan
- Key Laboratory of Fertilization from Agricultural Wastes, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Soil Fertilizer, Hubei Academy of Agricultural Sciences, Wuhan, Hubei 430064, China; College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Zhuonan Hou
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Xin Gao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Jing Su
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Bihui Peng
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Jinyue Zhao
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Zhigang Wang
- DBN Agriculture Science and Technology Group CO., Ltd., DBN Pig Academy, Beijing 102629, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Ake Zhang
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Fuyang Academy of Agricultural Sciences, Fuyang 236065, China
| | - Yanbin Guo
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193 Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
14
|
Jha A, Pathania D, Sonu, Damathia B, Raizada P, Rustagi S, Singh P, Rani GM, Chaudhary V. Panorama of biogenic nano-fertilizers: A road to sustainable agriculture. ENVIRONMENTAL RESEARCH 2023; 235:116456. [PMID: 37343760 DOI: 10.1016/j.envres.2023.116456] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/14/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
The ever-increasing demand for food from the growing population has augmented the consumption of fertilizers in global agricultural practices. However, the excessive usage of chemical fertilizers with poor efficacy is drastically deteriorating ecosystem health through the degradation of soil fertility by diminishing soil microflora, environment contamination, and human health by inducing chemical remnants to the food chain. These challenges have been addressed by the integration of nanotechnological and biotechnological approaches resulting in nano-enabled biogenic fertilizers (NBF), which have revolutionized agriculture sector and food production. This review critically details the state-of-the-art NBF production, types, and mechanism involved in cultivating crop productivity/quality with insights into genetic, physiological, morphological, microbiological, and physiochemical attributes. Besides, it explores the associated challenges and future routes to promote the adoption of NBF for intelligent and sustainable agriculture. Furthermore, diverse applications of nanotechnology in precision agriculture including plant biosensors and its impact on agribusiness and environmental management are discussed.
Collapse
Affiliation(s)
- Ayush Jha
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Diksha Pathania
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Sonu
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Bhavna Damathia
- University Institute of Biotechnology, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Gokana Mohana Rani
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Keelung Road, Taipei, 10607, Taiwan, ROC
| | - Vishal Chaudhary
- Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India.
| |
Collapse
|
15
|
Alawamleh HSK, Amin AH, Ali AM, Alreda BA, Lagum AA, Pecho RDC, Taqi N, Salman HM, Fawzi Nassar M. Solar light driven enhanced photocatalytic treatment of azo dye contaminated water based on Co-doped ZnO/ g-C 3N 4 nanocomposite. CHEMOSPHERE 2023; 335:139104. [PMID: 37271469 DOI: 10.1016/j.chemosphere.2023.139104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/09/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
The current research concentrated on the Co-precipitation synthesis of g-C3N4 (CN), ZnO, ZnO/CN, and Co-doped ZnO/CN nanocomposite, as well as the solar light enhanced photocatalytic treatment of Reactive Red 120 (RR120) from genuine wool textile effluent. The 3D flower-like structure of Co-doped ZnO distributed on the surface of CN thin sheets, according to structural studies employing XRD and SEM examinations Electrochemical experiments exhibited that the Co-doped ZnO/CN nanocomposite has a large electroactive surface area. The optical band-gap values of CN, ZnO, ZnO/CN, and Co-doped ZnO/CN nanocomposites were 2.68, 3.13, 2.38, and 2.23 eV, respectively, according to optical characterizations. The synergistic effects and heterojunction produced by Co-doped ZnO and CN can be linked to the narrow gap in nanocomposites. After 75, 60, 50, and 40 min of exposure to solar light, photocatalytic degradation assays for 250 mL of 20 mg/L RR120 solution in the presence of CN, ZnO, ZnO/CN, and Co-doped ZnO/CN nanocomposites demonstrated 100% dye treatment. The applicability of photocatalysts for decolorization of 250 mL of 10 mg/L RR120 prepared from actual wool textile wastewater was investigated, and the results showed that Co-doped ZnO/CN nanocomposites for treatment of RR120 from actual wool textile wastewater were highly efficient at photocatalytic degradation.
Collapse
Affiliation(s)
- Heba Saed Kariem Alawamleh
- Department of Basic Scientific Sciences, Al-Huson College, AL-Balqa Applied University, P. O. Box 50, Al-Huson, 21510, Jordan.
| | - Ali H Amin
- Deanship of Scientific Research, Umm Al-Qura University, Makkah, 21955, Saudi Arabia
| | - Afaf M Ali
- Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Baraa Abd Alreda
- Department of Medical Physics, Al-Mustaqbal University College, Babylon, Iraq
| | | | | | - Noor Taqi
- Medical Technical College, Al-Farahidi University, Iraq
| | - Hayder Mahmood Salman
- Department of Computer Science, Al-Turath University College, Al Mansour, Baghdad, Iraq
| | - Maadh Fawzi Nassar
- Integrated Chemical Biophysics Research, Faculty of Science, University Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400, UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
16
|
Akpe MA, Okon GA, Louis H, Benjamin I, Akem MU, Brown OI, Adalikwu SA, Adeyinka AS. Metals (Ga, In) decorated fullerenes as nanosensors for the adsorption of 2,2-dichlorovinyldimethylphosphate agrochemical based pollutant. Sci Rep 2023; 13:10470. [PMID: 37380664 DOI: 10.1038/s41598-023-37650-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 06/25/2023] [Indexed: 06/30/2023] Open
Abstract
Owing to the fact that the use of 2,2-dichlorovinyldimethylphosphate (DDVP) as an agrochemical has become a matter of concern due to its persistence and potential harm to the environment and human health. Detecting and addressing DDVP contamination is crucial to protect human health and mitigate ecological impacts. Hence, this study focuses on harnessing the properties of fullerene (C60) carbon materials, known for their biological activities and high importance, to develop an efficient sensor for DDVP. Additionally, the sensor's performance is enhanced by doping it with gallium (Ga) and indium (In) metals to investigate the sensing and trapping capabilities of DDVP molecules. The detection of DDVP is carefully examined using first-principles density functional theory (DFT) at the Def2svp/B3LYP-GD3(BJ) level of theory, specifically analyzing the adsorption of DDVP at the chlorine (Cl) and oxygen (O) sites. The adsorption energies at the Cl site were determined as - 57.894 kJ/mol, - 78.107 kJ/mol, and - 99.901 kJ/mol for Cl_DDVP@C60, Cl_DDVP@Ga@C60, and Cl_DDVP@In@C60 interactions, respectively. At the O site, the adsorption energies were found to be - 54.400 kJ/mol, - 114.060 kJ/mol, and - 114.056 kJ/mol for O_DDVP@C60, O_DDVP@Ga@C60, and O_DDVP@In@C60, respectively. The adsorption energy analysis highlights the chemisorption strength between the surfaces and the DDVP molecule at the Cl and O sites of adsorption, indicating that the O adsorption site exhibits higher adsorption energy, which is more favorable according to the thermodynamics analysis. Thermodynamic parameters (∆H and ∆G) obtained from this adsorption site suggest considerable stability and indicate a spontaneous reaction in the order O_DDVP@Ga@C60 > O_DDVP@In@C60 > O_DDVP@C60. These findings demonstrate that the metal-decorated surfaces adsorbed on the oxygen (O) site of the biomolecule offer high sensitivity for detecting the organophosphate molecule DDVP.
Collapse
Affiliation(s)
- Michael A Akpe
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Gideon A Okon
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Chemical Sciences, Clifford University, Owerrinta, Nigeria
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria.
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria.
| | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria.
| | - Martilda U Akem
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Onyebuenyi I Brown
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
- Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria
| | - Stephen A Adalikwu
- Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria
| | - Adedapo S Adeyinka
- Department of Chemical Sciences, Research Centre for Synthesis and Catalysis, University of Johannesburg, Johannesburg, 2006, South Africa
| |
Collapse
|
17
|
Xu M, Sun H, Yang M, Chen E, Wu C, Gao M, Sun X, Wang Q. Effect of biodrying of lignocellulosic biomass on humification and microbial diversity. BIORESOURCE TECHNOLOGY 2023:129336. [PMID: 37343799 DOI: 10.1016/j.biortech.2023.129336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
By optimizing the carbon to nitrogen (C/N) ratio, this study accomplished an improved level of humification and microbial diversity in the biodrying process of lignocellulosic biomass. The results demonstrated that C/N ratio of 20 accelerated the decomposition of refractory lignocellulose, resulting in lower greenhouse gas emissions and the production of highly mature fertilizer with a germination index of 119.0% and a humic index of 3.2. Moreover, C/N ratio of 20 was found to diversify microbial communities, including Pseudogracilibacillus, Sinibacillus, and Georgenia, which contributed to the decomposition of lignocellulosic biomass and the production of humic acid. Hence, it is recommended to regulate the C/N ratio to 20:1 during the biodrying of biogas residue and wood chips to promote the economic feasibility and bioresource recycling.
Collapse
Affiliation(s)
- Mingyue Xu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Min Yang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Enmiao Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Chuanfu Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Ming Gao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Xiaohong Sun
- Beijing Agro-Biotechnology Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
18
|
Huang K, Sun X, Sun J, Guo Y, Hu X, Hu C, Tan Q. The role of phosphorus speciation of biochar in reducing available Cd and phytoavailability in mining area soil: Effect and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 894:164868. [PMID: 37343850 DOI: 10.1016/j.scitotenv.2023.164868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 06/11/2023] [Accepted: 06/11/2023] [Indexed: 06/23/2023]
Abstract
The effect of phosphorus (P) speciation in biochar on soil available Cd and its mechanism to alleviate plant Cd stress remain largely unknown. Here, ammonium polyphosphate (PABC)-, phosphoric acid (PHBC)-, potassium dihydrogen phosphate (PKBC)-, and ammonium dihydrogen phosphate (PNBC)-modified biochar were used to investigate P speciation. The Cd immobilization mechanism of biochar was analyzed by XPS and 31P NMR, and the soil quality and the mechanism for the biochar to alleviate Cd stress were also determined. The results demonstrated that PBC (pristine biochar), PABC, PHBC, PKBC, and PNBC reduced the content of soil DTPA-Cd by 14.96 % - 32.19 %, 40.44 % - 47.26 %, 17.52 % - 41.78 %, and 21.90 % - 36.64 %, respectively. The XPS and 31P NMR results demonstrated that the orthophosphate on the surface of PABC, PHBC, PKBC, and PNBC accounted for 82.06 %, 62.77 %, 33.1 %, and 54.46 %, respectively, indicating that PABC has the highest passivation efficiency on soil Cd, which was ascribed to the highest orthophosphate content on the biochar surface. Pot experiments revealed that PABC could reduce the Cd content by 4.18, 4.41, 4.43, 2.94, and 2.57 folds in roots, stems, leaves, pods, and grains, respectively, and at the same time increase the dry and fresh weight of soybean and decrease Cd toxicity to soybean by improving the antioxidant system. In addition, application of the P-modified biochars improved the enzyme activity and physicochemical properties of the soil. This study provides a new perspective for studying the effect of P-modified biochars on soil Cd immobilization.
Collapse
Affiliation(s)
- Kan Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuecheng Sun
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
| | - Jingguo Sun
- Hubei Academy of Tobacco Science, Wuhan 430030, China
| | - Yali Guo
- Guizhou Provincial Tobacco Company Qianxinan Branch, Xingyi, Guizhou 562400, China
| | - Xiaoming Hu
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Hubei Collaborative Innovation Center for the Characteristic Resources Exploitation of Dabie Mountains, Huanggang Normal University, Huanggang 438000, China
| | - Chengxiao Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiling Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Micro-elements Research Center, College of Resources & Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
19
|
Xu S, Jia K, Zheng Y, Chen W, Wang Z, Wei D, Sun B, Cheng M, Fan B, Li J, Wei Y. Phosphorus transformation behavior and phosphorus cycling genes expression in food waste composting with hydroxyapatite enhanced by phosphate-solubilizing bacteria. BIORESOURCE TECHNOLOGY 2023; 376:128882. [PMID: 36925077 DOI: 10.1016/j.biortech.2023.128882] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
This study aimed to explore the effect of phosphate-solubilizing bacteria (PSB) Bacillus inoculation in the cooling stage on hydroxyapatite dissolution, phosphorus (P) forms transformation, and bacterial P cycling genes in food waste composting with hydroxyapatite. Results indicated that PSB inoculation promoted the dissolution of hydroxyapatite, increased P availability of compost by 8.1% and decreased the ratio of organic P to inorganic P by 10.2% based on sequential fractionation and 31P nuclear magnetic resonance spectroscopy. Illumina sequencing indicated Bacillus relative abundance after inoculation increased up to one time higher than control after the cooling stage. Network analysis and metabolic function of bacterial community analysis suggested inorganic P solubilizing genes of Bacillus and organic P mineralization genes of other genera were improved after inoculation in the core module. Therefore, bioaugmentation of PSB in the cooling stage may be a potential way to improve P bioavailability of bone and food waste in composting.
Collapse
Affiliation(s)
- Shaoqi Xu
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Kaixue Jia
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yi Zheng
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Wenjie Chen
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Zhigang Wang
- Beijing DBN Agriculture Science and Technology Group CO., Ltd., DBN Pig Academy, Beijing 102629, China
| | - Dan Wei
- Institute of Plant Nutrition and Resources, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Baoru Sun
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Meidi Cheng
- College of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, China
| | - Beibei Fan
- Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Ji Li
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China
| | - Yuquan Wei
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China; Organic Recycling Research Institute (Suzhou) of China Agricultural University, Suzhou 215100, China.
| |
Collapse
|
20
|
Hai T, Ali MA, Alizadeh A, Almojil SF, Almohana AI, Alali AF. Reduction in environmental CO 2 by utilization of optimized energy scheme for power and fresh water generations based on different uses of biomass energy. CHEMOSPHERE 2023; 319:137847. [PMID: 36657576 DOI: 10.1016/j.chemosphere.2023.137847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
Renewable energy sources are undoubtedly necessary, considering global electricity demand is expected to rise dramatically in the coming years. This research looks at a unique multi-generation plant from the perspectives of exergy, energy, and economics; also, an environmental evaluation is performed to estimate the systems' CO2 emissions. The unit is made up of a biomass digester and gasifier, a Multi effect Desalination unit, and a supercritical CO2 (SCO2) cycle. In this study, two methods for using biomass are considered: the first is using synthesis gas generated by the gasifier, and the second is utilizing a digester to generate biogas. A comprehensive parametric study is performed on the designed energy unit to assess the influence of compressor pressure ratio, Gas turbine inlet temperature, supercritical CO2 cycle pressure ratio, and the number of effects of multi-effect distillation on the system performance. Furthermore, the exergy study revealed that the exergy destruction in the digestion unit was 11,337 kW, which was greater than the exergy destruction in the gasification unit, which was 9629. Finally, when compared to the gasifier, the amount of exergy efficiency, net output power, and freshwater production in the digester was greater.
Collapse
Affiliation(s)
- Tao Hai
- School of Computer and Information, Qiannan Normal University for Nationalities, Duyun, Guizhou, 558000, China; Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou, Duyun, Guizhou, 558000, China; Institute for Big Data Analytics and Artificial Intelligence (IBDAAI), Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Masood Ashraf Ali
- Department of Industrial Engineering, College of Engineering, Prince Sattam bin Abdulaziz University, Alkharj 16273, Saudi Arabia.
| | - As'ad Alizadeh
- Department of Civil Engineering, College of Engineering, Cihan University-Erbil, Erbil, Iraq.
| | - Sattam Fahad Almojil
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia.
| | - Abdulaziz Ibrahim Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| | - Abdulrhman Fahmi Alali
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh 11421, Saudi Arabia
| |
Collapse
|
21
|
Pei F, Cao X, Sun Y, Kang J, Ren Y, Ge J. Manganese dioxide eliminates the phytotoxicity of aerobic compost products and converts them into a plant friendly organic fertilizer. BIORESOURCE TECHNOLOGY 2023; 373:128708. [PMID: 36746215 DOI: 10.1016/j.biortech.2023.128708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/30/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
This study mainly confirmed the exogenous substances (pomace, biochar, MnO2) and the quorum sensing of bacterial communities jointly regulate the metabolic conversion of toxic substances in manures and agricultural wastes, and converts them into a plant-friendly organic fertilizer through aerobic composting and pot experiment. The results showed the composting products had positive performance in bacterial communities, physicochemical indicators, and phytotoxicity. Meanwhile, the addition of exogenous substances could significantly improve seed germination index, promote metabolites conversion, and optimize bacterial community structure. Furthermore, the exogenous substances mainly regulated the functions of the three bacterial communities by quorum sensing system, then promoted the beneficial metabolites, and inhibited the harmful metabolites. Finally, pot experiments suggested compost products could significantly promote plant growth. Thus, these important discoveries extend the knowledge of the previous work and provide an economical and simple method to convert wastes into organic fertilizers that are friendly to plants and soil.
Collapse
Affiliation(s)
- Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China; Office of Academic Research, Qiqihar Medical University, Qiqihar 161006, China
| | - Xinbo Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Yangcun Sun
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - YanXin Ren
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
22
|
Xiong J, Su Y, Qu H, Han L, He X, Guo J, Huang G. Effects of micro-positive pressure environment on nitrogen conservation and humification enhancement during functional membrane-covered aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161065. [PMID: 36565881 DOI: 10.1016/j.scitotenv.2022.161065] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Aerobic composting is a humification process accompanied by nitrogen loss. This study is the first research systematically investigating and elucidating the mechanism by which functional membrane-covered aerobic composting (FMCAC) reduces nitrogen loss and enhances humification. The variations in bioavailable organic nitrogen (BON) and humic substances (HSs) in different composting systems were quantitatively studied, and the functional succession patterns of fungal groups were determined by high-throughput sequencing and FUNGuild. The FMCAC improved oxygen utilization and pile temperature, increased BON by 29.95 %, reduced nitrogen loss by 34.00 %, and enhanced humification by 26.09 %. Meanwhile, the FMCAC increased the competitive advantage of undefined saprotroph and significantly reduced potential pathogenic fungi (<0.10 %). Structural equation modeling indicated that undefined saprotroph facilitated the humification process by increasing the production of BON and storing BON in stable humic acid. Overall, the FMCAC increased the safety, stability, and quality of the final compost product.
Collapse
Affiliation(s)
- Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Huiwen Qu
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
23
|
Wang X, Shi C, Pan W, Lu H, Zhang X. Variation in the quantity and composition of phosphorus accumulating organisms in activated sludge driven by nitrate-nitrogen. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1349-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
24
|
Cui H, Ou Y, Wang L, Yan B, Guan F. Phosphorus functional microorganisms and genes: A novel perspective to ascertain phosphorus redistribution and bioavailability during copper and tetracycline-stressed composting. BIORESOURCE TECHNOLOGY 2023; 371:128610. [PMID: 36640818 DOI: 10.1016/j.biortech.2023.128610] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
There is limited information on the phosphorus availability under copper and tetracycline-amended composting: Insights into microbial communities and genes. Thus, this work investigated the phosphorus redistribution and transformation, illustrated the variation in microbial communities and genes, and ascertained the multiple action-patterns among which within copper and tetracycline-amended composting. Phosphorus bioavailability reduced by 8.96 % ∼ 13.10 % due to the conservation of Ex-P to Ca-P. Copper and tetracycline showed a significant effect on fungal succession, but not to bacteria, as well as inhibited the phosphorus functional genes in fungal communities, while accelerated it in bacterial communities. Under the copper/tetracycline-stressed conditions, bacterial Firmicutes could promote the mineralization of organic phosphorus, and bacterial Proteobacteria might facilitate the dissolution of inorganic phosphorus. These findings could provide theoretical guidance for the further research on phosphorus bioavailability ascribed to microbial communities and genes.
Collapse
Affiliation(s)
- Hu Cui
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yang Ou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lixia Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Baixing Yan
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Fachun Guan
- Jilin Academy of Agricultural Sciences, Changchun 130033, China
| |
Collapse
|
25
|
Kaya MT, Calimli MH, Nas MS. Degradation of methylene blue with a novel Fe3O4/Mn3O4/CuO nanomaterial under sonocatalytic conditions. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
26
|
Wang S, Muiruri JK, Soo XYD, Liu S, Thitsartarn W, Tan BH, Suwardi A, Li Z, Zhu Q, Loh XJ. Bio-Polypropylene and Polypropylene-based Biocomposites: Solutions for a Sustainable Future. Chem Asian J 2023; 18:e202200972. [PMID: 36461701 DOI: 10.1002/asia.202200972] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Polypropylene (PP) is among the most widely used commodity plastics in our everyday life due to its low cost, lightweight, easy processability, and exceptional chemical, thermo-mechanical characteristics. The growing awareness on energy and environmental crisis has driven global efforts for creating a circular economy via developing sustainable and eco-friendly alternatives to traditional plastics produced from fossil fuels for a variety of end-use applications. This review paper presents a brief outline of the emerging bio-based PP derived from renewable natural resources, covering its production routes, market analysis and potential utilizations. This contribution also provides a comprehensive review of the PP-based biocomposites produced with diverse green fillers generated from agro-industrial wastes, with particular emphasis on the structural modification, processing techniques, mechanical properties, and practical applications. Furthermore, given that the majority of PP products are currently destined for landfills, research progress on enhancing the degradation of PP and its biocomposites is also presented in light of the environmental concerns. Finally, a brief conclusion with discussions on challenges and future perspectives are provided.
Collapse
Affiliation(s)
- Suxi Wang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Joseph Kinyanjui Muiruri
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore
| | - Xiang Yun Debbie Soo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Songlin Liu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Beng Hoon Tan
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Ady Suwardi
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore.,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.,Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore, 117575, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore.,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, 637371, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08, Singapore, 03, 13863, Singapore.,Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore, 627833, Singapore.,Department of Material Science and Engineering, National University of Singapore, 9 Engineering Drive 1, #03-09 EA, Singapore, 117575, Singapore
| |
Collapse
|
27
|
Imran M, Hayat N, Saeed MA, Sattar A, Wahab S. Spatial green growth in China: exploring the positive role of investment in the treatment of industrial pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:10272-10285. [PMID: 36071363 DOI: 10.1007/s11356-022-22851-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The industrial sector of China is critical to the country's economic growth. On the other side, industrialisation has resulted in a high rate of emissions, pushing China to spend extensively on industrial pollution remediation. As a result, this study looks at the relationship between investment completed in the treatment of industrial pollution and economic development. Initially, the study used the global Moran's I test (Queen's contiguity matrix) to find spatial autocorrelation for the 'investment completed in the treatment of industrial pollution' factor, where the study found a positive association across Chinese provinces, and suggest the existence of spatial autocorrelation. Thereafter, a time-fixed effect spatial error model was used due to the lowest Akaike information criterion and Bayesian information criterion to analyse regional data of China from 1999 to 2018. The data reveal a positive association between investment completed in the treatment of industrial pollution and regional economic growth, both in the short and long term. Furthermore, the negative consequences of urban wages and foreign investment on investment completed in the treatment of industrial pollution are having the reverse effect on regional green development, necessitating ecologically friendly actions to mitigate the negative environmental effects of both. The results highlight the need for policymakers in other countries to review their plans for economic expansion and create environmentally friendly legislation. By implementing the Chinese green economic growth model, policymakers in industrially polluting nations can reduce industrial pollution and foster green growth in their nation.
Collapse
Affiliation(s)
- Muhammad Imran
- School of Business Studies, Bahria University, Islamabad, Pakistan.
| | - Naveed Hayat
- Department of Economics, University of Education, Lahore, Pakistan
| | | | - Abdul Sattar
- Bahria Business School, Bahria University, Islamabad, Pakistan
| | - Salman Wahab
- School of Economics, Qingdao University, Qingdao, China
| |
Collapse
|
28
|
He Y, Liu D, He X, Wang Y, Liu J, Shi X, Chater CCC, Yu F. Characteristics of bacterial and fungal communities and their impact during cow manure and agroforestry biowaste co-composting. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116377. [PMID: 36352711 DOI: 10.1016/j.jenvman.2022.116377] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Microbial communities and environmental conditions are both of great importance for efficient utilization of agroforestry resources. Nevertheless, knowledge about the role of soluble nutrients and enzymatic properties, and their inner links with microbial communities remain limited. This is especially the case for the co-composting of agricultural and forestry biowaste. Here, we investigate the succession of key microbes during co-composting (sawdust + cow manure, SA; straw + cow manure, ST), employing amplicon sequencing, enzyme assays, and physicochemical analyses. N-fixing bacteria (Pseudomonas) and C-degrading fungi (Acaulium) have been identified as dominant taxa during such co-composting. Although eight antibiotic resistance genes were found to persist during composting, pathogenic microbes declined with composting time. NO3--N content was screened as a determinant structuring the bacterial and fungal communities, with importance also shown for C-degrading enzymes such as cellulose, laccase, and peroxidase activity. These results identify the key microbial taxa and their main interactive environmental factors, which are potentially valuable for the development of a mixed microbial inoculant to accelerate the maturation of agroforestry biowastes composting.
Collapse
Affiliation(s)
- Yan He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Dong Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Xinhua He
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Department of Land, Air and Water Resources, University of California at Davis, Davis, CA, 95616, USA; School of Biological Sciences, University of Western Australia, Perth, WA, 6009, Australia
| | - Yanliang Wang
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Jianwei Liu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xiaofei Shi
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Guizhou Kangqunyuan Biotechnology Co., LTD, Liupanshui, 553600, Guizhou, China
| | | | - Fuqiang Yu
- The Germplasm Bank of Wild Species, Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
29
|
Majidi S, Erfan-Niya H, Azamat J, Cruz-Chú ER, Walther JH. The separation performance of porous carbon nitride membranes for removal of nitrate and nitrite ions from contaminated aqueous solutions: A molecular dynamics study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Saad MA, Sakr MAS, Saroka VA, Abdelsalam H. Chemically modified covalent organic frameworks for a healthy and sustainable environment: First-principles study. CHEMOSPHERE 2022; 308:136581. [PMID: 36162514 DOI: 10.1016/j.chemosphere.2022.136581] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 09/19/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Pure water is a key element for a sustainable and healthy environment of human inhabitation. Since major sources of water contamination are industrially generated heavy metal cations there is great demand for efficient methods of their treatment. Here, using density functional theory, we investigate the covalent organic framework's electronic and optical properties and their interaction with the most dangerous heavy metal pollutants, namely Hg+2, Pb+2, and Cd+2. We consider biphenyl boroxine covalent organic frameworks before and after chemical modification with CN, COOH, NH2, and NO2 groups. In addition to the molecular geometries, such parameters as the dipole moment, chemical potential, electronegativity, chemical hardness, and binding energy are calculated. It is found that CN, COOH, and NO2 functional groups are favorable for intermolecular bonding with harmful transition metals. The functionalization with the mentioned groups reduces the band gap of the pristine covalent organic frameworks and increases their reactivity. As a result, strong complexes with Cd+2, Hg+2, and Pb+2 can form, which, as follows from our calculations, can be detected by the red shift in their optical absorption spectra.
Collapse
Affiliation(s)
- Mohamed A Saad
- Center of Basic Science (CBS), Misr University of Science and Technology (MUST), 6th October City, Egypt.
| | - Mahmoud A S Sakr
- Center of Basic Science (CBS), Misr University of Science and Technology (MUST), 6th October City, Egypt.
| | - Vasil A Saroka
- TBpack Ltd., 27 Old Gloucester Street, London, WC1N 3AX, United Kingdom; Institute for Nuclear Problems, Belarusian State University, Bobruiskaya 11, 220030, Minsk, Belarus
| | - Hazem Abdelsalam
- School of Materials Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, PR China; Theoretical Physics Department, National Research Centre, El-Buhouth Str., 12622, Dokki, Giza, Egypt
| |
Collapse
|
31
|
Ma T, Zhan Y, Chen W, Xu S, Wang Z, Tao Y, Shi X, Sun B, Ding G, Li J, Wei Y. Impact of aeration rate on phosphorus conversion and bacterial community dynamics in phosphorus-enriched composting. BIORESOURCE TECHNOLOGY 2022; 364:128016. [PMID: 36162785 DOI: 10.1016/j.biortech.2022.128016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
This study was to investigate the effects of different aeration rates on phosphorus (P) conversion and bacterial community dynamics in P-enriched composting by 16S rRNA gene sequencing, sequential P fractionation, network analysis and structural equation model (SEM). Results indicated that Olsen P content increased by 138 %, 150 %, 121 % after composting with aeration rate (L kg-1 DM min-1) at 0.2 (AR0.2), 0.4 (AR0.4) and 0.6 (AR0.6). AR0.4 was more conducive to enhance P solubilization efficacy and available P accumulation. Redundancy analysis indicated Lactobacillus, Spartobacteria and Pseudomonas were key bacteria associated with HCl-Pi especially in AR0.2 and AR0.4. Network analysis showed that increased aeration rate enhanced the connection and function homoplasy among modules and AR0.4 had more orderly community organization for key bacteria to solubilize P in directly and indirectly biotic way. SEM suggested indirectly biotic P-solubilization had more contribution than directly biotic way mainly by phosphate-solubilizing bacteria.
Collapse
Affiliation(s)
- Tiantian Ma
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Yabin Zhan
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Wenjie Chen
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Shaoqi Xu
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China; DBN Agriculture Science and Technology Group CO, Ltd., DBN Pig Academy, Beijing 102629, China
| | - Zhigang Wang
- DBN Agriculture Science and Technology Group CO, Ltd., DBN Pig Academy, Beijing 102629, China
| | - Yueyue Tao
- Institute of Agricultural Sciences in Taihu Lake District, Suzhou Academy of Agricultural Sciences, Suzhou 215155, China
| | - Xiong Shi
- Yangtze Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing 100038, China
| | - Baoru Sun
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China
| | - Guochun Ding
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Ji Li
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China
| | - Yuquan Wei
- College of Resources and Environmental Science, Beijing Key Laboratory of Biodiversity and Organic Farming, China Agricultural University, 100193, Beijing, China; Organic Recycling Institute (Suzhou) of China Agricultural University, Wuzhong District, Suzhou 215128, China.
| |
Collapse
|
32
|
Tanveer M, Khan SAR, Umar M, Yu Z, Sajid MJ, Haq IU. Waste management and green technology: future trends in circular economy leading towards environmental sustainability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:80161-80178. [PMID: 36197607 PMCID: PMC9532236 DOI: 10.1007/s11356-022-23238-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 09/20/2022] [Indexed: 05/16/2023]
Abstract
The effective treatment of waste to be used as a resource in future has a major role in achieving environmental sustainability and moving towards circular economy. The current research is aimed to provide in-depth detail regarding prominent trends and research themes, evolution, future research orientation, main characteristics, and mapping of research publications on waste management, technological innovation in circular economy domain from the year 2000 to 2021. Different analyses including text mining and bibliometric and content analyses were applied to answer the research question and provide the details on aforementioned variables. From the bibliometric analyses, a total of 1118 articles were drawn out from the Scopus database to conceptualize the core body of research. As a result, the following themes were identified: electronic waste, circular economy transition, plastic waste, bio-based waste management, lifecycle assessment, and ecological impacts, and construction and demolition waste management. The highlighted features, future research orientation, and prominent research perspective can provide guideline for future research to enrich the literature through conducting studies on provided research directions and help lead waste management and technological innovation policymakers, professionals, and practitioners in moving towards circular transition.
Collapse
Affiliation(s)
- Muhammad Tanveer
- Department of Business Administration, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | | | - Muhammad Umar
- Faculty of Business Economics and Social Development, Universiti Malaysia Terengganu, Kuala Nerus, Malaysia
| | - Zhang Yu
- School of Economics and Management, Chang’an University, Xi’an, China
- Department of Business Administration, ILMA University, Karachi, Pakistan
| | - Muhammad Jawad Sajid
- School of Management and Engineering, Xuzhou University of Technology, Xuzhou, China
| | - Ikram Ul Haq
- Kind Saud Bin Abdul-Aziz University for Health Sciences, Riyadh, Saudi Arabia
| |
Collapse
|
33
|
Fu Q, Wang J, Xiang Y, Yasmeen S, Zou B. Does financial development and renewable energy consumption impact on environmental quality: A new look at China’s economy. Front Psychol 2022; 13:905270. [PMID: 36312080 PMCID: PMC9616005 DOI: 10.3389/fpsyg.2022.905270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/18/2022] [Indexed: 12/02/2022] Open
Abstract
Environmental problems such as climate change have brought to light the necessity of implementing more stringent environmental regulations and expanding the use of renewable energy sources in order to protect the environment and maintain a green ecosystem. As a result, this study aims to investigate the impact of China’s financial development and consumption of renewable energy on the country’s environmental quality from 2009 to 2019. Following the application of the ARDL method, this research begins by employing the NARDL (non-linear autoregressive distributive lag) model in order to analyze the asymmetry in the data that results from the presence of either positive or negative aspects of financial development. The results of the NARDL bound test indicate that the variables are long-term co-integrated. This enables the application of the ARDL methodology. The ARDL bound test findings show a positive relationship that exists over the long-term between financial development, trade openness, renewable energy consumption, economic growth, and CO2 emissions. In addition, the error correction model (ECM) provides evidence that there is, at least in the short run, a connection between CO2 emissions, financial development, economic growth, and energy consumption. Furthermore, according to a dynamic multiplier graph, the positive aspect of financial development has a greater influence on carbon emissions for a longer time than the shocks associated with a less favorable financial development. According to the findings, there does not appear to be any asymmetry between CO2 emissions and financial development, which supports the idea that both the positive and negative aspects of financial development have an equally significant impact.
Collapse
Affiliation(s)
- Qiang Fu
- School of Economics, Shandong University, Jinan, China
| | - Junwei Wang
- School of Media and Law, Ningbo Tech University, Ningbo, China
| | - Yonghui Xiang
- School of Economics and Management, Zhejiang University of Science and Technology, Hangzhou, China
- *Correspondence: Yonghui Xiang,
| | - Samina Yasmeen
- Government Special Education Center Daultala, Rawalpindi, Pakistan
| | - Bojun Zou
- School of International Education, Changchun Institute of Technology, Changchun, China
| |
Collapse
|
34
|
Ejaz U, Khan SM, Aqeel M, Khalid N, Sarfraz W, Naeem N, Han H, Yu J, Yue G, Raposo A. Use of Parthenium hysterophorus with synthetic chelator for enhanced uptake of cadmium and lead from contaminated soils-a step toward better public health. Front Public Health 2022; 10:1009479. [PMID: 36311603 PMCID: PMC9613324 DOI: 10.3389/fpubh.2022.1009479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/26/2022] [Indexed: 01/27/2023] Open
Abstract
Parthenium hysterophorus L. is a vigorous plant species with cosmopolitan distribution. It can uptake considerable quantities of heavy metals from the soil and accrue these metals in its different tissue. The use of chelating agent i.e., Ethylenediaminetetraacetic acid (EDTA) can boost up metal uptake capacity. Pot experiment was performed to evaluate phytoextraction potential of P. hysterophorus for lead (Pb) and cadmium (Cd) with and without the aid of EDTA chelator. Shoot length, weight of root and shoot (both fresh and dry), leaves number, and chlorophyll contents of P. hysterophorus got reduced with an increase in metal uptake. The results revealed the highest concentration of Cd in shoot without and with EDTA was 283.6 and 300.1 mg kg-1, correspondingly. Increase in Pb concentration was also boosted up by the EDTA from its maximum concentration in shoot 4.30-9.56 mg kg-1. Generally, Pb and Cd concentrations were greater in shoots of P. hysterophorus than the roots regardless of EDTA in the treatments. EDTA also impacted positively the accumulation of essential ions K+, Na+, and Ca+2 in P. hysterophorus. The capacity of P. hysterophorus to accumulate Pb and Cd found to be increased with EDTA in the soil. Bringing metals level in the soil in accordance to the WHO standards can improve the ecosystem as well as public health.
Collapse
Affiliation(s)
- Ujala Ejaz
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shujaul Mulk Khan
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan,Member, Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Noreen Khalid
- Department of Botany, GC Women University, Sialkot, Pakistan
| | - Wajiha Sarfraz
- Department of Botany, GC Women University, Sialkot, Pakistan
| | - Nayab Naeem
- Department of Botany, GC Women University, Sialkot, Pakistan
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, Seoul, South Korea,Heesup Han
| | - Jongsik Yu
- College of Business Division of Tourism and Hotel Management, Cheongju University, Cheongju-si, South Korea
| | - Gong Yue
- Business School Tourism and Hospitality Management, Xuzhou University of Technology, Xuzhou City, China
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal,*Correspondence: António Raposo
| |
Collapse
|
35
|
Khalaj M, Zarandi M. A Cu(ii) complex supported on Fe 3O 4@SiO 2 as a magnetic heterogeneous catalyst for the reduction of environmental pollutants. RSC Adv 2022; 12:26527-26541. [PMID: 36275142 PMCID: PMC9486508 DOI: 10.1039/d2ra04787j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 09/03/2022] [Indexed: 11/21/2022] Open
Abstract
Today, the presence of pollutants in the environment has become one of the serious problems and concerns of human beings. To eliminate these pollutants, researchers have made many efforts. One of the most important of these efforts is the reduction of such contaminants in the presence of effective catalysts. Two of the most important and widespread types of these pollutants are nitro compounds and organic dyes. In this paper, we report the synthesis of an efficient and reusable magnetic catalyst using Fe3O4@SiO2 core-shell nanoparticles (NPs), N-(4-bromophenyl)-N'-benzoylthiourea, and copper(ii). Specifically, the Cu(ii)-N-(4-bromophenyl)-N'-benzoylthiourea complex supported on Fe3O4-core magnetic NPs (CM)/SiO2-shell (SS) (CM@SS-BBTU-Cu(ii)) has been prepared. CM@SS-BBTU-Cu(ii) was characterized by FT-IR (Fourier transform infrared spectroscopy), XRD (X-ray diffraction), TEM (transmission electron microscopy), HRTEM (high resolution transmission electron microscopy), FFT (fast Fourier transform), VSM (vibrating sample magnetometry), TG-DTA (thermogravimetry-differential thermal analysis), STEM (scanning transmission electron microscopy), EDS (energy-dispersive X-ray spectroscopy), and elemental mapping. The synthesized CM@SS-BBTU-Cu(ii) was applied for the reduction of 4-nitrophenol (4-NP), Congo red (CR), and methylene blue (MB) in the presence of NaBH4 (sodium borohydride) at room temperature. CM@SS-BBTU-Cu(ii) can be recycled and reused 5 times. Our results displayed that the performance of the catalyst was not significantly reduced by recycling.
Collapse
Affiliation(s)
- Mehdi Khalaj
- Department of Chemistry, Islamic Azad University Buinzahra Branch Buinzahra Iran +98 2834226118 +98 2834226112
| | - Maryam Zarandi
- Department of Chemistry, Islamic Azad University Buinzahra Branch Buinzahra Iran +98 2834226118 +98 2834226112
| |
Collapse
|
36
|
Mehrkhah R, Mohammadi M, Zenhari A, Baghayeri M, Roknabadi MR. Antibacterial Evaporator Based on Wood-Reduced Graphene Oxide/Titanium Oxide Nanocomposite for Long-Term and Highly Efficient Solar-Driven Wastewater Treatment. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Roya Mehrkhah
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Mojtaba Mohammadi
- Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Alireza Zenhari
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mehdi Baghayeri
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Mahmood Rezaee Roknabadi
- Department of Physics, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| |
Collapse
|
37
|
Zhu X, Yang W, Liu A. Shat Y. Hybrid mechanistic approach in the estimation of flow properties in cylindrical membrane modules. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Huang YH, Chen XH, Li QF, Lü H, Mo CH, Feng NX, Xiang L, Zhao HM, Li H, Li YW, Cai QY. Fungal community enhanced humification and influenced by heavy metals in industrial-scale hyperthermophilic composting of municipal sludge. BIORESOURCE TECHNOLOGY 2022; 360:127523. [PMID: 35772714 DOI: 10.1016/j.biortech.2022.127523] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
The succession of fungal community and effects of heavy metals on fungi during industrial-scale hyperthermophilic composting of municipal sludge remain unclear. Results showed hyperthermophilic composting enhanced decomposition and humification of municipal sludge in the short terms, while heavy metal concentrations and speciation had no significant change with high copper and zinc levels (101-122 and 292-337 mg/kg, respectively) in compost samples. The fungal community and its ecological assembly displayed dynamic change during hyperthermophilic composting. Some thermophilic-resistant fungi, such as phylum Ascomycota and genera Candida, Aspergillus, Thermomyces and Petriella dominated in hyperthermophilic phase. Heavy metals served important effects on fungal community structure and functions during composting. Some fungal drivers (e.g., Thermomyces, Petriella and Schizophyllum) and keystone fungi (e.g., Candida and Pichia) might be thermophilic- and heavy metal-resistant fungi which played important roles in decomposition and humification of municipal sludge. This study reveals fungal community accelerating humification and its influencing factors during composting.
Collapse
Affiliation(s)
- Yu-Hong Huang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xiao-Hong Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qi-Fang Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Huixiong Lü
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Nai-Xian Feng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hui Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yan-Wen Li
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
39
|
Lin L, Wan H, Mia R, Jiang H, Liu H, Mahmud S. Bioreduction and Stabilization of Antibacterial Nanosilver Using Radix Lithospermi Phytonutrients for Azo-contaminated Wastewater Treatment: Synthesis, Optimization and Characterization. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02280-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
40
|
Meng J, Zhang H, Cui Z, Guo H, Mašek O, Sarkar B, Wang H, Bolan N, Shan S. Comparative study on the characteristics and environmental risk of potentially toxic elements in biochar obtained via pyrolysis of swine manure at lab and pilot scales. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153941. [PMID: 35189204 DOI: 10.1016/j.scitotenv.2022.153941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Pyrolysis is considered as a promising method to immobilize potentially toxic elements (PTEs) in animal manures. However, comparative study on characteristics and environmental risk of PTEs in biochar obtained by pyrolysis of animal manure at different reactors are lacking. In this study, swine manure was pyrolyzed at 300-600 °C in a lab-scale or pilot-scale reactor with the aim to investigate their effects on characteristics and environmental risk of As, Cd, Cu, Ni, Pb, and Zn in swine manure biochar. Results showed that biochars produced from pilot scale had lower pH and carbon (C) content but higher oxygen (O) content than those from lab scale. Biochars from pilot scale had higher total PTEs (except Cd) concentrations and releasable PTEs (except Pb) but lower CaCl2-extractable PTEs and phytotoxicity germination index (GI) to radish seedings than those from lab scale. Chemical speciation analysis indicated that PTEs in biochar produced from pilot-scale fast pyrolysis at 400 °C had higher percentage of more stable fraction (F5 fraction) and lower potential ecological risk index (RI) than those from lab-scale slow pyrolysis. These findings demonstrated that bioavailability and potential ecological risk of PTE in swine manure biochar were greatly decrease in the pilot-scale pyrolysis reactor and the optimum temperature was 400 °C considering the lowest potential ecological risk index.
Collapse
Affiliation(s)
- Jun Meng
- Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Henglei Zhang
- Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Zhonghua Cui
- Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China
| | - Haipeng Guo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo 315211, China.
| | - Ondřej Mašek
- UK Biochar Research Centre, School of GeoSciences, University of Edinburgh, King's Buildings, Edinburgh EH9 3FF, UK
| | - Binoy Sarkar
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Hailong Wang
- Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong 528000, China
| | - Nanthi Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Shengdao Shan
- Institute of Eco-environmental Research, School of Environmental and Natural Resources, Zhejiang University of Science & Technology, Hangzhou 310023, China.
| |
Collapse
|
41
|
Xiong J, Su Y, He X, Han L, Guo J, Qiao W, Huang G. Effects of functional-membrane covering technique on nitrogen succession during aerobic composting: Metabolic pathways, functional enzymes, and functional genes. BIORESOURCE TECHNOLOGY 2022; 354:127205. [PMID: 35462015 DOI: 10.1016/j.biortech.2022.127205] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
This study investigated and assessed the effect of the functional-membrane covering technique (FMCT) on nitrogen succession during aerobic composting. By comparative experiments involving high-throughput sequencing and qPCR, nitrogen metabolism (including the ko00910 pathway and functional enzyme and gene abundances) was analyzed, and the nitrogen succession mechanism was identified. The FMCT created a micro-positive pressure, improved the aerobic conditions, and increased the oxygen utilization rate and temperature. This strongly affected the nitrogen metabolism pathway and down-regulated the nitrifying and denitrifying bacteria abundances. The FMCT up-regulated the relative abundance of glutamate dehydrogenase and down-regulated the absolute abundances of AOB and nxrA. This and the high temperature increased NH3 emissions by 13.78%-73.37%. The FMCT down-regulated the abundances of denitrifying gene groups (nirS + nirK)/nosZ and nitric oxide reductase associated with N2O emissions and decreased N2O emissions by 16.44%-41.15%. The results improve the understanding of the mechanism involved in nitrogen succession using the FMCT.
Collapse
Affiliation(s)
- Jinpeng Xiong
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Ya Su
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xueqin He
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Lujia Han
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China
| | - Jianbin Guo
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Wei Qiao
- College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing 100083, China
| | - Guangqun Huang
- Engineering Laboratory for AgroBiomass Recycling & Valorizing, College of Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
42
|
Kang J, Yin Z, Pei F, Ye Z, Song G, Ling H, Gao D, Jiang X, Zhang C, Ge J. Aerobic composting of chicken manure with penicillin G: Community classification and quorum sensing mediating its contribution to humification. BIORESOURCE TECHNOLOGY 2022; 352:127097. [PMID: 35367602 DOI: 10.1016/j.biortech.2022.127097] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Chicken manure containing antibiotics is a hazardous biological waste. The purpose of our study was to investigate how different concentrations of penicillin G alter the bacterial community to affect humification during aerobic composting of chicken manure. The effect of quorum sensing on the bacterial community was also evaluated. Penicillin G mainly affects low fold changes (within 4) for low-abundance (within 200) microbial genera. We found that the bacterial community cooperated to regulate humus and humic acid synthesis. The microbial genera that make up the bacterial community are different, but each bacterial community may have the same ecological function. Quorum sensing affects humic acid synthesis by regulating carbohydrate metabolism and amino acid metabolism in bacterial communities through mechanisms such as the pentose phosphate pathway and the shikimate pathway. This work presents an understanding of the impact of quorum sensing on the collaboration between bacterial communities during composting.
Collapse
Affiliation(s)
- Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Ziliang Yin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zeming Ye
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Gang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hongzhi Ling
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dongni Gao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xueyong Jiang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Chi Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
43
|
Li H, Zhang T, Shaheen SM, Abdelrahman H, Ali EF, Bolan NS, Li G, Rinklebe J. Microbial inoculants and struvite improved organic matter humification and stabilized phosphorus during swine manure composting: Multivariate and multiscale investigations. BIORESOURCE TECHNOLOGY 2022; 351:126976. [PMID: 35278620 DOI: 10.1016/j.biortech.2022.126976] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 03/03/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
The combined effects of microbial inoculants (MI) and magnesium ammonium phosphate (MAP; struvite) on organic matter (OM) biodegradation and nutrients stabilization during biowaste composting have not yet been investigated. Therefore, the effects of MI and MAP on OM stability and P species during swine manure composting were investigated using geochemical and spectroscopic techniques. MI promoted the degradation of carbohydrates and aliphatic compounds, which improved the degree of OM mineralization and humification. MI and MAP promoted the redistribution of P fractions and species during composting. After composting, the portion of water-soluble P decreased from 50.0% to 23.0%, while the portion of HCl-P increased from 18.5% to 33.5%, which mean that MI and MAP can stabilize P and mitigate its potential loss during composting. These findings indicate that MI can be recommended for enhancing OM biodegradation and stabilization of P during biowastes composting, as a novel trial for the biological waste treatment.
Collapse
Affiliation(s)
- Huanhuan Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Tao Zhang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| | - Hamada Abdelrahman
- Cairo University, Faculty of Agriculture, Soil Science Dept., Giza 12613, Egypt
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Nanthi S Bolan
- School of Agriculture and Environment, The University of Western Australia, Perth, WA 6001, Australia; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, Key Laboratory of Plant-Soil Interactions of Ministry of Education, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| |
Collapse
|
44
|
Farid IM, Siam HS, Abbas MHH, Mohamed I, Mahmoud SA, Tolba M, Abbas HH, Yang X, Antoniadis V, Rinklebe J, Shaheen SM. Co-composted biochar derived from rice straw and sugarcane bagasse improved soil properties, carbon balance, and zucchini growth in a sandy soil: A trial for enhancing the health of low fertile arid soils. CHEMOSPHERE 2022; 292:133389. [PMID: 34953878 DOI: 10.1016/j.chemosphere.2021.133389] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
Sustainable management of low fertile arid soils using carbon-rich organic amendments such as biochar and compost is of great concern from both agricultural and environmental points of view. The impact of pyrolysis, composting, and co-composting processes of different feedstocks on carbon loss and emissions, soil properties, and plant growth in arid soils with low organic matter content has not been sufficiently explored yet. Consequently, the aim of this work was to 1) investigate the effects of the pyrolysis, composting, and co-composting processes on the properties of the produced biochar, compost, and co-composted biochar from rice straw (RS) and sugarcane bagasse (SB), and 2) examine the impact of addition of RB biochar (RSB), SB biochar (SBB), RS compost (RSC), SB compost (SBC), co-composted RS biochar (RSCB), and co-composted SB biochar (SBCB) at an application dose of 10 ton/hectare on soil properties, carbon emission, and growth of zucchini (Cucurbita pepo) in a sandy arid soil. Carbon loss (kg C kg-1 feedstock) was significantly (P < 0.05) lower during the preparation of the compost (90.36 in RSC, 220.00 in SBC) and co-composted-biochar (146.35 in RSCB, 125.20 in SBCB) than in biochar (176.5 in RSB, 305.6 in SBB). The C/N ratios of the compost and co-composted biochar (11-28.5) were narrower than the corresponding values of biochars (48-90). All amendments increased significantly soil organic carbon content (2.5 in RSC to 5.5 g kg-1 in RSCB), as compared to the non-amended control (1.2 g kg-1). All amendments, particularly RSCB, increased significantly (P < 0.05) the zucchini seed vigor index, dry weight, total chlorophyll content, and root and shoot length, as compared to the control. Moreover, RSCB was the only amendment that showed a positive soil carbon balance. The modified integrated two-way ecological model data also indicated that the co-composted biochar, particularly RSCB, is a promising amendment to improve soil quality and plant growth in sandy arid soils. However, those data should be verified under field conditions.
Collapse
Affiliation(s)
- Ihab M Farid
- Soils and Water Department, Faculty of Agriculture, Benha University, Egypt
| | - Hanan S Siam
- Plant Nutrition Department, National Research Center, Dokki, Giza, Egypt
| | - Mohamed H H Abbas
- Soils and Water Department, Faculty of Agriculture, Benha University, Egypt
| | - Ibrahim Mohamed
- Soils and Water Department, Faculty of Agriculture, Benha University, Egypt
| | - Safaa A Mahmoud
- Plant Nutrition Department, National Research Center, Dokki, Giza, Egypt
| | - Mona Tolba
- Soils and Water Department, Faculty of Agriculture, Benha University, Egypt; Plant Nutrition Department, National Research Center, Dokki, Giza, Egypt
| | - Hassan H Abbas
- Soils and Water Department, Faculty of Agriculture, Benha University, Egypt
| | - Xing Yang
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Biochar Engineering Technology Research Center of Guangdong Province, School of Environmental and Chemical Engineering, Foshan University, Foshan, Guangdong, 528000, China
| | - Vasileios Antoniadis
- Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Greece
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, Seoul, 05006, Republic of Korea
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285, Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516, Kafr El-Sheikh, Egypt.
| |
Collapse
|
45
|
Prediction of Pyrolysis Kinetics of Biomass: New Insights from Artificial Intelligence-Based Modeling. INTERNATIONAL JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1155/2022/6491745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present work introduces a quantitative structure-property relationship (QSPR)-based stochastic gradient boosting (SGB) decision tree framework for simulating and capturing of the thermal decomposition kinetics of biomass considering effective parameters of the ultimate analysis (such as carbon, hydrogen, oxygen, nitrogen, and sulfur content) and process heating rate. Through a total of 149 pyrolysis kinetics, this study developed an artificial model and subjected it to training and testing phases. The proposed model was validated using error analysis, sensitivity, regression, and outlier detection. The coefficient of determination (R2) and mean relative error (%MRE) were calculated to be 0.993 and 4.354%, respectively, suggesting good performance in the estimation of the pyrolysis kinetic parameters. Also, the sensitivity results indicated the process heating rate to have the strongest effect on the model output with a relevancy factor of 0.43. Eventually, the proposed model showed superior performance compared to earlier frameworks.
Collapse
|
46
|
Chen L, Huang H, Thangavelu L, Abdelbasset WK, Bokov DO, Algarni M, Ghazali S, Alashwal M. Optimization and comparison of machine learning methods in estimation of carbon dioxide loading in chemical solvents for environmental applications. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Moshfeghi R, Toghraie D. An analytical and statistical review of selected researches in the field of estimation of rheological behavior of nanofluids. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2021.117076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|