1
|
Hu Z, Yang Y, Li Z, Tao Q, Huang Y, Wang X. Efficient enrichment and sensitive determination of endocrine disruptors in PPCPs by novel magnetic covalent organic framework extraction coupled with HPLC-MS/MS. Talanta 2025; 287:127667. [PMID: 39892117 DOI: 10.1016/j.talanta.2025.127667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/16/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are a growing class of pollutants commonly found in environmental matrices due to their extensive use in pharmaceuticals and personal care products (PPCPs). In this study, a novel magnetic covalent organic framework (COF), Fe3O4-COOH@TFP-BHBD, was successfully synthesized and utilized as an adsorbent for magnetic solid-phase extraction (MSPE) of EDCs from PPCPs. The core-shell structured adsorbent demonstrated a high specific surface area, strong magnetic responsiveness and excellent stability. A COF-MSPE-high-performance liquid chromatography-tandem mass spectrometry (COF-MSPE-HPLC-MS/MS) method was developed for the quantitative analysis of EDCs in PPCPs. Under the optimized condition, the detection and quantification limits of this method reached as low as 0.001-0.007 ng/mL and 0.004-0.025 ng/mL, respectively. This method was validated and proven capable to analyze real PPCP samples, while the spiked recovery rates in ranged from 85.62 to 107.83 % with RSD of 2.28-8.58 %. Moreover, the adsorption mechanism was investigated using density functional theory (DFT) calculations. The DFT results revealed that the efficient enrichment capacity of Fe3O4-COOH@TFP-BHBD for EDCs can be attributed to π-π interactions and hydrogen bondings. This proposed method provides excellent adsorption ability and sensitivity for the extraction and precise detection of EDCs in PPCPs.
Collapse
Affiliation(s)
- Zheng Hu
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Yuhang Yang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Zhe Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central Minzu University, Wuhan, 430074, China
| | - Qiuying Tao
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Yinghong Huang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, Hubei, 430074, China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan, Hubei, 430074, China.
| |
Collapse
|
2
|
Zhang N, Li Y, Liu M, Hu M, Wang H, Ma W, Lu M. Facile synthesis of fluorine-functionalized long-chain metal-organic frameworks for highly efficient enrichment and sensitive detection of bisphenols in water samples. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138382. [PMID: 40280063 DOI: 10.1016/j.jhazmat.2025.138382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
The exceptional stability of long-chain metal-organic framework materials (MOFs) is crucial for preserving their adsorption capabilities and practical applications. Herein, a well-defined material (50.0 %4F-BDC@UiO-67) with enhanced stability and pollutant adsorption was successfully synthesized through a straightforward one-step method, utilizing Zr4+ as the metal ion and employing 4,4'-biphenyldicarboxylic acid, which contains two benzene rings, alongside tetrafluoroterephthalic acid (4F-BDC), which contains one benzene ring, as dual ligands. The 50.0 %4F-BDC@UiO-67 material was utilized for the enrichment of harmful bisphenol pollutants (BPs) from the environment. Experimental results demonstrated that the synthesized 50.0 %4F-BDC@UiO-67 sorbent exhibited significantly improved adsorptive capacity, with its enrichment performance for BPs being 1.5-6.3 times greater than that of pristine UiO-67. The interactions between the material and BPs were explored using density functional theory calculations and experimental characterization. Findings indicated that the incorporation of fluorine enhanced the π-π and coordination interactions between 50.0 %4F-BDC@UiO-67 and BPs, while also introducing additional hydrogen bonding interactions. This outcome offers insights for the future design of materials with superior enrichment capabilities. Leveraging multiple synergistic forces, and in conjunction with high-performance liquid chromatography-diode array detection, the developed method exhibited a broad linear range (0.1-200 ng mL-1), excellent correlation coefficients (0.9992-0.9996), and low detection limits (0.1-0.5 ng mL-1) for BPs. Satisfactory recoveries were achieved for actual water samples (82.9-105.9 %). This work presents a strategy for enhancing the stability and adsorption performance of long-chain MOFs.
Collapse
Affiliation(s)
- Ning Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| | - Yingying Li
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Mengyuan Liu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Miaojia Hu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Huifeng Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Wende Ma
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|
3
|
Song Y, Zhang M, Chen Z, Jian M, Ling C, Zhang Q. Sustainable Pb(II) Removal and Recovery from Wastewater Using a Bioinspired Metal-Phenolic Hybrid Membrane with Efficient Regeneration. CHEMSUSCHEM 2025; 18:e202401770. [PMID: 39635921 DOI: 10.1002/cssc.202401770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/16/2024] [Indexed: 12/07/2024]
Abstract
High-performance adsorbents often require efficient selectivity in wastewater, recoverability, and ease of multiple regeneration cycles, but achieving this remains a significant challenge. We report a new strategy for the efficient removal of lead (Pb(II)) from contaminated water streams using an innovative tannic acid (TA)-Fe(III)-based metal-phenolic network (MPN) hybrid membrane (MPN-PAM). This novel membrane exploits the tunable pH-sensitive coordination structure of the MPN to achieve selective removal and recovery of Pb(II) while enabling efficient membrane regeneration by filtration. This membrane demonstrates superior selectivity for Pb(II) with a removal efficiency of up to 98 % and an adsorption capacity of approximately 117.58 mg/g, even in the presence of high salinity, as well as coexisting heavy metals. The membrane maintains high Pb(II) removal efficiency over 20 consecutive cycles and 95 % efficiency over 10 regeneration cycles. Under continuous operation, it treats approximately 85 L per m2 of membrane, reducing Pb(II) concentrations to trace levels (~40 μg/L), meeting electroplating wastewater standard (GB21900-2008). Additionally, even low concentrations of Pb(II) (<5 mg/L) are efficiently purified to below WHO drinking water standard (10 μg/L). The operational cost for treating Pb(II)-contaminated wastewater is about $0.13 per ton, highlighting the cost-effectiveness and potential for large-scale application in wastewater treatment.
Collapse
Affiliation(s)
- Yaran Song
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Manyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Zichang Chen
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Meili Jian
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Chen Ling
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| |
Collapse
|
4
|
Sayago UFC, Ballesteros VB, Lozano AM. Development of a Treatment System of Water with Cr (VI) Through Models Using E. crassipes Biomass with Iron Chloride. TOXICS 2025; 13:230. [PMID: 40137557 PMCID: PMC11945796 DOI: 10.3390/toxics13030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/09/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
In the context of critical water quality issues, there is a pressing need for more pragmatic approaches to water research. Adsorbent biomass, derived from abundant and effective natural sources, holds considerable promise as a solution. E. crassipes, a type of plant biomass, has emerged as a particularly promising material due to its high adsorption capacity. When combined with iron chloride, this capacity is significantly enhanced, and the addition of EDTA is essential for the reuse of treated water. The economic viability of this material in water treatment has been thoroughly evaluated, and the project was developed with the aim of building treatment systems using E. crassipes biomass in conjunction with iron chloride. The development process involved the creation of a special material composed of 85% dried and ground E. crassipes and 15% iron chloride. The process was scaled up with the most effective biomass for treatment and subsequent elutions with EDTA. The outlet conditions, the quantity of pollutant removed, and the treated volume were established, and subsequently the extraparticle diffusion constant Kf, the intraparticle diffusion constant, and the characteristic isotherm were determined. The identification of the intraparticle diffusion model, Ks, was made possible by the results of the model, which indicated the specific route for the construction of a pilot-scale treatment system. The pilot-scale prototype was constructed using 1000 g of EC (2) of biomass (850 g of E. crassipes and 150 g of chloride of iron). The prototype developed in the present investigation could be used to treat effluents contaminated with heavy metals, especially chromium, and is an advanced environmental research project that contributes to the improvement of water quality.
Collapse
Affiliation(s)
- Uriel Fernando Carreño Sayago
- Faculty of Engineering and Basic Sciences, Fundación Universitaria los Libertadores, Bogotá 111221, Colombia; (V.B.B.); (A.M.L.)
| | | | | |
Collapse
|
5
|
Ouyang E, Ye L, Zhang W, Zhao R, Yang H, Deng S, Xiong Y, Hu X, Zhou Z. Novel anionic functionalized magnetic β-cyclodextrin composites with excellent adsorption capacity for moxifloxacin and wide pH adaptive adsorption capability for copper ion. ENVIRONMENTAL RESEARCH 2025; 269:120937. [PMID: 39855415 DOI: 10.1016/j.envres.2025.120937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/10/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Antibiotics and heavy metals pose severe risks to human health and ecological environment. Therefore, developing a multifunctional adsorbent to remove these contaminants from wastewater is an urgent need. Herein, novel anionic sulfonic acid groups functionalized magnetic β-cyclodextrin (β-CD) composites (FCD@AA) were synthesized by coating poly(2-acrylamido-2-methyl-1-propane sulfonic acid (AMPS)) on the surface of magnetic β-CD particles (FCD). Several characterization techniques were utilized to comprehensively analyze the surface physicochemical properties of FCD@AA. The adsorption properties of FCD@AA toward antibiotics (moxifloxacin (MOX) as model) and heavy metals (copper ion (Cu2+) as model) were systematically studied under different conditions on adsorption time, temperature, initial concentration, solution pH and coexisting ionic strength. In single systems, the adsorption isotherm data for MOX and Cu2+ were well fitted to Langmuir and Freundlich models, respectively. The maximum adsorption capacities of FCD@AA toward MOX and Cu2+ were 118.98 and 19.29 mg g-1, respectively. The pseudo-second-order model could better describe the kinetic processes. In binary systems, the presence of Cu2+ exhibited a pronounced antagonism on the adsorption of MOX. The influence of co-existing MOX on the capture of Cu2+ changed from inhibition to promotion as the initial Cu2+ concentration increased. And after five adsorption cycles, FCD@AA still had satisfactory reusability. The results indicate that FCD@AA is a promising adsorbent for treating water contaminated by MOX and Cu2+, which broadens the application of magnetic β-CD adsorbents in environmental protection.
Collapse
Affiliation(s)
- Erming Ouyang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Linna Ye
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Wenhao Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Rui Zhao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China.
| | - Hongwei Yang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China; Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, People's Republic of China
| | - Suting Deng
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Yuxiang Xiong
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Xinhui Hu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China
| | - Ziyue Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources and Environment, Nanchang University, Nanchang, 330031, People's Republic of China
| |
Collapse
|
6
|
Han W, Liang X, Yao H, Zhang M, Chen Q, Xie Y, Liu Y, Cai H, Zhang C, Zhang Y. Rational design of a dual-bacterial system for synchronous removal of antibiotics and Pb(Ⅱ)/Cd(Ⅱ) from water. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136773. [PMID: 39657493 DOI: 10.1016/j.jhazmat.2024.136773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/12/2024]
Abstract
Facing the combined pollution of antibiotics and heavy metals caused by livestock excrement and industrial effluents, how to use microbial technology to remove these pollutants simultaneously is an important research topic in environmental remediation. In addition, quick separation of the bacteria-water after remediation is also an urgent problem. In this study, we gradually developed a dual-bacteria microbial treatment technology capable of removing Pb(Ⅱ), Cd(Ⅱ) and common antibiotics, as well as self-settling after treatment. The key technology in this study mainly includes modifying the bacterial membrane proteins using Pb-binding protein PbrR, Cd-binding protein CadR and bacterial laccase CotA via surface-display technology to maximize the removal of Pb(Ⅱ), Cd(Ⅱ) and antibiotics, separately. Besides, the introduction of nanobody-antigen adhesion facilitated the self-settling in dual-bacterial system. Then, we studied its effectiveness in removing single pollutants, analyzed the influence of different heavy metal ions, and conducted detailed studies on the kinetics. Further characterization of heavy metal biosorption behavior was conducted using SEM, SEM-EDS, FTIR, and XPS techniques. Via protein fusion and dual vector expression, we constructed a dual-bacteria treatment system that could achieve rapid, selective removal of combined pollutants at a wide pH range temperature range, ultimately precipitating at bottom. Finally, molecular dynamics simulation was employed to elucidate the molecular mechanism underlying the selective biosorption by metal-binding proteins. The findings in this study hold significant implications for achieving selective pollutant removal using engineering bacteria in complex water environments.
Collapse
Affiliation(s)
- Wei Han
- School of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Xinying Liang
- School of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Hongkai Yao
- School of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Meng Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Qi Chen
- School of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yuzhu Xie
- School of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Yuan Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Hongguang Cai
- Jilin Academy of Agricultural Sciences, Changchun, Jilin 130033, PR China
| | - Congyu Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, Heilongjiang 150030, PR China.
| |
Collapse
|
7
|
Fang X, Wang C, Shu HH, Han SL, Liu CM. Improving the removal rate of bisphenol A and Cu 2+ from water using P/N coexisting β-cyclodextrin-based adsorbents by enhancing adsorbents-pollutants interactions. Carbohydr Polym 2024; 343:122437. [PMID: 39174082 DOI: 10.1016/j.carbpol.2024.122437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 08/24/2024]
Abstract
Bisphenol A (BPA), a prominent endocrine-disrupting compound, has garnered considerable attention due to its urgent need for rapid removal from water. Herein, we first used a novel reactive phosphine oxide containing tertiary amines as crosslinker to prepare water-insoluble crosslinked β-cyclodextrin (β-CD) adsorbent via radical-mediated thiol-ene polymerization. Owing to the synergistic hydrogen-bond (H-bond) interactions of functional groups (tertiary amine and PO groups) toward BPA, the resulted adsorbents showed fast adsorption kinetics to BPA with an adsorption equilibrium time of 5 min. After six adsorption-desorption cycles, the removal efficiency of BPA was 92.5 %, indicating its excellent reusability. Due to the presence of the CS bonds, the β-CD -derived bio-adsorbents offered binding sites for Cu2+ ions, resulting in a maximum adsorption capacity of 113.89 mg g-1.
Collapse
Affiliation(s)
- Xiuqin Fang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Wuhan 430074, China; The Innovation and Talent Recruitment Base of New Energy Chemistry and Device, Center for Experimental Chemistry, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chang Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Wuhan 430074, China; The Innovation and Talent Recruitment Base of New Energy Chemistry and Device, Center for Experimental Chemistry, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong-Hui Shu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Wuhan 430074, China; The Innovation and Talent Recruitment Base of New Energy Chemistry and Device, Center for Experimental Chemistry, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sheng-Li Han
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Wuhan 430074, China; The Innovation and Talent Recruitment Base of New Energy Chemistry and Device, Center for Experimental Chemistry, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Cheng-Mei Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Wuhan 430074, China; The Innovation and Talent Recruitment Base of New Energy Chemistry and Device, Center for Experimental Chemistry, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Liu G, Hu L, Tang C, Xu J. Changes in the extractability and fractionation of cadmium and copper in a contaminated soil amended with various sugarcane bagasse-based materials. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116443. [PMID: 38744068 DOI: 10.1016/j.ecoenv.2024.116443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/03/2024] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
Heavy-metal contamination in soil has long been a persistent challenge and the utilization of agricultural waste for in-situ stabilization remediation presents a promising approach to tackle this problem. Agricultural wastes exhibit promising potential in the remediation of contaminated land and modification could improve the adsorption performance markedly. Citric acid and Fe3O4 treated sugarcane bagasse adsorbed more heavy metals than raw materials in the aqueous system, employing these materials for heavy metal remediation in soil holds significant implications for broadening the raw material source of passivators and enhancing waste utilization efficiency. In this paper, a 120-day soil incubation study was conducted to compare the effects of pristine sugarcane bagasse (SB), citric-acid modified (SSB1, SSB2 and SSB3 with increasing proportion of citric acid) and citric-acid/Fe3O4 modified (MSB1, MSB4 and MSB7 with increasing proportion of Fe3O4) sugarcane bagasse at 1 % addition rate on cadmium (Cd) and copper (Cu) passivation. The SB, SSB1 and MSB1 did not always decrease the content of CaCl2-extractable Cd while all the seven amendments decreased the CaCl2-extractable Cu during the experiment period. Among all materials, SSB3 and MSB7 exhibited the highest efficiency in reducing the concentrations of CaCl2-extractable Cd and Cu. At Day 120, SB, SSB3 and MSB7 reduced the content of CaCl2-extractable Cd by 8 %, 18 % and 24 %, and of CaCl2-extractable Cu by 25 %, 50 % and 61 %, respectively. The efficiency of Cd and Cu immobilization was associated positively with the pH, functional groups and H-bonds of the amendments. The results suggest that the efficiency of sugarcane bagasse in heavy-metal passivation can be largely enhanced through chemical modifications using high proportions of citric acid and Fe3O4.
Collapse
Affiliation(s)
- Guofei Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Fukang Road 31, Nankai District, Tianjin 300191, China
| | - Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences/La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, Vic 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Liu C, Crini G, Wilson LD, Balasubramanian P, Li F. Removal of contaminants present in water and wastewater by cyclodextrin-based adsorbents: A bibliometric review from 1993 to 2022. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123815. [PMID: 38508365 DOI: 10.1016/j.envpol.2024.123815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide from enzymatic starch breakdown, plays a crucial role in pharmaceuticals, food, agriculture, textiles, biotechnology, chemicals, and environmental applications, including water and wastewater treatment. In this study, a statistical analysis was performed using VOSviewer and Citespace to scrutinize 2038 articles published from 1993 to 2022. The investigation unveiled a notable upsurge in pertinent articles and citation counts, with China and USA contributing the highest publication volumes. The prevailing research focus predominantly revolves around the application of CD-based materials used as adsorbents to remove conventional contaminants such as dyes and metals. The CD chemistry allows the construction of materials with various architectures, including cross-linked, grafted, hybrid or supported systems. The main adsorbents are cross-linked CD polymers, including nanosponges, fibres and hybrid composites. Additionally, research efforts are actually concentrated on the synthesis of CD-based membranes, CD@graphene oxide, and CD@TiO2. These materials are proposed as adsorbents to remove emerging pollutants. By employing bibliometric analysis, this study delivers a comprehensive retrospective review and synthesis of research concerning CD-based adsorbents for the removal of contaminants from wastewater, thereby offering valuable insights for future large-scale application of CD-based adsorption materials.
Collapse
Affiliation(s)
- Chong Liu
- Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand
| | - Grégorio Crini
- Chrono-environment, University of Franche-Comté, 25000 Besançon, France
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Room 165 Thorvaldson Bldg., Saskatoon, SK S7N 5C9, Canada
| | | | - Fayong Li
- College of Water Resources and Architectural Engineering, Tarim University, Xinjiang 843300, China.
| |
Collapse
|
10
|
Lv Z, Wang Z, Wang H, Li J, Li K. Adsorption of cationic/anionic dyes and endocrine disruptors by yeast/cyclodextrin polymer composites. RSC Adv 2024; 14:6627-6641. [PMID: 38390511 PMCID: PMC10882443 DOI: 10.1039/d3ra07682b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
Factory and natural wastewaters contain a wide range of organic pollutants. Therefore, multifunctional adsorbents must be developed that can purify wastewater. Phytic acid-cross-linked Baker's yeast cyclodextrin polymer composites (IBY-PA-CDP) were prepared using a one-pot method. IBY-PA-CDP was used to adsorb methylene blue (MB), bisphenol A (BPA), and methyl orange (MO). Studies on the ionic strength and strongly acidic ion salts confirmed that IBY-PA-CDP adsorbs MO through hydrophobic interactions. This also shows that Na+ was the direct cause of the increased MO removal. Adsorption studies on binary systems showed that MB/MO inhibited the adsorption of BPA by IBY-PA-CDP. The presence of MB increased the removal rate of MO by IBY-PA-CDP due to the bridging effect. The Langmuir isotherm model calculated the maximum adsorption capacities for MB and BPA to be 630.96 and 83.31 mg g-1, respectively. However, the Freundlich model is more suitable for fitting the experimental data for MO adsorption. To understand the rate-limiting stage of adsorption, a mass-transfer mechanism model was employed. The fitting results show that adsorption onto the active sites is the rate-determining step. After five regeneration cycles, IBY-PA-CDP could be reused with good stability and recyclability.
Collapse
Affiliation(s)
- Zhikun Lv
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 Guangxi China +86 13978609908 +86 13877115103
| | - Zhaoyang Wang
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 Guangxi China +86 13978609908 +86 13877115103
| | - Huaiguang Wang
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 Guangxi China +86 13978609908 +86 13877115103
| | - Jianbin Li
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 Guangxi China +86 13978609908 +86 13877115103
- Provincial and Ministerial Collaborative Innovation Center for Sugar Industry Nanning 530004 China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education Nanning 530004 China
| | - Kai Li
- College of Light Industry and Food Engineering, Guangxi University Nanning 530004 Guangxi China +86 13978609908 +86 13877115103
- Provincial and Ministerial Collaborative Innovation Center for Sugar Industry Nanning 530004 China
- Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education Nanning 530004 China
| |
Collapse
|
11
|
Xiao W, Sun R, Hu S, Meng C, Xie B, Yi M, Wu Y. Recent advances and future perspective on lignocellulose-based materials as adsorbents in diverse water treatment applications. Int J Biol Macromol 2023; 253:126984. [PMID: 37734528 DOI: 10.1016/j.ijbiomac.2023.126984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/10/2023] [Accepted: 09/16/2023] [Indexed: 09/23/2023]
Abstract
The growing shortage of non-renewable resources and the burden of toxic pollutants in water have gradually become stumbling blocks in the path of sustainable human development. To this end, there has been great interest in finding renewable and environmentally friendly materials to promote environmental sustainability and combat harmful pollutants in wastewater. Of the many options, lignocellulose, as an abundant, biocompatible and renewable material, is the most attractive candidate for water remediation due to the unique physical and chemical properties of its constituents. Herein, we review the latest research advances in lignocellulose-based adsorbents, focusing on lignocellulosic composition, material modification, application of adsorbents. The modification and preparation methods of lignin, cellulose and hemicellulose and their applications in the treatment of diverse contaminated water are systematically and comprehensively presented. Also, the detailed description of the adsorption model, the adsorption mechanism and the adsorbent regeneration technique provides an excellent reference for understanding the underlying adsorption mechanism and the adsorbent recycling. Finally, the challenges and limitations of lignocellulosic adsorbents are evaluated from a practical application perspective, and future developments in the related field are discussed. In summary, this review offers rational insights to develop lignocellulose-based environmentally-friendly reactive materials for the removal of hazardous aquatic contaminants.
Collapse
Affiliation(s)
- Weidong Xiao
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Chengzhen Meng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Bin Xie
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Mengying Yi
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China
| | - Yaoguo Wu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, China.
| |
Collapse
|
12
|
Zhao A, Tang Q, Chen Y, Qiu C, Huang X. Magnetic Adsorbent Fe 3O 4/ZnO/LC for the Removal of Tetracycline and Congo Red from Aqueous Solution. Molecules 2023; 28:6499. [PMID: 37764274 PMCID: PMC10534808 DOI: 10.3390/molecules28186499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Zeolitic imidazolate frameworks (ZIFs) can be used as an adsorbent to efficiently adsorb organic pollutants. However, ZIF nanoparticles are easy to form aggregates, hampering the effective and practical application in practical adsorption. In this study, the ZIF-8 was successfully loaded onto lignocellulose (LC) to further produce ZnO/LC by in situ growth method and hydrothermal treatment, and then Fe3O4 nanoparticles (Fe3O4 NPs) were loaded onto ZnO/LC to prepare magnetic Fe3O4/ZnO/LC adsorbent for removing tetracycline (TC) and congo red (CR) pollutants from aqueous solution. The adsorption properties of the adsorbent were systematically analyzed for different conditions, such as adsorbent dosage, solution pH, contact time, temperature and initial concentration. The experimental data were fitted using adsorption kinetic and isotherm models. The results showed that the pseudo-second-order model and Sips model were well fitted to the adsorption kinetic and adsorption isotherm, respectively. The adsorption capacities of TC and CR reached the maximum value of 383.4 mg/g and 409.1 mg/g in experimental conditions. The mechanism of the removal mainly includes electrostatic interaction, hydrogen bonding and π-π stacking. This novel adsorbent could be rapidly separated from the aqueous solution, suggesting its high potential to remove pollutants in wastewater.
Collapse
Affiliation(s)
- Anjiu Zhao
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Qi Tang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuanlong Chen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Chongpeng Qiu
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xingyan Huang
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
13
|
Zhang Y, Huang S, Mei B, Tian X, Jia L, Sun N. Magnetite/β-cyclodextrin/fly ash composite as an effective and recyclable adsorbent for uranium(VI) capture from wastewater. CHEMOSPHERE 2023; 331:138750. [PMID: 37105305 DOI: 10.1016/j.chemosphere.2023.138750] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/19/2023]
Abstract
As a novel adsorbent for the separation of uranium(VI) from wastewater, Magnetite/β-cyclodextrin/fly ash composite (Fe3O4/β-CD/FA) was first prepared via a chemical coprecipitation technology. The characterization results indicated that Fe3O4 and β-CD had been successfully loaded on FA, which had brought abundant oxygen-containing functional groups, providing numerous adsorptive sites for the removal of uranium(VI). At pH = 5.0 and T = 25 °C, the maximum uranium(VI) removal efficiency and capacity of Fe3O4/β-CD/FA were higher to 97.8% and 444.4 mg g-1, respectively. Pseudo-second-order and Langmuir models fitted better with the experimental data, illustrating that chemical adsorption dominated the uranium(VI) removal process. In addition, Fe3O4/β-CD/FA showed good anti-interference ability and recoverability. After five cycles, the removal rate of uranium(VI) on Fe3O4/β-CD/FA was still higher to 90.4%. The immobilization of uranium(VI) on Fe3O4/β-CD/FA was mainly ascribed to the synergism of redox reaction, complex reaction, chemical reaction and electrostatic interaction. Given the above, Fe3O4/β-CD/FA would be regarded as an efficacious, green and promising adsorbent for uranium(VI) separation from wastewater.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
| | - Siqi Huang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Bingyu Mei
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Xiaoyu Tian
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China
| | - Nan Sun
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang, 621010, China.
| |
Collapse
|
14
|
Wang Z, Guo J, Jia J, Liu W, Yao X, Feng J, Dong S, Sun J. Magnetic Biochar Derived from Fenton Sludge/CMC for High-Efficiency Removal of Pb(II): Synthesis, Application, and Mechanism. Molecules 2023; 28:4983. [PMID: 37446645 DOI: 10.3390/molecules28134983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/18/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Magnetic biochar composites (MBC) were developed by a simple one-step pyrolysis method using Fenton sludge waste solid and carboxymethyl cellulose sodium. Detailed morphological, chemical, and magnetic characterizations corroborate the successful fabrication of MBC. Batch adsorption experiments show that the synthesized MBC owns high-efficiency removal of Pb(II), accompanied by ease-of-separation from aqueous solution using magnetic field. The experiment shows that the equilibrium adsorption capacity of MBC for Pb(II) can reach 199.9 mg g-1, corresponding to a removal rate of 99.9%, and the maximum adsorption capacity (qm) reaches 570.7 mg g-1, which is significantly better than that of the recently reported magnetic similar materials. The adsorption of Pb(II) by MBC complies with the pseudo second-order equation and Langmuir isotherm model, and the adsorption is a spontaneous, endothermic chemical process. Investigations on the adsorption mechanism show that the combination of Pb(II) with the oxygen-containing functional groups (carboxyl, hydroxyl, etc.) on biochar with a higher specific surface area are the decisive factors. The merits of reusing solid waste resource, namely excellent selectivity, easy separation, and simple preparation make the MBC a promising candidate of Pb(II) purifier.
Collapse
Affiliation(s)
- Zongwu Wang
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Juan Guo
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Junwei Jia
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Wei Liu
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Xinding Yao
- Department of Environment Engineering, Yellow River Conservancy Technical Institute, Kaifeng Engineering Research Center for Municipal Wastewater Treatment, Kaifeng 475004, China
| | - Jinglan Feng
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Shuying Dong
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| | - Jianhui Sun
- MOE Key Laboratory of Yellow River and Huai River Water Environmental and Pollution Control, School of Environment, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
15
|
Yu K, Guo J, Li B, Guo J. Highly efficient removal of Pb 2+ from wastewater by a maleic anhydride modified organic porous adsorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:68467-68476. [PMID: 37126166 DOI: 10.1007/s11356-023-27272-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/24/2023] [Indexed: 05/27/2023]
Abstract
Sorption is prominent in low price, high efficiency, availability, and eco-friendliness. Organic porous materials have the characteristics of easy functionalization, diverse structure and stability, and show great potential in adsorption, energy storage, catalysis, and other fields. A mesoporous phenolic resin-type polymer (PRP) was successfully synthesized and modified by solid state reaction with maleic anhydride to prepare adsorbent (called as PRP-MAH) for sorption of Pb2+. The impact of reaction conditions (the pH value, reaction temperature, fresh concentration of solution, ionic strength and reaction time, etc.) was systematically studied. Characterization methods such as SEM, FTIR, and XPS indicated that the synthesized adsorbent PRP-MAH had regular morphology and good stability. The fitting of isothermal adsorption experiment data conforms to Langmuir sorption isotherm, and the sorption capacity reached 366.40 mg·g-1 at 308 K. The kinetic data were consistent with the quasi-second-order model, which indicated that the chemisorption might play the main role in the sorption process. Thermodynamic research manifested that the sorption of Pb2+ by PRP-MAH was carried out by a spontaneous process at the study temperature. The studies show that PRP-MAH can remove Pb2+ from water solution through ion exchange, electrostatic attraction, and surface complexation.
Collapse
Affiliation(s)
- Kun Yu
- Key Laboratory of Chemical Utilization of Forestry Biomass in Zhejiang Province, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, People's Republic of China
| | - Jiaqi Guo
- School of Medicine, Ningbo University, Ningbo, 315211, Zhejiang, People's Republic of China
| | - Bing Li
- Key Laboratory of Chemical Utilization of Forestry Biomass in Zhejiang Province, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, People's Republic of China
| | - Jianzhong Guo
- Key Laboratory of Chemical Utilization of Forestry Biomass in Zhejiang Province, College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, Zhejiang, People's Republic of China.
| |
Collapse
|
16
|
Chen T, Wen X, Li X, He J, Yan B, Fang Z, Zhao L, Liu Z, Han L. Single/co-adsorption and mechanism of methylene blue and lead by β-cyclodextrin modified magnetic alginate/biochar. BIORESOURCE TECHNOLOGY 2023; 381:129130. [PMID: 37149268 DOI: 10.1016/j.biortech.2023.129130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/08/2023]
Abstract
Due to the high biological toxicity, the concurrent elimination of lead (Pb (II)) and methylene blue (MB) has become a challenging problem. Therefore, a newly β-cyclodextrin (β-CD) modified magnetic alginate/biochar (β-CD@MBCP) material was developed. Comprehensive characterizations proved the successful coating of β-CD onto MBCP surface by microwave-aided fabrication. The β-CD@MBCP achieved high-efficiency uptake for contaminants under a wide pH scope. In the dual system, Pb (II) elimination was facilitated with the presence of MB, due to the active sites provided by MB. In the presence of Pb (II), MB uptake was inhibited due to the electrostatic repulsion between positively charged MB and Pb (II). Electrostatic attraction and complexation contributed to capturing Pb (II), while π-π interactions, host-guest effect, and H-bonding were important in MB elimination. After four cycles, β-CD@MBCP maintained comparatively good renewability. Findings demonstrated that β-CD@MBCP could be an effective remediation material for Pb (II)/MB adsorption from aqueous environments.
Collapse
Affiliation(s)
- Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xiaocui Wen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Xueying Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, 100875, China
| | - Jiehong He
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Bo Yan
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhanqiang Fang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lingzhi Zhao
- GuangDong Engineering Technology Research Center of Low Carbon and Advanced Energy Materials, Guangdong Provincial Key Laboratory of Chip and Integration Technology, School of Semiconductor Science and Technology, South China Normal University, Foshan 528225, China
| | - Zhenyuan Liu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Lanfang Han
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
17
|
Chen R, Liu Y, Weng J, Huang H, Gao X, Wang Z, Liu J. Microporous melamine-formaldehyde networks loaded on rice husks for dynamic removal of organic micropollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121200. [PMID: 36736815 DOI: 10.1016/j.envpol.2023.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/29/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The alteration of agricultural wastes into novel adsorbents can stimulate their scalability in realistic application, showing great economic and environmental advantages. Here, we proposed a strategy to engineer rice husk (RH) with microporous melamine-formaldehyde networks (MFNs) resins and the utilization for dynamic removal of organic micropollutants rapidly and efficiently. was pre-treated to acquire attractive surface and unique hierarchical porosity, endowing with surface functionalization and essential filtering properties. MFNs can be uniformly generated in-situ on the fully exposed cellulose backbones of the pre-treated RH. MFNs granules functionalized RH (RH@MFNs) exhibited high removal efficiencies over 90% within 30 min for the adsorption of hazardous organic compounds (e.g., phenolic and antibiotic micropollutants) in static tests. Experiment results and density functional theory (DFT) simulation revealed that the synergy of hydrogen bonding, π-πinteraction, and micropore preservation dominates the adsorption. Further dynamic adsorption experiments showed that the removal efficiency and equilibrium removal capacity towards bisphenol A by RH@MFNs packed bed up-flow column were 2.6 and 67 times higher than that of raw RH, respectively. The column adsorption fits well with the Thomas model and bed depth service time (BDST) kinetic model. The inherent macropores inside RH and the roughness caused by the spiky structures and mesopores outside RH, as well as the accumulated MFNs granules, can lead to local turbulence of water flow around RH@MFNs, enabling fast and efficient adsorption. This sustainable and cost-effective preparation of RH-based adsorbents sheds light on the rational design of biomass waste adsorbents for realistic wastewater.
Collapse
Affiliation(s)
- Rongqing Chen
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Yunjia Liu
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Jinlan Weng
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Hua Huang
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Xiaoying Gao
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Zhipeng Wang
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China
| | - Jian Liu
- Institute of Advanced Materials, State Province Joint Engineering Laboratory of Zeolite Membrane Materials, College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang, 330022, China.
| |
Collapse
|
18
|
Jin G, Gu P, Qin L, Li K, Guan Y, Su H. Preparation of manganese-oxides-coated magnetic microcrystalline cellulose via KMnO4 modification: Improving the counts of the acid groups and adsorption efficiency for Pb(II). Int J Biol Macromol 2023; 239:124277. [PMID: 37011747 DOI: 10.1016/j.ijbiomac.2023.124277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/14/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Herein, the manganese-oxides-coated magnetic microcrystalline cellulose (MnOx@Fe3O4@MCC) was prepared by coprecipitation and subsequently modified with KMnO4 solution at room temperature, which was in turn applied for the removal of Pb(II) from wastewater. The adsorption properties of Pb(II) on MnOx@Fe3O4@MCC were investigated. The kinetics and isothermal data of Pb(II) were described well by the Pseudo-second-order model and the Langmuir isotherm model, respectively. At pH = 5, 318 K, the Langmuir maximum Pb(II) adsorption capacity of MnOx@Fe3O4@MCC was 446.43 mg/g, which is higher than many documented bio-based adsorbents. The results of Fourier transform infra-red and X-ray photoelectron spectroscopy indicated that the adsorption mechanisms for Pb(II) mainly involved surface complexation, ion exchange, electrostatic interaction and precipitation. Interestingly, the increased amount of carboxyl group on the surface of microcrystalline cellulose modified by KMnO4 was one of the important reasons for the high Pb(II) adsorption performance of MnOx@Fe3O4@MCC. Furthermore, MnOx@Fe3O4@MCC exhibited excellent activity (70.6 %) after five consecutive regeneration cycles, indicating its high stability and reusability. Endorsing to the cost-effectiveness, environmentally friendliness, and reusable nature, MnOx@Fe3O4@MCC can be counted as a great alternative contender for the remediation of Pb(II) from industrial wastewater.
Collapse
|
19
|
Xu L, Bai T, Yi X, Zhao K, Shi W, Dai F, Wei J, Wang J, Shi C. Polypropylene fiber grafted calcium alginate with mesoporous silica for adsorption of Bisphenol A and Pb 2. Int J Biol Macromol 2023; 238:124131. [PMID: 36958444 DOI: 10.1016/j.ijbiomac.2023.124131] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/28/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Polypropylene grafted calcium alginate with mesoporous silica (PP-g-CaAlg@SiO2) for adsorbing Bisphenol A (BPA) and Pb2+ was prepared by calcium chloride (CaCl2) crosslinking and hydrochloric acid solution treatment. The PP-g-CaAlg@SiO2 was characterized by SEM, TEM, BET, XRD, FTIR and TG. PP-g-CaAlg@SiO2 exhibited excellent adsorption capacity for BPA and Pb2+, because the formation of reticulated nanorod structure increased its specific surface area. Subsequently, the adsorption behaviours of BPA and Pb2+, including adsorption isotherms and adsorption kinetics, were investigated. Afterward, isothermal titration calorimetry (ITC) and molecular dynamics (MD) simulation were performed to explore the adsorption mechanism. The results indicated that hydrogen bonding played the leading role in the adsorption of BPA, while the bonding of Pb2+ to carboxyl group binding sites was the focus of Pb2+ adsorption. In addition, the adsorption capacity of PP-g-CaAlg@SiO2 was stable over 10 cycles.
Collapse
Affiliation(s)
- Lijing Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Tian Bai
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xinzhun Yi
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Wenxiong Shi
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300387, China
| | - Fengying Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Junfu Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Ce Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 300387, China
| |
Collapse
|
20
|
Jiang H, Wu S, Zhou J. Preparation and modification of nanocellulose and its application to heavy metal adsorption: A review. Int J Biol Macromol 2023; 236:123916. [PMID: 36898461 DOI: 10.1016/j.ijbiomac.2023.123916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023]
Abstract
Heavy metals are a notable pollutant in aquatic ecosystems that results in many deadly diseases of the human body after enrichment through the food chain. As an environmentally friendly renewable resource, nanocellulose can be competitive with other materials at removing heavy metal ions due to its large specific surface area, high mechanical strength, biocompatibility and low cost. In this review, the research status of modified nanocellulose for heavy metal adsorbents is primarily reviewed. Two primary forms of nanocellulose are cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs). The preparation process of nanocellulose was derived from natural plants, and the preparation process included noncellulosic constituent removal and extraction of nanocellulose. Focusing on heavy metal adsorption, the modification of nanocellulose was explored in depth, including direct modification methods, surface grafting modification methods based on free radical polymerization and physical activation. The adsorption principles of nanocellulose-based adsorbents when removing heavy metals are analyzed in detail. This review may further facilitate the application of the modified nanocellulose in the field of heavy metal removal.
Collapse
Affiliation(s)
- Haoyuan Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China
| | - Simiao Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, Jiangsu 210023, PR China.
| | - Jizhi Zhou
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, PR China.
| |
Collapse
|
21
|
Mondal M, Basak S, Ali S, Roy D, Haydar MS, Sarkar K, Ghosh NN, Roy K, Roy MN. Assembled Bisphenol A with cyclic oligosaccharide as the controlled release complex to reduce risky effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:43300-43319. [PMID: 36656475 DOI: 10.1007/s11356-023-25217-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Herein, in order to improve the bioavailability of a non-biodegradable pollutant, inclusion complexation procedures had been used to develop better formulations of this pollutant, Bisphenol A (BPA). In our research, an inclusion complex (IC) of β-cyclodextrin (β-CD) with BPA was formed to investigate the effect of β-CD on the water solubility, anti-oxidant, anti-bacterial activity, toxicity, and thermal stability of BPA. UV-Vis and other spectrometric methods such as NMR, FTIR, and XRD indicated the molecular mechanism of interactions between β-CD and BPA, which was further hypothesized using molecular modeling to confirm preliminary results. Studies of TGA and DSC demonstrated that encapsulation boosted the thermal stability of BPA. This research also makes predictions about BPA's release behavior when CT-DNA is present. In vitro testing of the IC's antibacterial activities showed that it outperformed pure BPA. The in silico study was found to have a considerable decrease in toxicity level for IC compared to pure BPA. Therefore, β-CD-encapsulated BPA can lessen toxicity by raising antioxidant levels. Additionally, as its antibacterial activity increases, it may be employed therapeutically. Thus, this discovery of creating BPA formulations with controlled release and/or protective properties allows for a more logical application of BPA by reducing its hazardous effects through boosting its efficacy.
Collapse
Affiliation(s)
- Modhusudan Mondal
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Shatarupa Basak
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Salim Ali
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Debadrita Roy
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India
| | - Md Salman Haydar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Darjeeling, 734013, India
| | - Kushankur Sarkar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Darjeeling, 734013, India
| | | | - Kanak Roy
- Department of Chemistry, Alipurduar University, Alipurduar, 736122, India
| | - Mahendra Nath Roy
- Department of Chemistry, University of North Bengal, Darjeeling, 734013, India.
- Alipurduar University, Alipurduar, 736122, India.
| |
Collapse
|
22
|
Wang Z, Wang H, Nie Q, Ding Y, Lei Z, Zhang Z, Shimizu K, Yuan T. Pb(II) bioremediation using fresh algal-bacterial aerobic granular sludge and its underlying mechanisms highlighting the role of extracellular polymeric substances. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130452. [PMID: 36435038 DOI: 10.1016/j.jhazmat.2022.130452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/03/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
Lead (Pb) discharged from rural industries poses a significant threat to the environment and human health. Algal-bacterial aerobic granular sludge (A-B AGS) is a promising alternative for sewage treatment with high efficiency and good settleability. In this study, Pb(II) biosorption using fresh A-B AGS was investigated for the first time. The important role of extracellular polymeric substances (EPS) was revealed with the involved mechanisms being clarified. The desorbents for Pb recovery from Pb-loaded A-B AGS were also screened. Results showed that A-B AGS has an excellent maximum Pb adsorption capacity of 72.4 mg·g-1 at pH 6.0. EPS plays an important role in keeping microbial activity, Pb bonding, and providing metal ions (Ca, Na and Mg) for Pb ion exchanges. Electrostatic interaction, ion exchange, and bonding to functional groups may occur orderly in the Pb biosorption process and the formation of pyromorphite (Pb5(PO4)3Cl) contributes to Pb biosorption. About 66 % of the adsorbed Pb was accumulated in the A-B AGS microbial cells. Na2EDTA (0.05 M) can recover 60.3 % of the loaded Pb with the highest microbial activity of granules being remained. All the findings will provide the theoretical basis for the large-scale application of A-B AGS to bioremediate Pb(II)-containing wastewater.
Collapse
Affiliation(s)
- Zhiwei Wang
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hanxiao Wang
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Qi Nie
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yi Ding
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Kazuya Shimizu
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tian Yuan
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
23
|
Li Q, Liao L, Xu R, Wu Z, Yin Z, Han Y, Zhang Y, Yang Y, Jiang T. In situ preparation of a multifunctional adsorbent by optimizing the Fe 2+/Fe 3+/Mn 2+/HA ratio for simultaneous and efficient removal of Cd(II), Pb(II), Cu(II), Zn(II), As(III), Sb(III), As(V) and Sb(V) from aqueous environment: Behaviors and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130389. [PMID: 36402108 DOI: 10.1016/j.jhazmat.2022.130389] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Multiple potentially toxic elements (PTEs) often coexist in practical wastewater environment, which poses serious risks to the ecological environment and human health. However, few of the reported adsorbents are capable of simultaneously and effectively removing multiple PTEs from wastewater due to the unique properties of each element. In this work, a multifunctional adsorbent FMHs was developed by optimizing Fe2+/Fe3+/Mn2+/HA ratio, and applied to remove Cd(II), Pb(II), Cu(II), Zn(II), As(III), Sb(III), As(V) and Sb(V) from aqueous solution. Results revealed that the adsorption data obeyed the Elovich, Sips and Redlich-Peterson models in the mono-component system, and the maximum adsorption capacity of FMHs was superior to most adsorbents reported in the literatures. In addition, FMHs retained considerable removal capacity after four cycles, and maintained excellent adsorption performance under the interference of different environmental factors (including pH, ionic strength, co-existing ions and humic acid). In the multi-component system, FMHs also presented high adsorption capacity for all the selected PTEs, especially for Sb(III/V) and Pb(II). Characterization results confirmed that various removal mechanisms, such as precipitation, surface complexation, ion exchange, electrostatic attraction and redox, were responsible for the capture of PTEs by FMHs.
Collapse
Affiliation(s)
- Qian Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Lang Liao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Rui Xu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China.
| | - Zhenguo Wu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Zhe Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yuqi Han
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yan Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Yongbin Yang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| | - Tao Jiang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, PR China
| |
Collapse
|
24
|
Tian H, Huang C, Wang P, Wei J, Li X, Zhang R, Ling D, Feng C, Liu H, Wang M, Liu Z. Enhanced elimination of Cr(VI) from aqueous media by polyethyleneimine modified corn straw biochar supported sulfide nanoscale zero valent iron: Performance and mechanism. BIORESOURCE TECHNOLOGY 2023; 369:128452. [PMID: 36503100 DOI: 10.1016/j.biortech.2022.128452] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
A novel polyethyleneimine modified corn straw biochar supported sulfide nanoscale zero-valent iron (S-nZVI@PBC) was developed to enhance Cr(VI) removal from aqueous media. The characteristics of morphology, chemical composition, and functional groups of S-nZVI@PBC, as well as its kinetics and mechanism for Cr(VI) removal were explored. Characterization verified S-nZVI was successfully loaded onto PEI modified biochar. The adsorption process was well represented pseudo-second-order model (R2 = 0.990) and Langmuir isotherm model (R2 = 0.962), indicating it was a monolayer chemical adsorption process. The Cr(VI) removal was affected by pH and achieved the maximum when pH = 3.0, which may be ascribed to the better corrosion of nZVI and release of Fe(II) from the S-nZVI@PBC in acidic condition. The primary mechanisms were adsorption, reduction, and co-precipitation. S-nZVI@PBC exhibited higher stability and reusability than nZVI, which makes it more promising in environmental application. Overall, S-nZVI@PBC is of great potential for treating Cr(VI)-containing wastewater.
Collapse
Affiliation(s)
- Haoran Tian
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jie Wei
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xinyan Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ruimei Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Dingxun Ling
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Chongling Feng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Hao Liu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Mengxin Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Zhiming Liu
- Department of Biology, Eastern New Mexico University, Portales, NM 88130, USA
| |
Collapse
|
25
|
Zhang X, Du L, Jin W. Screening and Optimization of Conditions for the Adsorption of Cd 2+ in Serpentine by Using Response Surface Methodology. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16848. [PMID: 36554733 PMCID: PMC9779493 DOI: 10.3390/ijerph192416848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
In order to explore the optimal conditions for the adsorption of Cd2+ in serpentine, this paper studied the adsorption of simulated cadmium solutions with serpentine as an adsorbent. On the basis of a single factor experiment, four factors including the amount of serpentine, initial pH, the initial concentration of solutions, and adsorption time were selected as the influencing factors, and the adsorption quantity and adsorption rate of serpentine to Cd2+ were double response values using the Box-Behnken design. Response surface analyses were used to study the effects of four factors on the adsorption quantity and adsorption rate of serpentine on cadmium, and the interaction between various factors. The results showed that the optimum adsorption conditions were as follows: the amount of serpentine was 1%, the initial pH was 5.5, the initial solution concentration was 40.83 mg·L-1, and the adsorption time was 26.78 h. Under these conditions, the theoretical adsorption quantity and adsorption rate of serpentine to Cd2+ were 3.99 mg·g-1 and 95.24%, respectively. At the same time, after three repeated experiments, the actual adsorption quantity and adsorption rate of serpentine to Cd2+ were 3.91 mg·g-1 and 94.68%, respectively, and the theoretical value was similar to the actual value. Therefore, it was proved that the experimental design of the regression model is reliable, and it is feasible to use the response surface method to optimize the adsorption conditions of serpentine on Cd2+.
Collapse
|
26
|
Zhou J, Yu M, Qu J, Akindolie MS, Bi F, Liu Y, Jiang Z, Wang L, Zhang B, Zhang Y. Hydrothermal carbonization of alfalfa: role of processing variables on hydrochar properties. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:85300-85311. [PMID: 35794322 DOI: 10.1007/s11356-022-21740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
Hydrothermal carbonization of alfalfa is a potential way to reuse agricultural waste. However, the effects of hydrothermal conditions on the properties of alfalfa-derived hydrochar are not clear. Herein, this study investigated the impact of different synthesis conditions (e.g., heating temperature, heating time, and solid to liquid ratio) on the formation and properties of hydrochar. Characterization and thermogravimetric analysis results revealed that with the increase of hydrothermal temperature and the extension of time, cellulose in alfalfa broken down more completely, and the number of carbon spheres and the aromatization degree increased, while the functional groups decreased. Furthermore, there was a surge in the carbon content, fixed carbon yield, high heating value, reduced oxygen, and volatile content. Additionally, the enhancement solid-liquid ratio could effectively improve the energy and mass yields. In all, by adjusting the process parameters of hydrochar, cleaner and higher productivity products could be obtained. This study provides theory basis for the production of target hydrochar that is used to soil amendments, adsorbents, and energy sources in the future.
Collapse
Affiliation(s)
- Jun Zhou
- College of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China
- Heilongjiang Research Academy of Environmental Science, Harbin, 150056, China
| | - Mingjie Yu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Modupe Sarah Akindolie
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun, 130102, China.
| |
Collapse
|
27
|
Efficient adsorption of BPA and Pb2+ by sulfhydryl-rich β-cyclodextrin polymers. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Liang T, Zhou G, Chang D, Wang Y, Gao S, Nie J, Liao Y, Lu Y, Zou C, Cao W. Co-incorporation of Chinese milk vetch (Astragalus sinicus L.), rice straw, and biochar strengthens the mitigation of Cd uptake by rice (Oryza sativa L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:158060. [PMID: 35981578 DOI: 10.1016/j.scitotenv.2022.158060] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Soil cadmium (Cd) contamination is becoming a widespread concern because of its threat to global ecosystem health and food security. Co-incorporation of Chinese milk vetch (MV) and rice straw (RS) is a common agricultural practice in Southern China; however, the effects of combining these two materials with biochar on Cd bioavailability remain unclear. This study investigated the effects of MV, RS, rape straw biochar (RB), iron-modified biochar (FB), and their combinations on Cd uptake by rice through incubation and field experiments. The results showed that compared with the control without material input (CK), MV + RS (MR), MV + RS + RB (MRRB), and MV + RS + FB (MRFB) considerably reduced the Cd concentration in brown rice by 61.20 %, 65.38 %, and 62.65 %, respectively. Furthermore, the treatments increased the formation of iron‑manganese plaque (IMP) at different growth stages; MRRB and MRFB exhibited the highest increase rates among the treatments. Quantitatively, the Fe plaque and Mn plaque were increased by 20.61 %-47.23 % and 80.18 %-172.74 %, respectively. Compared with CK, the MRRB and MRFB treatments reduced the soil available Cd by 35.09 %-54.45 % and 38.20 %-50.20 %, respectively, at all stages. This decrease was substantially lower than that observed in the MV, RS, and MR treatments. Similar trends were observed in the incubation experiment. Additionally, the Community Bureau of Reference Sequential Extraction Analysis indicated that the MRRB and MRFB treatments converted the bioavailable Cd fractions into a stable form. Partial least squares path model and redundancy analysis revealed that pH was the major factor influencing Cd bioavailability. This study emphasized that the dual impact factors from the enhancement of Cd passivation capability and IMP formation jointly result in the reduction of Cd uptake by rice. Consequently, the co-incorporation of MV, RS, and biochar is promising for remediating Cd-contaminated paddy soils in Southern China.
Collapse
Affiliation(s)
- Ting Liang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100081, China
| | - Guopeng Zhou
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Danna Chang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yikun Wang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Songjuan Gao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jun Nie
- Soil and Fertilizer Institute of Hunan Province, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yulin Liao
- Soil and Fertilizer Institute of Hunan Province, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanhong Lu
- Soil and Fertilizer Institute of Hunan Province, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Chunqin Zou
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100081, China
| | - Weidong Cao
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
29
|
Qu J, Zhang X, Bi F, Wang S, Zhang X, Tao Y, Wang Y, Jiang Z, Zhang Y. Polyethylenimine-grafted nitrogen-doping magnetic biochar for efficient Cr(VI) decontamination: Insights into synthesis and adsorption mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120103. [PMID: 36075332 DOI: 10.1016/j.envpol.2022.120103] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/28/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Herein, polyethylenimine (PEI)-grafted nitrogen (N)-doping magnetic biochar (PEIMW@MNBCBM) was synthesized, and characterization results showed that the microwave-assisted PEI grafting and ball milling-assisted N doping introduced abundant amino, pyridine N and pyrrole N structures onto biochar, which possessed high affinity to Cr(VI) in the anion form. The as-prepared PEIMW@MNBCBM displayed pH-dependence adsorption performance and high tolerance to co-existing ions with maximum uptake capacity of Cr(VI) identified as 183.02 mg/g. Furthermore, PEIMW@MNBCBM could bind Cr(VI) through electrostatic attraction, complexion, precipitation, reduction and pore filling. Especially, effective reduction of Cr(VI) was ascribed to cooperative electron transfer of partial oxygen-containing functional groups, intramolecular pyridine/pyrrole N, protonated amino and Fe2+ on the adsorbent, while oxygen-containing and amino functional groups from N-doping biochar and PEI synergistically complexed Cr(III) via providing lone pair electrons to form coordinate bonds. Furthermore, the stable precipitation was formed between Fe3+ and Cr(III). Additionally, the Cr(VI) elimination efficiency could maintain 95.83% even after four adsorption-desorption cycles, suggesting PEIMW@MNBCBM as a high-performance adsorbent for Cr(VI) contaminated water remediation.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xiubo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Siqi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Xinmiao Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
30
|
Zhang H, Li G, Zhu Q, Xiong P, Li R, Liu S, Zhang A, Liao C, Jiang G. Stable magnetic CoZn/N-doped polyhedron with self-generating carbon nanotubes for highly efficient removal of bisphenols from complex wastewaters. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129584. [PMID: 35868084 DOI: 10.1016/j.jhazmat.2022.129584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/09/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Bisphenols have extensively been found in various environmental matrices and caused public concerns due to their endocrine-disrupting potential. Herein, we developed a ZIF-67@ZIF-8-derived CoZn/nitrogen-doped carbon (CoZn/NC) as a robust adsorbent for bisphenols in wastewaters. The self-generating carbon nanotubes and the open metal sites provided sufficient adsorption sites. The Co component endowed the derivative with strong magnetism facilitating its separation from water. CoZn/NC exhibited exceeding water stability in pH 3 - 12 solution and withstood water up to 15 days. The great applicability of CoZn/NC was validated with 16 real wastewaters from different sources (recoveries exceeding 97.9%). Fast adsorption kinetics were observed with removal efficiencies above 96.5% within 1 min. The adsorption isotherms were well fitted with the Langmuir model, with adsorption capacities of 222, 200, 193, and 321 mg g-1 for bisphenol A, bisphenol F, bisphenol S, and bisphenol AF, respectively. Variations in external conditions, including pH 3 - 9, humic acid (50 mg L-1), and NaCl (0.1 mol L-1), had negligible impacts on the adsorption process. The characterizations and density functional theory computation demonstrated that electrostatic, hydrophobic, π - π, and cation- π interactions are the driving forces in this system. The as-prepared CoZn/NC exhibits great promise in real wastewater treatment.
Collapse
Affiliation(s)
- He Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ping Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, Jiangsu 215123, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Aiqian Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Qu J, Bi F, Li S, Feng Z, Li Y, Zhang G, Wang L, Wang Y, Zhang Y. Microwave-assisted synthesis of polyethylenimine-grafted nanocellulose with ultra-high adsorption capacity for lead and phosphate scavenging from water. BIORESOURCE TECHNOLOGY 2022; 362:127819. [PMID: 36007761 DOI: 10.1016/j.biortech.2022.127819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/14/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Herein, polyethylenimine-grafted nanocellulose (PEIMW@NCMW) was synthetized through microwave-assisted synthesis, which was employed for Pb(II) and phosphate scavenging from water. Characterization results exhibited that the original pomegranate peel-derived cellulose could be transformed to nanometer level by microwave radiation and the amino groups were successfully grafted on the nanocellulose evenly. The adsorption performance of PEIMW@NCMW possessed outstanding improvements over that of original nanocellulose with maximum adsorption capacities reaching 916.02 mg/g for Pb(II) and 278.89 mg/g for phosphate. Furthermore, the PEIMW@NCMW had high tolerance to various co-existing ions and could maintain over 94% removal efficiency during four regeneration cycles. Additionally, the Pb(II) uptake onto PEIMW@NCMW was associated with electrostatic attraction, complexation and pore-filling, whereas high phosphate capture was achieved via H-bonding, complexation and electrostatic attraction. In summary, PEIMW@NCMW was deemed as a potential adsorbent with excellent adsorption capacity for remediation of Pb(II) and phosphate polluted water.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shengze Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zihan Feng
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yuhui Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Guosheng Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
32
|
Liu Y, Zhou S, Liu R, Chen M, Xu J, Liao M, Mei J, Yang L. Study on amino-directed modification of oil sludge-derived carbon and its adsorption behavior of bisphenol A in water. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
33
|
Zheng X, Xu W, Dong J, Yang T, Shangguan Z, Qu J, Li X, Tan X. The effects of biochar and its applications in the microbial remediation of contaminated soil: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129557. [PMID: 35999729 DOI: 10.1016/j.jhazmat.2022.129557] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
The amendment of biochar for soil bioremediation can improve soil conditions, influence soil microbial community, and achieve co-application of biochar-microbe to promote the removal of pollutants. This paper summarizes the positive effects of biochar on microorganisms, including acting as a shelter, providing nutrients, and improving soil conditions (soil aggregation, pH, cation exchange capacity (CEC), and enzymatic activity). These effects will cause variations in microbial abundance, activity, and community structure. Biochar can act as an electron mediator to promote electron transfer in the process of microbial degradation. And the application of biochar in soil bioremediation is also introduced. Nevertheless, toxic substances carried by biochar that may threaten microbial community shouldn't be overlooked. With this review, we can better understand biochar's involvement in soil bioremediation, which will help us choose and modify biochar in a targeted manner for the desired purpose in practical applications.
Collapse
Affiliation(s)
- Xuemei Zheng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Jie Dong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Ting Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zichen Shangguan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Jing Qu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xiaofei Tan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| |
Collapse
|
34
|
Xu DM, Fu RB. The mechanistic insights into the leaching behaviors of potentially toxic elements from the indigenous zinc smelting slags under the slag dumping site scenario. JOURNAL OF HAZARDOUS MATERIALS 2022; 437:129368. [PMID: 35897171 DOI: 10.1016/j.jhazmat.2022.129368] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Since lager quantities of the zinc (Zn) smelting slags were traditionally dumped at the indigenous Zn smelting sites, the release characterization of potentially toxic elements (PTEs) from the Zn smelting slags under various environmental conditions were of great significance for an environmental risk analysis. The acidification of the Zn smelting slags to pH= 4 and 6 would result in the leaching concentrations of Cd and Mn exceeding the fourth-class standard of surface water quality standard in China (GB3838-2002). Notably, most metals exhibited an amphoteric leaching pattern, where the highest leached concentrations of As, Cd, Cu, Mn, Pb, and Zn were 4.15, 4.21, 140.0, 78.1, 156.9 and 477.0 mg/L, respectively. In addition, the highest release of toxic metals within 96 h reached 0.17 % of As, 3.50 % of Cd, 2.77 % of Cu, 6.92 % of Mn, 0.13 % of Pb, and 2.57 % of Zn, respectively. The combined results of various characterization techniques suggested that the PTEs remobilization effected by rhizosphere-like organic acids were mainly controlled by the precipitation of newly formed Fe, Mn and Al (hydr) oxides and the complexation of organic ligands. The present study results could provide valuable insights into the long-term leaching behaviors of PTEs from the Zn smelting slags to reduce ecological hazard.
Collapse
Affiliation(s)
- Da-Mao Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Rong-Bing Fu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Centre for Environmental Risk Management and Remediation of Soil and Groundwater, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
35
|
Qu J, Wu Z, Liu Y, Li R, Wang D, Wang S, Wei S, Zhang J, Tao Y, Jiang Z, Zhang Y. Ball milling potassium ferrate activated biochar for efficient chromium and tetracycline decontamination: Insights into activation and adsorption mechanisms. BIORESOURCE TECHNOLOGY 2022; 360:127407. [PMID: 35667535 DOI: 10.1016/j.biortech.2022.127407] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Herein, novel Fe-biochar composites (MBCBM500 and MBCBM700) were synthesized through K2FeO4 co-pyrolysis and ball milling, and were used to eliminate Cr(VI)/TC from water. Characterization results revealed that higher temperature promoted formation of zero-valent iron and Fe3C on MBCBM700 through carbothermal reduction between K2FeO4 and biochar. The higher specific surface area and smaller particle size of MBCBM500/700 stemmed from the corrosive functions of K and the ball milling process. And the maximal uptake amount of MBCBM700 for Cr(VI)/TC was 117.49/90.31 mg/g, relatively higher than that of MBCBM500 (93.86/84.15 mg/g). Furthermore, ion exchange, pore filling, precipitation, complexation, reduction and electrostatic attraction were proved to facilitate the adsorption of Cr(VI), while hydrogen bonding force, pore filling, complexation and π-π stacking were the primary pathways to eliminate TC. This study provide a reasonable design of Fe-carbon materials for Cr(VI)/TC contained water remediation, which required neither extra modifiers nor complex preparation process.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhihuan Wu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Liu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ruolin Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Di Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Siqi Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Shuqi Wei
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jingru Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zhao Jiang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|
36
|
Qu J, Zhang W, Bi F, Yan S, Miao X, Zhang B, Wang Y, Ge C, Zhang Y. Two-step ball milling-assisted synthesis of N-doped biochar loaded with ferrous sulfide for enhanced adsorptive removal of Cr(Ⅵ) and tetracycline from water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119398. [PMID: 35525521 DOI: 10.1016/j.envpol.2022.119398] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/24/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Nitrogen-doped biochar loaded with FeS (FeS@NBCBM) was synthesized by two-step ball milling processes. Characterization results revealed that N-doping process successfully introduced pyridinic, pyrrolic, and graphitic N structures, and FeS was subsequently embedded in N-doped biochar (NBCBM). The resultant FeS@NBCBM presented predominant adsorption capacity for Cr(VI) (194.69 mg/g) and tetracycline (TC, 371.29 mg/g) compared with BC (27.28 and 37.89 mg/g) and NBCBM (71.26 and 81.26 mg/g). In addition, the Cr(VI)/TC elimination process by FeS@NBCBM was basically stable with multiple co-existing ions with slight decrease on adsorption performance after three desorption-regeneration cycles. Most importantly, FeS@NBCBM was found to achieve Cr(VI) elimination not only by electrostatic attraction, ion exchange and complexation, but also by electrons-triggered reduction provided by different species of N, Fe2+ as well as S(Ⅱ). Meantime, pore filling, hydrogen bonding, and π-π stacking interactions were demonstrated to contribute to TC adsorption. These results suggested the co-modification of N-doping and FeS loading by ball milling as an innovative decorating method for biochar to adsorptive purification of Cr(VI) and TC-contaminated water.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Weihang Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Fuxuan Bi
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Shaojuan Yan
- Heilongjiang Academy of Land Reclamation Sciences, Harbin, 150030, China
| | - Xuemei Miao
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province (Hainan University), Haikou, 570228, China.
| |
Collapse
|
37
|
Qu J, Shi J, Wang Y, Tong H, Zhu Y, Xu L, Wang Y, Zhang B, Tao Y, Dai X, Zhang H, Zhang Y. Applications of functionalized magnetic biochar in environmental remediation: A review. JOURNAL OF HAZARDOUS MATERIALS 2022; 434:128841. [PMID: 35427975 DOI: 10.1016/j.jhazmat.2022.128841] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/14/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
Magnetic biochar (MBC) is extensively applied on contaminants removal from environmental medium for achieving environmental-friendly remediation with reduction of secondary pollution owing to its easy recovery and separation. However, the summary of MBC synthesis methods is still lack of relevant information. Moreover, the adsorption performance for pollutants by MBC is limited, and thus it is imperative to adopt modification techniques to enhance the removal ability of MBC. Unfortunately, there are few reviews to present modification methods of MBC with applications for removing hazardous contaminants. Herein, we critically reviewed (i) MBC synthetic methods with corresponding advantages and limitations; (ii) adsorption mechanisms of MBC for heavy metals and organic pollutants; (iii) various modification methods for MBC such as functional groups grafting, nanoparticles loading and element doping; (iv) applications of modified MBC for hazardous contaminants adsorption with deep insight to relevant removal mechanisms; and (v) key influencing conditions like solution pH, temperature and interfering ions toward contaminants removal. Finally, some constructive suggestions were put forward for the practical applications of MBC in the near future. This review provided a comprehensive understanding of using functionalized MBC as effective adsorbent with low-cost and high-performance characteristics for contaminated environment remediation.
Collapse
Affiliation(s)
- Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jiajia Shi
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yihui Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hua Tong
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yujiao Zhu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Lishu Xu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Bo Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Xiao Dai
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Hui Zhang
- Harbin ZENENG Environmental Technology Co. Ltd., China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China; Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 4888 Shengbei Rd, Changchun 130102, China.
| |
Collapse
|