1
|
Liu W, Zhang Y, Lei Q, Yang Z, Li Z, Bacha AUR, Jin W, Yang L. Visible-light-switched radical/non-radical bichannel degradation mechanism via round-the-clock synergistic CDs-BiO 1-xCl/PS system. WATER RESEARCH 2025; 282:123623. [PMID: 40252405 DOI: 10.1016/j.watres.2025.123623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
In order to achieve efficient degradation of organic pollutants (OPs) and to avoid interference from co-existing anions and natural organic matter, a synergistic CDs-BiO1-xCl/PS system is designed, which is capable of functioning under both dark and visible-light-controlled conditions, enabling round-the-clock operation. A novel nano photocatalyst CDs-BiO1-xCl was constructed by modifying the surface oxygen vacancy (Ov) rich bismuth oxychloride (BiO1-xCl) with carbon quantum dots (CDs). The key role of the edge carbon atoms (C) of CDs in CDs-BiO1-xCl photocatalyst for PS (persulfate) activation was revealed. Electron paramagnetic resonance spectroscopy, In-situ Raman, quenching experiments and density functional theory (DFT) analysis indicated that the C-edge atoms in the photocatalyst acted as an electron donor which facilitated the complexes formation with PS under dark conditions, and the complexes participated in organic pollutants degradation via electron transfer (non-free radical) pathways subsequently. The system cleverly utilizes the "on-off" of light to achieve the controlled triggering of free radical and non-free radical pathways for PS activation. Upon light irradiation, photogenerated carriers migrate toward CDs, promoting further decomposition of its surface complexes to produce sulfate radicals (·SO4-). Hence, this optimized light-controlled synergistic system showed complete removal of BPA (10 mg/L) in the presence of 2 mM PS within 15 min via free radical and non-free radical pathways. The visible-light-driven system did not produce any toxic byproducts and showed excellent stability under various reaction conditions. Therefore, the round-the-clock and photo-switching-regulated high-efficiency CDs-BiO1-xCl/PS system demonstrates promising application prospects for removing organic pollutants in complex water bodies.
Collapse
Affiliation(s)
- Wenjie Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Yinghe Zhang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Qian Lei
- China Railway NO.1 GROUP Co., LTD., Xi'an, 710055, China
| | - Ziwen Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Zhiyang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Aziz Ur Rahim Bacha
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Wenbiao Jin
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China
| | - Lei Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Eco-Environment, Harbin Institute of Technology Shenzhen, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Dong P, Fan H, Lei L, Fan Y, Tang S, Zhang R, Liao Z, Zhang Z, Yang N, Lin Z, Wang W. Vapor Deposition Assisted In-Situ Construction of Graphitic Carbon Nitride Homojunction Capable of Enhanced Visible-Light-Driven Hydrogen Generation. CHEMSUSCHEM 2025:e202500361. [PMID: 40084438 DOI: 10.1002/cssc.202500361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 03/16/2025]
Abstract
Graphitic carbon nitride (g-C3N4) is an attractive photocatalyst due to its optimal bandgap (~2.7 eV), high chemical stability, and environmentally friendly synthesis process. However, the low photogenerated charge carrier separation efficiency and specific surface area significantly limit the hydrogen evolution rate. In this study, a novel g-C3N4 homojunction material with controllable morphology was successfully fabricated via a simple and efficient vapor deposition method, which could significantly improve the photocatalytic performance without the introduction of metal elements. Under visible light irradiation, this material demonstrated exceptional photocatalytic hydrogen evolution performance, achieving a hydrogen production rate of 334 μmol g-1 h-1, approximately 24 times higher than that of conventional bulk g-C3N4. This remarkable enhancement in performance can be attributed to the synergistic effects of several factors, including a significant increase in specific surface area, expanded visible-light absorption range, efficient separation and migration of photogenerated charge carriers, and the coupling effect of optimized band structure and crystal morphology. This study not only provides new insights for further enhancing the photocatalytic performance of CN-based materials but also lays a solid foundation for their practical applications in sustainable energy and environmental remediation.
Collapse
Affiliation(s)
- Peizhi Dong
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Huiqing Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lin Lei
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yongbo Fan
- Department of Applied Physics and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong, China
| | - Shimiao Tang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruizhe Zhang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhiyong Liao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhuo Zhang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ning Yang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zexue Lin
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Weijia Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
3
|
Zhao Y, Zhang C, Xue Y, Zhai Z, Zhou X, Zhang Y. Photocatalytic degradation of tetracycline antibiotics and elimination of N-nitrosodimethylamine formation potential by BiOCl/ZnIn 2S 4 heterostructure under visible-light irradiation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123721. [PMID: 39693976 DOI: 10.1016/j.jenvman.2024.123721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/20/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
Photocatalysis is an effective method for removing tetracycline antibiotics, which are important precursors to the potential carcinogen N-nitrosodimethylamine (NDMA). Herein, a BiOCl/ZnIn2S4 heterojunction was successfully synthesized using a simple hydrothermal method. This heterojunction was applied for the first time to degrade various tetracycline antibiotics and reduce NDMA formation potential (NDMA-FP) under visible-light irradiation. Characterization of surface morphology, crystal structure, chemical composition and photoelectrochemical properties revealed that the BiOCl/ZnIn2S4 heterojunction significantly improved light absorption, charge transport and carrier separation efficiency, thereby enhancing photocatalytic performance. The BiOCl/ZnIn2S4 catalyst achieved high degradation efficiencies of 88.0%, 90.7%, 88.7% and 91.7% for tetracycline, minocycline, chlortetracycline and doxycycline, respectively, within 60 min of visible-light irradiation. Additionally, it exhibited the lowest NDMA-FP values of 1.5%, 3%, 0.9% and 1.4%, respectively. Radical trapping studies and EPR experiments identified •O2- and •OH radicals as the primary reactive species involved in the photocatalytic process. Analysis of the degradation intermediates and structure-activity relationships indicated that the variations in NDMA-FP were closely associated with the number of dimethylamine groups in the antibiotics and the stability of the resulting carbocations. Notably, the BiOCl/ZnIn2S4 catalyst presented satisfactory stability and positive tetracycline degradation in real antibiotic wastewater. Incorporating BiOCl/ZnIn2S4-loaded nonwoven fabric into a continuous-flow reactor efficiently degraded tetracycline in real wastewater under visible light. This work provides new insights on developing Z-scheme photocatalysts for the simultaneous degradation of various antibiotics and highlights their potential as commercially viable photocatalytic system.
Collapse
Affiliation(s)
- Yunmeng Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Chaojie Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Yin Xue
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Zhenyu Zhai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
4
|
Wang X, Hou X, Sun N, Wang Y, Zhang Y, Lv Y, Ding L, Sun X. Biowaste-Derived Carbon Dots-Based Molecularly Imprinted Fluorescent Nanosensor for Selective Detection of Rutin. J Fluoresc 2024:10.1007/s10895-024-04053-5. [PMID: 39739233 DOI: 10.1007/s10895-024-04053-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/15/2024] [Indexed: 01/02/2025]
Abstract
In this work, Waste pine nut shells were used as organic carbon source of biomass to synthesize carbon quantum dots. A highly responsive and selective fluorescent nanosensor (Si-doped biomass-derived carbon dots with molecular imprinted polymers, Si-CDs@MIPs) was designed for determination of Rutin (RT) in Chinese herbal substances like Sophora japonica L.. Not only was the synthesis method simple, environmentally friendly but also can selectively capture and specifically recognize the target compound RT, which was accomplished by a single-step hydrothermal process. The RT content in the real sample is 21%, with a recovery rate ranging from 89.7 to 106.3%, demonstrating excellent reproducibility. The nanosensor can selectively detect RT at a detection limit of 12.5 nmol/L. Therefore, it is showed that Si-CDs@MIPs will be feasible as a sensor for the rapid measurement of RT.
Collapse
Affiliation(s)
| | - Xingyu Hou
- Jiamusi University, Jiamusi, 154007, China
| | - Na Sun
- Jiamusi University, Jiamusi, 154007, China
| | | | | | - Yuguang Lv
- Jiamusi University, Jiamusi, 154007, China.
| | - Lixin Ding
- Jiamusi University, Jiamusi, 154007, China.
| | - Xue Sun
- Jiamusi University, Jiamusi, 154007, China.
| |
Collapse
|
5
|
Jiang H, Xu J, Sun L, Li J, Wang L, Wang W, Liu Q, Yang J. Electron Tandem Transport Channel in a Cu 3P/Sv-ZnIn 2S 4 p-n Heterojunction for Photothermal-Photocatalytic Benzyl Alcohol Oxidation and H 2 Production. Inorg Chem 2024; 63:14746-14754. [PMID: 39046942 DOI: 10.1021/acs.inorgchem.4c02428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The development of photocatalytic systems with an electron tandem transport channel represents a promising avenue for improving the utilization of photogenerated electrons and holes despite encountering significant challenges. In this study, ZnIn2S4 (Sv-ZIS) with sulfur vacancies was fabricated using a solvothermal technique to create defect energy levels. Subsequently, Cu3P nanoparticles were coupled onto the surface of Sv-ZIS, forming a Cu3P/Sv-ZIS p-n heterojunction with an electron tandem transport channel. Experimental findings demonstrated that this tandem transport channel enhanced the carrier lifetime and separation efficiency. In addition, mechanistic investigations unveiled the formation of a robust built-in electric field (BEF) at the interface between Cu3P and Sv-ZIS, providing a driving force for electron migration. The combined consequences of the transport channel, the strong BEF, and photothermal effect led to a surface carrier separation efficiency of 65.85%. Consequently, Cu3P/Sv-ZIS achieved simultaneous H2 yield and benzaldehyde production rates of 18,101.4 and 15,012.6 μmol·g-1·h-1, which were 2.31 and 2.62 times higher than those of ZnIn2S4, respectively. This work exemplifies the design of the p-n heterojunction for the efficient utilization of photogenerated electrons and holes.
Collapse
Affiliation(s)
- Haopeng Jiang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jinghang Xu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Lijuan Sun
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Jinhe Li
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Lele Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Weikang Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Qinqin Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Juan Yang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| |
Collapse
|
6
|
Hu C, Guo W, Zhen S, Li Y, Huang C, Zhan L. Bimetallic Ag/Fe-MOG derived flake-like Ag 2O/Fe 2O 3 p-n heterojunction for efficient photodegradation organic pollutants within a wide pH range. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121686. [PMID: 38971057 DOI: 10.1016/j.jenvman.2024.121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
In this paper, we reported a facile and clean strategy to prepare the flake-like Ag2O/Fe2O3 bimetallic p-n heterojunction composites for photodegradation organic pollutants. The surface morphology, crystal structure, chemical composition and optical properties of Ag2O/Fe2O3 were characterized by SEM, high-resolution TEM images with EDX spectra, XRD, XPS, FT-IR and UV-vis DRS spectra respectively. The formation of Ag2O/Fe2O3 p-n heterojunction facilitated the interfacial transfer of electrons as well as the separation of charge carries. Hence, the as-synthesized Ag2O/Fe2O3-3 composites exhibited ultra-high photocatalytic activity. Under the experimental conditions of catalyst dosage of 0.4 mg mL-1 and irradiation time of 60 min, the degradation conversion rate of rhodamine B reached 96.1 %, which was 5.0 and 2.8 times of pure phase Ag2O and Fe2O3, respectively. Meanwhile, the degradation performance of Ag2O/Fe2O3-3 was not limited by pH, and it can achieve high degradation efficiency under 3-11. In addition, Ag2O/Fe2O3-3 also showed superb degradation ability for other common anionic dyes, cationic dyes and antibiotics. XPS and FT-IR spectra showed that Ag2O/Fe2O3-3 retained a carbon skeleton that facilitated electron transport and light absorption conversion. And the analyses of quenching experiment and EPR demonstrated •O2-, •OH and h+ were crucial reactive oxidant species contributing to the rapid organic pollutant degradation. This work provides new insights into obtaining p-n photocatalysts heterojunction with excellent catalytic activity for removing organic pollutants from wastewater.
Collapse
Affiliation(s)
- Congyi Hu
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Wan Guo
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shujun Zhen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuanfang Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Chengzhi Huang
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Lei Zhan
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
7
|
Tan P, Mao Z, Li Y, Yu J, Long L. Boosting photocatalytic NO oxidation mediated by high redox charge carriers from visible light-driven C 3N 4/UiO-67 S-scheme heterojunction photocatalyst. J Colloid Interface Sci 2024; 663:992-1004. [PMID: 38452548 DOI: 10.1016/j.jcis.2024.02.221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/13/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
The construction of CN/UiO-67 (CNU) S-scheme heterojunction composites through in situ formation of UiO-67 on carbon nitride (C3N4) helps to address the limitations of carbon nitride (CN) in photocatalytic NO elimination. The optimized CNU3 demonstrates superior photocatalytic efficiency, which is attributed to electronic channels constructed by Zr-N bonds and S-scheme electron transport mechanism, effectively promoting the efficient separation of photogenerated charge carriers with high redox potentials. Density Functional Theory (DFT) calculations reveal redistributed electronic orbitals in CNU3, with progressive and continuous energy levels near the Fermi level, which bolsters electronic conduction. Comprehensive quenching experiments, Electron Paramagnetic Resonance (EPR), and in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) analyses highlight a synergistic interplay of electrons, holes, and superoxide radicals in CNU3, inhibiting the generation of toxic nitrogen oxide intermediates and culminating in highly efficient photocatalytic NO oxidation. This study not only elucidates the mechanisms underpinning the enhanced performance of CNU3 heterojunctions but also offers new perspectives on the preparation and interfacial charge separation of heterojunction photocatalysts.
Collapse
Affiliation(s)
- Ping Tan
- Chongqing Key Laboratory of Catalysis and Environment Materials, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Zhen Mao
- Chongqing Key Laboratory of Catalysis and Environment Materials, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, PR China
| | - Yuhan Li
- Chongqing Key Laboratory of Catalysis and Environment Materials, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, PR China.
| | - Jiayuan Yu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China.
| | - Liangjun Long
- Chongqing Key Laboratory of Catalysis and Environment Materials, College of Environment and Resources, Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, PR China
| |
Collapse
|
8
|
Tong H, Shi D, Huang J, Xu S, Fu K, Wen X, Xie H, Liu J, Cai H, Xu X. Resource utilization of MSWI fly ash supporting TiO 2/BiOCl nanocomposite for enhanced photocatalytic degradation of sodium isopropyl xanthate: Mechanism and performance evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:120987. [PMID: 38692029 DOI: 10.1016/j.jenvman.2024.120987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/24/2024] [Accepted: 04/20/2024] [Indexed: 05/03/2024]
Abstract
The removal of organic pollutants in water environments and the resource utilization of solid waste are two pressing issues around the world. Facing the increasing pollution induced by discharge of mining effluents containing sodium isopropyl xanthate (SIPX), in this work, municipal solid waste incineration fly ash (MSWI FA) was pretreated by hydrothermal method to produce stabilized FA, which was then innovatively used as support for the construction of FA/TiO2/BiOCl nanocomposite (FTB) with promoted photocatalytic activity under visible light and natural sunlight. When the content of FA was 20 wt% and the mass ratio of TiO2 to BiOCl was 4:6, a remarkable performance for the optimal FTB (20-FTB-2) was achieved. Characterizations demonstrated that TiO2 and BiOCl uniformly dispersed on FA contributing to high surface area and broad light adsorption of FTB, which exhibits excellent adsorption capacity and light response ability. Build in electric field formed in the interface of TiO2/BiOCl heterojunction revealed by density functional theory calculations accelerated the separation of photoinduced e- and h+, leading to high efficiency for SIPX degradation. The synergetic effect combined with adsorption and photocatalytic degradation endowed 20-FTB-2 superior SIPX removal efficiency over 99% within 30 min under visible light and natural sunlight irradiation. The photocatalytic degradation pathways of SIPX were determined through theoretical calculations and characterizations, and the toxic byproduct CS2 was effectively eliminated through oxidation of •O2-. For 20-FTB-2, reusability of photocatalyst was showed by cycle tests, also the concentrations of main heavy metals (Pb, Zn, Cu, Cr, and Cd) in the liquid phases released during photocatalyst preparation process (< 1 mg/L) and photodegradation process (< 8.5 μg/L) proved the satisfactory stability with low toxicity. This work proposed a novel strategy to develop efficient and stable support-based photocatalysts by utilizing MSWI FA and realize its resource utilization.
Collapse
Affiliation(s)
- Haihang Tong
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China; School of Energy and Environment, City University of Hong Kong, Kowloon Tong, Hong Kong, 999077, PR China
| | - Dezhi Shi
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China.
| | - Jie Huang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Shuo Xu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Kun Fu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Xianyi Wen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Hui Xie
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Jiayu Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Huayi Cai
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, PR China
| | - Xiaoyi Xu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, PR China
| |
Collapse
|
9
|
He J, Wang Y, Xie X, Qi K, Yuan Y, Dong W, Wang Z. N-CQDs modified BiOBr with different nitrogen configurations synthesized from different precursors for efficient photocatalytic degradation of carbamazepine. Sep Purif Technol 2024; 335:126124. [DOI: 10.1016/j.seppur.2023.126124] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
10
|
Wu P, Liu H, Xie Z, Xie L, Liu G, Xu Y, Chen J, Lu CZ. Excellent Charge Separation of NCQDs/ZnS Nanocomposites for the Promotion of Photocatalytic H 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16601-16611. [PMID: 38502203 DOI: 10.1021/acsami.3c15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Carbon Quantum dots (CQDs) are widely studied because of their good optical and electronic characteristics and because they can easily generate photocarriers. Nitrogen-doped CQDs (NCQDs) may exhibit improved hydrophilic, optical, and electron-transfer properties, which are conducive to photocatalytic hydrogen evolution. In this paper, NCQD-modified ZnS catalysts were successfully prepared. Under the irradiation of the full spectrum, the H2 evolution rate of the optimal catalyst 0.25 wt % NCQDs/ZnS achieves 5.70 mmol g-1 h-1, which is 11.88, 43.84, and 5.14 times the values of ZnS (0.48 mmol g-1 h-1), NCQDs (0.13 mmol g-1 h-1), and CQDs/ZnS (1.11 mmol g-1 h-1), respectively. Furthermore, it shows good stability, indicating that the modification of NCQDs prevents the photocorrosion and oxidation of ZnS. The enhanced performance is due to NCQD loading, which promotes the separation of photogenerated carriers, optimizes the structures, and increases the specific surface area. This work highlights the fact that NCQD-modified ZnS may afford a new strategy to synthesize ZnS-based photocatalysts with enhanced H2 production performance.
Collapse
Affiliation(s)
- Panpan Wu
- School of Optoelectronics and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices, Xiamen University of Technology, Xiamen 361024, China
| | - Haizhen Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Ziyu Xie
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Linjun Xie
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guozhong Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yingchao Xu
- School of Optoelectronics and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
- Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices, Xiamen University of Technology, Xiamen 361024, China
| | - Jing Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Can-Zhong Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
11
|
Bai S, Lv T, Chen M, Li C, Wang Z, Yang X, Xia T. Carbon quantum dots assisted BiFeO 3@BiOBr S-scheme heterojunction enhanced peroxymonosulfate activation for the photocatalytic degradation of imidacloprid under visible light: Performance, mechanism and biotoxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170029. [PMID: 38244629 DOI: 10.1016/j.scitotenv.2024.170029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/02/2024] [Accepted: 01/07/2024] [Indexed: 01/22/2024]
Abstract
A novel S-scheme heterojunction photocatalyst carbon quantum dots (CQDs)/BiFeO3/BiOBr (CBB) was synthesized via a facile hydrothermal method, which was highly effective in activating peroxymonosulfate (PMS) to photodegrade imidacloprid (IMD) (one of the typical neonicotinoid insecticides (NEOs)) under visible light irradiation. Based on the physicochemical and photoelectrochemical analysis, the super photocatalytic performance of the CBB photocatalyst was contributed to the enhanced separation and transfer of photogenerated electrons (e-) and holes (h+), the activation of PMS by reactive species, and the wider light absorption range induced by CQDs. Moreover, the intermediate products and possible photodegradation pathways of IMD were confirmed through high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS) detection and density functional theory (DFT) calculations. Although the photodegradation of IMD in the CBB/PMS/Vis system can be affected by the water quality parameters (i.e., acid group anions, pH, and the presence of humic acid (HA)), the synthesized CBB photocatalyst showed excellent photocatalytic performance in multiple natural water samples. This study provides a new idea to construct an effective and efficient heterojunction photocatalyst, which may have great advantages in photocatalytic degradation of NEOs and possibly other emerging contaminants in the aquatic environment.
Collapse
Affiliation(s)
- Sai Bai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ting Lv
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Miaomiao Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chang Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zichen Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyao Yang
- Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Shenyang, Liaoning 110003, China
| | - Tianjiao Xia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Lab of Eco-restoration of Regional Contaminated Environment (Shenyang University), Shenyang, Liaoning 110003, China; Key Lab of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Wu P, Qin Y, Gao M, Zheng R, Zhang Y, Li X, Liu Z, Zhang Y, Cao Z, Liu Q. Broad Spectral Response FeOOH/BiO 2-x Photocatalyst with Efficient Charge Transfer for Enhanced Photo-Fenton Synergistic Catalytic Activity. Molecules 2024; 29:919. [PMID: 38398669 PMCID: PMC10893118 DOI: 10.3390/molecules29040919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
In this work, to promote the separation of photogenerated carriers, prevent the catalyst from photo-corrosion, and improve the photo-Fenton synergistic degradation of organic pollutants, the coating structure of FeOOH/BiO2-x rich in oxygen vacancies was successfully synthesized by a facile and environmentally friendly two-step process of hydrothermal and chemical deposition. Through a series of degradation activity tests of synthesized materials under different conditions, it was found that FeOOH/BiO2-x demonstrated outstanding organic pollutant degradation activity under visible and near-infrared light when hydrogen peroxide was added. After 90 min of reaction under photo-Fenton conditions, the degradation rate of Methylene Blue by FeOOH/BiO2-x was 87.4%, significantly higher than the degradation efficiency under photocatalysis (60.3%) and Fenton (49.0%) conditions. The apparent rate constants of FeOOH/BiO2-x under photo-Fenton conditions were 2.33 times and 3.32 times higher than photocatalysis and Fenton catalysis, respectively. The amorphous FeOOH was tightly coated on the layered BiO2-x, which significantly increased the specific surface area and the number of active sites of the composites, and facilitated the improvement of the separation efficiency of the photogenerated carriers and the prevention of photo-corrosion of BiO2-x. The analysis of the mechanism of photo-Fenton synergistic degradation clarified that ·OH, h+, and ·O2- are the main active substances involved in the degradation of pollutants. The optimal degradation conditions were the addition of the FeOOH/BiO2-x composite catalyst loaded with 20% Fe at a concentration of 0.5 g/L, the addition of hydrogen peroxide at a concentration of 8 mM, and an initial pH of 4. This outstanding catalytic system offers a fresh approach to the creation and processing of iron-based photo-Fenton catalysts by quickly and efficiently degrading various organic contaminants.
Collapse
Affiliation(s)
- Pengfei Wu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China;
- Hebei Pollution Control Technology Innovation Center of Steel and Coking Industry, Department of Environmental and Chemical Engineering, Hebei Vocational University of Industry and Technology, Shijiazhuang 050091, China; (Y.Q.); (R.Z.); (Y.Z.); (X.L.); (Z.L.)
| | - Yufei Qin
- Hebei Pollution Control Technology Innovation Center of Steel and Coking Industry, Department of Environmental and Chemical Engineering, Hebei Vocational University of Industry and Technology, Shijiazhuang 050091, China; (Y.Q.); (R.Z.); (Y.Z.); (X.L.); (Z.L.)
| | - Mengyuan Gao
- Hebei Provincial Academy of Ecological Environmental Science, Shijiazhuang 050030, China;
| | - Rui Zheng
- Hebei Pollution Control Technology Innovation Center of Steel and Coking Industry, Department of Environmental and Chemical Engineering, Hebei Vocational University of Industry and Technology, Shijiazhuang 050091, China; (Y.Q.); (R.Z.); (Y.Z.); (X.L.); (Z.L.)
| | - Yixin Zhang
- Hebei Pollution Control Technology Innovation Center of Steel and Coking Industry, Department of Environmental and Chemical Engineering, Hebei Vocational University of Industry and Technology, Shijiazhuang 050091, China; (Y.Q.); (R.Z.); (Y.Z.); (X.L.); (Z.L.)
| | - Xinli Li
- Hebei Pollution Control Technology Innovation Center of Steel and Coking Industry, Department of Environmental and Chemical Engineering, Hebei Vocational University of Industry and Technology, Shijiazhuang 050091, China; (Y.Q.); (R.Z.); (Y.Z.); (X.L.); (Z.L.)
| | - Zhaolong Liu
- Hebei Pollution Control Technology Innovation Center of Steel and Coking Industry, Department of Environmental and Chemical Engineering, Hebei Vocational University of Industry and Technology, Shijiazhuang 050091, China; (Y.Q.); (R.Z.); (Y.Z.); (X.L.); (Z.L.)
- Hebei Key Lab of Environmental Photocatalytic and Electrocatalytic Materials, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China;
| | - Yingkun Zhang
- Hebei Key Lab of Environmental Photocatalytic and Electrocatalytic Materials, College of Chemical Engineering, North China University of Science and Technology, Tangshan 063210, China;
| | - Zhen Cao
- Hebei Pollution Control Technology Innovation Center of Steel and Coking Industry, Department of Environmental and Chemical Engineering, Hebei Vocational University of Industry and Technology, Shijiazhuang 050091, China; (Y.Q.); (R.Z.); (Y.Z.); (X.L.); (Z.L.)
| | - Qingling Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China;
| |
Collapse
|
13
|
Chen J, Li X, Wang F. Photocatalytic degradation performance of antibiotics by WO 3/α-Fe 2O 3/zeolite type II heterojunction with core-shell structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119372-119384. [PMID: 37924409 DOI: 10.1007/s11356-023-30744-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023]
Abstract
The accumulation of antibiotics in the environment can be harmful to human health, and research on their disposal technologies is of increasing interest. In this study, WO3/α-Fe2O3/zeolite (WFZ) type II heterojunction composites with core-shell structures were prepared by coupling WO3 semiconductors with visible-light photocatalytic activity with α-Fe2O3 via hydrothermal synthesis using zeolite as a carrier for the adsorption of synergistic photocatalytic degradation of antibiotics in wastewater. X-ray diffraction, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), specific surface, and porosity measurements were used to characterize the structure of WFZ type II heterojunction. The performance of WFZ heterojunction for the visible photocatalytic degradation of antibiotics (tetracycline hydrochloride (TCH), ciprofloxacin (CIP), and levofloxacin hydrochloride (LVF)) was investigated. Through four photocatalytic cycles, the catalyst exhibited excellent durability and stability. This was attributed to the core-shell structure and type II heterojunction promoting the effective separation of photogenerated carriers and the extended visible light response range, which resulted in the best photocatalytic activity of the catalyst under visible light irradiation. Radical trapping experiments showed that superoxide radicals (•O2-) and hydroxyl radical (•OH) were the main active species that played a major role in the photocatalytic degradation. These findings show that the synthesized WFZ type-II heterojunction can be used as a reliable visible-light-responsive photocatalyst for the treatment of antibiotics in wastewater.
Collapse
Affiliation(s)
- Jiaqi Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xinjie Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Fan Wang
- School of Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, China.
| |
Collapse
|
14
|
Hou Y, Liu F, Nie C, Li Z, Tong M. Boosting Exciton Dissociation and Charge Transfer in Triazole-Based Covalent Organic Frameworks by Increasing the Donor Unit from One to Two for the Efficient Photocatalytic Elimination of Emerging Contaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11675-11686. [PMID: 37486062 DOI: 10.1021/acs.est.3c03711] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
As novel photocatalysts, covalent organic frameworks (COFs) have potential for water purification. Insufficient exciton dissociation and low charge mobility in COFs yet restricted their photocatalytic activity. Excitonic dissociation and charge transfer in COFs could be optimized via regulating the donor-acceptor (D-A) interactions through adjusting the number of donor units within COFs, yet relevant research is lacking. By integrating the 1,2,4-triazole or bis-1,2,4-triazole unit with quinone, we fabricated COF-DT (with a single donor unit) and COF-DBT (with double donor units) via a facile sonochemical method and used to decontaminate emerging contaminants. Due to the stronger D-A interactions than COF-DT, the exciton binding energy was lower for COF-DBT, facilitating the intermolecular charge transfer process. The degradation kinetics of tetracycline (model contaminant) by COF-DBT (k = (12.21 ± 1.29) × 10-2 min-1) was higher than that by COF-DT (k = (5.11 ± 0.59) × 10-2 min-1) under visible-light irradiation. COF-DBT could efficiently photodegrade tetracycline under complex water chemistry conditions and four real water samples. Moreover, six other emerging contaminants, both Gram-negative and Gram-positive strains, could also be effectively eliminated by COF-DBT. High tetracycline degradation performance achieved in a continuous-flow system and in five reused cycles in both laboratory and outdoor experiments with sunlight irradiation showed the stability and the potential for the practical application of COF-DBT.
Collapse
Affiliation(s)
- Yanghui Hou
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Fuyang Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Chenyi Nie
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Zhengmao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Meiping Tong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| |
Collapse
|
15
|
Yuan Y, Liu Y, Xie X, Wen Y, Song M, He J, Wang Z. 2D defect-engineered Ag-doped γ-Fe 2O 3/BiVO 4: The effect of noble metal doping and oxygen vacancies on exciton-triggering photocatalysis production of singlet oxygen. CHEMOSPHERE 2023; 322:138176. [PMID: 36806812 DOI: 10.1016/j.chemosphere.2023.138176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/19/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
The selectivity of singlet oxygen (1O2) holds promising applications in complex environmental systems due to its ability to preferentially oxidize target pollutants. Usually, 1O2 in photocatalytic systems is generated via the electron transfer pathway and •O2- plays an important role as an intermediate, while the exciton-based energy transfer pathway for 1O2 generation has been less studied. Here, a 2D Ag-γ-Fe2O3/BiVO4 with oxygen vacancies was designed which was capable of generating 1O2 by an exciton-based energy transfer-dominated approach, as strongly demonstrated by the results of steady-state fluorescence spectroscopy and phosphorescence spectroscopy. In the Z-type heterojunction photocatalyst system, Ag acted as an electron mediator to promote not only the generation of free carriers but also the generation of singlet excitons, while the appropriate concentration of oxygen vacancies further promotes the exciton-triggering photocatalysis production of 1O2. The Ag-γ-Fe2O3/BiVO4 could degrade 99.4% of sulfadiazine within 90 min, and 1O2 played an important role in the degradation of sulfadiazine, as shown by EPR and active species capture experiments. Ecotoxicity predictions indicated that the main byproducts of sulfadiazine degradation by Ag-γ-Fe2O3/BiVO4 were low in toxicity. The prepared photocatalysts provide a new idea for obtaining 1O2 and designing photocatalysts with selectivity.
Collapse
Affiliation(s)
- Yi Yuan
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Yijie Liu
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Xiaoyun Xie
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China.
| | - Yuan Wen
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Mengxi Song
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Jiancheng He
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| | - Zhaowei Wang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Key Laboratory for Environmental Pollution Prediction and Control, Gansu Province, China
| |
Collapse
|
16
|
Zhang J, Li Z, Lei Q, Zhong D, Ke Y, Liu W, Yang L. Significantly activated persulfate by novel carbon quantum dots-modified N-BiOCl for complete degradation of bisphenol-A under visible light irradiation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161804. [PMID: 36731546 DOI: 10.1016/j.scitotenv.2023.161804] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The practical application of bismuth-based photocatalysts in the field of micropollutant photodegradation is limited due to their weak light absorption and rapid charge recombination. Herein, we have developed a novel carbon quantum dots-modified N-BiOCl (CDs-N-BiOCl) photocatalyst to activate persulfate (PS) for the complete elimination of endocrine-disruptor bisphenol A (BPA) under visible light irradiation. The photoelectric properties characterization shows that N atoms could replace Cl atoms or adsorb on Bi atoms to form local N 1s states in the BiOCl lattice, accompanied by the introduction of doping energy levels that shorten the electron migration distance. Meanwhile, the decorated CDs could effectively accept the photoinduced electrons from N-BiOCl conduction band to facilitate the charge separation. Thus, the 7%CDs-N-BiOCl (7CNB) nanocomposite synergistically activated PS realized rapid and effective degradation of BPA within 20 min (degradation efficiency and mineralization reached 100 % and 66.4 % respectively). Moreover, the 7CNB/PS system displayed favorable adaptability, durability, and interference resistance. Furthermore, the biotoxicity experiments demonstrated that the photodegradation intermediates promoted the growth of Escherichia coli which indicates its eco-friendliness for practical application. Finally, the electron transfer mechanism and the formation of reactive oxygen species in the photodegradation process were interpreted. In short, this work will present a promising strategy for bismuth-based photocatalysts to be used for the efficient treatment of real water bodies under visible light irradiation.
Collapse
Affiliation(s)
- Jianqiao Zhang
- Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Luohu District Urban Management and Comprehensive Law Enforcement Bureau, Shenzhen 518003, China
| | - Zhiyang Li
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Qian Lei
- China Railway NO.1 GROUP Co., LTD., Xi'an 710000, China
| | - Dan Zhong
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - YiXin Ke
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - WenJie Liu
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Lei Yang
- State Key Laboratory of Urban Water Resource and Environment, Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
17
|
Hua X, Chen H, Rong C, Addison F, Dong D, Qu J, Liang D, Guo Z, Zheng N, Liu H. Visible-light-driven photocatalytic degradation of tetracycline hydrochloride by Z-scheme Ag 3PO 4/1T@2H-MoS 2 heterojunction: Degradation mechanism, toxicity assessment, and potential applications. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130951. [PMID: 36860039 DOI: 10.1016/j.jhazmat.2023.130951] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Residual antibiotics in wastewater threaten living organisms and the ecosystem, while the photocatalytic process is recognized as one of the most eco-friendly and promising technologies for the treatment of antibiotic wastewater. In this study, a novel Z-scheme Ag3PO4/1T@2H-MoS2 heterojunction was synthesized, characterized, and used for the visible-light-driven photocatalytic degradation of tetracycline hydrochloride (TCH). It was found that Ag3PO4/1T@2H-MoS2 dosage and coexisting anions had significant effects on the degradation efficiency, which could reach up to 98.9 % within 10 min under the optimal condition. Combing experiments and theoretical calculations, the degradation pathway and mechanism were thoroughly investigated. The excellent photocatalytic property of Ag3PO4/1T@2H-MoS2 was achieved attributed to the Z-scheme heterojunction structure, which remarkably inhibited the recombination of photoinduced electrons and holes. The potential toxicity and mutagenicity for TCH and generated intermediates were evaluated, which revealed the ecological toxicity of antibiotic wastewater was reduced effectively during the photocatalytic degradation process.
Collapse
Affiliation(s)
- Xiuyi Hua
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Haijun Chen
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Chang Rong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Francis Addison
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Deming Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, Jilin 130117, China
| | - Dapeng Liang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhiyong Guo
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Haiyang Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun 130012, China.
| |
Collapse
|
18
|
Sun Y, Li L, Li X, Feng YN, Chen FF, Li L, Yu Y. Regulating Activity and Selectivity of Photocatalytic CO 2 Reduction on Cobalt by Rare Earth Compounds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16621-16630. [PMID: 36949018 DOI: 10.1021/acsami.2c20402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cobalt-based catalysts are ideal for CO2 reduction reaction (CO2RR) due to the strong binding and efficient activation of CO2 molecules on cobalt. However, cobalt-based catalysts also show low free energy of hydrogen evolution reaction (HER), making HER competitive with CO2RR. Therefore, how to improve the product selectivity of CO2RR while maintaining the catalytic efficiency is a great challenge. Here, this work demonstrates the critical roles of the rare earth (RE) compounds (Er2O3 and ErF3) in regulating the activity and selectivity of CO2RR on cobalt. It is found that the RE compounds not only promote charge transfer but also mediate the reaction paths of CO2RR and HER. Density functional theory calculations verify that the RE compounds lower the energy barrier of *CO → CO conversion. On the other hand, the RE compounds increase the free energy of HER, which leads to the suppression of HER. As a result, the RE compounds (Er2O3 and ErF3) improve the CO selectivity of cobalt from 48.8 to 69.6%, as well as significantly increase the turnover number by a factor of over 10.
Collapse
Affiliation(s)
- Yakun Sun
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Long Li
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xinxu Li
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Ya-Nan Feng
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Fei-Fei Chen
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Lingyun Li
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yan Yu
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
19
|
Xie K, Xu S, Xu K, Hao W, Wang J, Wei Z. BiOCl Heterojunction photocatalyst: Construction, photocatalytic performance, and applications. CHEMOSPHERE 2023; 317:137823. [PMID: 36649899 DOI: 10.1016/j.chemosphere.2023.137823] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/14/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
BiOCl semiconductors have attracted extensive amounts of attention and have substantial potential in alleviating energy shortages, improving sterilization performance, and solving environmental issues. To improve the optical quantum efficiency of layered BiOCl, the lifetimes of photogenerated electron-hole pairs, and BiOCl reduction capacity. During the past decade, researchers have designed many effective methods to weaken the effects of these limitations, and heterojunction construction is regarded as one of the most promising strategies. In this paper, BiOCl heterojunction photocatalysts designed and synthesized by various research groups in recent years were reviewed, and their photocatalytic properties were tested. Among them, direct Z-scheme and S-scheme photocatalysts have high redox potentials and intense redox capabilities. Hence, they exhibit excellent photocatalytic activity. Furthermore, the applications of BiOCl heterojunctions for pollutant degradation, CO2 reduction, water splitting, N2 fixation, organic synthesis, and tumor ablation are also reviewed. Finally, we summarize research on the BiOCl heterojunctions and put forth new insights on overcoming their present limitations.
Collapse
Affiliation(s)
- Kefeng Xie
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China.
| | - Shengyuan Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Kai Xu
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Wei Hao
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Jie Wang
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Zheng Wei
- Cancer Research Institute, Henan Academy Institute of Chinese Medicine, Zhengzhou 450000, Henan, China; School of Basic Medicine Sciences, Henan University of Chinese Medicine; Zhengzhou 450004, China.
| |
Collapse
|
20
|
Yuan X, Huang Z, Li J, Meng Y, Gu Z, Xie B, Ni Z, Xia S. The S-Cu-O bonds boosted efficient photocatalytic degradation of semi-coherent interface Cu2O/Cu7S4 heterojunction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Xie Z, Xiao G, Zeng X, Yang M, Yao J. Ion-exchange synthesis Ag@Bi2WO6/FeWO4 nanosheet with white-LED-light-driven for efficient activation of peroxymonosulfate: synthesis, characterization, and mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
22
|
Feng C, Ouyang X, Deng Y, Wang J, Tang L. A novel g-C 3N 4/g-C 3N 4-x homojunction with efficient interfacial charge transfer for photocatalytic degradation of atrazine and tetracycline. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129845. [PMID: 36067556 DOI: 10.1016/j.jhazmat.2022.129845] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/06/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
The abuse of pesticides and antibiotics and their harm to the environment are the disadvantages of modern agriculture and breeding industry. g-C3N4 has shown great potential in photocatalytic water pollution purification under visible light irradiation, however, the conventional g-C3N4 suffers from the disadvantage of limited optical absorption and serious charge recombination, resulting in inefficient light energy conversion and pollutant degradation. This study provides a strategy of combining defect engineering with a built-in electric field to prepare homojunction a photocatalyst with high optical absorption rate and charge separation efficiency. Experiments and DFT simulation revealed the mechanism of significant improvement in the photocatalytic performance of the prepared catalyst, and proposed the pollutant degradation pathway. In addition, the photocatalytic effects of the prepared catalysts on different natural water bodies, natural light, and various water conditions were investigated, revealing the applicability of the catalysts in the purification of pollutants in various water environments.
Collapse
Affiliation(s)
- Chengyang Feng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Xilian Ouyang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Yaocheng Deng
- College of Resources and Environment, Hunan Agricultural University, Changsha 410028, China
| | - Jiajia Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China.
| |
Collapse
|
23
|
Liao H, Ran Y, Zhong J, Li J, Li M, Yang H. Panax notoginseng powder -assisted preparation of carbon-quantum-dots/BiOCl with enriched oxygen vacancies and boosted photocatalytic performance. ENVIRONMENTAL RESEARCH 2022; 215:114366. [PMID: 36155155 DOI: 10.1016/j.envres.2022.114366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/03/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Low activity of photocatalysts is a serious bottleneck to the practical application of photocatalytic technology. In this paper, a series of BiOCl composite photocatalysts containing carbon quantum dots (CQDs) were successfully prepared by adding Panax notoginseng powder (PNP) to the solvothermal synthesis system of BiOCl as a template agent and a raw material for 0D CQDs. CQDs/BiOCl exhibit 2D flake structures and 3D flower-like microspheres self-assembled from thin flakes, holding rich oxygen vacancies (OVs). After detailed characterization, it was found that the amount of OVs on BiOCl could be regulated according to the amount of PNP added. The CQDs/OVs-BiOCl photocatalysts exhibit higher photogenerated charge separation efficiency and photocatalytic activity than the bare BiOCl. When the mass ratio of PNP/BiOCl is 1.0%, the photocatalyst demonstrates the maximum degradation activity for rhodamine B (RhB) and perfluorooctanoic acid (PFOA). In view of the solid observations, a photocatalytic enhancement mechanism of CQDs/BiOCl was elucidated.
Collapse
Affiliation(s)
- Hongru Liao
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Yu Ran
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Junbo Zhong
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China.
| | - Jianzhang Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Minjiao Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, 643000, PR China
| | - Hao Yang
- Sichuan Tianren Chemical Engineering Co. Ltd., Chengdu, 610031, PR China
| |
Collapse
|
24
|
Novel 2D/2D BiOBr/Zn(OH)2 photocatalysts for efficient photoreduction CO2. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Zhu P, Lin J, Liu M, Duan M, Luo D, Wu X, Zhang S. Nd2Sn2O7/Bi2Sn2O7/Ag3PO4 double Z-type heterojunction for antibiotic photodegradation under visible light irradiation: Mechanism, optimization and pathways. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
26
|
Chen G, Li Y, Miao Y, Liu B. Recent developments on bismuth oxyhalide-based functional nanomaterials for biomedical applications. Biomater Sci 2022; 10:5809-5830. [DOI: 10.1039/d2bm01182d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multifunctional bismuth oxyhalide (BiOX, X = F, Cl, Br, and I) nanomaterials have great potential advantages in medical diagnostic and therapeutic applications. Pure BiOX nanomaterials have some limitations such as...
Collapse
|