1
|
Li Y, Piao G, Hu F, Chen W, Wang Q, Zhang X, Ling H, Liang J. The silent invasion of microplastics polyvinyl chloride and polyethylene terephthalate: Potential impact on osteoporosis. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138074. [PMID: 40158506 DOI: 10.1016/j.jhazmat.2025.138074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND The relationship between the environment and diseases is a crucial and complex topic that has garnered significant attention in recent years. In our study, we also follow the thread and explore the correlation between microplastics (MPs) and osteoporosis (OP). METHODS AND RESULTS We found that MPs were detected in the blood samples of nearly all participants. Moreover, It was compelling that PVC and PET emerged as the most common MP polymers in our study. A verification process was conducted comparing the clinical data with the results of MPs detection. This analysis revealed a significant exposure risk to MPs from sources such as bottled water, take-out containers. Through molecular biology techniques, we confirmed that MPs have a significant toxic effect on osteoblasts and associated with abnormal gene expression. CONCLUSION MPs may be considered to have a potential correlation with the progression of OP.
Collapse
Affiliation(s)
- Yizhou Li
- Department of Allergy, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China; Postdoctoral research station, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Guanghao Piao
- Department of Orthopedics, Baogang Hospital of Inner Mongolia, Baotou 014010, China
| | - Fengxia Hu
- People's Hospital of Xinjiang Uygur Autonomous Region, Xinjiang 830001, China
| | - Wenjing Chen
- Department of Allergy, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Qian Wang
- Department of Allergy, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Xiaoyu Zhang
- Department of Allergy, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China
| | - Hongbo Ling
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences (CAS), Urumqi 830011, China.
| | - Junqin Liang
- Department of Allergy, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China; Treatment Center of Biomedicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi 830001, China.
| |
Collapse
|
2
|
Wang N, Zhu X, Xu Z, Ning X, Guo L, Liang D, Li G, Zhu N. Photoaged polystyrene nanoplastics induce perturbation of glucose metabolism in HepG2 cells via oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 379:126534. [PMID: 40425061 DOI: 10.1016/j.envpol.2025.126534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/29/2025] [Accepted: 05/24/2025] [Indexed: 05/29/2025]
Abstract
MICRO: & nano-plastics (MNPs) have been considered an emerging persistent pollutant in the environment. Most of the works focus on the potential toxicity of pristine, rather than photoaged, MNPs, let alone the underlying mechanisms of toxicity. To address this gap, we exposed human liver cancer cells (HepG2) to polystyrene nanoplastics (PS-NPs) with varying degrees of photodegradation, including pristine PS-NPs and photoaged PS-NPs irradiated with UV for 8 days (short-term) and 32 days (long-term).The surface characteristics of PS-NPs exhibited a significant alteration as characterized by SEM, FTIR, XPS, and Zetasizer. Exposure to PS-NPs affected cell viability, ion transport capacity and glucose metabolism, and also induced oxidative stress. Photoaged PS-NPs posed relatively higher impacts than pristine ones on HepG2 cells. Long-term photoaged PS-NPs induced the glucose metabolic disorders in a dose-dependent manner, while pristine and short-term photoaged PS-NPs induced the metabolic disorders only at high concentrations. The severe cellular metabolic toxicity of PS-NPs was attributed to the changes in physicochemical properties induced by UV irradiation, such as the production of oxygen-containing functional groups (hydroxyl, carboxyl, and carbonyl groups). Taken together, the long-term photoaged PS-NPs suppressed more than 10% of cell vitality compared to the pristine ones, and disrupted the glucose metabolism in HepG2 cells, particularly gene expression associated with glucose homeostasis.
Collapse
Affiliation(s)
- Ning Wang
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, 030006, P. R. CHINA
| | - Xin Zhu
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, 030006, P. R. CHINA
| | - Zhiqiang Xu
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, 030006, P. R. CHINA
| | - Xia Ning
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, 030006, P. R. CHINA
| | - Lin Guo
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, 030006, P. R. CHINA
| | - Dong Liang
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan, 030051, P. R. CHINA
| | - Guangke Li
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, 030006, P. R. CHINA
| | - Na Zhu
- Shanxi Key Laboratory of Coal-based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, 030006, P. R. CHINA.
| |
Collapse
|
3
|
Wang L, Xie L, Li Y, Huang T, You W, Tahir MA, Wang W, Ge Q, Liu Y, Wang T, Wang L, Ruan X, Ji M, Zhang L. Inorganic Additives Induce More Small-Sized Microplastics Releasing from Medical Face Masks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9188-9198. [PMID: 40296241 DOI: 10.1021/acs.est.5c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Although previous studies have extensively explored the release of microplastics from masks, the specific influence of inorganic additives on microplastic emissions has remained unidentified. Herein, we performed a comparative analysis of medical face masks (MFMs) with calcium carbonate (CaCO3) additives against those devoid of CaCO3 to understand their roles in microplastic release. Briefly, our investigation employed surface-enhanced Raman spectroscopy (SERS) to examine micro- and nanoplastic release, while the stereoscopic characterization of mixing states of additives in microplastic was accomplished through a simulated Raman scattering (SRS). We also pioneered a three-dimensional imaging (3D imaging) method for investigating the internal aging of plastic using SRS, which clearly revealed the link between inorganic additives inside polymers and photoaging. We found that inorganic additives substantially accelerate the photoaging of the plastic materials through multiple pathways and induce more small-sized microplastics. Follow-up radical quenching experiments confirmed carbonate radicals as the main cause of this phenomenon. Our research exposes the hazardous potential of inorganic additives in masks to amplify the emission of microplastics.
Collapse
Affiliation(s)
- Licheng Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| | - Lifang Xie
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| | - Yumo Li
- State Key Laboratory of Surface Physics and Department of Physics Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Tingting Huang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| | - Wenbo You
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| | - Muhammad Ali Tahir
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| | - Wei Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| | - Qiuyue Ge
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| | - Yangyang Liu
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| | - Tao Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| | - Longqian Wang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| | - Xuejun Ruan
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai 200433, China
| | - Liwu Zhang
- Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan University, Shanghai 200433, Peoples' Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, Peoples' Republic of China
| |
Collapse
|
4
|
Ma S, Min X, Xu L, Jiang X, Liu Y, Gao P, Ji P, Kim H, Cai L. Aging of textile-based microfibers in both air and water environments. WATER RESEARCH 2025; 282:123731. [PMID: 40328151 DOI: 10.1016/j.watres.2025.123731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/08/2025]
Abstract
Textile-based microfibers (MFs) are a predominant source of global microplastics (MPs) pollution. Yet, less is known about the aging of textile-based MFs. This study explored the aging behavior of textile-based polyethylene terephthalate (PET) MFs with white (without pigment) and black (with carbon black as pigment) colors in both air and water environments. Ultraviolet (UV) and plasma aging were carried out to simulate the short- and long-term aging of MFs. Results indicated that white MFs exhibited more pronounced surface changes, formed more -OH bonds, and showed a higher increase in the oxygen-to-carbon(O/C) ratio than black MFs in both air and water environments. For example, in the air environment, the percentage increase of O/C for white MFs was 24.43 %, compared to 16.4 % for black MFs during plasma aging process. Further investigations were conducted to elucidate the mechanisms driving higher degree of aging of white MFs. It was verified that the carbon black in the black MFs could enhance their tensile strength and hardness, thereby countering the aging process. Furthermore, excitation-emission-matrix (EEM) analysis of dissolved organic matter (DOM) released from MFs, combined with the detection of reactive oxygen species (ROS) generated by MFs in the water environment, confirmed that carbon black functioned as an effective anti-aging additive. Its protective role, attributed to UV and plasma shielding and reactive radical-trapping mechanisms, led to higher aging degree in white MFs compared to black MFs. These findings provide insights into predicting the aging behaviors of textile-based MFs with different colors in air and water environments.
Collapse
Affiliation(s)
- Shuyu Ma
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaopeng Min
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, China
| | - Lin Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaolong Jiang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yanan Liu
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Peng Ji
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
| | - Hyunjung Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Li Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
5
|
Sun A, Wang WX. Photodegradation Controls of Potential Toxicity of Secondary Sunscreen-Derived Microplastics and Associated Leachates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5223-5236. [PMID: 40056111 PMCID: PMC11924215 DOI: 10.1021/acs.est.4c12077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 02/21/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
The escalating environmental concern over secondary microplastics (SMPs) stems from their physicochemical evolution from primary microplastics (PMPs), yet the contribution of varying physicochemical transformations to the ultimate environmental risks remains unknown. In this study, a photomechanical degradation process was employed to convert the primary sunscreen-derived microplastics (SDMPs) into secondary SDMPs. While mechanical degradation caused physical fragmentation, photodegradation induced both physical and chemical alterations, introducing surface oxidation, chemical bond scission, and cross-linking to the secondary SDMPs. Employing a combination of alkaline digestion and pyrolysis GC-MS techniques, it was observed that both physical fragmentation and photooxidation led to heightened intracellular sequestration of MPs. Although the bioaccumulated SDMPs could be indicated by the enlarged lysosomes and fragmented mitochondria, toxicity of secondary SDMPs at the cellular level was primarily driven by chemical transformations post-photodegradation. A nontargeted analysis employing high-resolution mass spectrometry identified 46 plastic-associated compounds in the leachate, with photodegradation-induced chemical transformations playing a crucial role in the dissociation of hydrophobic additives and oxidative conversion of leached compounds. The toxicity of the leachate was exacerbated by photodegradation, with mitochondrial fragmentation serving as the primary subcellular biomarker, indicative of leachate toxicity. This study elucidates the pivotal role of photodegradation in augmenting the cytotoxicity of secondary SDMPs, shedding light on the intricate interplay between physicochemical transformations and environmental risks.
Collapse
Affiliation(s)
- Anqi Sun
- School of
Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong
Kong, China
- Research
Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of
Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong
Kong, China
- Research
Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
6
|
Borregales DP, Pastormerlo L, Reciulschi E, Montserrat JM. Polyethylene fragments in Argentinean horticultural soils: Environmental transformation to a composite material. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178720. [PMID: 39946892 DOI: 10.1016/j.scitotenv.2025.178720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 03/05/2025]
Abstract
Polyethylene macro, meso, and microplastics collected from horticultural soils in Moreno, Buenos Aires, Argentina, were studied to understand their physicochemical transformations after environmental exposure. These plastics contained mechanically stable compounds of Si (1.2-4.0 %), Al (0.91-1.5 %), and Fe (0.64-2.2 %), likely due to soil clay particles adhering to the plastic. The plastics' surfaces were oxidized, with high carbonyl (0.05-0.23) and hydroxyl (1.6-2.7) indices. Weathering led to thinner, rougher surfaces with increased contact angles due to the presence of clay and polar organic groups. Scanning electron microscopy (SEM) showed cracks and particles on the surfaces, while atomic force microscopy (AFM) revealed roughness increased from 0.44 nm in pristine polyethylene (p-PE) to 1.60 nm in weathered samples. Heavy metal sorption experiments showed that the weathered plastics absorbed significantly more Ni2+ and Pb2+ than unweathered PE (4.5 times for Ni2+ and 11 times for Pb2+). After removing clay with hydrofluoric acid, the plastics still retained the same amount of these metals, suggesting that the sorption occurred mainly on the modified plastic surface rather than the clay. Arsenate tests indicated that the plastics selectively absorbed cationic metals. This study also developed a simple ATR-FTIR method for quantifying silicate on polyethylene surfaces, contributing to an understanding of soil-derived particle interactions with plastic in agricultural settings.
Collapse
Affiliation(s)
- David Picón Borregales
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, B1613GSX Los Polvorines, Prov. de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | - Eduardo Reciulschi
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, B1613GSX Los Polvorines, Prov. de Buenos Aires, Argentina; Laring S. A, Zuviría 5381, CABA, Argentina
| | - Javier M Montserrat
- Instituto de Ciencias, Universidad Nacional de General Sarmiento (UNGS), J. M. Gutiérrez 1150, B1613GSX Los Polvorines, Prov. de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
7
|
Liu M, Wang M, Sun X, Mu J, Teng T, Jin N, Song J, Li B, Zhang D. Polypropylene microplastics triggered mouse kidney lipidome reprogramming combined with ROS stress as revealed by lipidomics and Raman biospectra. CHEMOSPHERE 2025; 370:143926. [PMID: 39667527 DOI: 10.1016/j.chemosphere.2024.143926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/27/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Microplastics intrigue kidney toxicity such as mitochondrial dysfunction and inflammation promotion. However, as an organ relying heavily on fatty acid oxidation, how microplastics influence kidney lipidomes remain unclear. Hence, we performed Raman spectra and multidimensional mass spectrometry-based shotgun lipidomics to decode kidney lipidomics landscape under polypropylene microplastics exposure. Kidney functions and cellular redox homeostasis were remarkably disturbed as revealed by levels of biochemical renal function markers, malonaldehyde, hydrogen peroxide and antioxidants. Ultrastructure alterations including the foot process fusion implied the kidney injury associated with lipidomic changes. Raman spectra successfully further confirmed the cellular change of reactive oxygen species and lipid disorders. Lipidomics showed that polypropylene microplastics caused abnormal lipidome and irregular exchange by remodeling triglycerides and phospholipids. Genes involved in lipid metabolism such as Fads1 and Elovl5 exhibited highly diversified expression profiles responding to polypropylene microplastics stress and possessed significant correlations with ROS indicators. These results explained ultrastructure alterations and aggravation of kidney injuries. Our work revealed polypropylene microplastics inducing lipidomic detriment in mouse kidney by Raman spectra and lipidomics firstly, elucidating the significances of lipidomic remodeling coupled with ROS stress in the kidney damages. The findings provided reliable evidence on the health risks of polypropylene microplastics in kidney.
Collapse
Affiliation(s)
- Mingying Liu
- Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Miao Wang
- Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Xinglin Sun
- Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Ju Mu
- Key Labortary of Blood-stasis-toxin Syndrome of Zhejiang Province, School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Tingting Teng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun, 130021, PR China; College of New Energy and Environment, Jilin University, Changchun, 130021, PR China
| | - Naifu Jin
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Jiaxuan Song
- College of Water Sciences, Beijing Normal University, Beijing, 100875, PR China
| | - Bei Li
- State Key Lab of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, 130033, PR China; HOOKE Instruments Ltd., Changchun, 130033, PR China
| | - Dayi Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Changchun, 130021, PR China; College of New Energy and Environment, Jilin University, Changchun, 130021, PR China; Key Laboratory of Regional Environment and Eco-restoration, Ministry of Education, Shenyang University, Shenyang, 110044, PR China.
| |
Collapse
|
8
|
Sekar V, Sundaram B. Adsorption behavior of Cu(II) on UV-aged polyethylene terephthalate and polypropylene microplastics in aqueous solution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-35923-5. [PMID: 39832097 DOI: 10.1007/s11356-025-35923-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
Plastics are widely used across various applications from packing to commercial products. Once discarded, they were subjected to environmental stresses, causing them to degrade into microplastics (MPs). These small, invisible pollutants pose a significant threat to aquatic ecosystems, gradually compromising the resilience and vitality of the natural environment. Moreover, MPs will act as carriers for other contaminants, for example, heavy metals (HMs). Although many studies have explored MPs and HMs independently, their combined behavior and interactions remain poorly understood. Understanding these interactions is increasingly important given rising pollution levels. MP formation and adsorption behavior are heavily influenced by factors such as UV aging, which remains unclear. In this study, both virgin and UV-aged MPs specifically PET and PP (the most widely used plastics globally) were examined in their interactions with copper (Cu2+) solutions. Surface analysis techniques such as FTIR, SEM, XRD, and AAS were employed to compare the virgin and UV-aged MPs. The results revealed that UV-aged MPs exhibited high adsorption capacities for HMs compared to virgin MPs, which can be attributed to increased pore volume and oxidative degradation. Adsorption capacity differences at various concentrations showed up to a 20% increase, with UV-aged PET MPs displaying capacities ranging from 0.6 to 3.54 mg/g. Similarly, UV-aged PP MPs showed a 15% increase in adsorption capacity ranging from 1.51 to 4.25 mg/g. The present study provided the significant evidence on the behavior of MPs adsorption and underscores the need for further research on the long-term environmental impacts of aged MPs and their interactions with pollutants.
Collapse
Affiliation(s)
- Vijaykumar Sekar
- Department of Civil Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, India
| | - Baranidharan Sundaram
- Department of Civil Engineering, National Institute of Technology Andhra Pradesh, Tadepalligudem, India.
| |
Collapse
|
9
|
Wu D, Carter L, Kay P, Holden J, Yin Y, Guo H. Female zebrafish are more affected than males under polystyrene microplastics exposure. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136616. [PMID: 39581033 DOI: 10.1016/j.jhazmat.2024.136616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 11/11/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Microplastics are ubiquitous in freshwater and can be absorbed into fish skin and gills, accumulate in the gut, and be transported to other tissues, thus posing a risk to fish health. Further studies are needed, however, to investigate effects such as endocrine disruption and multi-tissue toxicity. In this study, zebrafish were exposed to polystyrene (PS) microplastics and health-related indicators were measured, including skin mucus, gut damage, oxidative stress, stable isotope composition and reproduction as well as an assessment of changes to metabolites using a metabolomics approach. Results showed that concentrations of PS microplastics were higher in gills than those in the gut. Minimal impact to immunoglobulin M level and lysozyme activity in mucus indicated, however, that microplastic toxicity primarily stemmed from ingestion rather than disruption of skin mucus immunity. Female zebrafish were more affected by PS microplastics. Gut microbiota dysbiosis was induced, especially in females. Significant alterations in pathways associated with lipid and energy metabolism were observed in the liver of female fish. PS microplastics also induced sex steroid hormone disorder and reduced female egg production, possibly linked to the alteration of gut microbiota and hepatic metabolism. Combined, these results highlight the gender-specific toxicity of PS microplastics to zebrafish health, potentially harming their population.
Collapse
Affiliation(s)
- Di Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK
| | - Laura Carter
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK
| | - Paul Kay
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK
| | - Joseph Holden
- water@leeds, School of Geography, University of Leeds, Leeds LS2 9JT, UK
| | - Ying Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Xu Z, Deng X, Lin Z, Wang L, Lin L, Wu X, Wang Y, Li H, Shen J, Sun W. Microplastics in agricultural soil: Unveiling their role in shaping soil properties and driving greenhouse gas emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177875. [PMID: 39644637 DOI: 10.1016/j.scitotenv.2024.177875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/27/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Microplastics (MPs) contamination is pervasive in agricultural soils, significantly influencing carbon and nitrogen biogeochemical cycles and altering greenhouse gas (GHG) fluxes. This review examines the sources, status, mechanisms, and ecological consequences of MPs pollution in agricultural soils, with a focus on how MPs modified soil physicochemical properties and microbial gene expression, ultimately impacting GHG emissions. MPs were found to reduce soil water retention, decreasing soil respiration and increasing emissions of CO2, CH₄, and N2O. They also enhanced soil aggregate stability and influenced soil organic carbon (SOC) sequestration, contributing further to GHG emissions. MPs-induced increases in soil pH were associated with suppressed CH₄ and N2O emissions, whereas the abundance of genes encoding enzymes for cellulose and lignin decomposition (e.g., abfA and mnp) stimulated enzyme activity, intensifying N2O release. Additionally, a reduced soil C/N ratio promoted denitrification processes. Changes in microbial communities, including increases in Actinomycetes and Proteobacteria, were observed, with a rise in genes associated with carbon cycling (abfA, manB, xylA) and nitrification-denitrification (nifH, amoA, nirS, nirK), further exacerbating CO2 and N2O emissions. This review provides valuable insights into the complex roles of MPs in GHG dynamics in agricultural soils, offering perspectives for improving environmental management strategies.
Collapse
Affiliation(s)
- Zhimin Xu
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China
| | - Xingying Deng
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zheng Lin
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Lei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Lihong Lin
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Xinyue Wu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yifan Wang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Huankai Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, 999077, Hong Kong Special Administrative Region of China
| | - Jianlin Shen
- Key Laboratory for Agro-ecological Processes in Subtropical Regions, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China.
| | - Weimin Sun
- Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
11
|
Sun K, Huo X, Zhang Y, Zong C, Liu C, Sun Z, Yu X, Liao P. Mechanistic insights into the co-transport of microplastic degradation products in saturated porous media: The key role of microplastics-derived DOM. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177597. [PMID: 39612703 DOI: 10.1016/j.scitotenv.2024.177597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/10/2024] [Accepted: 11/14/2024] [Indexed: 12/01/2024]
Abstract
Microplastic-derived dissolved organic matter (MP-DOM) forms from the aging of microplastics (MPs), but the co-transport behavior of MP-DOM and aged MPs (AMPs) remains poorly understood. This study investigates the co-transport of AMPs and MP-DOM generated from original MPs (OMPs) over a wide range of environmentally relevant conditions. The transport of AMPs and MP-DOM changes as the degree of aging increases, specifically related to changes in their physicochemical characteristics. Results showed that the order of migration ability was MP-DOM > AMPs > OMPs under almost all tested conditions. The change of hydrophobicity of MP-DOM and AMPs, as well as small molecular weight of MP-DOM, was primarily responsible for this order. The role of MP-DOM as a degradation product in the co-transport process is notably significant under various environmental conditions because of its high mobility and organic carbon fraction within the system. Furthermore, it is important to note that MP-DOM affected the transport of MPs through a combination of positive and negative effects. Key mechanisms include electrostatic repulsion caused by protonation reactions triggered by the acidic pH of MP-DOM, steric hindrance, and competition for retention sites on media surfaces. This study contributes to a deeper understanding of the transformation and fate of MPs in complex environmental systems.
Collapse
Affiliation(s)
- Kaixuan Sun
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang 330013, Jiangxi, PR China
| | - Xiaofeng Huo
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, PR China
| | - Yanhong Zhang
- School of Water Resources and Environmental Engineering, East China University of Technology, NanChang 330013, Jiangxi, PR China.
| | - Chengyuan Zong
- Zhejiang Environmental Technology Co., Ltd, Hangzhou, 310012, PR China
| | - Chao Liu
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang 330013, Jiangxi, PR China
| | - Zhanxue Sun
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang 330013, Jiangxi, PR China
| | - Xiaoxia Yu
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang 330013, Jiangxi, PR China.
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| |
Collapse
|
12
|
Deng W, Wang Y, Liu W, Wang Z, Liu J, Wang J. Molecular-level insights into the leachates released from ultraviolet-aged biodegradable and conventional commercial microplastics and their mechanism of toxicity toward Chlorella pyrenoidosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177167. [PMID: 39477110 DOI: 10.1016/j.scitotenv.2024.177167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
Understanding the harmful effects of microplastics (MPs) and their derivatives is a priority in environmental study. However, the characteristics and toxic effects of leachates from MPs at the molecular-level remain unclear. Herein, two conventional commercial MPs [polystyrene (PS) and polyethylene (PE)] and two biodegradable commercial MPs [polylactic acid (PLA) and polybutylene adipate-co-terephthalate/PLA (PBAT/PLA)] were subjected to leaching under ultraviolet-irradiation, and their leachates were investigated. The results showed that the surface morphology of MPs increased in roughness after ultraviolet-irradiation treatment, especially for biodegradable MPs, meanwhile, the particle size of four MPs decreased in various degrees. The biodegradable MPs released several times more dissolved organic matter (DOM) and nano-plastic particles than conventional MPs. Fourier transform ion cyclotron resonance mass spectrometry revealed that lignin-like substances were the predominant component of MP-DOM, followed by protein- and tannin-like substances. The molecular composition and characteristics of the DOM varied significantly among MPs. Transcriptomic analysis showed that 737 and 1259 genes, respectively, were differentially expressed in Chlorella pyrenoidosa in PLA- and PBAT/PLA-MP leachate-treated groups compared with controls, more than in the PS (352) and PE (355) groups. These findings, verified by physiological and histopathological analyses, indicate that the leachates from the biodegradable MPs induced more damage to Chlorella pyrenoidosa than those from the conventional MPs. This is mainly attributed to far more DOM and nano-plastic particles containing in leachates of biodegradable MPs than these of conventional MPs. This study deepens our comprehension of the potential hazards of MP-leachates, and promotes the prudent use and disposal of plastic products.
Collapse
Affiliation(s)
- Wenbo Deng
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Yajing Wang
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Wenjuan Liu
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| | - Zihan Wang
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Jinzhao Liu
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075, China
| | - Jian Wang
- Canadian Light Source Inc., University of Saskatchewan, Saskatoon, SK S7N 2V3, Canada
| |
Collapse
|
13
|
Bai R, Wang W, Cui J, Wang Y, Liu Q, Liu Q, Yan C, Zhou M, He W. Modeling the temporal evolution of plastic film microplastics in soil using a backpropagation neural network. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136312. [PMID: 39500196 DOI: 10.1016/j.jhazmat.2024.136312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/10/2024] [Accepted: 10/25/2024] [Indexed: 12/01/2024]
Abstract
Plastic films are a crucial aspect of agricultural production in China, as well as a key source of microplastics in farmland. However, research into the environmental behavior of microplastics derived from polyethylene (PE) and biodegradable plastic films such as polybutylene adipate-co-terephthalate (PBAT) is limited by inadequate knowledge of their evolution and fate in soil. Therefore, we conducted controlled soil incubation experiments using new and aged microplastics derived from prepared PE and PBAT plastic films to determine their temporal evolution characteristics in soil. The results indicated that PBAT microplastics exhibited more pronounced changes in abundance, size, and shape over time than PE microplastics. Notably, the magnitude and timing of changes in newly introduced PBAT microplastics were consistently delayed relative to those of aged microplastics. Specifically, the abundance of aged PBAT microplastics initially increased then decreased, whereas their size continuously decreased, ultimately reaching 21.9 % and 47.5 % of the initial values, respectively. Furthermore, we constructed a novel backpropagation neural network model based on our morphological and spectral data, which effectively identified the incubation duration of PE and PBAT microplastics, with recognition accuracies of 98.1 % and 84.6 %, respectively. These findings offer a novel perspective for assessing the environmental persistence and fate of plastic film microplastics.
Collapse
Affiliation(s)
- Runhao Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jixiao Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Yang Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qin Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qi Liu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changrong Yan
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mingdong Zhou
- Xinjiang Uygur Autonomous Region Agricultural Ecology and Resources Protection Station, Urumqi 830049, China
| | - Wenqing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Institute of Western Agricultural, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
14
|
Chen C, Lai H, Deng Y, Cao J, Chen J, Jin S, Wu W, Sun D, Zhang C. Response of sedimentary microbial community and antibiotic resistance genes to aged Micro(Nano)plastics exposure under high hydrostatic pressure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135942. [PMID: 39326153 DOI: 10.1016/j.jhazmat.2024.135942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/29/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
Several studies reported that the presence of microplastics (MPs)/nanoplastics (NPs) in marine environments can alter microbial community and function. Yet, the impact of aged MPs/NPs on deep sea sedimentary ecosystems under high hydrostatic pressure remains insufficiently explored. Herein, the sedimentary microbial community composition, co-occurrence network, assembly, and transfer of antibiotic resistance genes (ARGs) in response to aged MPs/NPs were investigated. Compared with the control, NPs addition significantly reduced bacterial alpha diversity (p < 0.05), whereas MPs showed no significant impact (p > 0.05). Moreover, networks under NPs exhibited decreased complexity than that under MPs and the control, including edges, average degree, and the number of keystone. The assembly of the microbial community was primarily governed by stochastic processes, and aged MPs/NPs increased the importance of stochastic processes. Moreover, exposure to MPs/NPs for one month decreased the abundance of antibiotic resistance genes (ARGs) (from 94.8 to 36.2 TPM), while exposure for four months increased the abundance (from 40.6 to 88.1 TPM), and the shift of ARGs in sediment was driven by both functional modules and microbial community. This study is crucial for understanding the stress imposed by aged MPs/NPs on sedimentary ecosystems under high hydrostatic pressure.
Collapse
Affiliation(s)
- Chunlei Chen
- Institute of Marine Biology and pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Hongfei Lai
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China; Guangzhou Marine Geological Survey, Guangzhou 510075, Guangdong, China
| | - Yinan Deng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China; Guangzhou Marine Geological Survey, Guangzhou 510075, Guangdong, China.
| | - Jun Cao
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China; Guangzhou Marine Geological Survey, Guangzhou 510075, Guangdong, China
| | - Jiawang Chen
- Donghai laboratory, Zhoushan 316021, Zhejiang, China
| | - Shidi Jin
- Institute of Marine Biology and pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Weimin Wu
- Department of Civil and Environmental Engineering, William & Cloy Codiga Resource Recovery Center, Stanford University, Stanford, California 94305-4020
| | - Dan Sun
- Institute of Marine Biology and pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Chunfang Zhang
- Institute of Marine Biology and pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
15
|
Xu Y, Zhang X, Xiao S, Peng BY, Chen J, Yang L, Zhou X, Zhang Y. Distinct exposure impact of non-degradable and biodegradable microplastics on freshwater microalgae (Chlorella pyrenoidosa): Implications for polylactic acid as a sustainable plastic alternative. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136265. [PMID: 39515141 DOI: 10.1016/j.jhazmat.2024.136265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/04/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) are increasingly recognized as significant sources of harm to biota in various environments. However, the detrimental impacts of aged MPs with different structures and degradability remain poorly understood. In this study, aged MPs from polylactic acid (PLA), polyethylene (PE), and polystyrene (PS), representing biodegradable, aliphatic, and aromatic plastics, respectively, were prepared to examine their effects on microalgae (Chlorella pyrenoidosa). Structural and property analyses indicated the presence of aging and oxygen-containing functional groups on the surfaces of the MPs, which correlated with an increase in negative electrical charge (i.e., aged PLA > aged PE ≈ aged PS). Aged PLA MPs affected microalgae biomass, promoted protein synthesis, and elevated mild oxidative stress. In contrast, aged PE and PS MPs not only affected biomass, protein, and carbohydrate synthesis but also inhibited photosynthetic pigment production and activity, resulting in intracellular oxidative stress. Excitation-emission-matrix spectra analysis showed that PLA induced microalgae to secrete large amounts of humic acid-like extracellular polymers, whereas aged PE and aged PS groups contained only small amounts of them and proteins. This study addresses critical knowledge gaps in the toxicology of various aged MPs on microalgae and provides valuable insights into the potential of PLA as a sustainable alternative to conventional plastics in microalgae culture industry.
Collapse
Affiliation(s)
- Yazhou Xu
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 200092, China
| | - Xu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 200092, China.
| |
Collapse
|
16
|
Zheng H, Huang S, Huang J, Zeng H, Xu M, Cai A, Zhou S, Ma X, Deng J. Unveiling the optical and molecular characteristics of aging microplastics derived dissolved organic matter transformed by UV/chlor(am)ine oxidation and its potential for disinfection byproducts formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136440. [PMID: 39541889 DOI: 10.1016/j.jhazmat.2024.136440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/18/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024]
Abstract
The investigations into the existence and behavior of microplastics (MPs) in water environment were widely conducted, while the characteristics of dissolved organic matter derived from MPs (MPs-DOM) during advanced oxidation have garnered comparatively little attention. In this study, Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was employed along with multiple statistical analyses to gain a deeper understanding of the conversion of MPs-DOM in UV/chlor(am)ine advanced oxidation processes (AOPs). The diverse treatments exhibited varying degrees of augmentation in both aging and fragmentation of MPs with the order of UV/Cl2 > UV > UV/NH2Cl. The fragmentation degree of MPs upon two UV-based AOPs (UV-AOPs) was dependent on their monomer chemical structure. The highest TOC values of three MPs-DOM were observed after UV/Cl2 AOP and the lowest after UV/NH2Cl AOP. Polyvinyl chloride (PVC) displayed a greater release of MPs-DOM under varying leaching conditions. UV/Cl2 AOP favored the reaction with saturated MPs-DOM, while UV/NH₂Cl AOP reduced unsaturated MPs-DOM, alleviating disinfection byproducts (DBPs) formation after chlorination. The precursors generated by UV/Cl₂ AOP owned lower H/C, higher modified aromatic index (AImod), and lower molecular weight (MW) products after chlorination. PVC-DOM with fewer CH₂ groups was more reactive. -H₂O, +O and -CH₂ reactions dominated in PVC-DOM (CHO compounds), while -2H, +O, -CH₂ did in PVC-DOM (CHON compounds). The dominant chlorine addition/substitution reactions occurred in PVC-DOM treated by UV/Cl₂ AOP, identifying 195 Cl-DBPs with 220 precursor-product pairs. Mass difference analyses showed that +2H and +O reactions were the most frequent of the 24 reaction types.
Collapse
Affiliation(s)
- Huiming Zheng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Sinong Huang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Jiahui Huang
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China
| | - Hanxuan Zeng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou 310023, China
| | - Mengyuan Xu
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou 310023, China
| | - Anhong Cai
- National and Local Joint Engineering Research Center for Ecological Treatment Technology of Urban Water Pollution, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Shiqing Zhou
- College of Civil Engineering, Hunan University, Changsha 410082, China
| | - Xiaoyan Ma
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou 310023, China.
| | - Jing Deng
- College of Civil Engineering, Zhejiang University of Technology, Hangzhou 310023, China; Zhejiang Key Laboratory of Civil Engineering Structures & Disaster Prevention and Mitigation Technology, Hangzhou 310023, China.
| |
Collapse
|
17
|
Wang Q, Gu W, Chen H, Wang S, Hao Z. Molecular properties of dissolved organic matter leached from microplastics during photoaging process. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136154. [PMID: 39405688 DOI: 10.1016/j.jhazmat.2024.136154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/02/2024] [Accepted: 10/11/2024] [Indexed: 12/01/2024]
Abstract
The occurrence of dissolved organic matter (DOM) derived from microplastics (MPs) and its effect on aquatic systems has attracted great interest recently. However, the photoaging effect on the molecular structure of MP-derived DOM (MP-DOM) remains unclear. This paper presents the characteristics of DOM leached from three commercial MPs, i.e., polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) under UV irradiation. With prolonged aging periods, the surface roughness and oxygen-containing groups on the surface of MPs increase as more DOM leachate is generated. Moreover, the dissolved organic carbon (DOC) content of the leached DOM from PET MPs varies from 0.52 mg/L to 2.25 mg/L, which is higher than PE and PP MPs, due to the larger increased surface reaction area and the cleavage of the benzene ring. According to the excitation-emission matrix and parallel factor analysis (EEM-PARAFAC), the plastic-derived protein/phenolic-like components (C1 and C3) in MP-DOM were changed into photo-induced humic-like components (C2), which were closely related to the intermediates during photo-oxidation. High-performance liquid chromatography-mass spectrometry (HPLC-MS) analysis further identified that the highest proportion of antioxidants (24.8 %∼34.6 %) was contained in MP-DOM. Plasticizers, intermediate additives, and antimicrobial agents were also detected in DOM leachate. Correlation analysis identified that the composition of leached DOM was positively correlated with the surface roughness, the carbonyl index (CI), and the chemical groups of MPs. Moreover, a partial least square structural equation model (PLS-SEM) analysis further verified that the change of morphology and the chemical structure of MPs could affect the DOM structures and fractions directly. This study provides an in-depth understanding of the composition of MP-derived DOM during the aging process, as well as a comprehensive environmental impact assessment of MPs.
Collapse
Affiliation(s)
- Qiongjie Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Wanqing Gu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Huijuan Chen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Shurui Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| | - Zijing Hao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, China.
| |
Collapse
|
18
|
Zhu J, He Y, Zheng Q, Yang Q, Zhou W, Sun Y, Zhan X. Accumulation of nanoplastics by wheat seedling roots: Both passive and energy-consuming processes. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136052. [PMID: 39368354 DOI: 10.1016/j.jhazmat.2024.136052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Nanoplastics can transfer from the environment to plants and potentially harm organisms. However, the mechanisms on how crop root systems absorb and transport nanoplastics are still unclear. Here, original and fluorescent labeled polystyrene and polyvinyl chloride nanoparticles (PS-NPs, PVC-NPs; 30 nm; 10 mg L-1) were employed to study the distribution and internalization pathways in wheat seedling roots. In the study, nanoplastics accumulated more in the root tip and surface, with PVC-NPs more prevalent than PS-NPs. After being treated with inhibitors (Na3VO4, chlorpromazine and amiloride), the nanoplastics mean fluorescence intensities were reduced by 4.0-51.1 %. During the uptake, both passive and energy-consuming pathways occurred. For the energy-consuming uptake pathway, macropinocytosis contributed more to cytoplasm than clathrin-mediated endocytosis. H+ influx was observed during nanoplastic transport into the cytoplasm, and the reduction in plasma membrane ATPase activity led to a decrease in nanoplastic internalization. These results elucidate the pathways of nanoplastics absorption and transport in wheat roots, provide crucial evidence for assessing nanoplastics' ecological risks and support the development of technologies to block nanoplastics absorption by crop roots, ensuring agricultural and ecosystem safety.
Collapse
Affiliation(s)
- Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Yuan He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Qiuping Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Qian Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Wenhui Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Yilei Sun
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu Province 210095, PR China.
| |
Collapse
|
19
|
Munkhbat D, Battulga B, Oyuntsetseg B, Kawahigashi M. Dynamics of plastic debris and its density change between river compartments in the Tuul River system, Mongolia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:65548-65558. [PMID: 39589417 PMCID: PMC11632066 DOI: 10.1007/s11356-024-35584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024]
Abstract
Plastic pollution in river environments has become an emerging global concern. However, the migration of plastic and changes in its properties between river compartments are less understood. This study demonstrates the plastic debris aging and the dynamics between floodplain, surface water, and sediment compartments of the Tuul River, Mongolia. Plastic occurrence is evaluated in terms of their abundance, size, shape, polymer type, and photodegradation in each compartment. Photodegradation stages were calculated using the carbonyl index (CI). Plastic abundance was 5.46 ± 3.53 items m-2 in the floodplain, 155 ± 100.7 items m-3 in the surface water, and 128.4 ± 76.3 items kg-1 in the sediment. Microplastics dominated in the size category in all compartments, while macro- and megaplastics were found only in the floodplain. Polyethylene and polypropylene dominated the surface water and sediment, while polystyrene was the predominant plastic in the floodplain. A positive correlation was found between the distributed polymer types in the surface water and sediment compartments. The similar composition in size and polymer type suggests vertical plastic migration from water to sediment. Although CI values showed that the plastic aging was significantly different between water and sediment (water, 0.61 ± 0.26, and sediment, 0.90 ± 0.68), the dominance of low-density plastics with high CI in the sediment suggests that the aged plastic density changed during the vertical transport in the river system.
Collapse
Affiliation(s)
- Dolgormaa Munkhbat
- Department of Geography, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan
| | - Batdulam Battulga
- Nuclear Science and Engineering Center, Japan Atomic Energy Agency, Tokai, Ibaraki, 319-1195, Japan
| | - Bolormaa Oyuntsetseg
- Department of Chemistry, National University of Mongolia, Ikh Surguuliin Gudamj-1, Ulaanbaatar, 14201, Mongolia
| | - Masayuki Kawahigashi
- Department of Geography, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
20
|
Ma J, Niu X, Zhang D, Wang G. Insights into the inhibitory effects of trichloroisocyanuric acid disinfectant on the phototransformation of polypropylene microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175904. [PMID: 39226956 DOI: 10.1016/j.scitotenv.2024.175904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/05/2024]
Abstract
The chemical components in the natural aquatic environment have the potential to be involved in phototransformation of microplastics (MPs). Little information is available regarding the mediation effects of artificially introduced chemicals on MP phototransformation, especially those used in aquaculture water that are vulnerable to human interference. Herein, this study investigated the phototransformation process and mechanism of polypropylene microplastic (PP MPs) in presence of trichloroisocyanuric acid (TCCA) disinfectant with unique properties unlike the conventional inorganic chlorine disinfectants. The results showed that the presence of TCCA inhibited the surface photooxidation of PP MPs. Analysis of PP MP surface and reaction filtrate indicated that the inhibitory effects were likely derived from TCCA derivatives and the weakening in promoting effect of polypropylene microplastic-derived dissolved organic matter (PP-DOM) as photolytic byproducts, with the more important role of free chlorine in initial period and that of other chlorine species (i.e., the adsorbed chloride ions (Cl-), newly formed carbon-chlorine (CCl) bonds, chlorinated cyanurates, and chlorinated products) in middle and later period. The study highlights for the first time the important role of chlorine species derived from TCCA in phototransformation process of co-existed PP MPs and proposes a previously unrecognized phototransformation pathway, which will provide a new understanding and knowledge for the environmental behavior of MPs in aquaculture environment.
Collapse
Affiliation(s)
- Jinling Ma
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Gang Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou 730070, China
| |
Collapse
|
21
|
Luo D, Li C, Bai X, Shi Y, Wang R. Photoaging-induced variations in heteroaggregation of nanoplastics and suspended sediments in aquatic environments: A case study on nanopolystyrene. WATER RESEARCH 2024; 268:122762. [PMID: 39541854 DOI: 10.1016/j.watres.2024.122762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Photoaging of nanoplastics (NPs) and heteroaggregate with suspended sediments (SS) determines transport processes and ecological risks of NPs in aquatic environments. This study investigated the disruption of photoaging on the heteroaggregation behavior of polystyrene NPs (PSNPs) and SS in different valence electrolyte solutions and deduced the interaction mechanisms by integrating aggregation kinetics and molecular dynamics (MD) simulation. Increasing the electrolyte concentration significantly enhanced the heteroaggregation between PSNPs and SS, and the divalent electrolytes induced the heteroaggregation more efficiently. MD simulation at the molecular level revealed that PS and SS could spontaneously form clusters, and photoaged PS has a stronger potential to fold into a dense state with SS. Photoaging for 30 d retarded heteroaggregation due to the steric hindrance produced by the leached organic matter in NaCl solutions, and the critical coagulation concentration (CCC) increased by >85.44 %. Contrarily, photoaging caused more oxygen-containing functional groups produced on the surface of PSNPs through Ca2+ bridging promoting heteroaggregation and thus destabilizing in CaCl2 solutions, the CCC decreased by 23.53 % ∼ 35.29 %. These findings provide mechanistic insight into the environmental process of NPs and SS and are crucial for a comprehensive understanding of the environmental fate and transport of NPs in aquatic environments.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Chang Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| | - Yi Shi
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Ruifeng Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
22
|
Zhou Y, Zeng F, Cui K, Lan L, Wang H, Liang W. Insight into the dynamic transformation properties of microplastic-derived dissolved organic matter and its contribution to the formation of chlorination disinfection by-products. RSC Adv 2024; 14:34338-34347. [PMID: 39469004 PMCID: PMC11514132 DOI: 10.1039/d4ra05857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/19/2024] [Indexed: 10/30/2024] Open
Abstract
Microplastics (MPs) can cause adverse effects and pose potential threats to humans and the environment. In addition, dissolved organic matter leached from MPs (MP-DOM) is also a critical issue due to its ecotoxicity and potential to form disinfection by-products (DBPs) during the disinfection process of water treatment plants. However, limited information is available on the dynamic transformation of MP-DOM during UV irradiation and subsequent disinfection, which may further influence the formation of DBPs in MP-DOM. Herein, PSMPs-DOM were leached in aqueous solutions under UV irradiation and the samples were then chlorinated. PSMPs-DOM before and after chlorination were characterized by multiple spectral technologies and methods. With prolonged irradiation time, the aromaticity, molecular weight, humic-like substances and oxygen-containing functional groups of PSMPs-DOM increased, suggesting the continuous transformation of PSMPs-DOM. After chlorination, the aromaticity, molecular weight and humic-like substances of PSMPs-DOM decreased, among which the changes of C2 and oxygen-containing functional groups were more significant. Besides, the PSMPs-DOM formed under prolonged irradiation exhibited higher chlorine reactivity, owing to the more aromatic structures and unsaturated bonds. TCM, DCBM, DBCM and TBM were detected in all chlorinated PSMPs-DOM samples, while the PSMPs-DOM formed at the later stage of irradiation exhibited lower THMs formation potential. The correlation results showed that the conversion of humic-like substances in PSMPs-DOM affected the THMs formation potential, with photo-induced humic-like substance being a more dominant factor. This study provided more information on the relationship between the compositional transformation of MP-DOM and their potential to form DBPs, which may facilitate the assessment of potential toxicity associated with MPs-containing water, as well as the development of more effective water treatment methods.
Collapse
Affiliation(s)
- Yingyue Zhou
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| | - Feng Zeng
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| | - Kunyan Cui
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| | - Longxia Lan
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| | - Hao Wang
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| | - Weiqian Liang
- School of Chemistry, Sun Yat-sen University Guangzhou 510000 China +86-020-84114133
| |
Collapse
|
23
|
Hu X, Xie H, Li Y, Wang C. Photo-aging of brominated epoxy microplastics in water under simulated solar irradiation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1380-1390. [PMID: 38973384 DOI: 10.1039/d4em00208c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Microplastics have become an increasingly concerning pollutant in aquatic environments, and photodegradation is their main degradation pathway in water. Gaining insight into the transformation process of microplastics will enhance our understanding of their behavior and destiny in natural environments. This paper studied the aging process of BER microplastics in aquatic environments under simulated sunlight and investigated the changes in the physical and chemical properties of microplastics and the changes in the leachate. During the photodegradation process, BER-MPs underwent extensive oxidation and reduction in particle size, and the originally smooth surface developed numerous voids, accompanied by yellowing. Introduction of O atoms in the molecular chains increased their hydrophilicity, resulting in the polymer chains breaking away from the plastic particles and dissolving in water. Also, once BER was excited by light, environmentally persistent free radicals are produced on its surface. Moreover, the breaking of C-Br bonds occurred during the photodegradation process of BER-MPs, which suggested that tetrabromobisphenol A would be transformed during the photoaging process of BER even if it was covalently bound to BER.
Collapse
Affiliation(s)
- Xuefeng Hu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Weiyang District, Xi'an, 710021, China.
| | - Hao Xie
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Weiyang District, Xi'an, 710021, China.
| | - Yujie Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Weiyang District, Xi'an, 710021, China.
| | - Chao Wang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Weiyang District, Xi'an, 710021, China.
| |
Collapse
|
24
|
Xu Y, Peng BY, Zhang X, Xu Q, Yang L, Chen J, Zhou X, Zhang Y. The aging of microplastics exacerbates the damage to photosynthetic performance and bioenergy production in microalgae (Chlorella pyrenoidosa). WATER RESEARCH 2024; 259:121841. [PMID: 38820734 DOI: 10.1016/j.watres.2024.121841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/20/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
The toxicity of microplastics (MPs) on freshwater plants has been widely studied, yet the influence of aged MPs remains largely unexplored. Herein, we investigated the influence of polyvinyl chloride (PVC) MPs, both before and after aging, at different environmentally relevant concentrations on Chlorella pyrenoidosa, a freshwater microalgae species widely recognized as a valuable biomass resource. During a 96-h period, both virgin and aged MPs hindered the growth of C. pyrenoidosa. The maximum growth inhibition rates were 32.40 % for virgin PVC at 250 mg/L and 44.72 % for aged PVC at 100 mg/L, respectively. Microalgae intracellular materials, i.e., protein and carbohydrate contents, consistently decreased after MP exposure, with more pronounced inhibition observed with aged PVC. Meanwhile, the MP aging significantly promoted the nitrogen uptake of C. pyrenoidosa, i.e., 1693.45 ± 42.29 mg/L (p < 0.01), contributing to the production of humic acid-like substances. Additionally, aged PVC induced lower chlorophyll a and Fv/Fm when compared to virgin PVC, suggesting a more serious inhibition of the photosynthesis process of microalgae. The toxicity of MPs to C. pyrenoidosa was strongly associated with intercellular oxidative stress levels. The results indicate that MP aging exacerbates the damage to photosynthetic performance and bioenergy production in microalgae, providing critical insights into the toxicity analysis of micro(nano)plastics on freshwater plants.
Collapse
Affiliation(s)
- Yazhou Xu
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Bo-Yu Peng
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xu Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China
| | - Qianfeng Xu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Libin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yalei Zhang
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China; Key Laboratory of Rural Toilet and Sewage Treatment Technology, Ministry of Agriculture and Rural Affairs, Shanghai 200092, China.
| |
Collapse
|
25
|
Lin D, Cen Z, Zhang C, Lin X, Liang T, Xu Y, Zheng L, Qiao Q, Huang L, Xiong K. Triclosan-loaded aged microplastics exacerbate oxidative stress and neurotoxicity in Xenopus tropicalis tadpoles via increased bioaccumulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173457. [PMID: 38782285 DOI: 10.1016/j.scitotenv.2024.173457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Microplastics and chlorine-containing triclosan (TCS) are widespread in aquatic environments and may pose health risks to organisms. However, studies on the combined toxicity of aged microplastics and TCS are limited. To investigate the toxic effects and potential mechanisms associated with co-exposure to TCS adsorbed on aged polyethylene microplastics (aPE-MPs) at environmentally relevant concentrations, a 7-day chronic exposure experiment was conducted using Xenopus tropicalis tadpoles. The results showed that the overall particle size of aPE-MPs decreased after 30 days of UV aging, whereas the increase in specific surface area improved the adsorption capacity of aPE-MPs for TCS, resulting in the bioaccumulation of TCS under dual-exposure conditions in the order of aPE-TCS > PE-TCS > TCS. Co-exposure to aPE-MPs and TCS exacerbated oxidative stress and neurotoxicity to a greater extent than a single exposure. Significant upregulation of pro-symptomatic factors (IL-β and IL-6) and antioxidant enzyme activities (SOD and CAT) indicated that the aPE-TCS combination caused more severe oxidative stress and inflammation. Molecular docking revealed the molecular mechanism of the direct interaction between TCS and SOD, CAT, and AChE proteins, which explains why aPE-MPs promote the bioaccumulation of TCS, causing increased toxicity upon combined exposure. These results emphasize the need to be aware of the combined toxicity caused by the increased ability of aged microplastics to carry contaminants.
Collapse
Affiliation(s)
- Dawu Lin
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zifeng Cen
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Chaonan Zhang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaojun Lin
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taojie Liang
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanbin Xu
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Li Zheng
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Qingxia Qiao
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Lu Huang
- Instrumental Analysis Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kairong Xiong
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China; Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Institute of Environmental Health and Pollution Control, College of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
26
|
Liu X, Fang L, Gardea-Torresdey JL, Zhou X, Yan B. Microplastic-derived dissolved organic matter: Generation, characterization, and environmental behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174811. [PMID: 39032736 DOI: 10.1016/j.scitotenv.2024.174811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Microplastics (MPs) represent a substantial and emerging class of pollutants distributed widely in various environments, sparking growing concerns about their environmental impact. In environmental systems, dissolved organic matter (DOM) is crucial in shaping the physical, chemical, and biological processes of pollutants while significantly contributing to the global carbon budget. Recent findings have revealed that microplastic-derived dissolved organic matter (MP-DOM) constitutes approximately 10 % of the DOM present on the ocean surface, drawing considerable attention. Hence, this study's primary objective is to explore, the generation, characterization, and environmental behaviors of MP-DOM. The formation and characteristics of MP-DOM are profoundly influenced by leaching conditions and types of MPs. This review delves into the mechanisms of the generation of MP-DOM and provides an overview of a wide array of analytical techniques, including ultraviolet-visible (UV-Vis) spectroscopy, fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), and mass spectroscopy, used to assess the MP-DOM characteristics. Furthermore, this review investigates the environmental behaviors of MP-DOM, including its impacts on organisms, photochemical processes, the formation of disinfection by-products (DBPs), adsorption behavior, and its interaction with natural DOM. Finally, the review outlines research challenges, perspectives for future MP-DOM research, and the associated environmental implications.
Collapse
Affiliation(s)
- Xigui Liu
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Jorge L Gardea-Torresdey
- University of Texas at El Paso, Department of Chemistry and Biochemistry, El Paso, TX 79968, United States
| | - Xiaoxia Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Bing Yan
- Institute of Environmental Research at the Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
27
|
Hua J, Zhang T, Chen X, Zhu B, Zhao M, Fu K, Zhang Y, Tang H, Pang H, Guo Y, Han J, Yang L, Zhou B. Behavioral impairments and disrupted mitochondrial energy metabolism induced by polypropylene microplastics in zebrafish larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174541. [PMID: 38977091 DOI: 10.1016/j.scitotenv.2024.174541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Polypropylene microplastics (PP-MPs) are emerging pollutant commonly detected in various environmental matrices and organisms, while their adverse effects and mechanisms are not well known. Here, zebrafish embryos were exposed to environmentally relevant concentrations of PP-MPs (0.08-50 mg/L) from 2 h post-fertilization (hpf) until 120 hpf. The results showed that the body weight was increased at 2 mg/L, heart rate was reduced at 0.08 and 10 mg/L, and behaviors were impaired at 0.4, 10 or 50 mg/L. Subsequently, transcriptomic analysis in the 0.4 and 50 mg/L PP-MPs treatment groups indicated potential inhibition on the glycolysis/gluconeogenesis and oxidative phosphorylation pathways. These findings were validated through alterations in multiple biomarkers related to glucose metabolism. Moreover, abnormal mitochondrial ultrastructures were observed in the intestine and liver in 0.4 and 50 mg/L PP-MPs treatment groups, accompanied by significant decreases in the activities of four mitochondrial electron transport chain complexes and ATP contents. Oxidative stress was also induced, as indicated by significantly increased ROS levels and significant reduced activities of CAT and SOD and GSH contents. All the results suggested that environmentally relevant concentrations of PP-MPs could induce disrupted mitochondrial energy metabolism in zebrafish, which may be associated with the observed behavioral impairments. This study will provide novel insights into PP-MPs-induced adverse effects and highlight need for further research.
Collapse
Affiliation(s)
- Jianghuan Hua
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China.
| | - Taotao Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xianglin Chen
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China; School of Laboratory Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Biran Zhu
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Min Zhao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Wuhan 430061, China
| | - Kaiyu Fu
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yindan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Huijia Tang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Hao Pang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yongyong Guo
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian Han
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Lihua Yang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.
| | - Bingsheng Zhou
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
28
|
Ke Y, Lin L, Zhang G, Hong H, Yan C. Aging behavior and leaching characteristics of microfibers in landfill leachate: Important role of surface mesh structure. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134092. [PMID: 38554515 DOI: 10.1016/j.jhazmat.2024.134092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/01/2024]
Abstract
Mesh-structured films formed by the post-processing of microfibers improves their permeability and dexterity, such as disposable masks. However, the aging behavior and potential risks of mesh-structured microfibers (MS-MFs) in landfill leachate remain poorly understood. Herein, the aging behavior and mechanisms of MS-MFs and ordinary polypropylene-films (PP-films) microplastics, as well as their leaching concerning dissolved organic matter (DOM) in landfill leachate were investigated. Results revealed that MS-MFs underwent more significant physicochemical changes than PP-films during the aging process in landfill leachate, due to their rich porous habitats. An important factor in the photoaging of MS-MFs was related to reactive oxygen species produced by DOM, and this process was promoted by photoelectrons under UV irradiation. Compared with PP-films, MS-MFs released more DOM and nano-plastics fragments into landfill leachate, altering the composition and molecular weight of DOM. Aged MS-MFs-DOM generated new components, and humus-like substances produced by photochemistry showed the largest increase. Correlation analysis revealed that leached DOM was positively correlated with oxygen-containing groups accumulated in aged MS-MFs. Overall, MS-MFs will bring higher environmental risks and become a new long-term source of DOM contaminants in landfill leachate. This study provides new insights into the impact of novel microfibers on landfill leachate carbon dynamics.
Collapse
Affiliation(s)
- Yue Ke
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Lujian Lin
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Guanglong Zhang
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China
| | - Hualong Hong
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China.
| | - Chongling Yan
- Key Laboratory of Ministry of Education for Coastal and Wetland Ecosystems, Xiamen University, Xiamen 361102, PR China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, PR China.
| |
Collapse
|
29
|
Müller ND, Kirtane A, Schefer RB, Mitrano DM. eDNA Adsorption onto Microplastics: Impacts of Water Chemistry and Polymer Physiochemical Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7588-7599. [PMID: 38624040 DOI: 10.1021/acs.est.3c10825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Adsorption of biomacromolecules onto polymer surfaces, including microplastics (MPs), occurs in multiple environmental compartments, forming an ecocorona. Environmental DNA (eDNA), genetic material shed from organisms, can adsorb onto MPs which can potentially either (1) promote long-range transport of antibiotic resistant genes or (2) serve to gain insights into the transport pathways and origins of MPs by analyzing DNA sequences on MPs. However, little is known about the capacity of MPs to adsorb eDNA or the factors that influence sorption, such as polymer and water chemistries. Here we investigated the adsorption of extracellular linear DNA onto a variety of model MP fragments composed of three of the most environmentally prevalent polymers (polyethylene, polyethylene terephthalate, and polystyrene) in their pristine and photochemically weathered states. Batch adsorption experiments in a variety of water chemistries were complemented with nonlinear modeling to quantify the rate and extent of eDNA sorption. Ionic strength was shown to strongly impact DNA adsorption by reducing or inhibiting electrostatic repulsion. Polyethylene terephthalate exhibited the highest adsorption capacity when normalizing for MP specific surface area, likely due to the presence of ester groups. Kinetics experiments showed fast adsorption (majority adsorbed under 30 min) before eventually reaching equilibrium after 1-2 h. Overall, we demonstrated that DNA quickly binds to MPs, with pseudo-first- and -second-order models describing adsorption kinetics and the Freundlich model describing adsorption isotherms most accurately. These insights into DNA sorption onto MPs show that there is potential for MPs to act as vectors for genetic material of interest, especially considering that particle-bound DNA typically persists longer in the environment than dissolved DNA.
Collapse
Affiliation(s)
- Nicolas D Müller
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Anish Kirtane
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Roman B Schefer
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| | - Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich, Universitätstrasse 16, 8092 Zurich, Switzerland
| |
Collapse
|
30
|
Chen C, Du R, Tang J, Wang B, Li F, Zhang Z, Yu G. Characterization of microplastic-derived dissolved organic matter in freshwater: Effects of light irradiation and polymer types. ENVIRONMENT INTERNATIONAL 2024; 185:108536. [PMID: 38471263 DOI: 10.1016/j.envint.2024.108536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/05/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024]
Abstract
This study investigated the impacts of light irradiation and polymer types on the leaching behavior of dissolved organic matter (DOM) from microplastics (MPs) in freshwater. Polypropylene had the highest leaching capacity of DOM after photoaging, followed by polystyrene (PS), polyamide (PA) and polyethylene terephthalate (PET). While similarly low levels of DOM were observed in the remaining 5 MP suspensions under UV irradiation and in almost all MP suspensions (except PA) under darkness. These suggest that the photooxidation of some buoyant plastics may influence the carbon cycling of nature waters. Among 9 MP-derived leachates, PET leachates had the highest chromophoric DOM concentration and aromaticity, probably owing to the special benzene rings and carbonyl groups in PET structures and its fast degradation rate. Protein-like substances were the primary fluorescent DOM in MP suspensions (except PS), especially in darkness no other fluorescent substances were found. Considering the bio-labile properties of proteins together, MPs regardless of floating or suspended in an aquatic environment may have prevalent long-term effects on microbial activities. Besides, from monomers to hexamers with newly formed chemical bonds were identified in UV-irradiated MP suspensions. These results will contribute to a deep insight into the potential ecological effects related to MP degradation.
Collapse
Affiliation(s)
- Chunzhao Chen
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - Roujia Du
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory of Environmental Frontier Technologies, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Jian Tang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - Bin Wang
- School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory of Environmental Frontier Technologies, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China
| | - Fei Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA
| | - Zhiguo Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China
| | - Gang Yu
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, China; School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, Beijing Laboratory of Environmental Frontier Technologies, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Tsinghua University, Beijing, China.
| |
Collapse
|
31
|
Cai Z, Liu J, Zhao G, Jia B, Shang Y, Cheng P. Analysis and identification of degradation products in gas, particle, and liquid phases of polypropylene and polyethyleneterephthalate microplastics aging through non-thermal plasma simulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22847-22857. [PMID: 38411908 DOI: 10.1007/s11356-024-32586-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
Plastic aging can cause alterations in the physical and chemical characteristics of plastics, as well as their behavior in the environment. Due to the extremely slow natural aging process, laboratory simulated aging methods have to be used. In this study, non-thermal plasma (NTP) was adopted to investigate the aging process of polypropylene (PP) and polyethylene terephthalate (PET) microplastics. Various analytical instruments, including proton transfer reaction mass spectrometry and single-particle aerosol mass spectrometry, were employed to examine and identify the organic constituents of the gas, liquid, and particle phase degradation products, as well as to monitor the degradation process. The results showed that after 90 min of aging, both PP and PET surfaces showed yellowing, and the carbonyl index of PP increased while that of PET decreased, with an increase in crystallinity. The organic components of reaction products, such as ketones, esters, acids, and alcohols, increased with longer aging times. Gas products mainly contain aromatic hydrocarbons, while particles from aged PET contain compounds with benzene rings and metal elements. Liquid products from aged PP show a significant presence of branched alkanes. Based on this analysis, degradation mechanisms of PP and PET by NTP were proposed. This investigation represents the initial systematically exploration of the release of organic substances during the degradation of microplastics mediated by NTP. It provides significant insights into the detrimental organic compounds emitted during this process, thereby offering valuable information for understanding the environmental and human health implications of natural microplastic degradation. Furthermore, it addressed the requirements for increased attention to the potential environmental risks associated with these harmful components.
Collapse
Affiliation(s)
- Zhaofeng Cai
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jixing Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Gaosheng Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Bin Jia
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Ping Cheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
32
|
Shen T, Ma H, Xing B. Interfacial interactions of polyethylene terephthalate microplastics and malachite green, tetracycline in aqueous environments. MARINE POLLUTION BULLETIN 2024; 200:116093. [PMID: 38310722 DOI: 10.1016/j.marpolbul.2024.116093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/28/2024] [Indexed: 02/06/2024]
Abstract
Polyethylene terephthalate microplastics (PET-MPs) are one of pivotal nondegradable emerging pollutant. Here the variation of the surface physicochemical characteristics of PET-MPs with UV irradiation aging and the adsorption behaviors of PET-MPs in malachite green (MG), tetracycline (TC) solution and the effect of coexisting Cu(II) were comparatively investigated. The yellowing, weakened hydrophobicity, and increased surface negative charge, crystallinity degree and oxygen-containing functional groups were manifested specifically by the aged PET-MPs. Different from the single system, the hydrophobic interaction and metal ion bridging complexation dominated the adsorption of MG and TC, respectively, in the binary solution. While in the ternary solution, cationic ion competition of Cu(II) with MG decreased its capture, and the formation of PET-Cu(II)-TC ternary complexes promoted TC adsorption. Moreover, PET-MPs could serve as an efficient vector for MG and TC in MG/TC/Cu(II) ternary system, indicating PET-MPs tend to carry more varieties in the complex environment, that may increase the environmental risk of PET-MPs.
Collapse
Affiliation(s)
- Tong Shen
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi 710119, PR China
| | - Hongzhu Ma
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'An, Shaanxi 710119, PR China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
33
|
Wang Q, Chen M, Min Y, Shi P. Aging of polystyrene microplastics by UV/Sodium percarbonate oxidation: Organic release, mechanism, and disinfection by-product formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132934. [PMID: 37976854 DOI: 10.1016/j.jhazmat.2023.132934] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The occurrence and transformation of microplastics (MPs) in environment has attracted considerable attention. However, the release characteristics of MP-derived dissolved organic matter (MP-DOM) under oxidation conditions and the effect of DOM on subsequent chlorination disinfection by-product (DBP) still lacks relevant information. This study focused on the conversion of polystyrene microplastics (PSMPs) in the advanced oxidation of ultraviolet-activated sodium percarbonate (UV/SPC-AOP) and the release characteristics of MP-DOM. The DBP formation potential of MP-DOM was also investigated. As a result, UV/SPC significantly enhanced the aging and fragmentation of PSMPs. Under UV irradiation, the fluorescence peak intensity and position of humus-like and protein-like components of MP-DOM were correlated with SPC concentration. The aging MP suspension was analyzed by gas chromatography-mass spectrometry (GC-MS), and various alkyl-cleavage and oxidation products were identified. Quenching experiments and electron paramagnetic resonance (EPR) detection confirmed that carbonate and hydroxyl radicals jointly dominated the conversion of PSMPs. The formation of DBP was related to the components of MP-DOM. Overall, these results help to understand the aging behavior of MPs in AOP. Moreover, MP-DOM released by MPs after AOP oxidation may be a precursor of DBPs, which deserved more attention.
Collapse
Affiliation(s)
- Qiaoyan Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Muxin Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China
| | - Penghui Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China.
| |
Collapse
|
34
|
Zhang H, Huang Y, An S, Wang P, Xie C, Jia P, Huang Q, Wang B. Mulch-derived microplastic aging promotes phthalate esters and alters organic carbon fraction content in grassland and farmland soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132619. [PMID: 37757559 DOI: 10.1016/j.jhazmat.2023.132619] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/14/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023]
Abstract
Agricultural plastic mulch is a major microplastics (MPs) source in terrestrial ecosystems. However, knowledge about the aging characteristics of mulch-derived MPs entering natural and agricultural soils and their effects on phthalate esters (PAEs) and organic carbon fractions is still limited. Black (contains black masterbatches) and white polyethylene (PE) and biodegradable (Bio, Poly propylene carbonate and Polybutylene adipate terephthalate synthetic material (PPC+PBAT)) mulch-derived MPs, at 0.3% (w/w) dose, were added to grassland and farmland soils for eight-week incubation. Microplastic (MP) aging degree was explored by quantifying the carbonyl index (CI). The soil PAEs and organic carbon fractions were also analyzed. After incubation, black and white PE-MP aged greater in farmland than in grassland. PAEs accumulated highest in PE-MP treatment (5.27-6.41 mg kg-1) followed by Bio-MP (1.88-2.38 mg kg-1). Soil organic carbon (SOC), particulate organic carbon (POC), and microbial biomass carbon (MBC) were reduced by 5.3%-8.2%, 31.8%-41.6%, and 39.7%-63.0%, dissolved organic carbon (DOC) was increased by 10.1%-27.6% in grassland containing MP compared to control. MPs' aging degree promoted PAEs content or altered nutrients, then regulated soil microbial biomass and extracellular enzyme activity directly or indirectly, ultimately affecting SOC. ENVIRONMENTAL IMPLICATION: Microplastics are persistent environmental pollutants that gradually undergo surface aging in response to extracellular enzymes secreted by microorganisms. As microplastics age, their surface roughness and functional groups change; thus, organochemical contaminants gradually leach out. Therefore, this study analyzed the aging of mulch film-derived microplastics under the action of diverse microorganisms in farmland and grassland soils and the effect on plasticizer and organic carbon fractions. The results proved that polyethylene microplastic aging degree was highest in farmland soil. Besides, biodegradable microplastic caused lower contamination of phthalate esters than polyethylene, but they affected soil carbon balance in grassland and farmland soils. STATEMENT OF ENVIRONMENTAL IMPLICATION: This study highlights that MPs affect organic carbon fractions by influencing the PAEs, available nutrients, and extracellular enzyme activity.
Collapse
Affiliation(s)
- Haixin Zhang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Yimei Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China.
| | - Shaoshan An
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Pan Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China
| | - Chunjiao Xie
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Penghui Jia
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Qian Huang
- Key Laboratory of Plant Nutrition and The Agri-environment in Northwest China, Ministry of Agriculture, Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, Shaanxi 712100, China
| | - Baorong Wang
- College of Grassland Agriculture, Northwest A&F University, Shaanxi 712100, China
| |
Collapse
|
35
|
Zhou T, Wu J, Liu Y, Xu A. Seawater Accelerated the Aging of Polystyrene and Enhanced Its Toxic Effects on Caenorhabditis elegans. Int J Mol Sci 2023; 24:17219. [PMID: 38139049 PMCID: PMC10743734 DOI: 10.3390/ijms242417219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Microplastics (MPs) are emerging pollutants and pose a significant threat to marine ecosystems. Although previous studies have documented the mechanisms and toxic effects of aging MPs in various environments, the impact of the marine environment on MPs remains unclear. In the present study, the aging process of polystyrene (PS) in seawater was simulated and the changes in its physicochemical properties were investigated. Our results showed that the surface of the PS eroded in the seawater, which was accompanied by the release of aged MPs with a smaller size. In situ optical photothermal infrared microspectroscopy revealed that the mechanism of PS aging was related to the opening of the carbonyl group and breaking of the bond between carbon and benzene removal. To verify the toxic effects of aged PS, Caenorhabditis elegans was exposed to PS. Aged PS resulted in a greater reduction in locomotion, vitality, and reproduction than virgin PS. Mechanistically, aged PS led to oxidative stress, high glutathione s-transferase activity, and high total glutathione in worms. Together, our findings provided novel information regarding the accelerated aging of PS in seawater and the increased toxicity of aged PS, which could improve our understanding of MPs' ecotoxicity in the marine environment.
Collapse
Affiliation(s)
- Tong Zhou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| | - Jiajie Wu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| | - Yun Liu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| | - An Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Chinese Academy of Sciences, Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- School of Graduate Students, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
36
|
Zhao C, Liang J, Zhu M, Zheng S, Zhao Y, Sun X. Occurrence, characteristics, and factors influencing the atmospheric microplastics around Jiaozhou Bay, the Yellow Sea. MARINE POLLUTION BULLETIN 2023; 196:115568. [PMID: 37783164 DOI: 10.1016/j.marpolbul.2023.115568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/11/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
Atmospheric microplastics are attracting increasing attention as an emerging pollutant. However, research on its characteristics and influencing factors is insufficient. This study examines the characteristics and spatiotemporal distribution of atmospheric microplastics around Jiaozhou Bay, the Yellow Sea. The results showed that the dominant shapes of microplastic were fragments (61.9 %) and fibers (25.6 %), and the main types were polyethylene terephthalate (23.8 %), polyethylene (31.6 %) and cellulose (rayon, 34.9 %). The deposition rate of microplastic varied from 8.395 to 80.114 items·m-2·d-1, with a mean of 46.708 ± 21.316 items·m-2·d-1. The deposition rate was higher in the dry season than in the rainy season, indicating the influence of weather condition. The annual mass of atmospheric microplastics entering the bay was estimated to be 7.612 ± 3.474 tons. For the first time, this study reveals that atmospheric microplastics in Jiaozhou Bay change spatiotemporally due to monsoons, which pose a potential threat to marine ecosystems.
Collapse
Affiliation(s)
- Chenhao Zhao
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junhua Liang
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, 266237, PR China
| | - Mingliang Zhu
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, 266237, PR China
| | - Shan Zheng
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, 266237, PR China
| | - Yongfang Zhao
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, 266237, PR China
| | - Xiaoxia Sun
- Jiaozhou Bay National Marine Ecosystem Research Station, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, PR China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, 266237, PR China; Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Wu H, He B, Chen B, Liu A. Toxicity of polyvinyl chloride microplastics on Brassica rapa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122435. [PMID: 37625773 DOI: 10.1016/j.envpol.2023.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Microplastics (MPs) can pose high risk to living organisms due to their very small sizes. This study selected polyvinyl chloride MPs (PVC-MPs) which experienced up to 1000 h UV light radiation to investigate the influence of PVC-MPs on Brassica rapa growth. The outcomes showed the presence of PVC-MPs inhibited the plants' growth. The stem length, root length, fresh weight and dry weight of plants exposed to PVC-MPs after 30 days reduced by 45.9%, 35.2%, 26.1% and 5.2%, respectively. The chlorophyll, soluble sugar, malondialdehyde (MDA) and catalase (CAT) concentrations for plants exposed to PVC-MPs after 30 days increased by 25.9%, 135.7%, 88.7% and 47.1% respectively. It was also observed that PVC-MPs blocked the plants' leaf stomata and even entered plants' bodies. This might lead to PVC-MPs movement within the plants and influence plants' growth. The transcriptomic analysis results indicated that exposure to PVC-MPs up-regulated metabolic pathway of plant hormone signal transduction of the plants and down-regulated pathway network of ribosome. However, the research outcomes also showed that the PVC-MPs' locations in soil (located at the upper layers or at lower layers) and the UV light radiation time did not exert significantly different influences on inhibiting plants' growth. This can be attributed to PVC-MPs' small sizes and not much decomposition under light radiation. These imply that longer light radiation time and different particle sizes should be included into future research in order to further explore photodegraded MPs' toxicity effects on plants.
Collapse
Affiliation(s)
- Hao Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Beibei He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bocheng Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
38
|
Chen L, Qi H, Yu K, Gao B. Increased bio-toxicity of leachates from polyvinyl chloride microplastics during the photo-aging process in the presence of dissolved organic matter. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2465-2472. [PMID: 37966195 PMCID: wst_2023_339 DOI: 10.2166/wst.2023.339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The pollution caused by microplastics (MPs) has gained global attention due to their potential risks to organisms and human health. The process of photo-aging, which plays a crucial role in the transformation of MPs in aquatic environments, has the potential to influence the ecological risk posed by these particles. Dissolved organic matter (DOM) is a prevalent photosensitizer in surface waters that has been shown to facilitate the transformation of various organic compounds by generating reactive oxygen species under light irradiation. The present study investigated the influence of humic acid (HA), a typical component of DOM, on the photo-aging process of polyvinyl chloride MPs (PVC-MPs), using Fourier transform infrared spectroscopy, as well as assessing the resulting ecological risk through bioassays. The results revealed that the presence of HA enhanced the photo-aging of PVC-MP. Moreover, the leachate exhibited higher acute and genetic toxicity under light irradiation when compared to dark conditions. Notably, the presence of HA significantly increased the toxicity of the leachate, emphasizing the need to consider the impact of DOM when assessing the ecological risk of MPs in surface waters. These findings contribute to a more comprehensive understanding of the potential risks associated with microplastic pollution in natural environments.
Collapse
Affiliation(s)
- Lei Chen
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China E-mail:
| | - Hangyu Qi
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ke Yu
- College of Civil Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Buhong Gao
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
39
|
Wang H, He Y, Zheng Q, Yang Q, Wang J, Zhu J, Zhan X. Toxicity of photoaged polyvinyl chloride microplastics to wheat seedling roots. JOURNAL OF HAZARDOUS MATERIALS 2023; 463:132816. [PMID: 39491995 DOI: 10.1016/j.jhazmat.2023.132816] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/05/2024]
Abstract
Photoaging-prone and additive-rich polyvinyl chloride microplastics (PVC-MPs) are abundant in the terrestrial environment, However, current knowledge about the effects of PVC-MPs on terrestrial plants is lacking. Herein, we investigated the physicochemical toxicity mechanisms of photoaged PVC-MP components, i.e. leachate (L), leached PVC-particles (P), and unleached PVC-MPs (UAMP), to wheat seedling roots. 108-h photoaged components were more detrimental to root growth than unaged ones, with root length decline by 3.56%- 7.45%, indicating enhanced ecotoxicity. Notably, 108-h aged UAMP displayed more pronounced inhibition to root architecture, nutrient content and root activity, and more significant stimulation on antioxidant systems compared to 108-h aged L and P. The abovementioned phenomena suggested the presence of a synergistic effect between physical damage from P and chemical harm from L. Surface adsorption experiments demonstrated that the adsorption of photoaging induced smaller particles caused physical damage to root system. Exposure treatment suggested that there was appreciable environmental risk posed by photoaged PVC-MP-derived additives, e.g., Irgafos 168-ox and Irganox 1076. Based on principal component analysis (PCA), additives from leachate played a greater role in UAMP ecotoxicity. Therefore, PVC-MP-derived additives require more consideration and put forward an important new aspect for the impact assessment of PVC-MPs in the environment.
Collapse
Affiliation(s)
- Huiqian Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China; Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, United States
| | - Yuan He
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qiuping Zheng
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Qian Yang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiawei Wang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jiahui Zhu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xinhua Zhan
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China.
| |
Collapse
|