1
|
Lai SW, Cheng YC, Kiu KT, Yen MH, Chen YW, Yadav VK, Yeh CT, Kuo KT, Chang TC. PROX1 interaction with α-SMA-rich cancer-associated fibroblasts facilitates colorectal cancer progression and correlates with poor clinical outcomes and therapeutic resistance. Aging (Albany NY) 2024; 16:1620-1639. [PMID: 38244581 PMCID: PMC10866434 DOI: 10.18632/aging.205447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/30/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND The tumor microenvironment (TME) plays a vital role in tumor progression through intricate molecular interactions. Cancer-associated fibroblasts (CAFs), notably those expressing alpha-smooth muscle actin (α-SMA) or myofibroblasts, are instrumental in this context and correlate with unfavorable outcomes in colorectal cancer (CRC). While several transcription factors influence TME, the exact regulator causing CAF dysregulation in CRC remains elusive. Prospero Homeobox 1 (PROX1) stands out, as its inhibition reduces α-SMA-rich CAF activity. However, the therapeutic role of PROX1 is debated due to inconsistent study findings. METHODS Using the ULCAN portal, we noted an elevated PROX1 level in advanced colon adenocarcinoma, linking to a poor prognosis. Assays determined the impact of PROX1 overexpression on CRC cell properties, while co-culture experiments spotlighted the PROX1-CAF relationship. Molecular expressions were validated by qRT-PCR and Western blots, with in vivo studies further solidifying the observations. RESULTS Our study emphasized the connection between PROX1 and α-SMA in CAFs. Elevated PROX1 in CRC samples correlated with increased α-SMA in tumors. PROX1 modulation influenced the behavior of specific CRC cells, with its overexpression fostering invasiveness. Kaplan-Meier evaluations demonstrated a link between PROX1 or α-SMA and survival outcomes. Consequently, PROX1, alone or with α-SMA, emerges as a CRC prognostic marker. Co-culture and animal experiments further highlighted this relationship. CONCLUSION PROX1 appears crucial in modulating CRC behavior and therapeutic resistance within the TME by influencing CAFs, signifying the combined PROX1/α-SMA gene as a potential CRC prognostic marker. The concept of developing inhibitors targeting this gene set emerges as a prospective therapeutic strategy. However, this study is bound by limitations, including potential challenges in clinical translation, a focused exploration on PROX1/α-SMA potentially overlooking other significant molecular contributors, and the preliminary nature of the inhibitor development proposition.
Collapse
Affiliation(s)
- Shiue-Wei Lai
- Department of Internal Medicine, Division of Hematology and Oncology, Tri-service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Yi-Chiao Cheng
- Department of Surgery, Division of Colon and Rectal Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Kee-Thai Kiu
- Department of Surgery, Division of Colorectal Surgery, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Min-Hsuan Yen
- Department of Surgery, Division of Colorectal Surgery, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Ying-Wei Chen
- Department of Surgery, Division of Colorectal Surgery, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Vijesh Kumar Yadav
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Shuang-Ho Hospital, New Taipei City, Taiwan
- Department of Medical Research and Education, Taipei Medical University Shuang-Ho Hospital, New Taipei City 23561, Taiwan
| | - Chi-Tai Yeh
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Shuang-Ho Hospital, New Taipei City, Taiwan
- Department of Medical Research and Education, Taipei Medical University Shuang-Ho Hospital, New Taipei City 23561, Taiwan
- Continuing Education Program of Food Biotechnology Applications, College of Science and Engineering, National Taitung University, Taitung 95092, Taiwan
| | - Kuang-Tai Kuo
- Department of Surgery, Division of Thoracic Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Surgery, Division of Thoracic Surgery, Taipei Medical University Shuang-Ho Hospital, New Taipei City 23561, Taiwan
| | - Tung-Cheng Chang
- Department of Surgery, Division of Colorectal Surgery, Taipei Medical University Shuang-Ho Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
2
|
Ivanov KI, Samuilova OV, Zamyatnin AA. The emerging roles of long noncoding RNAs in lymphatic vascular development and disease. Cell Mol Life Sci 2023; 80:197. [PMID: 37407839 PMCID: PMC10322780 DOI: 10.1007/s00018-023-04842-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/06/2023] [Accepted: 06/19/2023] [Indexed: 07/07/2023]
Abstract
Recent advances in RNA sequencing technologies helped uncover what was once uncharted territory in the human genome-the complex and versatile world of long noncoding RNAs (lncRNAs). Previously thought of as merely transcriptional "noise", lncRNAs have now emerged as essential regulators of gene expression networks controlling development, homeostasis and disease progression. The regulatory functions of lncRNAs are broad and diverse, and the underlying molecular mechanisms are highly variable, acting at the transcriptional, post-transcriptional, translational, and post-translational levels. In recent years, evidence has accumulated to support the important role of lncRNAs in the development and functioning of the lymphatic vasculature and associated pathological processes such as tumor-induced lymphangiogenesis and cancer metastasis. In this review, we summarize the current knowledge on the role of lncRNAs in regulating the key genes and pathways involved in lymphatic vascular development and disease. Furthermore, we discuss the potential of lncRNAs as novel therapeutic targets and outline possible strategies for the development of lncRNA-based therapeutics to treat diseases of the lymphatic system.
Collapse
Affiliation(s)
- Konstantin I Ivanov
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation.
- Department of Microbiology, University of Helsinki, Helsinki, Finland.
| | - Olga V Samuilova
- Department of Biochemistry, Sechenov First Moscow State Medical University, Moscow, Russian Federation
- HSE University, Moscow, Russian Federation
| | - Andrey A Zamyatnin
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sochi, Russian Federation
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
3
|
The Role of PROX1 in Neoplasia: A Key Player Often Overlooked. Diagnostics (Basel) 2022; 12:diagnostics12071624. [PMID: 35885529 PMCID: PMC9320018 DOI: 10.3390/diagnostics12071624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 12/02/2022] Open
Abstract
The human PROX1 gene (Prospero homeobox gene 1) is a member of the homeobox transcription factor family. PROX1 plays a key role in the development of the lymphatic system and is primarily used as a lymphatic vessel marker. However, as the accumulating evidence indicates that PROX1 is also implicated in the tumorigenesis of various cancer types, the scientific community has attempted to elucidate its complicated function in neoplasia pathogenesis, as well as its utility in cancer diagnosis, prognosis, and therapy. PROX1 has been shown to participate in the complex molecular mechanisms affecting tumorigenesis and has been associated with a plethora of clinicopathological parameters, including tumor stage and patients’ overall survival. Depending on the specific organ affected, PROX1 has exhibited both tumor-promoting and tumor-suppressing properties, with its inhibition and reactivation representing possible novel therapeutic interventions, respectively. Moreover, researchers have reported PROX1 as a useful tool in the fields of diagnosis and prognosis assessment. The current study aims to summarize and present the existing data that render PROX1 a novel and useful diagnostic and prognostic biomarker, as well as a possible therapeutic target.
Collapse
|
4
|
Clinico-pathological and prognostic implications of Srx, Nrf2, and PROX1 expression in gastric cancer and adjacent non-neoplastic mucosa - an immunohistochemical study. Contemp Oncol (Pozn) 2021; 24:229-240. [PMID: 33531870 PMCID: PMC7836280 DOI: 10.5114/wo.2020.102671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 10/11/2020] [Indexed: 11/17/2022] Open
Abstract
Introduction Sulfiredoxin (Srx), which is an endogenous antioxidant substance which could, regulate the signaling pathways of reactive oxygen species. Nuclear factor erythroid 2-related factor 2 (Nrf2) is Cap-N-collar (CNC) transcription factors family member that have essential roles in regulation of antioxidant response. The transcription factor PROX1 is a transcription factor and a key regulatory protein in cancer development. Aim of the study To analyze levels of tissue expression of Srx, Nrf2, and PROX1 in gastric cancer and adjacent non-neoplastic gastric mucosa to clarify the relationship between their expression levels, clinical, pathological parameters and patients’ outcome. The results might lead to discovering novel targeted therapies to gastric cancers. Material and methods We included 70 paraffin-embedded samples: 50 specimens from gastric carcinomas and 20 specimens from adjacent non-neoplastic gastric mucosa. All samples are stained with Srx, Nrf2, and PROX1 using immunohistochemistry, correlated their expression with clinicopathological and prognostic parameters of patients. Results High levels of Srx and Nrf2 expression were positively associated with higher cancer grade (p = 0.006, 0.031 respectively), advanced stage (p < 0.001, 0.02 respectively), higher incidence of distant metastases (p = 0.029, 0.03 respectively) and dismal outcome (p < 0.001). High levels of PROX1 expression were associated with lower cancer grade (p = 0.005), absence of lymph nodes metastases (p = 0.023), early stage (p = 0.003), absence of relapse (p = 0.004), and favorable outcome (p < 0.001). Conclusions Srx and Nrf2 expression increase gastric cancer invasiveness, suggesting their utility as poor prognostic markers, but PROX1 serves as a favorable prognostic marker of gastric cancer patients.
Collapse
|
5
|
The Impact of Transcription Factor Prospero Homeobox 1 on the Regulation of Thyroid Cancer Malignancy. Int J Mol Sci 2020; 21:ijms21093220. [PMID: 32370142 PMCID: PMC7247360 DOI: 10.3390/ijms21093220] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/11/2022] Open
Abstract
Transcription factor Prospero homeobox 1 (PROX1) is continuously expressed in the lymphatic endothelial cells, playing an essential role in their differentiation. Many reports have shown that PROX1 is implicated in cancer development and acts as an oncoprotein or suppressor in a tissue-dependent manner. Additionally, the PROX1 expression in many types of tumors has prognostic significance and is associated with patient outcomes. In our previous experimental studies, we showed that PROX1 is present in the thyroid cancer (THC) cells of different origins and has a high impact on follicular thyroid cancer (FTC) phenotypes, regulating migration, invasion, focal adhesion, cytoskeleton reorganization, and angiogenesis. Herein, we discuss the PROX1 transcript and protein structures, the expression pattern of PROX1 in THC specimens, and its epigenetic regulation. Next, we emphasize the biological processes and genes regulated by PROX1 in CGTH-W-1 cells, derived from squamous cell carcinoma of the thyroid gland. Finally, we discuss the interaction of PROX1 with other lymphatic factors. In our review, we aimed to highlight the importance of vascular molecules in cancer development and provide an update on the functionality of PROX1 in THC biology regulation.
Collapse
|
6
|
Transcription Factor Prospero Homeobox 1 (PROX1) as a Potential Angiogenic Regulator of Follicular Thyroid Cancer Dissemination. Int J Mol Sci 2019; 20:ijms20225619. [PMID: 31717665 PMCID: PMC6888435 DOI: 10.3390/ijms20225619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 01/25/2023] Open
Abstract
It is well known that Prospero homeobox 1 (PROX1) is a crucial regulator of lymphangiogenesis, that reprograms blood endothelial cells to lymphatic phenotype. However, the role of PROX1 in tumor progression, especially in angiogenesis remains controversial. Herein, we studied the role of PROX1 in angiogenesis in cell lines derived from follicular thyroid cancer (FTC: FTC-133) and squamous cell carcinoma of the thyroid gland (SCT: CGTH-W-1) upon PROX1 knockdown. The genes involved in angiogenesis were selected by RNA-seq, and the impact of PROX1 on vascularization potential was investigated using human umbilical vein endothelial cells (HUVECs) cultured in conditioned medium collected from FTC- or SCT-derived cancer cell lines after PROX1 silencing. The angiogenic phenotype was examined in connection with the analysis of focal adhesion and correlated with fibroblast growth factor 2 (FGF2) levels. Additionally, the expression of selected genes involved in angiogenesis was detected in human FTC tissues. As a result, we demonstrated that PROX1 knockdown resulted in upregulation of factors associated with vascularization, such as metalloproteinases (MMP1 and 3), FGF2, vascular endothelial growth factors C (VEGFC), BAI1 associated protein 2 (BAIAP2), nudix hydrolase 6 (NUDT6), angiopoietin 1 (ANGPT1), and vascular endothelial growth factor receptor 2 (KDR). The observed molecular changes resulted in the enhanced formation of capillary-like structures by HUVECs and upregulated focal adhesion in FTC-133 and CGTH-W-1 cells. The signature of selected angiogenic genes' expression in a series of FTC specimens varied depending on the case. Interestingly, PROX1 and FGF2 showed opposing expression levels in FTC tissues and seven thyroid tumor-derived cell lines. In summary, our data revealed that PROX1 is involved in the spreading of thyroid cancer cells by regulation of angiogenesis.
Collapse
|
7
|
Rudzińska M, Grzanka M, Stachurska A, Mikula M, Paczkowska K, Stępień T, Paziewska A, Ostrowski J, Czarnocka B. Molecular Signature of Prospero Homeobox 1 (PROX1) in Follicular Thyroid Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20092212. [PMID: 31060342 PMCID: PMC6539481 DOI: 10.3390/ijms20092212] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/24/2019] [Accepted: 04/28/2019] [Indexed: 01/15/2023] Open
Abstract
The prospero homeobox 1 (PROX1) transcription factor is a product of one of the lymphangiogenesis master genes. It has also been suggested to play a role in carcinogenesis, although its precise role in tumour development and metastasis remains unclear. The aim of this study was to gain more knowledge on the PROX1 function in thyroid tumorigenesis. Follicular thyroid cancer-derived cells—CGTH-W-1—were transfected with PROX1-siRNA (small interfering RNA) and their proliferation, cell cycle, apoptosis and motility were then analysed. The transcriptional signature of PROX1 depletion was determined using RNA-Sequencing (RNA-Seq) and the expression of relevant genes was further validated using reverse transcriptase quantitative PCR (RT-qPCR), Western blot and immunocytochemistry. PROX1 depletion resulted in a decreased cell motility, with both migratory and invasive potential being significantly reduced. The cell morphology was also affected, while the other studied cancer-related cell characteristics were not significantly altered. RNA-seq analysis revealed significant changes in the expression of transcripts encoding genes involved in both motility and cytoskeleton organization. Our transcriptional analysis of PROX1-depleted follicular thyroid carcinoma cells followed by functional and phenotypical analyses provide, for the first time, evidence that PROX1 plays an important role in the metastasis of thyroid cancer cells by regulating genes involved in focal adhesion and cytoskeleton organization in tumour cells.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Małgorzata Grzanka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Anna Stachurska
- Department of Immunohematology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland.
| | - Katarzyna Paczkowska
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland.
| | - Tomasz Stępień
- Clinic of Endocrinological and General Surgery, Medical University of Lodz, 93-513 Lodz, Poland.
| | - Agnieszka Paziewska
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Jerzy Ostrowski
- Department of Genetics, Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland.
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| | - Barbara Czarnocka
- Department of Biochemistry and Molecular Biology, Centre of Postgraduate Medical Education, 01-813 Warsaw, Poland.
| |
Collapse
|
8
|
Abstract
The transcription factor PROX1 is essential for development and cell fate specification. Its function in cancer is context-dependent since PROX1 has been shown to play both oncogenic and tumour suppressive roles. Here, we show that PROX1 suppresses the transcription of MMP14, a metalloprotease involved in angiogenesis and cancer invasion, by binding and suppressing the activity of MMP14 promoter. Prox1 deletion in murine dermal lymphatic vessels in vivo and in human LECs increased MMP14 expression. In a hepatocellular carcinoma cell line expressing high endogenous levels of PROX1, its silencing increased both MMP14 expression and MMP14-dependent invasion in 3D. Moreover, PROX1 ectopic expression reduced the MMP14-dependent 3D invasiveness of breast cancer cells and angiogenic sprouting of blood endothelial cells in conjunction with MMP14 suppression. Our study uncovers a new transcriptional regulatory mechanism of cancer cell invasion and endothelial cell specification.
Collapse
|
9
|
Gao T, Ma C, Li Y, Ju J, Kang X, Cai Y, Sun M. High Expression of Prospero-Related Homeobox-1 (PROX1) Is Associated With Poor Prognosis in Patients With Salivary Adenoid Cystic Carcinoma. J Oral Maxillofac Surg 2018; 76:1440-1446. [PMID: 29406257 DOI: 10.1016/j.joms.2017.12.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 12/28/2017] [Accepted: 12/30/2017] [Indexed: 12/12/2022]
Abstract
PURPOSE Prospero-related homeobox-1 (PROX1) plays an important role in the invasion and metastasis of many human cancers. However, the expression pattern of PROX1 in salivary adenoid cystic carcinoma (SACC) remains unclear. The aim of this study was to investigate PROX1 expression and its prognostic value in SACC. MATERIALS AND METHODS PROX1 expression was determined by immunohistochemistry (IHC) in SACC tissue specimens. Correlations between PROX1 expression and clinicopathologic features were investigated. The Kaplan-Meier method was used to analyze the correlation between PROX1 expression and survival. Independent prognostic factors associated with overall survival (OS) were analyzed using Cox regression analysis. RESULTS The IHC data showed that the PROX1 positivity rate in SACC tissue specimens was significantly higher than that in normal salivary gland tissues (71.1 vs 13.3%; P < .05). PROX1 expression was detected mainly in the nucleolus. In addition, PROX1 expression was correlated with perineural invasion, local regional recurrence, and distant metastasis of patients with SACC (P < .05), and no significant association was found between PROX1 expression and other clinicopathologic parameters. Data indicated that patients with positive PROX1 expression had poor OS compared with those with negative PROX1 expression (P = .0005). Multivariate analysis showed that PROX1 expression, local regional recurrence, and distant metastasis were independent prognostic factors for OS. CONCLUSIONS These findings showed that PROX1 expression was statistically higher in SACC specimens. Positive expression of PROX1 might serve as a potential predictor of prognosis in SACC.
Collapse
Affiliation(s)
- Tao Gao
- Attending Physician, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University; Department of Oral and Maxillofacial Surgery, The First Hospital of Yulin, Stomatological Hospital of Yulin, Shaanxi, China
| | - Chao Ma
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Yun Li
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Jun Ju
- Resident, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Xi'an; Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an; Department of Otolaryngology Head and Neck Surgery, Navy General Hospital, Beijing, China
| | - Xiangfeng Kang
- Resident, Department of Pediatrics, The First Hospital of Yulin, Shaanxi, China
| | - Yuanlin Cai
- Resident, Department of Emergency Medicine, The First Hospital of Yulin, Shaanxi, China
| | - Moyi Sun
- Professor, State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases; Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
10
|
The role of prospero homeobox 1 (PROX1) expression in follicular thyroid carcinoma cells. Oncotarget 2017; 8:114136-114155. [PMID: 29371975 PMCID: PMC5768392 DOI: 10.18632/oncotarget.23167] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 11/29/2017] [Indexed: 12/17/2022] Open
Abstract
The prospero homeobox 1 (Prox1) transcription factor is a key player during embryogenesis and lymphangiogenesis. Altered Prox1 expression has been found in a variety of human cancers, including papillary thyroid carcinoma (PTC). Interestingly, Prox1 may exert tumor suppressive or tumor promoting effect, depending on the tissue context. In this study, we have analyzed Prox1 expression in normal and malignant human thyroid carcinoma cell lines. Moreover, we determined the effect of Prox1 silencing and overexpression on the cellular processes associated with the metastatic potential of tumor cells: proliferation, migration, invasion, apoptosis and anchorage-independent growth, in the follicular thyroid carcinoma (FTC) FTC-133 cell line. We found that Prox1 expression was significantly higher in FTC-derived cells than in PTC-derived cells and normal thyroid, and it was associated with the PI3K/Akt signaling pathway. In the FTC-133 cells, it was associated with cell invasive potential, motility and wound closure capacities, but not with proliferation or apoptosis. Modifying Prox1 expression also induced substantial changes in the cytoskeleton structure and cell morphology. In conclusion, we have shown that Prox1 plays an important role in the development of FTC and that its suppression prevents, whereas its overexpression promotes, the malignant behavior of thyroid follicular cancer cells.
Collapse
|
11
|
Laitinen A, Böckelman C, Hagström J, Kokkola A, Kallio P, Haglund C. High PROX1 expression in gastric cancer predicts better survival. PLoS One 2017; 12:e0183868. [PMID: 28854215 PMCID: PMC5576676 DOI: 10.1371/journal.pone.0183868] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/11/2017] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND PROX1 is a transcription factor involved in the development of various organs. It has also an important function in colorectal cancer progression. The aim of this study was to investigate the prognostic role of PROX1 expression in gastric cancer. METHODS We evaluated PROX1 expression in gastric cancer by immunohistochemistry of tumor-tissue microarrays including tumor specimens from 283 patients who underwent surgery at Helsinki University Hospital. We investigated the association of PROX1 expression with clinicopathologic variables and patient survival. RESULTS Cytoplasmic PROX1 reactivity was high in 56 (20.5%) and low in 217 (79.5%) cases. Low PROX1 immunostaining associated with diffuse cancer type (p = 0.002). In subgroup analysis, PROX1 was a significant marker of better prognosis in patients aged under 66 (p = 0.007), in those with intestinal cancer (p = 0.025), among men (p = 0.019), and in tumors of less than 5 cm diameter (p = 0.030). Patients with high PROX1 expression had a cancer-specific 5-year survival of 65.6% (95% CI 52.7-78.5), compared to 37.1% (95% CI 30.2-44.0) for those with low expression (p = 0.004, log-rank test). This result remained significant in multivariable analysis (HR = 0.56; 95% CI 0.35-0.90; p = 0.017). CONCLUSION In gastric cancer, high cytoplasmic PROX1 expression is an independent marker of better prognosis.
Collapse
Affiliation(s)
- Alli Laitinen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Camilla Böckelman
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Jaana Hagström
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
- Department of Pathology and Oral Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Arto Kokkola
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pauliina Kallio
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Park KJ, Cho SB, Park YL, Kim N, Park SY, Myung DS, Lee WS, Kweon SS, Joo YE. Prospero homeobox 1 mediates the progression of gastric cancer by inducing tumor cell proliferation and lymphangiogenesis. Gastric Cancer 2017; 20:104-115. [PMID: 26759228 DOI: 10.1007/s10120-015-0592-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 12/21/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Prospero homeobox 1 (PROX1) functions as a tumor suppressor gene or an oncogene in various cancer types. However, the distinct function of PROX1 in gastric cancer is unclear. We determined whether PROX1 affected the oncogenic behavior of gastric cancer cells and investigated its prognostic value in patients with gastric cancer. METHODS A small interfering RNA against PROX1 was used to silence PROX1 expression in gastric cancer cell lines AGS and SNU638. Expression of PROX1 in gastric cancer tissues was investigated by performing immunohistochemistry. Apoptosis, proliferation, angiogenesis, and lymphangiogenesis were determined by performing the TUNEL assay and immunohistochemical staining for Ki-67, CD34, and D2-40. RESULTS PROX1 knockdown induced apoptosis by activating cleaved caspase-3, caspase-7, caspase-9, and poly(ADP-ribose) polymerase, and by decreasing the expression of anti-apoptotic proteins Bcl-2 and Bcl-xL. PROX1 knockdown also suppressed tumor cell proliferation. In addition, PROX1 knockdown decreased lymphatic endothelial cell invasion and tube formation and the expression of vascular endothelial growth factor (VEGF)-C and -D and cyclooxygenase (COX)-2. However, PROX1 knockdown only decreased umbilical vein endothelial cell invasion, not tube formation. The mean Ki-67 labeling index and lymphatic vessel density value of PROX1-positive tumors were significantly higher than those of PROX1-negative tumors. However, no significant difference was observed between PROX1 expression and apoptotic index or microvessel density. PROX1 expression was significantly associated with age, cell differentiation, lymph node metastasis, cancer stage, and poor survival. CONCLUSIONS These results indicate that PROX1 mediates the progression of gastric cancer by inducing tumor cell proliferation and lymphangiogenesis.
Collapse
Affiliation(s)
- Kang-Jin Park
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea
| | - Sung-Bum Cho
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea
| | - Young-Lan Park
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea
| | - Nuri Kim
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea
| | - Sun-Young Park
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea
| | - Dae-Seong Myung
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea
| | - Wan-Sik Lee
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea
| | - Sun-Seog Kweon
- Department of Preventive Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Young-Eun Joo
- Department of Internal Medicine, Chonnam National University Medical School, 8 Hak-Dong, Dong-ku, Gwangju, 501-757, Republic of Korea.
| |
Collapse
|
13
|
Shi C, Xu X. MiR-670-5p induces cell proliferation in hepatocellular carcinoma by targeting PROX1. Biomed Pharmacother 2015; 77:20-6. [PMID: 26796260 DOI: 10.1016/j.biopha.2015.07.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/26/2015] [Indexed: 11/30/2022] Open
Abstract
MiRNAs, as oncogenes or as anti-oncogenes, play critically regulated roles in human cancers at posttranscriptional level. A number of dysregulated miRNAs has been observed in HCC. However, the expression and function of miR-670-5p have not been evaluated in HCC to date. In this study, we examined and confirmed the over-expression of miR-670-5p in HCC and in hepatoma-derived cells Hep3B. At least 60% of HCC tissues showed a greater than three-fold enhance in the expression of miR-670-5p compared with paired adjacent non-cancerous tissues. Knockdown studies for miR-670-5p showed that the expression of miR-670-5p promoted cellular proliferation. In tissues and cells with high expression of miR-670-5p, decreased expression of PROX1, a miR-670-5p predicated target, was detected. It confirmed that PROX1 expression was obviously affected by the expression of miR-670-5p. Furthermore, overexpression of PROX1 greatly inhibitted cellular proliferation. Therefore, it was inferred that miR-670-5p may play important roles in enhancing proliferation activity that is associated with HCC by modulating PROX1 expression at posttranscriptional level.
Collapse
Affiliation(s)
- Cailing Shi
- Shandong Jining NO.1 People's Hospital, Jining, PR China
| | - Xudong Xu
- Jining Medical University, Jining, PR China.
| |
Collapse
|
14
|
Choi D, Ramu S, Park E, Jung E, Yang S, Jung W, Choi I, Lee S, Kim KE, Seong YJ, Hong M, Daghlian G, Kim D, Shin E, Seo JI, Khatchadourian V, Zou M, Li W, De Filippo R, Kokorowski P, Chang A, Kim S, Bertoni A, Furlanetto TW, Shin S, Li M, Chen Y, Wong A, Koh C, Geliebter J, Hong YK. Aberrant Activation of Notch Signaling Inhibits PROX1 Activity to Enhance the Malignant Behavior of Thyroid Cancer Cells. Cancer Res 2015; 76:582-93. [PMID: 26609053 DOI: 10.1158/0008-5472.can-15-1199] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/01/2015] [Indexed: 12/30/2022]
Abstract
Papillary thyroid cancer (PTC) is one of the most common endocrine malignancies associated with significant morbidity and mortality. Although multiple studies have contributed to a better understanding of the genetic alterations underlying this frequently arising disease, the downstream molecular effectors that impact PTC pathogenesis remain to be further defined. Here, we report that the regulator of cell fate specification, PROX1, becomes inactivated in PTC through mRNA downregulation and cytoplasmic mislocalization. Expression studies in clinical specimens revealed that aberrantly activated NOTCH signaling promoted PROX1 downregulation and that cytoplasmic mislocalization significantly altered PROX1 protein stability. Importantly, restoration of PROX1 activity in thyroid carcinoma cells revealed that PROX1 not only enhanced Wnt/β-catenin signaling but also regulated several genes known to be associated with PTC, including thyroid cancer protein (TC)-1, SERPINA1, and FABP4. Furthermore, PROX1 reexpression suppressed the malignant phenotypes of thyroid carcinoma cells, such as proliferation, motility, adhesion, invasion, anchorage-independent growth, and polyploidy. Moreover, animal xenograft studies demonstrated that restoration of PROX1 severely impeded tumor formation and suppressed the invasiveness and the nuclear/cytoplasmic ratio of PTC cells. Taken together, our findings demonstrate that NOTCH-induced PROX1 inactivation significantly promotes the malignant behavior of thyroid carcinoma and suggest that PROX1 reactivation may represent a potential therapeutic strategy to attenuate disease progression.
Collapse
Affiliation(s)
- Dongwon Choi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Swapnika Ramu
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eunkyung Park
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eunson Jung
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Sara Yang
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Wonhyeuk Jung
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Inho Choi
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California. Department of Pharmaceutical Engineering, College of Life and Health Sciences, Hoseo University, Asan, Chungnam, Republic of Korea
| | - Sunju Lee
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kyu Eui Kim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Young Jin Seong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mingu Hong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - George Daghlian
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Daniel Kim
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Eugene Shin
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Jung In Seo
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Vicken Khatchadourian
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Mengchen Zou
- Department of Dermatology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Wei Li
- Department of Dermatology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Roger De Filippo
- Division of Urology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Paul Kokorowski
- Division of Urology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Andy Chang
- Division of Urology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Steve Kim
- Division of Urology, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ana Bertoni
- Department of Basic Health Sciences, Federal University of Health Sciences of Porto Alegre, Rio Grande do Sul, Brazil
| | - Tania Weber Furlanetto
- Postgraduate Program in Medicine: Medical Sciences, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Sung Shin
- Department of Pathology, Kaiser Permanente Medical Center, Fontana, California
| | - Meng Li
- Bioinformatics Service Program, Norris Medical Library, University of Southern California, Los Angeles, California
| | - Yibu Chen
- Bioinformatics Service Program, Norris Medical Library, University of Southern California, Los Angeles, California
| | - Alex Wong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Chester Koh
- Division of Pediatric Urology, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas
| | - Jan Geliebter
- Department of Microbiology & Immunology, Department of Otolaryngology, New York Medical College, Valhalla, New York
| | - Young-Kwon Hong
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California.
| |
Collapse
|
15
|
Rodrigues MFSD, de Oliveira Rodini C, de Aquino Xavier FC, Paiva KB, Severino P, Moyses RA, López RM, DeCicco R, Rocha LA, Carvalho MB, Tajara EH, Nunes FD. PROX1 gene is differentially expressed in oral cancer and reduces cellular proliferation. Medicine (Baltimore) 2014; 93:e192. [PMID: 25526434 PMCID: PMC4603077 DOI: 10.1097/md.0000000000000192] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 01/07/2023] Open
Abstract
Homeobox genes are a family of transcription factors that play a pivotal role in embryogenesis. Prospero homeobox 1 (PROX1) has been shown to function as a tumor suppressor gene or oncogene in various types of cancer, including oral squamous cell carcinoma (OSCC). We have previously identified PROX1 as a downregulated gene in OSCC. The aim of this study is to clarify the underlying mechanism by which PROX1 regulates tumorigenicity of OSCC cells. PROX1 mRNA and protein expression levels were first investigated in 40 samples of OSCC and in nontumor margins. Methylation and amplification analysis was also performed to assess the epigenetic and genetic mechanisms involved in controlling PROX1 expression. OSCC cell line SCC9 was also transfected to stably express the PROX1 gene. Next, SCC9-PROX1-overexpressing cells and controls were subjected to proliferation, differentiation, apoptosis, migration, and invasion assays in vitro. OSCC samples showed reduced PROX1 expression levels compared with nontumor margins. PROX1 amplification was associated with better overall survival. PROX1 overexpression reduces cell proliferation and downregulates cyclin D1. PROX1-overexpressing cells also exhibited reduced CK18 and CK19 expression and transcriptionally altered the expression of WISP3, GATA3, NOTCH1, and E2F1. Our results suggest that PROX1 functions as a tumor suppressor gene in oral carcinogenesis.
Collapse
Affiliation(s)
- Maria F S D Rodrigues
- From the Department of Estomatology (MFSDR, LAR, FDN), School of Dentistry; Department of Biochemistry (KBP), Chemistry Institute; Department of Head and Neck Surgery (RAM), School of Medicine; Department of Epidemiology (RML), Public Health; Department of Genetics and Evolutionary Biology (EHT), Institute of Biosciences, University of São Paulo; Albert Einstein Research and Education Institute (PS), Albert Einstein Israelita Hospital, Center for Experimental Research; Department of Head and Neck Surgery (RDC), Arnaldo Vieira de Carvalho Cancer Institute; Department of Head and Neck Surgery (MBC), Heliopolis Hospital Complex, São Paulo; Department of Estomatology (FCdAX), School of Dentistry, Federal University of Bahia, Salvador; Department of Histology (CdOR), School of Dentistry, University of São Paulo, Bauru; and Department of Molecular Biology (EHT), School of Medicine, São José do Rio Preto, Brazil
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lv T, Liu Y, Zhang J, Xu L, Zhu Y, Yin H, An H, Lin Z, Xie Y, Chen L. Impact of an altered PROX1 expression on clinicopathology, prognosis and progression in renal cell carcinoma. PLoS One 2014; 9:e95996. [PMID: 24797520 PMCID: PMC4010401 DOI: 10.1371/journal.pone.0095996] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 03/30/2014] [Indexed: 12/15/2022] Open
Abstract
The transcription factor PROX1 (prospero homeobox 1) has a critical role in the development of various organs, and has been implicated in both oncogenic and tumor-suppressive functions in human cancers. However, the role of PROX1 in the development of renal cell carcinomas (RCCs) has not yet been studied. Here, we reported that PROX1 expression was decreased in human RCC tissues compared with adjacent normal tissues. In RCC tissues, however, poorly differentiated RCC expressed higher PROX1 levels compared with well-differentiated RCC. In addition, the PROX1 immunostaining levels were positively correlated with tumor nuclear grade and lymph node metastasis. Further, high PROX1 expression indicated poor survival for patients. These findings imply that in the different developmental stages of RCC, PROX1 may exert distinct functions according to the specific microenvironment of tumor. Moreover, in vitro experiments revealed that PROX1 overexpression enhanced the proliferation and migration of RCC cells; conversely, PROX1 depletion by siRNA attenuated the proliferation and migration of RCC cells. Collectively, these observations suggest that PROX1 plays an important role in RCC development and progression, and PROX1 may be a novel target for prevention and treatment of RCC.
Collapse
Affiliation(s)
- Tao Lv
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yanfeng Liu
- Key Laboratory of Medical Molecular Virology (MOE & MOH), Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianping Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Le Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hankun Yin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huimin An
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zongming Lin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
- * E-mail: (ZL); (YX); (LC)
| | - Youhua Xie
- Key Laboratory of Medical Molecular Virology (MOE & MOH), Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
- * E-mail: (ZL); (YX); (LC)
| | - Lian Chen
- Department of Pathology, Children Hospital, Fudan University, Shanghai, China
- * E-mail: (ZL); (YX); (LC)
| |
Collapse
|
17
|
Sasahira T, Ueda N, Yamamoto K, Kurihara M, Matsushima S, Bhawal UK, Kirita T, Kuniyasu H. Prox1 and FOXC2 act as regulators of lymphangiogenesis and angiogenesis in oral squamous cell carcinoma. PLoS One 2014; 9:e92534. [PMID: 24647631 PMCID: PMC3960274 DOI: 10.1371/journal.pone.0092534] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/24/2014] [Indexed: 12/22/2022] Open
Abstract
Prospero homeobox 1 (Prox1) and forkhead box (FOX) C2 regulate angiogenesis and/or lymphangiogenesis. However, the detailed role and function of Prox1 and FOXC2 in cancer remains controversial. In the present study, we examined the expression of Prox1 and FOXC2 proteins in specimens from 163 cases with oral squamous cell carcinoma (OSCC). Furthermore, the role of Prox1 and FOXC2 in cancer cell growth and invasion was evaluated in cultured OSCC cells. Prox1 expression was significantly associated with local progression of the tumor (P = 0.0023), clinical stage (P<0.0001), lymphovessel density (LVD) (P<0.0001), nodal metastasis (P<0.0001), and worse prognosis (P<0.0001). Immunoreactivity of FOXC2 was strongly correlated with microvessel density (MVD) (P<0.0001) and poor prognosis (P = 0.0076). In vitro analysis demonstrated that Prox1 regulates cell growth, proliferation, invasion, and lymphangiogenesis by activating vascular endothelial growth factor (VEGF)-C expression. Furthermore, FOXC2 enhanced the expression level of Prox1 and promoted angiogenesis by enhancement of VEGF-A expression. Our results suggested that Prox1 and FOXC2 play key roles in OSCC progression and that further studies focusing on these proteins may yield useful insights for diagnosis and therapy of OSCC.
Collapse
Affiliation(s)
- Tomonori Sasahira
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Nobuhiro Ueda
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Kazuhiko Yamamoto
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Miyako Kurihara
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Sayako Matsushima
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
| | - Ujjal K. Bhawal
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Japan
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Japan
- * E-mail:
| |
Collapse
|
18
|
Elsir T, Smits A, Lindström MS, Nistér M. Transcription factor PROX1: its role in development and cancer. Cancer Metastasis Rev 2013; 31:793-805. [PMID: 22733308 DOI: 10.1007/s10555-012-9390-8] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The homeobox gene PROX1 is critical for organ development during embryogenesis. The Drosophila homologue, known as prospero has been shown to act as a tumor suppressor by controlling asymmetric cell division of neuroblasts. Likewise, alterations in PROX1 expression and function are associated with a number of human cancers including hematological malignancies, carcinomas of the pancreas, liver and the biliary system, sporadic breast cancer, Kaposiform hemangioendothelioma, colon cancer, and brain tumors. PROX1 is involved in cancer development and progression and has been ascribed both tumor suppressive and oncogenic properties in a variety of different cancer types. However, the exact mechanisms through which PROX1 regulates proliferation, migration, and invasion of cancer cells are by large unknown. This review provides an update on the role of PROX1 in organ development and on its emerging functions in cancer, with special emphasis on the central nervous system and glial brain tumors.
Collapse
Affiliation(s)
- Tamador Elsir
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital, 17176 Stockholm, Sweden.
| | | | | | | |
Collapse
|
19
|
Choi I, Lee S, Hong YK. The new era of the lymphatic system: no longer secondary to the blood vascular system. Cold Spring Harb Perspect Med 2013; 2:a006445. [PMID: 22474611 DOI: 10.1101/cshperspect.a006445] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The blood and lymphatic systems are the two major circulatory systems in our body. Although the blood system has been studied extensively, the lymphatic system has received much less scientific and medical attention because of its elusive morphology and mysterious pathophysiology. However, a series of landmark discoveries made in the past decade has begun to change the previous misconception of the lymphatic system to be secondary to the more essential blood vascular system. In this article, we review the current understanding of the development and pathology of the lymphatic system. We hope to convince readers that the lymphatic system is no less essential than the blood circulatory system for human health and well-being.
Collapse
Affiliation(s)
- Inho Choi
- Department of Surgery, Department of Biochemistry and Molecular Biology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
20
|
Davis JM, Hyjek E, Husain AN, Shen L, Jones J, Schuger LA. Lymphatic endothelial differentiation in pulmonary lymphangioleiomyomatosis cells. J Histochem Cytochem 2013; 61:580-90. [PMID: 23609227 DOI: 10.1369/0022155413489311] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pulmonary lymphangioleiomyomatosis (LAM) is a rare, low-grade neoplasm affecting almost exclusively women of childbearing age. LAM belongs to the family of perivascular epithelioid cell tumors, characterized by spindle and epithelioid cells with smooth muscle and melanocytic differentiation. LAM cells infiltrate the lungs, producing multiple, bilateral lesions rich in lymphatic channels and forming cysts, leading to respiratory insufficiency. Here we used antibodies against four lymphatic endothelial markers-podoplanin (detected by D2-40), prospero homeobox 1 (PROX1), vascular endothelial growth factor receptor 3 (VEGFR-3), and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1)-to determine whether LAM cells show lymphatic differentiation. Twelve of 12 diagnostic biopsy specimens (early-stage LAM) and 19 of 19 explants (late-stage LAM) showed immunopositivity for D2-40 in most neoplastic cells. PROX1, VEGFR-3, and LYVE1 immunoreactivity varied from scarce in the early stage to abundant in the late stage. Lymphatic endothelial, smooth muscle, and melanocytic markers were partially co-localized. These findings indicate that lymphatic endothelial differentiation is a feature of LAM and provide evidence of a previously unidentified third lineage of differentiation in this neoplasm. This study has implications for the histological diagnosis of LAM, the origin of the neoplastic cells, and potential future treatment with drugs targeting lymphangiogenesis.
Collapse
Affiliation(s)
- Jennifer M Davis
- Department of Pathology, Biological Sciences Division, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
21
|
Chang TM, Hung WC. The homeobox transcription factor Prox1 inhibits proliferation of hepatocellular carcinoma cells by inducing p53-dependent senescence-like phenotype. Cancer Biol Ther 2013; 14:222-9. [PMID: 23291986 DOI: 10.4161/cbt.23293] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The homeobox transcription factor Prox1 is highly expressed in adult hepatocytes and is involved in the regulation of bile acid synthesis and gluconeogenesis in the liver by interacting with other transcriptional activators or repressors. Recent studies showed that Prox1 could inhibit proliferation of hepatocellular carcinoma (HCC) cells and reduced Prox1 expression was associated with poor prognosis of HCC patients. However, the underlying mechanism by which Prox1 attenuates HCC growth is still unclear. In this study, we demonstrated that Prox1 induced senescence-like phenotype of HCC cells to reduce cell proliferation. Our results indicated that the tumor suppressor p53 is a key mediator of Prox1-induced growth suppression because Prox1 only induced senescence-like phenotype in HCC cells harboring wild type p53. In addition, knockdown of p53 by shRNA reversed the effect of Prox1. However, chromatin immunoprecipitation assay did not demonstrate the direct binding of Prox1 to proximal promoter of human p53 gene suggesting Prox1 might not directly activate p53 transcription. We found that Prox1 suppressed Twist expression in HCC cells and subsequently relieved its inhibition on p53 gene transcription. The involvement of Twist in the regulation of p53 by Prox1 was supported by the following evidence: (1) Prox1 inhibited Twist expression and promoter activity; (2) knockdown of Twist in SK-HEP-1 cells upregulated p53 expression and (3) ectopic expression of Twist counteracted Prox1-induced p53 transcription and senescence-like phenotype. We also indentified an E-box located at p53 promoter which is required for Twist to inhibit p53 expression. Finally, our animal experiment confirmed that Prox1 suppressed HCC growth in vivo. Collectively, we conclude that Prox1 suppresses proliferation of HCC cells via inhibiting Twist to trigger p53-dependent senescence-like phenotype.
Collapse
Affiliation(s)
- Tsung-Ming Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan, Republic of China
| | | |
Collapse
|
22
|
Sousa-Nunes R, Somers WG. Mechanisms of asymmetric progenitor divisions in the Drosophila central nervous system. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 786:79-102. [PMID: 23696353 DOI: 10.1007/978-94-007-6621-1_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Drosophila central nervous system develops from polarised asymmetric divisions of precursor cells, called neuroblasts. Decades of research on neuroblasts have resulted in a substantial understanding of the factors and molecular events responsible for fate decisions of neuroblasts and their progeny. Furthermore, the cell-cycle dependent mechanisms responsible for asymmetric cortical protein localisation, resulting in the unequal partitioning between daughters, are beginning to be exposed. Disruption to the appropriate partitioning of proteins between neuroblasts and differentiation-committed daughters can lead to supernumerary neuroblast-like cells and the formation of tumours. Many of the factors responsible for regulating asymmetric division of Drosophila neuroblasts are evolutionarily conserved and, in many cases, have been shown to play a functionally conserved role in mammalian neurogenesis. Recent genome-wide studies coupled with advancements in live-imaging technologies have opened further avenues of research into neuroblast biology. We review our current understanding of the molecular mechanisms regulating neuroblast divisions, a powerful system to model mammalian neurogenesis and tumourigenesis.
Collapse
Affiliation(s)
- Rita Sousa-Nunes
- MRC Centre for Developmental Neurobiology, King's College London, New Hunt's House, London, SE1 1UL, UK.
| | | |
Collapse
|
23
|
Lu MH, Huang CC, Pan MR, Chen HH, Hung WC. Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res 2012; 18:6416-25. [PMID: 23045246 DOI: 10.1158/1078-0432.ccr-12-0832] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Prospero homeobox 1 (PROX1) has been shown to function as a tumor suppressor in various types of cancer. However, it promotes colon cancer progression. The aim of this study is to clarify the underlying mechanism by which PROX1 regulates tumorigenicity of colon cancer. EXPERIMENTAL DESIGN Association of PROX1 and clinicopathological features was studied by immunohistochemical staining. Pri-miR-9-2 and miR-9 were detected by quantitative real-time PCR. Assays of cell invasion, adhesion, and matrix metalloproteinase activity were used to study PROX1-mediated epithelial-mesenchymal transition (EMT). RESULTS PROX1 was overexpressed in 43% (59/136) of colon cancer tissues and its expression was correlated with E-cadherin downregulation (P = 0.00005), advanced tumor staging (P = 0.005), and lymph node metastasis (P = 0.000009). Enforced expression of PROX1 in DLD-1 cells caused downregulation of E-cadherin and integrins and attenuated cell adhesion. These cells showed increase of matrix metalloproteinase activity and invasive ability. Conversely, knockdown of PROX1 in SW620 cells restored E-cadherin protein expression and reduced invasiveness. Unexpectedly, repression of E-cadherin by PROX1 was not mediated by transcriptional inhibition. We found that PROX1 bound to miR-9-2 promoter and triggered its expression to suppress E-cadherin 3'UTR reporter activity and protein expression. Anti-miR-9 restored E-cadherin in SW620 cells, whereas precursor miR-9 inhibited E-cadherin in PROX1-knockdown cells. The miR-9 level was higher in tumor tissues with high PROX1/low E-cadherin than that of tumor tissues with low PROX1/high E-cadherin. CONCLUSIONS Our results provide mechanistic insights by which PROX1 promotes EMT and colon cancer progression. Targeting of PROX1-mediated oncogenic activity may be helpful for the treatment of colon cancer.
Collapse
Affiliation(s)
- Mei-Hsuan Lu
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Taiwan
| | | | | | | | | |
Collapse
|
24
|
Chang TM, Hung WC. Transcriptional repression of TWIST1 gene by Prospero-related homeobox 1 inhibits invasiveness of hepatocellular carcinoma cells. FEBS Lett 2012; 586:3746-52. [PMID: 22982861 DOI: 10.1016/j.febslet.2012.08.034] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/28/2012] [Accepted: 08/28/2012] [Indexed: 01/16/2023]
Abstract
Prospero-related homeobox 1 (PROX1) is important for liver development and down-regulation of this transcription factor in hepatocellular carcinoma (HCC) is associated with poor prognosis. We find that PROX1 expression is inversely correlated with the expression of epithelial-mesenchymal regulator TWIST1 in HCC cell lines and tumor tissues. We demonstrate that PROX1 directly binds to proximal promoter of TWIST1 gene to repress its transcription and inhibits its downstream target gene AKT2 expression which leads to reduction of cell migration and invasion. Moreover, PROX1 attenuates lung metastasis of HCC in vivo. These results support an anti-metastatic role of PROX1 via inhibiting TWIST1.
Collapse
Affiliation(s)
- Tsung-Ming Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, ROC
| | | |
Collapse
|
25
|
Hagiwara K, Ito H, Murate T, Miyata Y, Ohashi H, Nagai H. PROX1 overexpression inhibits protein kinase C beta II transcription through promoter DNA methylation. Genes Chromosomes Cancer 2012; 51:1024-36. [PMID: 22833470 DOI: 10.1002/gcc.21985] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 06/20/2012] [Indexed: 12/16/2022] Open
Abstract
Prospero-related homeobox 1 (PROX1) is important for embryonic organ formation and differentiation, and changes in PROX1 activity were recently associated with cancer. To address the PROX1 roles in tumorigenesis, we established cells stably overexpressing PROX1 using the human cervical cancer cell line, HeLa. Overexpression of PROX1 reduced cell proliferation and the rate of tumor formation as compared with controls. Comparison of gene expression profiles between PROX1-overexpressing and mock-transfected cells revealed that the expression of protein kinase C βII (PRKCB2) is down-regulated in PROX1-overexpressing cells. A PRKCB inhibitor suppressed cell growth of control cells more than PROX1-expressing cells. Analysis of the 5'-promoter of PRKCB revealed that a region between -110 bp and the first exon contains two Sp1 binding sites and is important for transcriptional regulation of PRKCB. The inhibition of Sp1 transcription factor resulted in down-regulation of PRKCB2 protein levels. Treatment with a demethylating agent, 5-aza-2'-deoxycytidine, restored PRKCB2 mRNA expression in PROX1-expressing cells, suggesting that the 5'-promoter of PRKCB is methylated in these cells. Actually, it was found that a CpG island in this region, in particular a CpG site overlapping with the distal Sp1 site, was hypermethylated and direct Sp1 binding to this region was inhibited in PROX1-overexpressing cells. Thus, the suppressive effect of PROX1 on cell growth and tumor formation might be partially mediated by PRKCB2 via altered methylation of its promoter.
Collapse
Affiliation(s)
- Kazumi Hagiwara
- Department of Hematology/Oncology Research, Clinical Research Center, National Hospital Organization Nagoya Medical Center, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Foskolou IP, Stellas D, Rozani I, Lavigne MD, Politis PK. Prox1 suppresses the proliferation of neuroblastoma cells via a dual action in p27-Kip1 and Cdc25A. Oncogene 2012; 32:947-60. [PMID: 22508481 DOI: 10.1038/onc.2012.129] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Neuroblastoma is a pediatric tumor that originates from precursor cells of the sympathetic nervous system with less than 40% long-term survival in children diagnosed with high-risk disease. These clinical observations underscore the need for novel insights in the mechanisms of malignant transformation and progression. Accordingly, it was recently reported that Prox1, a homeobox transcription regulator, is expressed in higher levels in human neuroblastoma with favorable prognosis. Consistently, we have recently shown that Prox1 exerts a strong antiproliferative effect on neural precursor cells during embryonic development. Thus, Prox1 is a candidate gene with a critical role in suppressing malignant neuroblastoma transformation. Here, we provide evidence that Prox1 strongly suppresses the proliferation of mouse and human neuroblastoma cell lines and blocks the growth of neuroblastoma tumors in SCID mice. Conversely, short hairpin RNA (shRNA) -mediated knockdown of basal Prox1 expression significantly induces proliferation, genomic instability and the ability of neuroblastoma cells to form tumors. Mechanistically, analysis of an inducible Prox1-overexpressing Neuro2A cell line indicates that Prox1 is sufficient to suppress CyclinD1, CyclinA and CyclinB1, consistent with a role in cell cycle arrest. Surprisingly, Prox1 strongly induces CyclinE1 expression in the same system despite its action on blocking cell cycle progression, which could account for the context dependent oncogenic function of Prox1. Most importantly, Prox1 was sufficient to decrease Cdc25A and induce p27-Kip1, but not p21-Cip1 or p53. By alleviating the Prox1 action in Cdc25A and p27-Kip1 expression, we were able to rescue its effect on cell cycle arrest. Together these data suggest that Prox1 negatively regulates neuroblastoma carcinogenesis through suppression of Cdc25A and induction of p27-Kip1 to counteract CyclinE1 overexpression and block cell cycle progression. Furthermore, these observations render Prox1 a candidate target for the treatment of neuroblastoma tumors.
Collapse
Affiliation(s)
- I P Foskolou
- Center for Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | | | | | | |
Collapse
|
27
|
Truman LA, Bentley KL, Smith EC, Massaro SA, Gonzalez DG, Haberman AM, Hill M, Jones D, Min W, Krause DS, Ruddle NH. ProxTom lymphatic vessel reporter mice reveal Prox1 expression in the adrenal medulla, megakaryocytes, and platelets. THE AMERICAN JOURNAL OF PATHOLOGY 2012; 180:1715-25. [PMID: 22310467 PMCID: PMC3349900 DOI: 10.1016/j.ajpath.2011.12.026] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 11/23/2011] [Accepted: 12/08/2011] [Indexed: 11/29/2022]
Abstract
Lymphatic vessels (LVs) are important structures for antigen presentation, for lipid metabolism, and as conduits for tumor metastases, but they have been difficult to visualize in vivo. Prox1 is a transcription factor that is necessary for lymphangiogenesis in ontogeny and the maintenance of LVs. To visualize LVs in the lymph node of a living mouse in real time, we made the ProxTom transgenic mouse in a C57BL/6 background using red fluorescent LVs that are suitable for in vivo imaging. The ProxTom transgene contained all Prox1 regulatory sequences and was faithfully expressed in LVs coincident with endogenous Prox1 expression. The progenies of a ProxTom × Hec6stGFP cross were imaged using two-photon laser scanning microscopy, allowing the simultaneous visualization of LVs and high endothelial venules in a lymph node of a living mouse for the first time. We confirmed the expression of Prox1 in the adult liver, lens, and dentate gyrus. These intensely fluorescent mice revealed the expression of Prox1 in three novel sites: the neuroendocrine cells of the adrenal medulla, megakaryocytes, and platelets. The novel sites identified herein suggest previously unknown roles for Prox1. The faithful expression of the fluorescent reporter in ProxTom LVs indicates that these mice have potential utility in the study of diseases as diverse as lymphedema, filariasis, transplant rejection, obesity, and tumor metastasis.
Collapse
Affiliation(s)
- Lucy A. Truman
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut
| | - Kevin L. Bentley
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut
| | - Elenoe C. Smith
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut
| | - Stephanie A. Massaro
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut
| | - David G. Gonzalez
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Ann M. Haberman
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Myriam Hill
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut
| | - Dennis Jones
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Wang Min
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut
| | - Diane S. Krause
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, Connecticut
| | - Nancy H. Ruddle
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, Connecticut
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
28
|
Miettinen M, Wang ZF. Prox1 transcription factor as a marker for vascular tumors-evaluation of 314 vascular endothelial and 1086 nonvascular tumors. Am J Surg Pathol 2012; 36:351-9. [PMID: 22067331 PMCID: PMC3288441 DOI: 10.1097/pas.0b013e318236c312] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Prox1, a transcription factor important in the regulation and maintenance of the lymphatic endothelial phenotype, is consistently expressed in lymphangiomas and Kaposi sarcoma and has also been reported in Kaposiform hemangioendothelioma. However, information on its distribution in vascular tumors, such as angiosarcoma, is limited. In this study, we examined selected normal tissues and 314 vascular endothelial and 1086 nonvascular tumors to get an insight into the biology of these tumors and on potential diagnostic use of Prox1 as an immunohistochemical marker. In adult tissues, Prox1 was essentially restricted to lymphatic endothelia, with expression in subsets of pancreatic and gastrointestinal epithelia. However, it was also detected in embryonic liver and heart. Prox1 was consistently expressed in lymphangiomas, venous hemangiomas, Kaposi sarcoma, in endothelia of spindle cell hemangioma, Kaposiform hemangioendothelioma, and retiform hemangioendothelioma, and in half of epithelioid hemangioendotheliomas. It was present in most cutaneous angiosarcomas from different sites but was less commonly expressed in deep soft tissue and visceral angiosarcomas. In contrast, Prox1 was generally absent in capillary and cavernous hemangiomas. In positive hemangiomas and angiosarcomas it was coexpressed with podoplanin, another marker of the lymphatic endothelial phenotype. There was an inverse correlation with CD34 expression. The expression in mesenchymal nonendothelial neoplasm was limited. Prox1 was detected in 5 of 27 synovial sarcomas, specifically in the epithelia of biphasic tumors. Four of 16 Ewing sarcomas and 5 of 15 paragangliomas were also positive. All melanomas and undifferentiated sarcomas were negative. Among epithelial neoplasms, Prox1 was detected in 18 of 38 colonic carcinomas and 10 of 15 cholangiocarcinomas and in a minority of pulmonary, prostatic, and endometrial adenocarcinomas. The common Prox1 expression in angiosarcoma and its rare presence in nonvascular mesenchymal tumors make this marker suitable for the diagnosis of angiosarcoma and Kaposi sarcoma. However, the presence of Prox1 in some malignant epithelial tumors necessitates caution in applying Prox1 as a marker for vascular tumors. Common Prox1 expression in angiosarcoma may reflect the lymphatic endothelial phenotype in these tumors. Its patterns of expression in hemangiomas and angiosarcoma may be diagnostically useful and offer a new parameter in the biological classification of vascular tumors.
Collapse
Affiliation(s)
- Markku Miettinen
- Laboratory of Pathology, National Cancer Institute, Bethesda 20892, MD, USA.
| | | |
Collapse
|
29
|
Pogribny IP, Rusyn I. Role of epigenetic aberrations in the development and progression of human hepatocellular carcinoma. Cancer Lett 2012; 342:223-30. [PMID: 22306342 DOI: 10.1016/j.canlet.2012.01.038] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal and prevalent cancers in humans. The molecular mechanisms leading to the development of HCC are extremely complicated and consist of prominent genetic, genomic, and epigenetic alterations. This review summarizes the current knowledge of the role of epigenetic aberrations, including changes in DNA methylation, histone modifications, and expression of microRNAs in the pathogenesis of HCC. It also emphasizes that identification of the underlying epigenetic alterations that drive cell transformation and promote development and progression of HCC is crucially important for understanding mechanisms of hepatocarcinogenesis, its detection, therapeutic intervention, and prevention.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, United States.
| | | |
Collapse
|
30
|
Yang F, Yi F, Zheng Z, Ling Z, Ding J, Guo J, Mao W, Wang X, Wang X, Ding X, Liang Z, Du Q. Characterization of a carcinogenesis-associated long non-coding RNA. RNA Biol 2012; 9:110-6. [PMID: 22258142 DOI: 10.4161/rna.9.1.18332] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A negative selection strategy was used in the present study to isolate long polyA-minus RNAs from the total transcriptome and a long non-coding RNA named Yiya was identified. Yiya is a 1.9 kb long intergenic ncRNA gene mapped to chromosome 1q41, a well-established cancer susceptibility locus. Expression profiling revealed a general and regulated expression pattern of Yiya in major tissues, and more interestingly, identified elevated mRNA levels in different cancers. Quantitative analysis further demonstrated a dynamic regulation of Yiya expression in cell cycle progression, suggesting that it was involved in cell cycle regulation. Supporting this, overexpression of Yiya promotes cell cycle progression at the G1/S transition, therefore identifying Yiya as a cell-cycle-associated long non-coding RNA.
Collapse
Affiliation(s)
- Feng Yang
- Institute of Molecular Medicine, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Skog M, Bono P, Lundin M, Lundin J, Louhimo J, Linder N, Petrova TV, Andersson LC, Joensuu H, Alitalo K, Haglund CH. Expression and prognostic value of transcription factor PROX1 in colorectal cancer. Br J Cancer 2011; 105:1346-51. [PMID: 21970873 PMCID: PMC3241535 DOI: 10.1038/bjc.2011.297] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: PROX1 is a specific target of the β-catenin/TCF pathway in the intestinal epithelium. It acts as a regulator of progression from a benign to a highly dysplastic phenotype in colorectal tumours. However, the clinical significance of PROX1 expression is not known. Methods: We studied the prognostic value of immunohistochemical expression of PROX1 in a series of 517 patients with colorectal cancer (CRC). Results: The majority of the tumour samples expressed PROX1 (91%, 471 out of 517). High PROX1 expression was associated with a poor grade of tumour differentiation (P<0.0001). In the subgroup of patients with colon cancer, high PROX1 expression was associated with unfavourable colorectal cancer-specific survival (CCSS) as compared with low PROX1 expression (CCSS 47% vs 62% P=0.045; RR 1.47). The association between high PROX1 and poor outcome was further strengthened in female colon cancer patients (CCSS 38% vs 63% P=0.007; RR 2.02). Nonetheless, in multivariate survival analysis PROX1 expression was not retained as an independent prognostic factor. Conclusion: High PROX1 expression is associated with a poor grade of tumour differentiation, and, in colon cancer patients, also with less favourable patient outcome. Our results strengthen the previous preclinical observations that PROX1 has a role in tumour progression in CRC.
Collapse
Affiliation(s)
- M Skog
- Department of Oncology, Helsinki University Central Hospital, Helsinki FIN-00029 HUS, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Elsir T, Qu M, Berntsson SG, Orrego A, Olofsson T, Lindström MS, Nistér M, von Deimling A, Hartmann C, Ribom D, Smits A. PROX1 is a predictor of survival for gliomas WHO grade II. Br J Cancer 2011; 104:1747-54. [PMID: 21559010 PMCID: PMC3111172 DOI: 10.1038/bjc.2011.162] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: The clinical course of World Health Organisation grade II gliomas remains variable and their time point of transformation into a more malignant phenotype is unpredictable. Identification of biological markers that can predict prognosis in individual patients is of great clinical value. PROX1 is a transcription factor that has a critical role in the development of various organs. PROX1 has been ascribed both oncogenic and tumour suppressive functions in human cancers. We have recently shown that PROX1 may act as a diagnostic marker for high-grade gliomas. The aim of this study was to address the prognostic value of PROX1 in grade II gliomas. Methods: A total of 116 samples were evaluated for the presence of PROX1 protein. The number of immunopositive cells was used as a variable in survival analysis, together with established prognostic factors for this patient group. Results: Higher PROX1 protein was associated with poor outcome. In the multivariate analysis, PROX1 was identified as an independent factor for survival (P=0.024), together with the presence of mutated isocitrate dehydrogenase 1 R132H protein, and with combined losses of chromosomal arms 1p/19q in oligodendrocytic tumours. Conclusion: PROX1 is a novel predictor of survival for grade II gliomas.
Collapse
Affiliation(s)
- T Elsir
- Department of Oncology-Pathology, Karolinska Institutet, CCK R8:05, Karolinska University Hospital, S-17176 Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Akagami M, Kawada K, Kubo H, Kawada M, Takahashi M, Kaganoi J, Kato S, Itami A, Shimada Y, Watanabe G, Sakai Y. Transcriptional factor Prox1 plays an essential role in the antiproliferative action of interferon-γ in esophageal cancer cells. Ann Surg Oncol 2011; 18:3868-77. [PMID: 21452064 DOI: 10.1245/s10434-011-1683-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Indexed: 02/03/2023]
Abstract
BACKGROUND We previously reported interferon-γ (IFN-γ)-induced apoptosis in 10 (32%) of 31 esophageal squamous cell carcinoma (ESCC) cell lines. However, the molecular basis of antiproliferative action by IFN-γ remains elusive. Here we demonstrate that IFN-γ induces transcriptional factor Prox1, and we explore the link between Prox1 and the IFN-γ system in ESCC cells. METHODS By using ESCC cell lines, we investigated the relationship between p53 mutations and the responsibility to IFN-γ, and studied the role of Prox1 in the antiproliferative effect of IFN-γ by knockdown and overexpression methods. RESULTS p53 mutations were found in seven of nine ESCC cell lines responsible for IFN-γ. The frequency was not different from that of p53 mutations in total ESCC cell lines (21 of 28 cell lines). Treatment of ESCC cells with IFN-β but not IFN-γ resulted in increase of p53 messenger RNA (mRNA) expression, whereas IFN-γ but not IFN-β induced cell growth inhibition of ESCCs harboring p53 mutations. IFN-γ induced Prox1 expression in ESCC cells but not in those transfected with dominant-negative STAT1. Cell growth inhibition by IFN-γ was significantly suppressed in ESCC cells transfected with Prox1 short interfering RNA (siRNA). In addition, overexpression of Prox1 induced antiproliferative effect in ESCC cells. We also demonstrate that Prox1 is expressed in primary esophageal cancer tissues (five of nine samples treated with neoadjuvant chemotherapy before surgery). CONCLUSIONS Prox1 mediates the antiproliferative effect by IFN-γ in ESCC cells. Prox1 may be a candidate target for novel therapeutic strategies of ESCCs.
Collapse
Affiliation(s)
- Masatoshi Akagami
- Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Sotiropoulou N, Bravou V, Kounelis S, Damaskou V, Papaspirou E, Papadaki H. Tumour expression of lymphangiogenic growth factors but not lymphatic vessel density is implicated in human cervical cancer progression. Pathology 2010; 42:629-36. [DOI: 10.3109/00313025.2010.522174] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Bayraktar OA, Boone JQ, Drummond ML, Doe CQ. Drosophila type II neuroblast lineages keep Prospero levels low to generate large clones that contribute to the adult brain central complex. Neural Dev 2010; 5:26. [PMID: 20920301 PMCID: PMC2958855 DOI: 10.1186/1749-8104-5-26] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 10/01/2010] [Indexed: 01/01/2023] Open
Abstract
Tissue homeostasis depends on the ability of stem cells to properly regulate self-renewal versus differentiation. Drosophila neural stem cells (neuroblasts) are a model system to study self-renewal and differentiation. Recent work has identified two types of larval neuroblasts that have different self-renewal/differentiation properties. Type I neuroblasts bud off a series of small basal daughter cells (ganglion mother cells) that each generate two neurons. Type II neuroblasts bud off small basal daughter cells called intermediate progenitors (INPs), with each INP generating 6 to 12 neurons. Type I neuroblasts and INPs have nuclear Asense and cytoplasmic Prospero, whereas type II neuroblasts lack both these transcription factors. Here we test whether Prospero distinguishes type I/II neuroblast identity or proliferation profile, using several newly characterized Gal4 lines. We misexpress prospero using the 19H09-Gal4 line (expressed in type II neuroblasts but no adjacent type I neuroblasts) or 9D11-Gal4 line (expressed in INPs but not type II neuroblasts). We find that differential prospero expression does not distinguish type I and type II neuroblast identities, but Prospero regulates proliferation in both type I and type II neuroblast lineages. In addition, we use 9D11 lineage tracing to show that type II lineages generate both small-field and large-field neurons within the adult central complex, a brain region required for locomotion, flight, and visual pattern memory.
Collapse
Affiliation(s)
- Omer Ali Bayraktar
- Howard Hughes Medical Institute, University of Oregon, Eugene, 97403, USA
| | | | | | | |
Collapse
|
36
|
Pathway discovery in mantle cell lymphoma by integrated analysis of high-resolution gene expression and copy number profiling. Blood 2010; 116:953-61. [PMID: 20421449 DOI: 10.1182/blood-2010-01-263806] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The genome of mantle cell lymphoma (MCL) is, in addition to the translocation t(11;14), characterized by a high number of secondary chromosomal gains and losses that probably account for the various survival times of MCL patients. We investigated 77 primary MCL tumors with available clinical information using high-resolution RNA expression and genomic profiling and applied our recently developed gene expression and dosage integrator algorithm to identify novel genes and pathways that may be of relevance for the pathobiology of MCL. We show that copy number neutral loss of heterozygosity is common in MCL and targets regions that are frequently affected by deletions. The molecular consequences of genomic copy number changes appear complex, even in genomic loci with identified tumor suppressors, such as the region 9p21 containing the CDKN2A locus. Moreover, the deregulation of novel genes, such as CUL4A, ING1, and MCPH1, may affect the 2 crucial pathogenetic mechanisms in MCL, the disturbance of the proliferation, and DNA damage response pathways. Deregulation of the Hippo pathway may have a pathogenetic role in MCL because decreased expression of its members MOBKL2A, MOBKL2B, and LATS2 was associated with inferior outcome, including an independent validation series of 32 MCLs.
Collapse
|
37
|
Expression of PROX1 Is a common feature of high-grade malignant astrocytic gliomas. J Neuropathol Exp Neurol 2010; 69:129-38. [PMID: 20084020 DOI: 10.1097/nen.0b013e3181ca4767] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PROX1 is a prospero-related transcription factor that plays a critical role in the development of various organs including the mammalian lymphatic and central nervous systems; it controls cell proliferation and differentiation through different transcription pathwaysand has both oncogenic and tumor-suppressive functions. We investigated PROX1 expression patterns in 56 human astrocytic gliomas of different grades using immunohistochemistry. An average of 79% of cells in World Health Organization Grade IV (glioblastoma, n = 15) and 57% of cells in World Health Organization Grade III (anaplastic astrocytoma, n = 13) were strongly PROX1 positive; low-grade diffuse astrocytomas (Grade II, n = 13) had 21% of cells that were strongly positive; Grade I tumors (n = 15) had 1.5%; and non-neoplastic brain tissue (n = 15) had 3.7% of cells that were PROX1 positive. Double immunolabeling showed that PROX1+ cells in glioblastomas frequently coexpressed early neuronal proteins MAP2 and betaIII-tubulin but not the mature neuronal marker protein NeuN. Analyses of coexpression with proliferation markers suggest that PROX1+ cells have a marginally lower rate of proliferation than other tumor cells but are still mitotically active. We conclude that PROX1 may constitute a useful tool for the diagnosis and grading ofastrocytic gliomas and for distinguishing Grade III and Grade IV tumors from Grade I and Grade II tumors.
Collapse
|
38
|
Wangsa D, Heselmeyer-Haddad K, Ried P, Eriksson E, Schäffer AA, Morrison LE, Luo J, Auer G, Munck-Wikland E, Ried T, Lundqvist EA. Fluorescence in situ hybridization markers for prediction of cervical lymph node metastases. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:2637-45. [PMID: 19893027 PMCID: PMC2789632 DOI: 10.2353/ajpath.2009.090289] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/21/2009] [Indexed: 02/06/2023]
Abstract
The presence of lymph node metastases is associated with poor prognosis in early stage cervical cancer. As of yet, no molecular markers predicting lymph node metastases have been identified. We examined single genetic markers and a composite marker, comprised of three fluorescence in situ hybridization (FISH) probes targeting the genes LAMP3, PROX1, and PRKAA1, in pretreatment cervical biopsies from 16 lymph node positive cases and 15 lymph node negative controls from women with stage IB and IIA cervical cancer. In addition, we determined clonal patterns by including CCND1 to compare the clonal constitution of primary tumors and associated lymph node metastases. The composite FISH marker allowed for classification of patients into those with and without lymph node metastases with a sensitivity and specificity of 75% and 87%, respectively (P = 0.001). The positive predictive value and negative predictive value were 86% and 76%, respectively. Clonal patterns varied among the tumors. In many cases, changes between the primary tumor and lymph node metastases in the most common clones may indicate that certain clones have a growth advantage for establishing metastases in lymph nodes. We conclude that the composite FISH marker may be useful for determining risk for subsequent development of lymph node metastases in patients with cervical cancer.
Collapse
Affiliation(s)
- Darawalee Wangsa
- Department of Oncology-Pathology, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Chong SW, Korzh V, Jiang YJ. Myogenesis and molecules - insights from zebrafish Danio rerio. JOURNAL OF FISH BIOLOGY 2009; 74:1693-1755. [PMID: 20735668 DOI: 10.1111/j.1095-8649.2009.02174.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Myogenesis is a fundamental process governing the formation of muscle in multicellular organisms. Recent studies in zebrafish Danio rerio have described the molecular events occurring during embryonic morphogenesis and have thus greatly clarified this process, helping to distinguish between the events that give rise to fast v. slow muscle. Coupled with the well-known Hedgehog signalling cascade and a wide variety of cellular processes during early development, the continual research on D. rerio slow muscle precursors has provided novel insights into their cellular behaviours in this organism. Similarly, analyses on fast muscle precursors have provided knowledge of the behaviour of a sub-set of epitheloid cells residing in the anterior domain of somites. Additionally, the findings by various groups on the roles of several molecules in somitic myogenesis have been clarified in the past year. In this study, the authors briefly review the current trends in the field of research of D. rerio trunk myogenesis.
Collapse
Affiliation(s)
- S-W Chong
- Laboratory of Developmental Signalling and Patterning, Genes and Development Division, A STAR (Agency for Science, Technology and Research), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore.
| | | | | |
Collapse
|
40
|
Abstract
Kaposi's sarcoma (KS) is the most frequently occurring malignant tumor in patients infected with HIV. Recent studies have revealed that infection of vascular endothelial cells with KS-associated herpes virus in vitro results in a lymphatic reprogramming of these cells, with potent induction of the lymphatic marker genes podoplanin and vascular endothelial growth factor receptor-3, which is mediated by upregulation of the transcription factor Prox1. However, the potential effects of Prox1 expression on the biology of KS and, in particular, on the aggressive and invasive behavior of KS tumors in vivo have remained unknown. We stably expressed Prox1 cDNA in the two mouse hemangioendothelioma cell lines EOMA and Py-4-1, well-established murine models for kaposiform hemangioendothelioma. Surprisingly, we found that expression of Prox1 was sufficient to induce a more aggressive behavior of tumors growing in syngenic mice, leading to enhanced local invasion into the muscular layer and to cellular anaplasia in vivo, and increased migration rate in vitro. This enhanced malignant phenotype was associated with upregulation of several genes involved in proteolysis, cell adhesion, and migration. Together, these results indicate that Prox1 plays an important, previously unanticipated role in mediating the aggressive behavior of vascular neoplasms such as KS.
Collapse
|
41
|
Petrova TV, Nykänen A, Norrmén C, Ivanov KI, Andersson LC, Haglund C, Puolakkainen P, Wempe F, von Melchner H, Gradwohl G, Vanharanta S, Aaltonen LA, Saharinen J, Gentile M, Clarke A, Taipale J, Oliver G, Alitalo K. Transcription factor PROX1 induces colon cancer progression by promoting the transition from benign to highly dysplastic phenotype. Cancer Cell 2008; 13:407-19. [PMID: 18455124 DOI: 10.1016/j.ccr.2008.02.020] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2003] [Revised: 12/07/2007] [Accepted: 02/27/2008] [Indexed: 02/07/2023]
Abstract
The Drosophila transcription factor Prospero functions as a tumor suppressor, and it has been suggested that the human counterpart of Prospero, PROX1, acts similarly in human cancers. However, we show here that PROX1 promotes dysplasia in colonic adenomas and colorectal cancer progression. PROX1 expression marks the transition from benign colon adenoma to carcinoma in situ, and its loss inhibits growth of human colorectal tumor xenografts and intestinal adenomas in Apc(min/+) mice, while its transgenic overexpression promotes colorectal tumorigenesis. Furthermore, in intestinal tumors PROX1 is a direct and dose-dependent target of the beta-catenin/TCF signaling pathway, responsible for the neoplastic transformation. Our data underscore the complexity of cancer pathogenesis and implicate PROX1 in malignant tumor progression through the regulation of cell polarity and adhesion.
Collapse
Affiliation(s)
- Tatiana V Petrova
- Molecular and Cancer Biology Research Program, Biomedicum Helsinki, University of Helsinki, Haartmaninkatu 8, P.O.B. 63, 00014 Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Altered regulation of Prox1-gene-expression in liver tumors. BMC Cancer 2008; 8:92. [PMID: 18400094 PMCID: PMC2359759 DOI: 10.1186/1471-2407-8-92] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 04/09/2008] [Indexed: 01/20/2023] Open
Abstract
Background Prospero-related homeobox 1 (Prox1) transcription factor was described as a tumor-suppressor gene in liver tumors. In contrast, Prox1 knock out in murine embryos drastically reduces proliferation of hepatoblasts. Methods We have studied the expression of Prox1 in normal liver, liver cirrhosis and peritumoral liver samples in comparison to hepatocellular (HCC) and cholangiocellular carcinoma (CCC) at mRNA, protein and functional levels. Results Prox1 was found in hepatocytes of normal liver, while normal bile duct epithelial cells were negative. However, Prox1+ cells, which co-expressed biliary epithelial makers and showed ductular morphology, could be detected within fibrotic septa of cirrhotic livers, and in both HCC and CCC. Two Prox1 mRNA isoforms (2.9 kb and 7.9 kb) were identified with a prevalence of the longer isoform in several HCC samples and the shorter in most CCC samples. Evidence was provided that Myc-associated zinc finger protein (MAZ) might significantly contribute to the gene expression of Prox1 in HCC, while neo-expression of Prox1 in CCC remains to be resolved. A point mutation in the prospero domain of Prox1 was found in one HCC sample. Conclusion Our study shows dysregulation of Prox1 in liver cirrhosis, HCC and CCC, such as neo-expression in cells with biliary epithelial phenotype in liver cirrhosis, and in CCC. Altered Prox1 mRNA expression is partly regulated by MAZ, and mutation of the prospero domain in HCC indicates an involvement for Prox1 during tumor progression.
Collapse
|
43
|
Chen X, Taube JR, Simirskii VI, Patel TP, Duncan MK. Dual roles for Prox1 in the regulation of the chicken betaB1-crystallin promoter. Invest Ophthalmol Vis Sci 2008; 49:1542-52. [PMID: 18385074 PMCID: PMC2366088 DOI: 10.1167/iovs.07-1300] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Lens fiber cell differentiation is marked by the onset of betaB1-crystallin expression and is controlled by the cooperative action of a set of transcription factors including Prox1, an atypical homeodomain protein. Previously, the authors reported that Prox1 directly interacts with the OL2 element found in the chicken betaB1-crystallin basal promoter to activate the expression of this gene. Here they mapped the location of activating and repressing sequences of the full-length chicken betaB1-crystallin promoter (-432/+30) in lens epithelial cells, annular pad cells, and intact lens and characterized Prox1-binding sites found in this region. METHODS Transfection analysis and transgenic mice were used to characterize upstream regions of the chicken betaB1-crystallin gene. DNaseI footprinting and chromatin immunoprecipitation was performed to identify Prox1-binding sites, and transfection analyses were used to characterize these sites functionally. RESULTS Sequences between -152 and -432 of the chicken betaB1-crystallin promoter mediated either promoter activation or repression, depending on the stage of lens differentiation tested. Two new Prox1-binding sites were found in this region that bound Prox1 more avidly than the OL2 element. However, neither binding site conferred Prox1-mediated activation on a heterologous promoter; instead, each allowed Prox1 to repress promoter function. CONCLUSIONS The function of the upstream region of the chicken betaB1-crystallin promoter changes depending on cellular context. These data suggest that Prox1 function as a transcriptional activator could be regulated at the DNA level based on the characteristics of the responsive elements.
Collapse
Affiliation(s)
- Xiaoren Chen
- Department of Biological Sciences, University of Dela-ware, Newark, Delaware
| | - Jennifer R. Taube
- Department of Biological Sciences, University of Dela-ware, Newark, Delaware
| | | | - Tapan P. Patel
- Department of Biological Sciences, University of Dela-ware, Newark, Delaware
| | - Melinda K. Duncan
- Department of Biological Sciences, University of Dela-ware, Newark, Delaware
| |
Collapse
|