1
|
Yang L, Zheng SG. Role of regulatory T cells in inflammatory liver diseases. Autoimmun Rev 2025; 24:103806. [PMID: 40139456 DOI: 10.1016/j.autrev.2025.103806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 03/21/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
The liver is the human body's largest digestive gland, which can participate in digestion, metabolism, excretion, detoxification and immunity. Chronic liver diseases such as metabolic dysfunction-associated fatty liver disease (MAFLD) or viral hepatitis involve ongoing inflammation and resulting liver fibrosis may ultimately lead to the development of hepatobiliary cancers (HCC). Inflammation is the coordinated reaction of different liver cell types to cell signals and death of inflammation, which are linked to injury pathways within the liver or external agents from the gut-liver axis and the circulation. Regulatory T (Treg) cells play a crucial role in controlling inflammation and are essential for maintaining immune tolerance and balance. In this review, we highlight the recent discoveries related to the function of immune systems in liver inflammation and discuss the role of Treg cells in the different liver diseases (including MAFLD, autoimmune hepatitis and others).
Collapse
Affiliation(s)
- Linjie Yang
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China
| | - Song Guo Zheng
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan 523808, China; Department of Immunology, School of Cell and Gene Therapy, Songjiang Research Institute, Shanghai Songjiang District Central Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201600, China; State Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, 201600, China.
| |
Collapse
|
2
|
Pichard V, Guilbaud M, Devaux M, Jaulin N, Journou M, Cospolite M, Garcia A, Ferry N, Michalak-Provost S, Gernoux G, Adjali O. Incomplete elimination of viral genomes is associated with chronic inflammation in nonhuman primate livers after AAV-mediated gene transfer. Gene Ther 2025; 32:287-298. [PMID: 39838066 DOI: 10.1038/s41434-025-00514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
The liver is a unique organ where immunity can be biased toward ineffective response notably in the context of viral infections. Chronic viral hepatitis depends on the inability of the T-cell immune response to eradicate antigen. In the case of recombinant Adeno-Associated-Virus, used for therapeutic gene transfer, conflicting reports describe tolerance induction to different transgene products while other studies have shown conventional cytotoxic CD8+ T cell responses with a rapid loss of transgene expression. We performed a 1 year follow up of 6 non-human primates after all animals received an rAAV8 vector carrying the GFP transgene at doses of 7×1012 vg/kg. We report that despite anti-GFP peripheral cellular response and loss of hepatic transgene expression, we were still able to detect persisting viral genomes in the liver until 1-year post-injection. These viral genomes were associated with liver inflammation, fibrosis and signs of CD8 T cell exhaustion, including high expression of PD-1. Our study shows that AAV8-mediated gene transfer can results to loss of transgene expression in liver and chronic inflammation several months after gene transfer.
Collapse
Affiliation(s)
- Virginie Pichard
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France.
| | - Mickaël Guilbaud
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Marie Devaux
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Nicolas Jaulin
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Malo Journou
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Magalie Cospolite
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Alexandra Garcia
- CHU Nantes, Nantes Université, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Nicolas Ferry
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Sophie Michalak-Provost
- HIFIH Laboratory, UPRES 3859, SFR 4208, Angers University, Angers, France
- Pathology Department, Angers University Hospital, Angers, France
| | - Gwladys Gernoux
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France
| | - Oumeya Adjali
- Nantes Université, CHU Nantes, INSERM, TaRGeT-Translational Research in Gene Therapy, UMR1089, F-44200, Nantes, France.
| |
Collapse
|
3
|
Abdelaziz AI, Abdelsameea E, Abdel-Samiee M, Ghanem SE, Wahdan SA, Elsherbiny DA, Zakaria Z, Azab SS. Effect of immunogenetics polymorphism and expression on direct-acting antiviral drug response in chronic hepatitis C. Clin Exp Med 2024; 24:184. [PMID: 39117877 PMCID: PMC11310263 DOI: 10.1007/s10238-024-01432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
The prevalence of HCV infection in Egypt has decreased following the introduction of direct-acting antiviral therapy. However, treatment response is influenced by various factors, particularly host immunogenetics such as IL-28B and FOXP3 polymorphisms. The current study examined the impact of SNPs in the FOXP3 gene promoter region on HCV-infected Egyptian patients, along with SNPs in the IL28B gene.This study involved 99 HCV patients who achieved SVR12 after a 12 week DAA treatment while 63 HCV patients experienced treatment failure. IL28B rs12979860 SNP was identified using real-time PCR, while IL28B rs8099917, FOXP3 rs3761548, and rs2232365 SNPs were analyzed using RFLP-PCR. Serum levels of IL28B and FOXP3 were quantified using ELISA technique in representative samples from both groups. The IL28B rs12979860 T > C (P = 0.013) and FOXP3 rs2232365 A > G polymorphisms (P = 0.008) were found to significantly increase the risk of non-response. Responders had higher IL28B serum levels (P = 0.046) and lower FOXP3 levels (P < 0.001) compared to non-responders. Regression analysis showed an association between IL28B rs12979860 and FOXP3 rs2232365 with treatment response, independent of age and gender. A predictive model was developed with 76.2% sensitivity and 91.9% specificity for estimating DAAs response in HCV patients.Our findings confirmed the IL28B rs12979860 T > C and FOXP3 rs2232365 A > G polymorphisms significantly affect DAA treatment response in HCV Egyptian patients. Lower levels of IL-28B along with higher levels of FOXP3 are linked to poor response. Our results may lead to new insights into DAA responsiveness contributing to personalized medicine and improving therapeutic decision-making for HCV patients.
Collapse
Affiliation(s)
- Aya Ismail Abdelaziz
- Department of Research and Development, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Eman Abdelsameea
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Mohamed Abdel-Samiee
- Department of Hepatology and Gastroenterology, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Samar E Ghanem
- Department of Clinical Biochemistry and Molecular Diagnostics, National Liver Institute, Menoufia University, Shebin El-Kom, Egypt
| | - Sara A Wahdan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Doaa A Elsherbiny
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Zeinab Zakaria
- Department of Research and Development, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Cairo, Egypt
| | - Samar S Azab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
4
|
Sebina I, Ngo S, Rashid RB, Alorro M, Namubiru P, Howard D, Ahmed T, Phipps S. CXCR3 + effector regulatory T cells associate with disease tolerance during lower respiratory pneumovirus infection. Immunology 2024; 172:500-515. [PMID: 38584001 DOI: 10.1111/imm.13790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/28/2024] [Indexed: 04/09/2024] Open
Abstract
Lifestyle factors like poor maternal diet or antibiotic exposure disrupt early life microbiome assembly in infants, increasing the risk of severe lower respiratory infections (sLRI). Our prior studies in mice indicated that a maternal low-fibre diet (LFD) exacerbates LRI severity in infants by impairing recruitment of plasmacytoid dendritic cells (pDC) and consequently attenuating expansion of lung regulatory T (Treg) cells during pneumonia virus of mice (PVM) infection. Here, we investigated whether maternal dietary fibre intake influences Treg cell phenotypes in the mediastinal lymph nodes (mLN) and lungs of PVM-infected neonatal mice. Using high dimensional flow cytometry, we identified distinct clusters of regulatory T cells (Treg cells), which differed between lungs and mLN during infection, with notably greater effector Treg cell accumulation in the lungs. Compared to high-fibre diet (HFD)-reared pups, frequencies of various effector Treg cell subsets were decreased in the lungs of LFD-reared pups. Particularly, recruitment of chemokine receptor 3 (CXCR3+) expressing Treg cells was attenuated in LFD-reared pups, correlating with lower lung expression of CXCL9 and CXCL10 chemokines. The recruitment of this subset in response to PVM infection was similarly impaired in pDC depleted mice or following anti-CXCR3 treatment, increasing immunopathology in the lungs. In summary, PVM infection leads to the sequential recruitment and expansion of distinct Treg cell subsets to the lungs and mLN. The attenuated recruitment of the CXCR3+ subset in LFD-reared pups increases LRI severity, suggesting that strategies to enhance pDCs or CXCL9/CXCL10 expression will lower immune-mediated pathogenesis.
Collapse
Affiliation(s)
- Ismail Sebina
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Sylvia Ngo
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Ridwan B Rashid
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Mariah Alorro
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - Patricia Namubiru
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Daniel Howard
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Tufael Ahmed
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Simon Phipps
- Respiratory Immunology Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Lowe KO, Tanase CE, Maghami S, Fisher LE, Ghaemmaghami AM. Inflammatory Network of Liver Fibrosis and How It Can Be Targeted Therapeutically. IMMUNO 2023; 3:375-408. [DOI: 10.3390/immuno3040023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Liver fibrosis is a complex, dynamic process associated with a broad spectrum of chronic liver diseases and acute liver failure, characterised by the dysregulated intrahepatic production of extracellular matrix proteins replacing functional liver cells with scar tissue. Fibrosis progresses due to an interrelated cycle of hepatocellular injury, triggering a persistent wound-healing response. The accumulation of scar tissue and chronic inflammation can eventually lead to cirrhosis and hepatocellular carcinoma. Currently, no therapies exist to directly treat or reverse liver fibrosis; hence, it remains a substantial global disease burden. A better understanding of the intricate inflammatory network that drives the initiation and maintenance of liver fibrosis to enable the rationale design of new intervention strategies is required. This review clarifies the most current understanding of the hepatic fibrosis cellular network with a focus on the role of regulatory T cells, and a possible trajectory for T cell immunotherapy in fibrosis treatment. Despite good progress in elucidating the role of the immune system in liver fibrosis, future work to better define the function of different immune cells and their mediators at different fibrotic stages is needed, which will enhance the development of new therapies.
Collapse
Affiliation(s)
- Kirstin O. Lowe
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Susan Maghami
- Hull York Medical School, University of York, York YO10 5DD, UK
| | - Leanne E. Fisher
- School of Life Sciences, University of Nottingham, Nottingham NG7 2RD, UK
| | | |
Collapse
|
6
|
Oita S, Saito T, Hashimoto R, Fumita T, Katsumata Y, Terui K, Komatsu S, Takenouchi A, Ikeda JI, Hishiki T. Frequency of infiltrating regulatory T-cells in the portal tract of biliary atresia. Pediatr Surg Int 2023; 39:259. [PMID: 37656274 DOI: 10.1007/s00383-023-05547-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
PURPOSE Immunological abnormalities have been hypothesized as a pathogenesis of biliary atresia (BA). We previously investigated the frequency and function of circulating regulatory T-cells (Tregs) and reported no differences compared to controls. However, the local Treg profile remains uncertain. We aimed to investigate the frequency of Tregs in BA liver tissues. METHODS The number of lymphocytes, CD4+ cells, and CD4+FOXP3+ Tregs infiltrating the portal tract and the percentage of Tregs among CD4+ cells of BA and control patients were visually counted. The correlation between these data and clinical indicators was also examined. RESULTS The number of lymphocytes, CD4+ cells, and CD4+FOXP3+ Tregs was higher in the BA group. However, the percentage of Tregs among CD4+ cells was similar in both groups. Each parameter was correlated with serum γ-GTP, but there was no clear association with liver fibrosis, jaundice clearance, and native liver survival. CONCLUSION The number of Tregs infiltrating the portal tract was higher in BA patients. However, the infiltration of lymphocytes was also generally increased. Tregs appear to be unsuccessful in suppressing progressive inflammation in BA patients, despite recruitment to local sites. Investigation of Treg function in the local environment is warranted.
Collapse
Affiliation(s)
- Satoru Oita
- Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan.
| | - Takeshi Saito
- Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan
- Department of Pediatric Surgery, Chiba Children's Hospital, 579-1 Heda-cho, Midori-ku, Chiba City, Chiba, 260-8667, Japan
| | - Rei Hashimoto
- Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan
| | - Takashi Fumita
- Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan
| | - Yoshio Katsumata
- Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan
| | - Keita Terui
- Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan
| | - Shugo Komatsu
- Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan
| | - Ayako Takenouchi
- Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan
| | - Jun-Ichiro Ikeda
- Department of Diagnostic Pathology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan
| | - Tomoro Hishiki
- Department of Pediatric Surgery, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba, 260-8677, Japan
| |
Collapse
|
7
|
Park SJ, Hahn YS. Hepatocytes infected with hepatitis C virus change immunological features in the liver microenvironment. Clin Mol Hepatol 2023; 29:65-76. [PMID: 35957546 PMCID: PMC9845665 DOI: 10.3350/cmh.2022.0032] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 08/11/2022] [Indexed: 02/02/2023] Open
Abstract
Hepatitis C virus (HCV) infection is remarkably efficient in establishing viral persistence, leading to the development of liver cirrhosis and hepatocellular carcinoma (HCC). Direct-acting antiviral agents (DAAs) are promising HCV therapies to clear the virus. However, recent reports indicate potential increased risk of HCC development among HCV patients with cirrhosis following DAA therapy. CD8+ T-cells participate in controlling HCV infection. However, in chronic hepatitis C patients, severe CD4+ and CD8+ T-cell dysfunctions have been observed. This suggests that HCV may employ mechanisms to counteract or suppress the host T-cell responses. The primary site of viral replication is within hepatocytes where infection can trigger the expression of costimulatory molecules and the secretion of immunoregulatory cytokines. Numerous studies indicate that HCV infection in hepatocytes impairs antiviral host immunity by modulating the expression of immunoregulatory molecules. Hepatocytes expressing whole HCV proteins upregulate the ligands of programmed cell death protein 1 (PD-1), programmed death-ligand 1 (PD-L1), and transforming growth factor β (TGF-β) synthesis compared to those in hepatocytes in the absence of the HCV genome. Importantly, HCV-infected hepatocytes are capable of inducing regulatory CD4+ T-cells, releasing exosomes displaying TGF-β on exosome surfaces, and generating follicular regulatory T-cells. Recent studies report that the expression profile of exosome microRNAs provides biomarkers of HCV infection and HCV-related chronic liver diseases. A better understanding of the immunoregulatory mechanisms and identification of biomarkers associated with HCV infection will provide insight into designing vaccine against HCV to bypass HCV-induced immune dysregulation and prevent development of HCV-associated chronic liver diseases.
Collapse
Affiliation(s)
- Soo-Jeung Park
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA,USA
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA,USA,Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA,Corresponding author : Young S. Hahn Department of Microbiology, Immunology and Cancer Biology, University of Virginia, 345 Crispell Dr, Charlottesville, VA 22908, USA Tel: +1-434-924-1275, Fax: +1-434-924-1221, E-mail:
| |
Collapse
|
8
|
Fueyo-González F, McGinty M, Ningoo M, Anderson L, Cantarelli C, Andrea Angeletti, Demir M, Llaudó I, Purroy C, Marjanovic N, Heja D, Sealfon SC, Heeger PS, Cravedi P, Fribourg M. Interferon-β acts directly on T cells to prolong allograft survival by enhancing regulatory T cell induction through Foxp3 acetylation. Immunity 2022; 55:459-474.e7. [PMID: 35148827 PMCID: PMC8917088 DOI: 10.1016/j.immuni.2022.01.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 06/18/2021] [Accepted: 01/13/2022] [Indexed: 12/19/2022]
Abstract
Type I interferons (IFNs) are pleiotropic cytokines with potent antiviral properties that also promote protective T cell and humoral immunity. Paradoxically, type I IFNs, including the widely expressed IFNβ, also have immunosuppressive properties, including promoting persistent viral infections and treating T-cell-driven, remitting-relapsing multiple sclerosis. Although associative evidence suggests that IFNβ mediates these immunosuppressive effects by impacting regulatory T (Treg) cells, mechanistic links remain elusive. Here, we found that IFNβ enhanced graft survival in a Treg-cell-dependent murine transplant model. Genetic conditional deletion models revealed that the extended allograft survival was Treg cell-mediated and required IFNβ signaling on T cells. Using an in silico computational model and analysis of human immune cells, we found that IFNβ directly promoted Treg cell induction via STAT1- and P300-dependent Foxp3 acetylation. These findings identify a mechanistic connection between the immunosuppressive effects of IFNβ and Treg cells, with therapeutic implications for transplantation, autoimmunity, and malignancy.
Collapse
Affiliation(s)
- Francisco Fueyo-González
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Mitchell McGinty
- Carter Immunology Center, University of Virginia, Charlottesville, VA 22903, USA
| | - Mehek Ningoo
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Lisa Anderson
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Chiara Cantarelli
- UO Nefrologia, Azienda Ospedaliero-Universitaria Parma, Parma, Italy
| | - Andrea Angeletti
- Division of Nephrology, Dialysis, Transplantation, IRCCS Giannina Gaslini, Genoa, Italy
| | - Markus Demir
- Department of Anesthesiology, University of Cologne, Cologne, Germany
| | - Inés Llaudó
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Carolina Purroy
- Department of Nephrology, Complejo Hospitalario de Navarra, Navarra, Spain
| | - Nada Marjanovic
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - David Heja
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Stuart C Sealfon
- Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Department of Neurology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Peter S Heeger
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Paolo Cravedi
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Miguel Fribourg
- Division of Nephrology, Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York City, NY, USA; Immunology Institute Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
9
|
Saraceni C, Birk J. A Review of Hepatitis B Virus and Hepatitis C Virus Immunopathogenesis. J Clin Transl Hepatol 2021; 9:409-418. [PMID: 34221927 PMCID: PMC8237136 DOI: 10.14218/jcth.2020.00095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/21/2021] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the advances in therapy, hepatitis B virus (HBV) and hepatitis C virus (HCV) still represent a significant global health burden, both as major causes of cirrhosis, hepatocellular carcinoma, and death worldwide. HBV is capable of incorporating its covalently closed circular DNA into the host cell's hepatocyte genome, making it rather difficult to eradicate its chronic stage. Successful viral clearance depends on the complex interactions between the virus and host's innate and adaptive immune response. One encouraging fact on hepatitis B is the development and effective distribution of the HBV vaccine. This has significantly reduced the spread of this virus. HCV is a RNA virus with high mutagenic capacity, thus enabling it to evade the immune system and have a high rate of chronic progression. High levels of HCV heterogeneity and its mutagenic capacity have made it difficult to create an effective vaccine. The recent advent of direct acting antivirals has ushered in a new era in hepatitis C therapy. Sustained virologic response is achieved with DAAs in 85-99% of cases. However, this still leads to a large population of treatment failures, so further advances in therapy are still needed. This article reviews the immunopathogenesis of HBV and HCV, their properties contributing to host immune system avoidance, chronic disease progression, vaccine efficacy and limitations, as well as treatment options and common pitfalls of said therapy.
Collapse
Affiliation(s)
- Corey Saraceni
- Correspondence to: Corey Saraceni, University of Connecticut School of Medicine, Department of Medicine, Division of Gastroenterology and Hepatology, 263 Farmington Avenue, Farmington, CT 06030-8074, USA. Tel: +1-203-733-7408, Fax: +1-860-679-3159, E-mail:
| | | |
Collapse
|
10
|
Zientarska A, Kaczmarek M, Mozer-Lisewska I, Kowala-Piaskowska A, Witkowska A, Żeromski J. Treg cells in the course of chronic hepatitis C virus infection partially normalize in longitudinal observation after successful DAA treatment regardless of hepatic fibrosis stage. Clin Exp Hepatol 2021; 7:196-204. [PMID: 34295988 PMCID: PMC8284172 DOI: 10.5114/ceh.2021.107122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/03/2021] [Indexed: 11/17/2022] Open
Abstract
AIM OF THE STUDY Elevated circulating CD4+ CD25+ Foxp3+ regulatory T cells in patients with chronic hepatitis C (CHC) play an unspecified role in liver fibrosis development. This study aimed to determine whether Treg cells diminish after successful treatment with directacting antivirals (DAA) in patients at different liver fibrosis stages. MATERIAL AND METHODS We examined 44 patients with CHC (including 29 with liver cirrhosis) seven days before DAA treatment (T0), six months later (T1) and then 22 of them were examined one year (T2) after the first dose. Subsequently, these were compared with 28 volunteers without hepatitis C virus (HCV) (15 with excessive alcohol intake). We assessed the degree of liver fibrosis with FibroScan, aspartate transaminase (AST) to platelet ratio index (APRI), FibroIndex, the Forns index and Fib-4. Circulating Treg cells were measured using flow cytometry. RESULTS All patients achieved a sustained virological response (SVR). After the treatment, all liver fibrosis indicators decreased significantly. The number of circulating Tregs was lower in healthy controls than in patients with CHC (0.0066 × 103 cells/µl and 0.0084 × 103 cells/µl, respectively, p = 0.048). After the treatment we observed an insignificant change to 0.0047 × 103 cells/µl for T1 (p > 0.05) and a significant fall to 0.0041 × 103 cells/µl for T2 (p = 0.03). There was no correlation between the degree of hepatic fibrosis and number of Tregs or post-treatment dynamics. CONCLUSIONS Our study shows that Treg cells normalize gradually over a prolonged period of time after a successful DAA treatment. Their number and dynamics remain independent of liver fibrosis degree. The correlation of this revelation with metabolic disorders, increased susceptibility to infections or persistent risk of HCC remains unclear.
Collapse
Affiliation(s)
- Agata Zientarska
- Chair and Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Mariusz Kaczmarek
- Chair of Clinical Immunology and Department of Cancer Immunology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, Poznan, Poland
| | - Iwona Mozer-Lisewska
- Chair and Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Arleta Kowala-Piaskowska
- Chair and Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Aleksandra Witkowska
- Chair and Department of Infectious Diseases, Hepatology and Acquired Immunodeficiencies, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| | - Jan Żeromski
- Chair of Clinical Immunology, Karol Marcinkowski University of Medical Sciences, Poznan, Poland
| |
Collapse
|
11
|
Wan M, Han J, Ding L, Hu F, Gao P. Novel Immune Subsets and Related Cytokines: Emerging Players in the Progression of Liver Fibrosis. Front Med (Lausanne) 2021; 8:604894. [PMID: 33869241 PMCID: PMC8047058 DOI: 10.3389/fmed.2021.604894] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a pathological process caused by persistent chronic injury of the liver. Kupffer cells, natural killer (NK) cells, NKT cells, and dendritic cells (DCs), which are in close contact with T and B cells, serve to bridge innate and adaptive immunity in the liver. Meanwhile, an imbalanced inflammatory response constitutes a challenge in liver disease. The dichotomous roles of novel immune cells, including T helper 17 (Th17), regulatory T cells (Tregs), mucosa-associated invariant T cells (MAIT), and innate lymphoid cells (ILCs) in liver fibrosis have gradually been revealed. These cells not only induce damage during liver fibrosis but also promote tissue repair. Hence, immune cells have unique, and often opposing, roles during the various stages of fibrosis. Due to this heterogeneity, the treatment, or reversal of fibrosis through the target of immune cells have attracted much attention. Moreover, activation of hepatic stellate cells (HSCs) constitutes the core of fibrosis. This activation is regulated by various immune mediators, including Th17, Th22, and Th9, MAIT, ILCs, and γδ T cells, as well as their related cytokines. Thus, liver fibrosis results from the complex interaction of these immune mediators, thereby complicating the ability to elucidate the mechanisms of action elicited by each cell type. Future developments in biotechnology will certainly aid in this feat to inform the design of novel therapeutic targets. Therefore, the aim of this review was to summarize the role of specific immune cells in liver fibrosis, as well as biomarkers and treatment methods related to these cells.
Collapse
Affiliation(s)
- Minjie Wan
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China.,Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Jiawen Han
- Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Lili Ding
- Central Laboratory, The First Hospital of Jilin University, Jilin University, Changchun, China.,Intensive Care Unit, The First Hospital of Jilin University, Jilin University, Changchun, China
| | - Feng Hu
- Department of Hepatology and Gastroenterology, The Second Part of First Hospital, Jilin University, Changchun, China
| | - Pujun Gao
- Department of Hepatology, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
12
|
Lymphocyte Landscape after Chronic Hepatitis C Virus (HCV) Cure: The New Normal. Int J Mol Sci 2020; 21:ijms21207473. [PMID: 33050486 PMCID: PMC7589490 DOI: 10.3390/ijms21207473] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Chronic HCV (CHC) infection is the only chronic viral infection for which curative treatments have been discovered. These direct acting antiviral (DAA) agents target specific steps in the viral replication cycle with remarkable efficacy and result in sustained virologic response (SVR) or cure in high (>95%) proportions of patients. These treatments became available 6–7 years ago and it is estimated that their real impact on HCV related morbidity, including outcomes such as cirrhosis and hepatocellular carcinoma (HCC), will not be known for the next decade or so. The immune system of a chronically infected patient is severely dysregulated and questions remain regarding the immune system’s capacity in limiting liver pathology in a cured individual. Another important consequence of impaired immunity in patients cleared of HCV with DAA will be the inability to generate protective immunity against possible re-infection, necessitating retreatments or developing a prophylactic vaccine. Thus, the impact of viral clearance on restoring immune homeostasis is being investigated by many groups. Among the important questions that need to be answered are how much the immune system normalizes with cure, how long after viral clearance this recalibration occurs, what are the consequences of persisting immune defects for protection from re-infection in vulnerable populations, and does viral clearance reduce liver pathology and the risk of developing hepatocellular carcinoma in individuals cured with these agents. Here, we review the recent literature that describes the defects present in various lymphocyte populations in a CHC patient and their status after viral clearance using DAA treatments.
Collapse
|
13
|
Abdelgawad ME, El-Zakzok H, Salah M, El-Mezayen HA. Diagnostic accuracy of hepatocyte growth factor, Fas/CD95 and Endostatin for non-invasive assessment of hepatic fibrosis in biopsy-proven hepatitis C virus patients. INFECTION GENETICS AND EVOLUTION 2020; 85:104526. [PMID: 32890764 DOI: 10.1016/j.meegid.2020.104526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/24/2020] [Accepted: 08/30/2020] [Indexed: 01/18/2023]
Abstract
BACKGROUND/AIM Evaluation of liver fibrosis in chronic hepatitis C patients (CHC) provides a high value, not only for the diagnosis of the disease, but also for the therapeutic decision. The aim of the current study is the construction of simple non-invasive and more accurate score for liver fibrosis staging in CHC patients and estimating its performance against three published non-invasive indexes. MATERIAL AND METHODS CHC patients were divided into two groups: an estimated group (n = 75) and validated group (n = 50). Liver fibrosis was tested in biopsies by Metavair score system. Fas/CD95, hepatocyte growth factor (HGF) and endostatin were assayed by enzyme linked immunosorbent assay (ELISA). Statistical analysis was performed by stepwise linear discriminate analysis and area under-receiver operating curves (AUCs). RESULTS The multivariate discriminate analysis (MDA) selects a function based on absolute values of five biochemical markers; FHEPA (Fas/CD95, HGF, Endostatin, Platelets&Albumin)-Test score = 1.2 × Fas/CD95 (ng/mL) + 0.006 × HGF (pg/mL) + 0.03 × Endostatin (ng/mL) - 0.007 × platelets count(109/L)-3.6 × Albumin (g/dL) - 8.6.FHEPA-Test producesAUCs 0.99, 0.877 and 0.847 to discriminate patients with significant fibrosis (F2-F4), advanced fibrosis (F3-F4) and cirrhosis (F4), respectively. CONCLUSION FHEPA-Test is considered a novel non-invasive test which could be applied in assessment of liver fibrosis in HCV infected patients. Our novel score was more efficient than Immune Fibrosis Index, Fibrosis Index and FibroQ and thus it could be more applicable, feasible & economic for Egyptian HCV patients. Our Novel Scoring system could be globalized to other populations to confirm its advantageous use in early diagnosis of liver fibrosis.
Collapse
Affiliation(s)
- Mohamed Essameldin Abdelgawad
- Biochemistry Division, Chemistry Department, Helwan University, Cairo, Egypt; Inserm UMR-S-MD 1197, Hôpital Paul Brousse, Villejuif, France; Paris-Saclay University, Villejuif, France
| | | | - Mona Salah
- Clinical Pathology Department, Cairo University, Cairo, Egypt
| | - Hatem A El-Mezayen
- Biochemistry Division, Chemistry Department, Helwan University, Cairo, Egypt; Gastroentrological Surgery Department, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
14
|
Kawaguchi T, Ide T, Kondo R, Nomura Y, Arinaga-Hino T, Kuwahara R, Amano K, Sano T, Akiba J, Ohshima K, Yano H, Torimura T. Histological changes in patients who developed hepatocellular carcinoma after hepatitis C virus eradication by interferon-based therapy. Exp Ther Med 2019; 18:3991-4001. [PMID: 31616517 PMCID: PMC6781808 DOI: 10.3892/etm.2019.8024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 07/30/2019] [Indexed: 12/11/2022] Open
Abstract
Although the incidence of hepatocellular carcinoma (HCC) occurring after hepatitis C virus (HCV) eradication has decreased, there are still reports of hepatocarcinogenesis. The present study investigated the histological changes of non-cancerous liver tissue obtained prior to interferon (IFN) therapy and after HCC development. A total of 669 HCV-infected Japanese patients who achieved sustained virological response (SVR) by IFN-based therapy were retrospectively enrolled. Of these, the present study investigated 18 patients who developed HCC after IFN-based SVR. Specimens from 9 of 18 patients were available for histological comparisons prior to IFN therapy and following HCC development. Of these 9 patients, the specimens of 5 individuals were compared via immunohistochemical staining [CD3, CD4, CD8, CD20, forkhead box P3 (FOXP3), transforming growth factor-β1 and granzyme B]. The current study included 6 control patients with HCV-associated chronic liver disease who subsequently developed HCC (non-SVR-HCC group). Mann-Whitney and Wilcoxon tests were used to compare groups. Bonferroni correction was used for multiple comparisons. P<0.05 was used as a critical P-value, and following Bonferroni's correction, P<0.017 was considered to indicate a statistically significant difference. In the 9 patients examined, continuous inflammation and fibrosis were observed after HCC development. There was also a significant decrease in the positive rate of FOXP3 in all 5 patients at the time of HCC development compared with that prior to IFN therapy (P=0.0084). Additionally, there was a significant difference in the positive rate of FOXP3 between the 5 patients after HCC development and the control individuals (P=0.0022). In patients who developed HCC after IFN-based SVR, the frequency of FOXP3 decreased, but inflammation and fibrosis remained. The extent of the reduction of FOXP3 differed in patients who developed HCC in the presence of HCV. Inflammation and fibrosis remained for a long duration after SVR, which may be associated with hepatocarcinogenesis.
Collapse
Affiliation(s)
- Toshihiro Kawaguchi
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Tatsuya Ide
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Reiichiro Kondo
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Yoriko Nomura
- Department of Surgery, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Teruko Arinaga-Hino
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Reiichiro Kuwahara
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Keisuke Amano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Tomoya Sano
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Jun Akiba
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Koichi Ohshima
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hirohisa Yano
- Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Takuji Torimura
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| |
Collapse
|
15
|
Hampras SS, Tommasino M, Zhao Y, Messina JL, Giuliano AR, Fenske NA, Cherpelis B, Hesterberg RS, Akuffo AA, Amorrortu RP, Balliu J, Vijayan L, Gheit T, Epling-Burnette PK, Rollison DE. Cross-sectional associations between cutaneous viral infections and regulatory T lymphocytes in circulation. Br J Dermatol 2019; 180:1449-1458. [PMID: 30431148 PMCID: PMC6520211 DOI: 10.1111/bjd.17429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND Cutaneous viral infections and immune suppression are risk factors for some forms of nonmelanoma skin cancer; however, their interrelationship is poorly understood. OBJECTIVES To examine cross-sectional associations between cutaneous viral infections and circulating forkhead-box P3 (FOXP3)-expressing T-regulatory (Treg) cells, suppressive cells that dampen effective antitumour immunity. MATERIALS AND METHODS Blood, eyebrow hair (EBH) and skin swab (SSW) samples were collected from 352 patients 60 years and older undergoing skin screening, without prevalent skin cancer, while participating in an ongoing prospective cohort study of cutaneous viral infections and skin cancer. DNA corresponding to 98 cutaneous human papillomavirus (HPV) types and five human polyomaviruses (HPyV) was assessed in EBH and SSW. Distinct classes of circulating Treg-cell subpopulations were defined by flow cytometry including cutaneous lymphocyte antigen (CLA) and CCR4high Treg cells, both previously associated with cutaneous diseases. Age- and sex-adjusted associations between circulating T-cell populations and infection were estimated using logistic regression. RESULTS Total Treg-cell proportion in peripheral blood was not associated with β HPV or HPyV infection. However, the proportion of circulating CLA+ Treg cells was inversely associated with γ HPV EBH infection [odds ratio (OR) 0·54, 95% confidence interval (CI) 0·35-0·84]. Interestingly, circulating Treg cells expressing markers indicative of antigen activation (CD27- CD45RA- FOXP3+ CD4+ ) were also inversely associated with γ HPV infection in SSW (OR 0·55, 95% CI 0·30-0·99) and EBH (OR 0·56, 95% CI 0·36-0·86). CONCLUSIONS Inverse associations between circulating Treg cells and γ HPV infection suggest that localized viral infection may promote immunosuppressive cell migration into skin.
Collapse
Affiliation(s)
- S S Hampras
- Department of Cancer Epidemiology, 12902 Magnolia Drive, Tampa, FL, 33612, U.S.A
| | - M Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Y Zhao
- Department of Cancer Epidemiology, 12902 Magnolia Drive, Tampa, FL, 33612, U.S.A
| | - J L Messina
- Department of Dermatology and Cutaneous Surgery, University of South Florida College of Medicine, Tampa, FL, U.S.A
- Department of Cutaneous Oncology, 12902 Magnolia Drive, Tampa, FL, 33612, U.S.A
- Department of Anatomic Pathology, 12902 Magnolia Drive, Tampa, FL, 33612, U.S.A
| | - A R Giuliano
- Center for Immunization and Infection Research in Cancer, 12902 Magnolia Drive, Tampa, FL, 33612, U.S.A
| | - N A Fenske
- Department of Dermatology and Cutaneous Surgery, University of South Florida College of Medicine, Tampa, FL, U.S.A
| | - B Cherpelis
- Department of Dermatology and Cutaneous Surgery, University of South Florida College of Medicine, Tampa, FL, U.S.A
| | - R S Hesterberg
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, U.S.A
| | - A A Akuffo
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, U.S.A
| | - R P Amorrortu
- Department of Cancer Epidemiology, 12902 Magnolia Drive, Tampa, FL, 33612, U.S.A
| | - J Balliu
- Department of Cancer Epidemiology, 12902 Magnolia Drive, Tampa, FL, 33612, U.S.A
| | - L Vijayan
- Department of Cancer Epidemiology, 12902 Magnolia Drive, Tampa, FL, 33612, U.S.A
| | - T Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - P K Epling-Burnette
- Department of Immunology, Moffitt Cancer Center, 12902 Magnolia Drive, Tampa, FL, 33612, U.S.A
| | - D E Rollison
- Department of Cancer Epidemiology, 12902 Magnolia Drive, Tampa, FL, 33612, U.S.A
| |
Collapse
|
16
|
Chigbu DI, Loonawat R, Sehgal M, Patel D, Jain P. Hepatitis C Virus Infection: Host⁻Virus Interaction and Mechanisms of Viral Persistence. Cells 2019; 8:cells8040376. [PMID: 31027278 PMCID: PMC6523734 DOI: 10.3390/cells8040376] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/25/2019] [Accepted: 04/17/2019] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C (HCV) is a major cause of liver disease, in which a third of individuals with chronic HCV infections may develop liver cirrhosis. In a chronic HCV infection, host immune factors along with the actions of HCV proteins that promote viral persistence and dysregulation of the immune system have an impact on immunopathogenesis of HCV-induced hepatitis. The genome of HCV encodes a single polyprotein, which is translated and processed into structural and nonstructural proteins. These HCV proteins are the target of the innate and adaptive immune system of the host. Retinoic acid-inducible gene-I (RIG-I)-like receptors and Toll-like receptors are the main pattern recognition receptors that recognize HCV pathogen-associated molecular patterns. This interaction results in a downstream cascade that generates antiviral cytokines including interferons. The cytolysis of HCV-infected hepatocytes is mediated by perforin and granzyme B secreted by cytotoxic T lymphocyte (CTL) and natural killer (NK) cells, whereas noncytolytic HCV clearance is mediated by interferon gamma (IFN-γ) secreted by CTL and NK cells. A host-HCV interaction determines whether the acute phase of an HCV infection will undergo complete resolution or progress to the development of viral persistence with a consequential progression to chronic HCV infection. Furthermore, these host-HCV interactions could pose a challenge to developing an HCV vaccine. This review will focus on the role of the innate and adaptive immunity in HCV infection, the failure of the immune response to clear an HCV infection, and the factors that promote viral persistence.
Collapse
Affiliation(s)
- DeGaulle I Chigbu
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
- Pennsylvania College of Optometry at Salus University, Elkins Park, PA 19027, USA.
| | - Ronak Loonawat
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Mohit Sehgal
- Immunology, Microenvironment & Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA.
| | - Dip Patel
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| | - Pooja Jain
- Department of Microbiology and Immunology, and the Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA.
| |
Collapse
|
17
|
Irshad M, Gupta P, Irshad K. Immunopathogenesis of Liver Injury During Hepatitis C Virus Infection. Viral Immunol 2019; 32:112-120. [PMID: 30817236 DOI: 10.1089/vim.2018.0124] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The present report describes current concepts about the mechanism of liver cell injury caused by host immune response against hepatitis C virus (HCV) infection in human beings. This report is based on the observations from experimental studies and follow-up actions on human liver diseases. The results from different investigations suggest that liver injury depends on the presentation of viral antigen and the level of host immune response raised against HCV-related peptides. Both innate and adaptive immunity are triggered to counter the viral onset. During development of host immunity, the cell-mediated immune response involving CD4+ Th1 cells and CD8+ cytotoxic T-lymphocyte (CTL) cells were found to play a major role in causing liver damage. The hepatic Innate lymphoid cells (ILCs) subsets are involved in the immune regulation of different liver diseases: viral hepatitis, mechanical liver injury, and fibrosis. Humoral immunity and natural killer (NK) cell action also contributed in liver cell injury by antibody-dependent cellular cytotoxicity (ADCC). In fact, immunopathogenesis of HCV infection is a complex phenomenon where regulation of immune response at several steps decides the possibility of viral elimination or persistence. Regulation of immune response was noted starting from viral-host interaction to immune reaction cascade engaged in cell damage. The activation or suppression of interferon-stimulated genes, NK cell action, CTL inducement by regulatory T cells (Treg), B cell proliferation, and so on was demonstrated during HCV infection. Involvement of HLA in antigen presentation, as well as types of viral genotypes, also influenced host immune response against HCV peptides. The combined effect of all these effector mechanisms ultimately decides the progression of viral onset to acute or chronic infection. In conclusion, immunopathogenesis of liver injury after HCV infection may be ascribed mainly to host immune response. Second, it is cell-mediated immunity that plays a predominant role in liver cell damage.
Collapse
Affiliation(s)
- Mohammad Irshad
- 1 Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Priyanka Gupta
- 2 Clinical Biochemistry Division, Department of Laboratory Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Khushboo Irshad
- 3 Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
18
|
Luxenburger H, Neumann-Haefelin C, Thimme R, Boettler T. HCV-Specific T Cell Responses During and After Chronic HCV Infection. Viruses 2018; 10:v10110645. [PMID: 30453612 PMCID: PMC6265781 DOI: 10.3390/v10110645] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Hepatitis C virus (HCV)-specific T cell responses are closely linked to the clinical course of infection. While T cell responses in self-limiting infection are typically broad and multi-specific, they display several distinct features of functional impairment in the chronic phase. Moreover, HCV readily adapts to immune pressure by developing escape mutations within epitopes targeted by T cells. Much of our current knowledge on HCV-specific T cell responses has been gathered under the assumption that this might eventually pave the way for a therapeutic vaccine. However, with the development of highly efficient direct acting antivirals (DAAs), there is less interest in the development of a therapeutic vaccine for HCV and the scope of T cell research has shifted. Indeed, the possibility to rapidly eradicate an antigen that has persisted over years or decades, and has led to T cell exhaustion and dysfunction, provides the unique opportunity to study potential T cell recovery after antigen cessation in a human in vivo setting. Findings from such studies not only improve our basic understanding of T cell immunity but may also advance immunotherapeutic approaches in cancer or chronic hepatitis B and D infection. Moreover, in order to edge closer to the WHO goal of HCV elimination by 2030, a prophylactic vaccine is clearly required. Thus, in this review, we will summarize our current knowledge on HCV-specific T cell responses and also provide an outlook on the open questions that require answers in this field.
Collapse
Affiliation(s)
- Hendrik Luxenburger
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Robert Thimme
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| | - Tobias Boettler
- Department of Medicine II, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany.
| |
Collapse
|
19
|
Pereira LMS, Amoras EDSG, da Silva Conde SRS, Demachki S, Monteiro JC, Martins-Feitosa RN, da Silva ANMR, Ishak R, Vallinoto ACR. The - 3279C> A and - 924A> G polymorphisms in the FOXP3 Gene Are Associated With Viral Load and Liver Enzyme Levels in Patients With Chronic Viral Liver Diseases. Front Immunol 2018; 9:2014. [PMID: 30233595 PMCID: PMC6131495 DOI: 10.3389/fimmu.2018.02014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/15/2018] [Indexed: 12/30/2022] Open
Abstract
The transcription factor FOXP3 is an essential marker of the development and activation of regulatory T cells (Tregs), which are cells specialized in the regulation and normal tolerance of the immune response. In the context of chronic viral liver diseases, Tregs participate in the maintenance of infections by promoting histopathological control and favor the immune escape of viral agents by suppressing the antiviral response. Single nucleotide polymorphisms (SNPs) may influence the function of FOXP3 in a number of pathological conditions. The present study sought to evaluate the influence of SNPs in the FOXP3 gene promoter region in patients with chronic viral liver diseases. Three SNPs (−3279C>A, −2383C>T, and −924A>G) were analyzed in groups of patients with chronic hepatitis C (CHC), active chronic hepatitis B (CHB-A), inactive chronic hepatitis B (CHB-I), and a healthy control group (CG) using real-time PCR. The frequencies of the polymorphic variants were compared between groups and correlated with liver histopathological characteristics and enzyme levels [i.e., alanine aminotransferase (ALT), aspartate aminotransferase (AST) and gamma-glutamyl transpeptidase (GGT)] obtained via biopsy and from the clinical records of the participating patients, respectively. For the −2338C>T SNP, no significant differences were found in the frequencies of variants between groups or in the histological findings. Significant associations between the polymorphisms and the CHB-I group were not established. The −3279C>A SNP was associated with altered viral loads (log10) and GGT levels in CHC patients with advanced stages of inflammatory activity and liver fibrosis. The −924A>G SNP was associated with altered viral loads (log10) and liver enzyme levels among CHB-A patients with milder inflammation and fibrosis. However, the frequencies of the −3279C>A and −924A>G polymorphisms were not directly associated with the histopathological profiles of the analyzed patients. These polymorphic variants may influence hepatic function in patients with chronic viral liver diseases but are not directly associated with the establishment of the degree of inflammatory activity and liver fibrosis.
Collapse
Affiliation(s)
- Leonn M S Pereira
- Laboratório de Virologia, Instituto de Ciências Biológicas Universidade Federal do Pará, Belém, Brazil
| | | | | | - Sâmia Demachki
- Faculdade de Medicina, Instituto de Ciências da Saúde, Universidade Federal do Pará, Belém, Brazil
| | - Jaqueline C Monteiro
- Laboratório de Virologia, Instituto de Ciências Biológicas Universidade Federal do Pará, Belém, Brazil
| | - Rosimar N Martins-Feitosa
- Laboratório de Virologia, Instituto de Ciências Biológicas Universidade Federal do Pará, Belém, Brazil
| | - Andrea N M R da Silva
- Laboratório de Virologia, Instituto de Ciências Biológicas Universidade Federal do Pará, Belém, Brazil
| | - Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas Universidade Federal do Pará, Belém, Brazil
| | - Antonio C R Vallinoto
- Laboratório de Virologia, Instituto de Ciências Biológicas Universidade Federal do Pará, Belém, Brazil
| |
Collapse
|
20
|
Cobb DA, Golden-Mason L, Rosen HR, Hahn YS, Hahn YS. Hepatocyte-derived exosomes promote T follicular regulatory cell expansion during hepatitis C virus infection. Hepatology 2018; 67:71-85. [PMID: 28749570 PMCID: PMC5739980 DOI: 10.1002/hep.29409] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 07/17/2017] [Accepted: 07/25/2017] [Indexed: 12/11/2022]
Abstract
UNLABELLED Hepatitis C virus (HCV) is a global health concern that can cause severe liver disease, such as cirrhosis and hepatocellular carcinoma. Control of HCV requires vigorous T-cell responses, yet CD4+ T cells in chronic HCV patients are dysfunctional. T follicular regulatory (Tfr) cells are a subset of regulatory T cells that suppress T follicular helper (Tfh) cells and the generation of high affinity antibody-producing B cells. In this study, we examined the accumulation of Tfr cells in the liver compartment during chronic HCV infection and defined the cellular and molecular mechanisms underlying their expansion. Our analysis revealed a substantial population of Tfr cells in livers of chronic HCV patients that is absent in liver tissues from nonviral hepatitis or healthy subjects. Coculture of PBMCs from healthy subjects with HCV-infected hepatoma cells resulted in preferential expansion of circulating Tfr cells, leading to suppression of Tfh cells. Additionally, coculture of tonsillar cells with infected hepatoma cells lead to an expansion of germinal center Tfr. Notably, expansion was mediated by transforming growth factor beta (TGF-β)-containing exosomes released from HCV-infected hepatocytes given that blockade of exosome-associated TGF-β or inhibition of exosome release abrogated Tfr expansion. CONCLUSION These results show that liver-derived exosomes play a pivotal role in the accumulation of Tfr cells, likely leading to suppression of Tfh responses in HCV-infected patients. Our study identifies a novel pathway in which HCV infection in hepatocytes exacerbates Tfr cell responses to subvert antiviral immunity. (Hepatology 2018;67:71-85).
Collapse
Affiliation(s)
- Dustin A. Cobb
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville
| | - Lucy Golden-Mason
- Department of Gastroenterology, University of Colorado Health Sciences Center, Aurora, CO
| | - Hugo R. Rosen
- Department of Gastroenterology, University of Colorado Health Sciences Center, Aurora, CO
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville,Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville,Corresponding author: Young S. Hahn, UVA-Beirne Carter Center, 345 Crispell Dr. MR6 Bldg Room 3713, Charlottesville, VA 22908-1386, Telephone number: 434-924-1155, Fax number: 434-924-1221,
| | - Young S. Hahn
- Beirne B. Carter Center for Immunology Research; University of Virginia; Charlottesville VA
- Department of Microbiology, Immunology, and Cancer Biology; University of Virginia; Charlottesville VA
| |
Collapse
|
21
|
Pereira LMS, Gomes STM, Ishak R, Vallinoto ACR. Regulatory T Cell and Forkhead Box Protein 3 as Modulators of Immune Homeostasis. Front Immunol 2017; 8:605. [PMID: 28603524 PMCID: PMC5445144 DOI: 10.3389/fimmu.2017.00605] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/08/2017] [Indexed: 12/15/2022] Open
Abstract
The transcription factor forkhead box protein 3 (FOXP3) is an essential molecular marker of regulatory T cell (Treg) development in different microenvironments. Tregs are cells specialized in the suppression of inadequate immune responses and the maintenance of homeostatic tolerance. Studies have addressed and elucidated the role played by FOXP3 and Treg in countless autoimmune and infectious diseases as well as in more specific cases, such as cancer. Within this context, the present article reviews aspects of the immunoregulatory profile of FOXP3 and Treg in the management of immune homeostasis, including issues relating to pathology as well as immune tolerance.
Collapse
Affiliation(s)
- Leonn Mendes Soares Pereira
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Samara Tatielle Monteiro Gomes
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil.,Programa de Pós-Graduação em Biologia de Agentes Infecciosos e Parasitários, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | - Ricardo Ishak
- Laboratório de Virologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Pará, Brazil
| | | |
Collapse
|
22
|
Penaloza-MacMaster P. CD8 T-cell regulation by T regulatory cells and the programmed cell death protein 1 pathway. Immunology 2017; 151:146-153. [PMID: 28375543 DOI: 10.1111/imm.12739] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/09/2017] [Accepted: 03/29/2017] [Indexed: 12/23/2022] Open
Abstract
The primary function of the immune system is to protect the host from infectious microorganisms and cancers. However, a major component of the immune response involves the direct elimination of cells in the body and the induction of systemic inflammation, which may result in life-threatening immunopathology. Therefore, the immune system has developed complex mechanisms to regulate itself with a specialized subset of CD4 T lymphocytes (referred to as regulatory T cells) and immune checkpoint pathways, such as the programmed cell death protein 1 pathway. These immune regulatory mechanisms can be exploited by pathogens and tumours to establish persistence in the host, warranting a deeper understanding of how to fine-tune immune responses during these chronic diseases. Here, I discuss various features of immune regulatory pathways and what important aspects must be considered in the next generation of therapies to reverse immune exhaustion, understanding that this process is a natural mechanism to prevent the host from destroying itself.
Collapse
Affiliation(s)
- Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
23
|
Jung MK, Shin EC. Regulatory T Cells in Hepatitis B and C Virus Infections. Immune Netw 2016; 16:330-336. [PMID: 28035208 PMCID: PMC5195842 DOI: 10.4110/in.2016.16.6.330] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/21/2016] [Accepted: 10/02/2016] [Indexed: 02/08/2023] Open
Abstract
Hepatitis B virus (HBV) and hepatitis C virus (HCV) are hepatotropic viruses that establish chronic persistent infection by effectively escaping the host immune response and can cause immune-mediated liver injury. It has recently become apparent that regulatory T (Treg) cells, specifically CD4+CD25+Foxp3+ Treg cells, modulate viral diseases by suppressing antiviral immune responses and regulating inflammatory host injury. The roles of Treg cells in HBV and HCV infections range from suppressing antiviral T cell responses to protecting the liver from immune-mediated damage. This review describes Treg cells and subpopulations and focuses on the roles of these cells in HBV and HCV infections.
Collapse
Affiliation(s)
- Min Kyung Jung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
24
|
Hartling HJ, Ballegaard VC, Nielsen NS, Gaardbo JC, Nielsen SD. Immune regulation in chronic hepatitis C virus infection. Scand J Gastroenterol 2016; 51:1387-97. [PMID: 27436030 DOI: 10.3109/00365521.2016.1170875] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The immunological result of infection with Hepatitis C virus (HCV) depends on the delicate balance between a vigorous immune response that may clear the infection, but with a risk of unspecific inflammation and, or a less inflammatory response that leads to chronic infection. In general, exhaustion and impairment of cytotoxic function of HCV-specific T cells and NK cells are found in patients with chronic HCV infection. In contrast, an increase in immune regulatory functions is found primarily in form of increased IL-10 production possibly due to increased level and function of anti-inflammatory Tregs. Thus, the major immune players during chronic HCV infection are characterized by a decrease of cytotoxic function and increase of inhibitory functions. This may be an approach to diminish intrahepatic and systemic inflammation. Finally, there has been increasing awareness of regulatory functions of epigenetic changes in chronic HCV infection. A vast amount of studies have revealed the complexity of immune regulation in chronic HCV infection, but the interplay between immune regulation in virus and host remains incompletely understood. This review provides an overview of regulatory functions of HCV-specific T cells, NK cells, Tregs, IL-10, and TGF-β, as well as epigenetic changes in the setting of chronic HCV infection.
Collapse
Affiliation(s)
- Hans Jakob Hartling
- a Viro-Immunology Research Unit, Department of Infectious Diseases , University of Copenhagen , Rigshospitalet , Denmark
| | - Vibe Cecilie Ballegaard
- a Viro-Immunology Research Unit, Department of Infectious Diseases , University of Copenhagen , Rigshospitalet , Denmark
| | - Nick Schou Nielsen
- a Viro-Immunology Research Unit, Department of Infectious Diseases , University of Copenhagen , Rigshospitalet , Denmark
| | - Julie Christine Gaardbo
- a Viro-Immunology Research Unit, Department of Infectious Diseases , University of Copenhagen , Rigshospitalet , Denmark
| | - Susanne Dam Nielsen
- a Viro-Immunology Research Unit, Department of Infectious Diseases , University of Copenhagen , Rigshospitalet , Denmark
| |
Collapse
|
25
|
Mehta M, Hetta HF, Abdel-Hameed EA, Rouster SD, Hossain M, Mekky MA, Khalil NK, Mohamed WA, El-Feky MA, Ahmed SH, Daef EA, El-Mokhtar MA, Abdelwahab SF, Medhat A, Sherman KE, Shata MTM. Association between IL28B rs12979860 single nucleotide polymorphism and the frequency of colonic Treg in chronically HCV-infected patients. Arch Virol 2016; 161:3161-3169. [PMID: 27544760 PMCID: PMC5035222 DOI: 10.1007/s00705-016-3015-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 08/11/2016] [Indexed: 02/08/2023]
Abstract
The IL28B gene is associated with spontaneous or treatment-induced HCV viral clearance. However, the mechanism by which the IL28B single nucleotide polymorphism (SNP) affects the extra-hepatic HCV immune responses and its relationship to HCV pathogenesis have not been thoroughly investigated. To examine the mechanism by which IL28B affects HCV clearance. Forty Egyptian patients with chronic HCV infection receiving an Interferon/ribavirin treatment regimen were enrolled into this study. There were two groups: non-responders (NR; n = 20) and sustained virologic responders (SVR; n = 20). The initial plasma HCV viral loads prior to treatment and IL28B genotypes were determined by quantitative RT-PCR and sequencing, respectively. Liver biopsies were examined to determine the inflammatory score and the stage of fibrosis. Colonic regulatory T cell (Treg) frequency was estimated by immunohistochemistry. No significant association between IL28B genotypes and response to therapy was identified, despite an odds ratio of 3.4 to have the TT genotype in NR compared to SVR (95 % confidence interval 0.3-35.3, p = 0.3). Patients with the TT-IL28Brs12979860 genotype (unfavorable genotype) have significantly higher frequencies of colonic Treg compared to the CT (p = 0.04) and CC (p = 0.03) genotypes. The frequency of colonic Treg cells in HCV-infected patients had a strong association with the IL-28B genotype and may have a significant impact on HCV clearance.
Collapse
Affiliation(s)
- Minesh Mehta
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati Medical Center, 231 Albert B. Sabin Way, Cincinnati, OH, 45267-0595, USA
| | - Helal F Hetta
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati Medical Center, 231 Albert B. Sabin Way, Cincinnati, OH, 45267-0595, USA
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Enass A Abdel-Hameed
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati Medical Center, 231 Albert B. Sabin Way, Cincinnati, OH, 45267-0595, USA
| | - Susan D Rouster
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati Medical Center, 231 Albert B. Sabin Way, Cincinnati, OH, 45267-0595, USA
| | - MdMonir Hossain
- Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mohamed A Mekky
- Department of Gastroenterology and Tropical Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Nasr K Khalil
- Assiut Liver Institute for Treatment of Hepatitis C, Assiut, Egypt
| | - Wegdan A Mohamed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A El-Feky
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Shabaan H Ahmed
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Enas A Daef
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Mohamed A El-Mokhtar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Sayed F Abdelwahab
- Department of Microbiology and Immunology, Faculty of Medicine, Minia University, Minya, Egypt
| | - Ahmed Medhat
- Department of Gastroenterology and Tropical Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Kenneth E Sherman
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati Medical Center, 231 Albert B. Sabin Way, Cincinnati, OH, 45267-0595, USA
| | - Mohamed Tarek M Shata
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati Medical Center, 231 Albert B. Sabin Way, Cincinnati, OH, 45267-0595, USA.
- Department of Microbiology, Saint James School of Medicine, Saint Vincent, Arnos Vale, Saint Vincent and the Grenadines.
| |
Collapse
|
26
|
Amoras EDSG, Gomes STM, Freitas FB, Santana BB, Ishak G, Ferreira de Araújo MT, Demachki S, Conde SRSDS, Ishak MDOG, Ishak R, Vallinoto ACR. Intrahepatic mRNA Expression of FAS, FASL, and FOXP3 Genes Is Associated with the Pathophysiology of Chronic HCV Infection. PLoS One 2016; 11:e0156604. [PMID: 27243827 PMCID: PMC4887037 DOI: 10.1371/journal.pone.0156604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 05/17/2016] [Indexed: 12/20/2022] Open
Abstract
This study aimed to evaluate the relative mRNA expression of Fas receptor (FAS), Fas ligand (FASL), and forkhead box protein 3 (FOXP3) in liver biopsy specimens obtained from patients with viral and non-viral chronic hepatitis and correlate their expression with the fibrosis stage. A total of 51 liver biopsy specimens obtained from HBV (n = 6), HCV (n = 28), and non-viral hepatic disease (NVHD) (n = 9) patients and from individuals with normal liver histology (n = 8) (control—CT) were analyzed. Quantifications of the target genes were assessed using qPCR, and liver biopsies according to the METAVIR classification. The mRNA expression levels of FAS and FASL were lower in the CT group compared to the groups of patients. The increase in the mRNA expression of FAS and FASL was correlated with higher levels of inflammation and disease progression, followed by a decline in tissues with cirrhosis, and it was also associated with increased levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Higher mRNA expression of FOXP3 was observed in the HCV and NVHD groups, with the peak observed among patients with cirrhosis. The increased FOXP3 mRNA expression was positively correlated with increased FAS and FASL mRNA expression and the AST and ALT levels in all patients. Conclusions: These results suggest that regardless of the cause, the course of chronic liver disease may be modulated by the analyzed genes and correlated with an increase in regulatory T cells during the liver damage followed by hepatocyte destruction by Fas/FasL system and subsequent non specific lymphocytic infiltrate accumulation.
Collapse
Affiliation(s)
- Ednelza da Silva Graça Amoras
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará –UFPA), Belém, Pará, Brazil
| | - Samara Tatielle Monteiro Gomes
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará –UFPA), Belém, Pará, Brazil
| | - Felipe Bonfim Freitas
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará –UFPA), Belém, Pará, Brazil
| | - Bárbara Brasil Santana
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará –UFPA), Belém, Pará, Brazil
| | - Geraldo Ishak
- João de Barros Barreto Hospital, Federal University of Pará (Universidade Federal do Pará –UFPA), Belém, Pará, Brazil
| | | | - Sâmia Demachki
- School of Medicine, Institute of Health Sciences, Federal University of Pará (Universidade Federal do Pará –UFPA), Belém, Pará, Brazil
| | - Simone Regina Souza da Silva Conde
- School of Medicine, Institute of Health Sciences, Federal University of Pará (Universidade Federal do Pará –UFPA), Belém, Pará, Brazil
- Hepatology Outpatient Service, Holy House of Mercy Foundation of Pará (Santa Casa de Misericórdia do Pará), Belém, Pará, Brazil
| | | | - Ricardo Ishak
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará –UFPA), Belém, Pará, Brazil
| | - Antonio Carlos Rosário Vallinoto
- Laboratory of Virology, Institute of Biological Sciences, Federal University of Pará (Universidade Federal do Pará –UFPA), Belém, Pará, Brazil
- * E-mail:
| |
Collapse
|
27
|
Abdelwahab SF. Cellular immune response to hepatitis-C-virus in subjects without viremia or seroconversion: is it important? Infect Agent Cancer 2016; 11:23. [PMID: 27186234 PMCID: PMC4867533 DOI: 10.1186/s13027-016-0070-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 03/30/2016] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C Virus (HCV) causes chronic infection and represents a global health burden. To date, there is no licensed vaccine for HCV. The high viral replication rate and the existence of several HCV genotypes and quasispecies hamper the development of an effective universal vaccine. In this regard, the current HCV vaccine candidates show genotype-specific protection or narrow cross reactivity against other genotypes. Importantly, HCV spontaneous clearance occurs in 15-50 % of infected subjects, indicating that natural resistance to chronic infection exists. This phenomenon was demonstrated among humans and chimpanzees and continues to motivate researchers attempting to develop an effective HCV vaccine. However, what constitutes a protective immune response or correlate of protection against HCV infection is still vague. Additionally, the mechanisms behind successful HCV clearance suggest the coordination of several arms of the immune system, with cell-mediated immunity (CMI) playing a crucial role in this process. By contrast, although neutralizing antibodies have been identified, they are isolate-specific and poorly correlate with viral clearance. Antigen-specific CD4 T cells, instead, correlate with transient decline in HCV viremia and long-lasting control of the infection. Unfortunately, HCV has been very successful in evading host immune mechanisms, leading to complications such as liver fibrosis, cirrhosis and hepatocellular carcinoma. Interestingly, CMI to HCV antigens were shown among exposed individuals without viremia or seroconversion, suggesting the clearance of prior HCV infection(s). These individuals include family members living with HCV-infected subjects, healthcare workers, IV drug users, and sexual contacts. The correlates of protection could be closely monitored among these individuals. This review provides a summary of HCV-specific immune responses in general and of CMI in particular in these cohorts. The importance of these CMI responses are discussed.
Collapse
Affiliation(s)
- Sayed F. Abdelwahab
- />Departement of Microbiology and Immunology, Faculty of Medicine, Minia University, Minia, 61511 Egypt
- />Department of Microbiology, College of Pharmacy, Taif University, Taif, 21974 Kingdom of Saudi Arabia
| |
Collapse
|
28
|
Ohira K, Nakahara A, Konnai S, Okagawa T, Nishimori A, Maekawa N, Ikebuchi R, Kohara J, Murata S, Ohashi K. Bovine leukemia virus reduces anti-viral cytokine activities and NK cytotoxicity by inducing TGF-β secretion from regulatory T cells. IMMUNITY INFLAMMATION AND DISEASE 2016; 4:52-63. [PMID: 27042304 PMCID: PMC4768061 DOI: 10.1002/iid3.93] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/31/2022]
Abstract
CD4+CD25highFoxp3+ T cells suppress excess immune responses that lead to autoimmune and/or inflammatory diseases, and maintain host immune homeostasis. However, CD4+CD25highFoxp3+ T cells reportedly contribute to disease progression by over suppressing immune responses in some chronic infections. In this study, kinetic and functional analyses of CD4+CD25highFoxp3+ T cells were performed in cattle with bovine leukemia virus (BLV) infections, which have reported immunosuppressive characteristics. In initial experiments, production of the Th1 cytokines IFN‐γ and TNF‐α was reduced in BLV‐infected cattle compared with uninfected cattle, and numbers of IFN‐γ or TNF‐α producing CD4+ T cells decreased with disease progression. In contrast, IFN‐γ production by NK cells was inversely correlated with BLV proviral loads in infected cattle. Additionally, during persistent lymphocytosis disease stages, NK cytotoxicity was depressed as indicated by low expression of the cytolytic protein perforin. Concomitantly, total CD4+CD25highFoxp3+ T cell numbers and percentages of TGF‐β+ cells were increased, suggesting that TGF‐β plays a role in the functional declines of CD4+ T cells and NK cells. In further experiments, recombinant bovine TGF‐β suppressed IFN‐γ and TNF‐α production by CD4+ T cells and NK cytotoxicity in cultured cells. These data suggest that TGF‐β from CD4+CD25highFoxp3+ T cells is immunosuppressive and contributes to disease progression and the development of opportunistic infections during BLV infection.
Collapse
Affiliation(s)
- Kosuke Ohira
- Department of Disease Control Graduate School of Veterinary Medicine Hokkaido University Sapporo 060-0818 Japan
| | - Ayako Nakahara
- Department of Disease Control Graduate School of Veterinary Medicine Hokkaido University Sapporo 060-0818 Japan
| | - Satoru Konnai
- Department of Disease Control Graduate School of Veterinary Medicine Hokkaido University Sapporo 060-0818 Japan
| | - Tomohiro Okagawa
- Department of Disease Control Graduate School of Veterinary Medicine Hokkaido University Sapporo 060-0818 Japan
| | - Asami Nishimori
- Department of Disease Control Graduate School of Veterinary Medicine Hokkaido University Sapporo 060-0818 Japan
| | - Naoya Maekawa
- Department of Disease Control Graduate School of Veterinary Medicine Hokkaido University Sapporo 060-0818 Japan
| | - Ryoyo Ikebuchi
- Department of Disease Control Graduate School of Veterinary Medicine Hokkaido University Sapporo 060-0818 Japan
| | - Junko Kohara
- Hokkaido Research Organization Agriculture Research Department, Animal Research Center Shintoku 081-0038 Japan
| | - Shiro Murata
- Department of Disease Control Graduate School of Veterinary Medicine Hokkaido University Sapporo 060-0818 Japan
| | - Kazuhiko Ohashi
- Department of Disease Control Graduate School of Veterinary Medicine Hokkaido University Sapporo 060-0818 Japan
| |
Collapse
|
29
|
Abstract
Despite advances in therapy, hepatitis C virus infection remains a major global health issue with 3 to 4 million incident cases and 170 million prevalent chronic infections. Complex, partially understood, host-virus interactions determine whether an acute infection with hepatitis C resolves, as occurs in approximately 30% of cases, or generates a persistent hepatic infection, as occurs in the remainder. Once chronic infection is established, the velocity of hepatocyte injury and resultant fibrosis is significantly modulated by immunologic as well as environmental factors. Immunomodulation has been the backbone of antiviral therapy despite poor understanding of its mechanism of action.
Collapse
Affiliation(s)
- David E. Kaplan
- Medicine and Research Services, Philadelphia VA Medical Center, Philadelphia PA,Division of Gastroenterology, Department of Medicine, University of Pennsylvania
| |
Collapse
|
30
|
Swadling L, Capone S, Antrobus RD, Brown A, Richardson R, Newell EW, Halliday J, Kelly C, Bowen D, Fergusson J, Kurioka A, Ammendola V, Del Sorbo M, Grazioli F, Esposito ML, Siani L, Traboni C, Hill A, Colloca S, Davis M, Nicosia A, Cortese R, Folgori A, Klenerman P, Barnes E. A human vaccine strategy based on chimpanzee adenoviral and MVA vectors that primes, boosts, and sustains functional HCV-specific T cell memory. Sci Transl Med 2015; 6:261ra153. [PMID: 25378645 DOI: 10.1126/scitranslmed.3009185] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies, and assessment of host immunity during acute infection highlight the critical role that effective T cell immunity plays in viral control. In this first-in-man study, we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A, and NS5B proteins of HCV genotype 1b. Analysis used single-cell mass cytometry and human leukocyte antigen class I peptide tetramer technology in healthy human volunteers. We show that HCV-specific T cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8(+) and CD4(+) HCV-specific T cells targeting multiple HCV antigens. Sustained memory and effector T cell populations are generated, and T cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) after heterologous MVA boost. We have developed an HCV vaccine strategy, with durable, broad, sustained, and balanced T cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine.
Collapse
Affiliation(s)
- Leo Swadling
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Stefania Capone
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Richard D Antrobus
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Anthony Brown
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Rachel Richardson
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Evan W Newell
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA. Singapore Immunology Network, Singapore 138648, Singapore
| | - John Halliday
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK
| | - Christabel Kelly
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK
| | - Dan Bowen
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Joannah Fergusson
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | - Ayako Kurioka
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK
| | | | | | - Fabiana Grazioli
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | | | - Loredana Siani
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Cinzia Traboni
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Adrian Hill
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK
| | - Stefano Colloca
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Mark Davis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Alfredo Nicosia
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy. CEINGE, via Gaetano Salvatore 486, 80145 Naples, Italy. Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | | | - Antonella Folgori
- ReiThera Srl (ex Okairos), Viale Città d'Europa 679, 00144 Rome, Italy
| | - Paul Klenerman
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK
| | - Eleanor Barnes
- Nuffield Department of Medicine, University of Oxford, Oxford OX1 3SY, UK. The Jenner Institute, University of Oxford, Oxford OX3 7DQ, UK. National Institute for Health Research Oxford Biomedical Research Centre, and Translational Gastroenterology Unit, Oxford OX3 7LE, UK.
| |
Collapse
|
31
|
Treg Cell Differentiation: From Thymus to Peripheral Tissue. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2015; 136:175-205. [PMID: 26615097 DOI: 10.1016/bs.pmbts.2015.07.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regulatory T cells (Tregs) are crucial mediators of self-tolerance in the periphery. They differentiate in the thymus, where interactions with thymus-resident antigen-presenting cells, an instructive cytokine milieu, and stimulation of the T cell receptor lead to the selection into the Treg lineage and the induction of Foxp3 gene expression. Once mature, Treg cells leave the thymus and migrate into either the secondary lymphoid tissues, e.g., lymph nodes and spleen, or peripheral nonlymphoid tissues. There is growing evidence that Treg cells go beyond the classical modulation of immune responses and also play important functional roles in nonlymphoid peripheral tissues. In this review, we summarize recent findings about the thymic Treg lineage differentiation as well as the further specialization of Treg cells in the secondary lymphoid and in the peripheral nonlymphoid organs.
Collapse
|
32
|
Choi YS, Lee J, Lee HW, Chang DY, Sung PS, Jung MK, Park JY, Kim JK, Lee JI, Park H, Cheong JY, Suh KS, Kim HJ, Lee JS, Kim KA, Shin EC. Liver injury in acute hepatitis A is associated with decreased frequency of regulatory T cells caused by Fas-mediated apoptosis. Gut 2015; 64:1303-1313. [PMID: 25007815 DOI: 10.1136/gutjnl-2013-306213] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 06/18/2014] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Foxp3(+)CD4(+)CD25(+) regulatory T cells (Tregs) control immune responses, but their role in acute viral hepatitis remains elusive. Herein, we investigated alteration in the peripheral blood Treg population during acute hepatitis A (AHA) and its implication in the immune-mediated liver injury. DESIGN The study included 71 patients with AHA, and peripheral blood mononuclear cells (PBMCs) were isolated. The suppressive activity of Treg population was determined by assessing anti-CD3/CD28-stimulated proliferation of Treg-depleted and reconstituted PBMCs. Treg cell frequency, phenotype and apoptosis in PBMCs were analysed by flow cytometry. RESULTS The frequency of circulating Tregs was reduced during AHA. Moreover, the suppressive activity of the total Treg pool in the peripheral blood was attenuated during AHA. Treg frequency and suppressive activity of the Treg population inversely correlated with the serum alanine aminotransferase level. Fas was overexpressed on Tregs during AHA, suggesting their susceptibility to Fas-induced apoptosis. Indeed, increased apoptotic death was observed in Tregs of patients with AHA compared with healthy controls. In addition, agonistic anti-Fas treatment further increased apoptotic death of Tregs from patients with AHA. The decreased Treg frequency and Fas overexpression on Tregs were not observed in other acute liver diseases such as acute hepatitis B, acute hepatitis C and toxic/drug-induced hepatitis. CONCLUSIONS The size of the Treg pool was contracted during AHA, resulting from apoptosis of Tregs induced by a Fas-mediated mechanism. Decrease in Treg numbers led to reduced suppressive activity of the Treg pool and consequently resulted in severe liver injury during AHA.
Collapse
Affiliation(s)
- Yoon Seok Choi
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Jeewon Lee
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Hyun Woong Lee
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - Dong-Yeop Chang
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Pil Soo Sung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Min Kyung Jung
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| | - Jun Yong Park
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ja Kyung Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Il Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hana Park
- Department of Internal Medicine, CHA Bundang Medical Center, CHA University, Seongnam, Republic of Korea
| | - Jae Youn Cheong
- Department of Gastroenterology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Kyung-Suk Suh
- Department of Surgery, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyung Joon Kim
- Department of Internal Medicine, Chung-Ang University College of Medicine, Seoul, Republic of Korea
| | - June Sung Lee
- Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Kyung-Ah Kim
- Department of Internal Medicine, Ilsan Paik Hospital, Inje University College of Medicine, Goyang, Republic of Korea
| | - Eui-Cheol Shin
- Laboratory of Immunology and Infectious Diseases, Graduate School of Medical Science and Engineering, KAIST, Daejeon, Republic of Korea
| |
Collapse
|
33
|
Loffredo-Verde E, Abdel-Aziz I, Albrecht J, El-Guindy N, Yacob M, Solieman A, Protzer U, Busch DH, Layland LE, Prazeres da Costa CU. Schistosome infection aggravates HCV-related liver disease and induces changes in the regulatory T-cell phenotype. Parasite Immunol 2015; 37:97-104. [PMID: 25559085 DOI: 10.1111/pim.12171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/21/2014] [Indexed: 12/12/2022]
Abstract
Schistosome infections are renowned for their ability to induce regulatory networks such as regulatory T cells (Treg) that control immune responses against homologous and heterologous antigens such as allergies. However, in the case of co-infections with hepatitis C virus (HCV), schistosomes accentuate disease progression and we hypothesized that expanding schistosome-induced Treg populations change their phenotype and could thereby suppress beneficial anti-HCV responses. We therefore analysed effector T cells and n/iTreg subsets applying the markers Granzyme B (GrzB) and Helios in Egyptian cohorts of HCV mono-infected (HCV), schistosome-co-infected (Sm/HCV) and infection-free individuals. Interestingly, viral load and liver transaminases were significantly elevated in Sm/HCV individuals when compared to HCV patients. Moreover, overall Treg frequencies and Helios(pos) Treg were not elevated in Sm/HCV individuals, but frequencies of GrzB(+) Treg were significantly increased. Simultaneously, GrzB(+) CD8(+) T cells were not suppressed in co-infected individuals. This study demonstrates that in Sm/HCV co-infected cohorts, liver disease is aggravated with enhanced virus replication and Treg do not expand but rather change their phenotype with GrzB possibly being a more reliable marker than Helios for iTreg. Therefore, curing concurrent schistosome disease could be an important prerequisite for successful HCV treatment as co-infected individuals respond poorly to interferon therapy.
Collapse
Affiliation(s)
- E Loffredo-Verde
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Losikoff PT, Mishra S, Terry F, Gutierrez A, Ardito MT, Fast L, Nevola M, Martin WD, Bailey-Kellogg C, De Groot AS, Gregory SH. HCV epitope, homologous to multiple human protein sequences, induces a regulatory T cell response in infected patients. J Hepatol 2015; 62:48-55. [PMID: 25157982 DOI: 10.1016/j.jhep.2014.08.026] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 07/14/2014] [Accepted: 08/17/2014] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Spontaneous resolution of hepatitis C virus (HCV) infection depends upon a broad T cell response to multiple viral epitopes. However, most patients fail to clear infections spontaneously and develop chronic disease. The elevated number and function of CD3(+)CD4(+)CD25(+)FoxP3(+) regulatory T cells (T(reg)) in HCV-infected patients suggest a role of Treg cells in impaired viral clearance. The factors contributing to increased Treg cell activity in chronic hepatitis C cases remain to be delineated. METHODS Immunoinformatics tools were used to predict promiscuous, highly-conserved HLA-DRB1-restricted immunogenic consensus sequences (ICS), each composed of multiple T cell epitopes. These sequences were synthesized and added to cultures of peripheral blood mononuclear cells (PBMCs), derived from patients who resolved HCV infection spontaneously, patients with persistent infection, and non-infected individuals. The cells were collected and following 5days incubation, quantified and characterized by flow cytometry. RESULTS One immunogenic consensus sequence (ICS), HCV_G1_p7_794, induced a marked increase in Treg cells in PBMC cultures derived from infected patients, but not in patients who spontaneously cleared HCV or in non-infected individuals. An analogous human peptide (p7_794), on the other hand, induced a significant increase in Treg cells among PBMCs derived from both HCV-infected and non-infected individuals. JanusMatrix analyses determined that HCV_G1_p7_794 is comprised of Treg cell epitopes that exhibit extensive cross-reactivity with the human proteome. CONCLUSIONS A virus-encoded peptide (HCV_G1_p7_794) with extensive human homology activates cross-reactive CD3(+)CD4(+)CD25(+)FoxP3(+) natural Treg cells, which potentially contributes to immunosuppression and to the development of chronic hepatitis C.
Collapse
Affiliation(s)
- Phyllis T Losikoff
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Sasmita Mishra
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | - Andres Gutierrez
- Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | | | - Loren Fast
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA; Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Martha Nevola
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA
| | | | | | - Anne S De Groot
- EpiVax, Inc., Providence, RI, USA; Institute for Immunology and Informatics, University of Rhode Island, Providence, RI, USA
| | - Stephen H Gregory
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, RI, USA.
| |
Collapse
|
35
|
Heim MH, Thimme R. Innate and adaptive immune responses in HCV infections. J Hepatol 2014; 61:S14-25. [PMID: 25443342 DOI: 10.1016/j.jhep.2014.06.035] [Citation(s) in RCA: 205] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 06/29/2014] [Accepted: 06/30/2014] [Indexed: 12/21/2022]
Abstract
Hepatitis C virus has been identified a quarter of a decade ago as a leading cause of chronic viral hepatitis that can lead to cirrhosis and hepatocellular carcinoma. Only a minority of patients can clear the virus spontaneously during acute infection. Elimination of HCV during acute infection correlates with a rapid induction of innate, especially interferon (IFN) induced genes, and a delayed induction of adaptive immune responses. However, the majority of patients is unable to clear the virus and develops viral persistence in face of an ongoing innate and adaptive immune response. The virus has developed several strategies to escape these immune responses. For example, to escape innate immunity, the HCV NS3/4A protease can efficiently cleave and inactivate two important signalling molecules in the sensory pathways that react to HCV pathogen-associated molecular patterns (PAMPs) to induce IFNs, i.e., the mitochondrial anti-viral signalling protein (MAVS) and the Toll-IL-1 receptor-domain-containing adaptor-inducing IFN-β (TRIF). Despite these escape mechanisms, IFN-stimulated genes (ISGs) are induced in a large proportion of patients with chronic infection. Of note, chronically HCV infected patients with constitutive IFN-stimulated gene (ISG) expression have a poor response to treatment with pegylated IFN-α (PegIFN-α) and ribavirin. The mechanisms that protect HCV from IFN-mediated innate immune reactions are not entirely understood, but might involve blockade of ISG protein translation at the ribosome, localization of viral replication to cell compartments that are not accessible to anti-viral IFN-stimulated effector systems, or direct antagonism of effector systems by viral proteins. Escape from adaptive immune responses can be achieved by emergence of viral escape mutations that avoid recognition by antibodies and T cells. In addition, chronic infection is characterized by the presence of functionally and phenotypically altered NK and T cell responses that are unable to clear the virus but most likely contribute to the ongoing liver disease. In this review, we will summarize current knowledge about the role of innate and adaptive immune responses in determining the outcome of HCV infection.
Collapse
Affiliation(s)
- Markus H Heim
- Division of Gastroenterology and Hepatology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Department of Biomedicine, University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| | - Robert Thimme
- Department of Medicine, Clinic for Gastroenterology, Hepatology, Endocrinology, Infectious Diseases, University Hospital Freiburg, Freiburg, Germany.
| |
Collapse
|
36
|
Increased numbers of CD5+CD19+CD1dhighIL-10+ Bregs, CD4+Foxp3+ Tregs, CD4+CXCR5+Foxp3+ follicular regulatory T (TFR) cells in CHB or CHC patients. J Transl Med 2014; 12:251. [PMID: 25199644 PMCID: PMC4173099 DOI: 10.1186/s12967-014-0251-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 09/01/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND IL-10+ regulatory B (Bregs), CD4+Foxp3+ regulatory T (Tregs), and CD4+CXCR5+Foxp3+ follicular regulatory T (TFR) cells regulate the progression of infection disease. This study aimed at examining how those cells associated with the development of chronic hepatitis B (CHB) and chronic hepatitis C (CHC) in a Chinese population. METHODS The numbers of circulating IL-10+ Bregs, Tregs and TFR cells in 31 CHC, 58 CHB patients and 22 healthy controls (HC) were examined by flow cytometry. The potential association of those cells with clinical measures was analyzed. RESULTS The numbers of CD5+CD19+CD1dhighIL-10+ Bregs, Tregs and TFR cells and the levels of serum IL-10, IFN-γ and IL-2 in the CHB, and IL-10 and IFN-γ in the CHC patients were significantly higher than that in the HC (p<0.05). Furthermore, the numbers of circulating IL-10+ Bregs and the levels of serum IL-10, but not other cytokines tested were positively correlated with the levels of serum HBV DNA and ALT in the HBeAg- CHB patients as well as HCV RNA and ALT in CHC patients. Additionally, the numbers of circulating TFR cells were positively correlated with the levels of serum HBV DNA and ALT in the CHB patients as well as HCV RNA and ALT in the CHC patients. CONCLUSIONS Increased numbers of circulating IL-10+ Bregs and TFR cells are associated with poor virus eradication and liver injury in CHB and CHC patients. Furthermore, the levels of serum IL-10 is associated with the hepatic flares.
Collapse
|
37
|
Valva P, Gismondi MI, Casciato PC, Galoppo M, Lezama C, Galdame O, Gadano A, Galoppo MC, Mullen E, De Matteo EN, Preciado MV. Distinctive intrahepatic characteristics of paediatric and adult pathogenesis of chronic hepatitis C infection. Clin Microbiol Infect 2014; 20:O998-1009. [PMID: 24942073 DOI: 10.1111/1469-0691.12728] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 05/23/2014] [Accepted: 06/15/2014] [Indexed: 12/17/2022]
Abstract
Mechanisms leading to liver damage in chronic hepatitis C (CHC) are being discussed, but both the immune system and the virus are involved. The aim of this study was to evaluate intrahepatic viral infection, apoptosis and portal and periportal/interface infiltrate in paediatric and adult patients to elucidate the pathogenesis of chronic hepatitis C. HCV-infected, activated caspase-3(+) and TUNEL(+) hepatocytes, as well as total, CD4(+), CD8(+), Foxp3(+) and CD20(+) lymphocytes infiltrating portal and periportal/interface tracts were evaluated in 27 paediatric and 32 adult liver samples by immunohistochemistry or immunofluorescence. The number of infected hepatocytes was higher in paediatric than in adult samples (p 0.0078). In children, they correlated with apoptotic hepatocytes (activated caspase-3(+) r = 0.74, p < 0.0001; TUNEL(+) r = 0.606, p 0.0017). Also, infected (p = 0.026) and apoptotic hepatocytes (p = 0.03) were associated with the severity of fibrosis. In adults, activated caspase-3(+) cell count was increased in severe hepatitis (p = 0.009). Total, CD4(+), CD8(+) and Foxp3(+) lymphocyte count was higher in adult samples (p < 0.05). Paediatric CD8(+) cells correlated with infected (r = 0.495, p 0.04) and TUNEL(+) hepatocytes (r = 0.474, p = 0.047), while adult ones correlated with activated caspase-3(+) hepatocytes (r = 0.387, p 0.04). In adults, CD8(+) was associated with hepatitis severity (p < 0.0001) and correlated with inflammatory activity (CD8(+) r = 0.639, p 0.0003). HCV, apoptosis and immune response proved to be involved in CHC pathogenesis of both paediatric and adult patients. However, liver injury in paediatric CHC would be largely associated with a viral cytopathic effect mediated by apoptosis, while in adults it would be mainly associated with an exacerbated immune response.
Collapse
Affiliation(s)
- P Valva
- Laboratory of Molecular Biology, Pathology Division, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hetta HF, Mehta MJ, Shata MTM. Gut immune response in the presence of hepatitis C virus infection. World J Immunol 2014; 4:52-62. [DOI: 10.5411/wji.v4.i2.52] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/22/2014] [Accepted: 06/20/2014] [Indexed: 02/05/2023] Open
Abstract
Hepatitis C virus (HCV) is an important etiologic agent of hepatitis and a major cause of chronic liver infection that often leads to cirrhosis, fibrosis and hepatocellular carcinoma. Although, HCV is a hepatotropic virus, there is strong evidence that HCV could replicate extra-hepatic in the gastrointestinal tissue which could serve as a reservoir for HCV. The outcome of HCV infection depends mainly on the host innate and adaptive immune responses. Innate immunity against HCV includes mainly nuclear factor cells and activation of IFN-related genes. There is an immunologic link between the gut and the liver through a population of T-cells that are capable of homing to both the liver and gut via the portal circulation. However, little is known on the role of Gut immune response in HCV. In this review we discussed the immune regulation of Gut immune cells and its association with HCV pathogenesis, various outcomes of anti-HCV therapy, viral persistence and degree of liver inflammation. Additionally, we investigated the relationship between Gut immune responses to HCV and IL28B genotypes, which were identified as a strong predictor for HCV pathogenesis and treatment outcome after acute infection.
Collapse
|
39
|
Knolle PA, Thimme R. Hepatic immune regulation and its involvement in viral hepatitis infection. Gastroenterology 2014; 146:1193-207. [PMID: 24412289 DOI: 10.1053/j.gastro.2013.12.036] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/22/2013] [Accepted: 12/27/2013] [Indexed: 02/08/2023]
Abstract
The liver has unique immune regulatory functions that promote the induction of tolerance rather than responses to antigens encountered locally. These functions are mediated by local expression of coinhibitory receptors and immunosuppressive mediators that help prevent overwhelming tissue damage. Over the years, we have gained more insight into the local regulatory cues that determine the functional complexity of immune responses regulated locally in the liver. Both the unique hepatic microenvironment and the particular liver sinusoidal cell populations, in addition to hepatocytes, actively modulate immune responses locally in the liver and thereby determine the outcome of hepatic immune responses. This is of high biological and clinical relevance in hepatitis B virus and hepatitis C virus infections, which can cause acute and persistent infections associated with chronic inflammation in humans that eventually progress to cirrhosis and hepatocellular carcinoma. Here, we review current knowledge about the balance between immunity and tolerance in the liver and how this may affect our understanding of the determinants of hepatitis B virus and hepatitis C virus clearance, persistence, and virus-induced liver disease.
Collapse
Affiliation(s)
- Percy A Knolle
- Institute of Molecular Immunology, Technische Universität München and Institutes of Molecular Medicine and Experimental Immunology, Universität Bonn, Bonn.
| | - Robert Thimme
- Department of Medicine, Clinic for Gastroenterology, Hepatology, Endocrinology, Infectious Diseases, University Hospital Freiburg, Freiburg, Germany
| |
Collapse
|
40
|
Ondondo BO. Fallen angels or risen apes? A tale of the intricate complexities of imbalanced immune responses in the pathogenesis and progression of immune-mediated and viral cancers. Front Immunol 2014; 5:90. [PMID: 24639678 PMCID: PMC3944202 DOI: 10.3389/fimmu.2014.00090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 02/20/2014] [Indexed: 12/13/2022] Open
Abstract
Excessive immune responses directed against foreign pathogens, self-antigens, or commensal microflora can cause cancer establishment and progression if the execution of tight immuno-regulatory mechanisms fails. On the other hand, induction of potent tumor antigen-specific immune responses together with stimulation of the innate immune system is a pre-requisite for effective anti-tumor immunity, and if suppressed by the strong immuno-regulatory mechanisms can lead to cancer progression. Therefore, it is crucial that the inevitable co-existence of these fundamental, yet conflicting roles of immune-regulatory cells is carefully streamlined as imbalances can be detrimental to the host. Infection with chronic persistent viruses is characterized by severe immune dysfunction resulting in T cell exhaustion and sometimes deletion of antigen-specific T cells. More often, this is due to increased immuno-regulatory processes, which are triggered to down-regulate immune responses and limit immunopathology. However, such heightened levels of immune disruption cause a concomitant loss of tumor immune-surveillance and create a permissive microenvironment for cancer establishment and progression, as demonstrated by increased incidences of cancer in immunosuppressed hosts. Paradoxically, while some cancers arise as a consequence of increased immuno-regulatory mechanisms that inhibit protective immune responses and impinge on tumor surveillance, other cancers arise due to impaired immuno-regulatory mechanisms and failure to limit pathogenic inflammatory responses. This intricate complexity, where immuno-regulatory cells can be beneficial in certain immune settings but detrimental in other settings underscores the need for carefully formulated interventions to equilibrate the balance between immuno-stimulatory and immuno-regulatory processes.
Collapse
|
41
|
Williams SK, Donaldson E, Van der Kleij T, Dixon L, Fisher M, Tibble J, Gilleece Y, Klenerman P, Banham AH, Howard M, Webster DP. Quantification of hepatic FOXP3+ T-lymphocytes in HIV/hepatitis C coinfection. J Viral Hepat 2014; 21:251-9. [PMID: 24597693 PMCID: PMC4159582 DOI: 10.1111/jvh.12141] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 06/01/2013] [Indexed: 12/15/2022]
Abstract
Coinfection with HIV adversely impacts every stage of hepatitis C (HCV) infection. Liver damage in HCV infection results from host antiviral responses rather than direct viral pathogenesis. Despite depressed cellular immunity, coinfected patients show accelerated hepatic fibrosis compared with HCV monoinfected patients. This paradox is poorly understood. T-regulatory (Treg) cells (CD4+ and FOXP3+) are hypothesized to limit hepatic damage in HCV. Our hypothesis was that reduced frequency of hepatic Treg in HIV/HCV coinfection compared with HCV monoinfection may explain poorer outcomes. We quantified FOXP3+, CD4+, CD8+ and CD20+ cells in liver biopsies of 35 male subjects matched by age and ISHAK fibrosis score, 12 HIV monoinfected, 11 HCV monoinfected and 12 HIV/HCV coinfected. Cell counts were performed using indirect immunohistochemical staining and light microscopy. HIV/HCV coinfected subjects had fewer hepatic FOXP3+ (P = 0.031) and CD4+ cells (P = 0.001) than HCV monoinfected subjects. Coinfected subjects had more hepatic CD8+ cells compared with HCV monoinfected (P = 0.023), and a lower ratio of FOXP3+ to CD8+ cells (0.08 vs 0.27, P < 0.001). Multivariate analysis showed number of CD4+ cells controlled for differences in number of FOXP3+ cells. Fewer hepatic FOXP3+ and CD4+ cells in HIV/HCV coinfection compared with HCV monoinfection suggests lower Treg activity, driven by an overall loss of CD4+ cells. Higher number of CD8+ cells in HIV/HCV coinfection suggests higher cytotoxic activity. This may explain poorer outcomes in HIV/HCV coinfected patients and suggests a potential mechanism by which highly active antiretroviral therapy may benefit these patients.
Collapse
Affiliation(s)
| | - E. Donaldson
- Brighton and Sussex University HospitalsBrightonUK
| | | | - L. Dixon
- Brighton and Sussex University HospitalsBrightonUK
| | - M. Fisher
- Brighton and Sussex University HospitalsBrightonUK
| | - J. Tibble
- Brighton and Sussex University HospitalsBrightonUK
| | - Y. Gilleece
- Brighton and Sussex University HospitalsBrightonUK
| | - P. Klenerman
- Peter Medawar Building for Pathogen ResearchNuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - A. H. Banham
- Nuffield Division of Clinical Laboratory SciencesRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - M. Howard
- Brighton and Sussex University HospitalsBrightonUK
| | - D. P. Webster
- Brighton and Sussex Medical SchoolBrightonUK,
Correspondence: Daniel P. Webster, Department of Virology, Royal Free Hospital, Pond Street, London NW3 2QG, UK.
E‐mail:
| |
Collapse
|
42
|
Fernandez-Ponce C, Dominguez-Villar M, Aguado E, Garcia-Cozar F. CD4+ primary T cells expressing HCV-core protein upregulate Foxp3 and IL-10, suppressing CD4 and CD8 T cells. PLoS One 2014; 9:e85191. [PMID: 24465502 PMCID: PMC3896374 DOI: 10.1371/journal.pone.0085191] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 11/30/2013] [Indexed: 12/11/2022] Open
Abstract
Adaptive T cell responses are critical for controlling HCV infection. While there is clinical evidence of a relevant role for regulatory T cells in chronic HCV-infected patients, based on their increased number and function; mechanisms underlying such a phenomena are still poorly understood. Accumulating evidence suggests that proteins from Hepatitis C virus can suppress host immune responses. We and others have shown that HCV is present in CD4+ lymphocytes from chronically infected patients and that HCV-core protein induces a state of unresponsiveness in the CD4+ tumor cell line Jurkat. Here we show that CD4+ primary T cells lentivirally transduced with HCV-core, not only acquire an anergic phenotype but also inhibit IL-2 production and proliferation of bystander CD4+ or CD8+ T cells in response to anti-CD3 plus anti-CD28 stimulation. Core-transduced CD4+ T cells show a phenotype characterized by an increased basal secretion of the regulatory cytokine IL-10, a decreased IFN-γ production upon stimulation, as well as expression of regulatory T cell markers, CTLA-4, and Foxp3. A significant induction of CD4+CD25+CD127(low)PD-1(high)TIM-3(high) regulatory T cells with an exhausted phenotype was also observed. Moreover, CCR7 expression decreased in HCV-core expressing CD4+ T cells explaining their sequestration in inflamed tissues such as the infected liver. This work provides a new perspective on de novo generation of regulatory CD4+ T cells in the periphery, induced by the expression of a single viral protein.
Collapse
Affiliation(s)
- Cecilia Fernandez-Ponce
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| | - Margarita Dominguez-Villar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| | - Enrique Aguado
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| | - Francisco Garcia-Cozar
- Department of Biomedicine, Biotechnology and Public Health (Immunology), University of Cadiz and Puerto Real University Hospital Research Unit, School of Medicine, Cadiz, Spain
| |
Collapse
|
43
|
Controversy on the role of FoxP3⁺ regulatory T cells in fibrogenesis in chronic hepatitis C virus infections. J Hepatol 2014; 60:231-2. [PMID: 24045149 DOI: 10.1016/j.jhep.2013.08.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 08/30/2013] [Indexed: 01/24/2023]
|
44
|
Langhans B, Spengler U. Reply to: "Controversy on the role of FoxP3⁺ regulatory T cells in fibrogenesis in chronic hepatitis C virus infections". J Hepatol 2014; 60:232-4. [PMID: 24051070 DOI: 10.1016/j.jhep.2013.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 09/09/2013] [Accepted: 09/09/2013] [Indexed: 12/04/2022]
Affiliation(s)
- Bettina Langhans
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.
| | - Ulrich Spengler
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| |
Collapse
|
45
|
Shen C, Yan WZ, Zhao CY, Che HH, Liu XY, Liu ZZ, Wang YD, Wang W, Li M, Gao J. Increased CD4+CD25+ regulatory T cells correlate with poor short-term outcomes in hepatitis B virus-related acute-on-chronic liver failure patients. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2013; 48:137-46. [PMID: 24388581 DOI: 10.1016/j.jmii.2013.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 10/15/2013] [Accepted: 10/31/2013] [Indexed: 12/17/2022]
Abstract
BACKGROUND The roles of CD4(+)CD25(+) regulatory T cells (Treg) in chronicity of hepatitis B virus (HBV) infection have been confirmed. We aimed to explore alteration of Treg in patients with HBV-related acute-on-chronic liver failure (ACLF). METHODS Thirty-two HBV-related ACLF patients, 44 chronic hepatitis B patients, and 41 healthy controls were recruited. We detected frequencies of peripheral Treg and intrahepatic forkhead winged helix transcription factor (Foxp3)(+) cells. Inhibitory activity of Treg was assessed by functional suppression assays. Serum interferon-γ and interleukin-10 were also determined. RESULTS Peripheral Treg and intrahepatic Foxp3(+) cells were more markedly increased in ACLF than chronic hepatitis B and controls (all p < 0.001), and the Foxp3(+) cells located predominantly in the portal areas. The Treg frequency was positively correlated with HBV DNA load, international normalized ratio, model of end stage liver disease score, and serum interleukin-10 level in ACLF patients. Functional assays in vitro demonstrated that ACLF patients exhibited higher suppressive effects of Treg on proliferations of autologous CD4(+)CD25(-) T cells than controls. On logistic regression, prolonged international normalized ratio and higher peripheral Treg frequency predicted 30-day survival of ACLF. CONCLUSION The patients with HBV-related ACLF exhibit increased amounts of Treg, of which redistribution from periphery to liver seems to modulate liver inflammation. Higher Treg amounts are associated with more severe liver disease in ACLF, and its level in combination with international normalized ratio may assist prediction of short-term outcomes of HBV-related ACLF.
Collapse
Affiliation(s)
- Chuan Shen
- Department of Infectious Disease, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wen-Zhao Yan
- Department of Infectious Disease, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Cai-Yan Zhao
- Department of Infectious Disease, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Hong-Hao Che
- Department of Infectious Disease, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiao-Yu Liu
- Department of Infectious Disease, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhen-Zhong Liu
- Department of Infectious Disease, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ya-Dong Wang
- Department of Infectious Disease, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Wei Wang
- Department of Infectious Disease, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jian Gao
- Department of Hepatobiliary Surgery, The Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
46
|
Irshad M, Mankotia DS, Irshad K. An insight into the diagnosis and pathogenesis of hepatitis C virus infection. World J Gastroenterol 2013; 19:7896-7909. [PMID: 24307784 PMCID: PMC3848138 DOI: 10.3748/wjg.v19.i44.7896] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 09/11/2013] [Accepted: 10/13/2013] [Indexed: 02/06/2023] Open
Abstract
This review focuses on research findings in the area of diagnosis and pathogenesis of hepatitis C virus (HCV) infection over the last few decades. The information based on published literature provides an update on these two aspects of HCV. HCV infection, previously called blood transmitted non-A, non-B infection, is prevalent globally and poses a serious public health problem worldwide. The diagnosis of HCV infection has evolved from serodetection of non-specific and low avidity anti-HCV antibodies to detection of viral nucleic acid in serum using the polymerase chain reaction (PCR) technique. Current PCR assays detect viral nucleic acid with high accuracy and the exact copy number of viral particles. Moreover, multiplex assays using real-time PCR are available for identification of HCV-genotypes and their isotypes. In contrast to previous methods, the newly developed assays are not only fast and economic, but also resolve the problem of the window period as well as differentiate present from past infection. HCV is a non-cytopathic virus, thus, its pathogenesis is regulated by host immunity and metabolic changes including oxidative stress, insulin resistance and hepatic steatosis. Both innate and adaptive immunity play an important role in HCV pathogenesis. Cytotoxic lymphocytes demonstrate crucial activity during viral eradication or viral persistence and are influenced by viral proteins, HCV-quasispecies and several metabolic factors regulating liver metabolism. HCV pathogenesis is a very complex phenomenon and requires further study to determine the other factors involved.
Collapse
|
47
|
Spengler U, Nischalke HD, Nattermann J, Strassburg CP. Between Scylla and Charybdis: The role of the human immune system in the pathogenesis of hepatitis C. World J Gastroenterol 2013; 19:7852-7866. [PMID: 24307779 PMCID: PMC3848133 DOI: 10.3748/wjg.v19.i44.7852] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 10/25/2013] [Accepted: 11/13/2013] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) frequently elicits only mild immune responses so that it can often establish chronic infection. In this case HCV antigens persist and continue to stimulate the immune system. Antigen persistence then leads to profound changes in the infected host’s immune responsiveness, and eventually contributes to the pathology of chronic hepatitis. This topic highlight summarizes changes associated with chronic hepatitis C concerning innate immunity (interferons, natural killer cells), adaptive immune responses (immunoglobulins, T cells, and mechanisms of immune regulation (regulatory T cells). Our overview clarifies that a strong anti-HCV immune response is frequently associated with acute severe tissue damage. In chronic hepatitis C, however, the effector arms of the immune system either become refractory to activation or take over regulatory functions. Taken together these changes in immunity may lead to persistent liver damage and cirrhosis. Consequently, effector arms of the immune system will not only be considered with respect to antiviral defence but also as pivotal mechanisms of inflammation, necrosis and progression to cirrhosis. Thus, avoiding Scylla - a strong, sustained antiviral immune response with inital tissue damage - takes the infected host to virus-triggered immunopathology, which ultimately leads to cirrhosis and liver cancer - the realm of Charybdis.
Collapse
|
48
|
Langhans B, Krämer B, Louis M, Nischalke HD, Hüneburg R, Staratschek-Jox A, Odenthal M, Manekeller S, Schepke M, Kalff J, Fischer HP, Schultze JL, Spengler U. Intrahepatic IL-8 producing Foxp3⁺CD4⁺ regulatory T cells and fibrogenesis in chronic hepatitis C. J Hepatol 2013; 59:229-35. [PMID: 23624000 DOI: 10.1016/j.jhep.2013.04.011] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 04/04/2013] [Accepted: 04/07/2013] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Regulatory CD4(+) T cells (Tregs) are considered to affect outcomes of HCV infection, because they increase in number during chronic hepatitis C and can suppress T-cell functions. METHODS Using microarray analysis, in situ immunofluorescence, ELISA, and flowcytometry, we characterised functional differentiation and localisation of adaptive Tregs in patients with chronic hepatitis C. RESULTS We found substantial upregulation of IL-8 in Foxp3(+)CD4(+) Tregs from chronic hepatitis C. Activated GARP-positive IL-8(+) Tregs were particularly enriched in livers of patients with chronic hepatitis C in close proximity to areas of fibrosis and their numbers were correlated with the stage of fibrosis. Moreover, Tregs induced upregulation of profibrogenic markers TIMP1, MMP2, TGF-beta1, alpha-SMA, collagen, and CCL2 in primary human hepatic stellate cells (HSC). HSC activation, but not Treg suppressor function, was blocked by adding a neutralizing IL-8 antibody. CONCLUSIONS Our studies identified Foxp3(+)CD4(+) Tregs as an additional intrahepatic source of IL-8 in chronic hepatitis C acting on HSC. Thus, Foxp3(+)CD4(+) Tregs in chronic hepatitis C have acquired differentiation as regulators of fibrogenesis in addition to suppressing local immune responses.
Collapse
Affiliation(s)
- Bettina Langhans
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Claassen MAA, Janssen HLA, Boonstra A. Role of T cell immunity in hepatitis C virus infections. Curr Opin Virol 2013; 3:461-7. [PMID: 23735335 DOI: 10.1016/j.coviro.2013.05.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 04/17/2013] [Accepted: 05/10/2013] [Indexed: 12/16/2022]
Abstract
Chronic infections with the hepatitis C virus (HCV) are a major global health issue. Viral replication is restricted to hepatocytes, and occurs for decades at high replication rates. Over the last decade, it became accepted that HCV-specific CD4(+) and CD8(+) T cells are crucial for protective immunity to HCV. However, a characteristic feature of persistent HCV infection is the dysfunctional T cell response, and over recent years enormous progress has been made in understanding the mechanisms that dampen the antiviral T cell responses in blood and liver of chronic HCV patients and also impact disease progression.
Collapse
Affiliation(s)
- Mark A A Claassen
- Liver Unit, Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | | | | |
Collapse
|
50
|
Self AA, Losikoff PT, Gregory SH. Divergent contributions of regulatory T cells to the pathogenesis of chronic hepatitis C. Hum Vaccin Immunother 2013; 9:1569-76. [PMID: 23732899 DOI: 10.4161/hv.24726] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Hepatitis C virus, a small single-stranded RNA virus, is a major cause of chronic liver disease. Resolution of primary hepatitis C virus infections depends upon the vigorous responses of CD4(+) and CD8(+) T cells to multiple viral epitopes. Although such broad CD4(+) and CD8(+) T-cell responses are readily detected early during the course of infection regardless of clinical outcome, they are not maintained in individuals who develop chronic disease. Purportedly, a variety of factors contribute to the diminished T-cell responses observed in chronic, virus-infected patients including the induction of and biological suppression by CD4(+)FoxP3(+) regulatory T cells. Indeed, a wealth of evidence suggests that regulatory T cells play diverse roles in the pathogenesis of chronic hepatitis C, impairing the effector T-cell response and viral clearance early during the course of infection and suppressing liver injury as the disease progresses. The factors that affect the generation and biological response of regulatory T cells in chronic, hepatitis C virus-infected patients is discussed.
Collapse
Affiliation(s)
- Ayssa A Self
- Department of Medicine; Rhode Island Hospital and the Warren Alpert Medical School of Brown University; Providence, RI USA
| | | | | |
Collapse
|