1
|
King HAD, Lewin SR. Immune checkpoint inhibitors in infectious disease. Immunol Rev 2024; 328:350-371. [PMID: 39248154 PMCID: PMC11659942 DOI: 10.1111/imr.13388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Following success in cancer immunotherapy, immune checkpoint blockade is emerging as an exciting potential treatment for some infectious diseases, specifically two chronic viral infections, HIV and hepatitis B. Here, we will discuss the function of immune checkpoints, their role in infectious disease pathology, and the ability of immune checkpoint blockade to reinvigorate the immune response. We focus on blockade of programmed cell death 1 (PD-1) to induce durable immune-mediated control of HIV, given that anti-PD-1 can restore function to exhausted HIV-specific T cells and also reverse HIV latency, a long-lived form of viral infection. We highlight several key studies and future directions of research in relation to anti-PD-1 and HIV persistence from our group, including the impact of immune checkpoint blockade on the establishment (AIDS, 2018, 32, 1491), maintenance (PLoS Pathog, 2016, 12, e1005761; J Infect Dis, 2017, 215, 911; Cell Rep Med, 2022, 3, 100766) and reversal of HIV latency (Nat Commun, 2019, 10, 814; J Immunol, 2020, 204, 1242), enhancement of HIV-specific T cell function (J Immunol, 2022, 208, 54; iScience, 2023, 26, 108165), and investigating the effects of anti-PD-1 and anti-CTLA-4 in vivo in people with HIV on ART with cancer (Sci Transl Med, 2022, 14, eabl3836; AIDS, 2021, 35, 1631; Clin Infect Dis, 2021, 73, e1973). Our future work will focus on the impact of anti-PD-1 in vivo in people with HIV on ART without cancer and potential combinations of anti-PD-1 with other interventions, including therapeutic vaccines or antibodies and less toxic immune checkpoint blockers.
Collapse
Affiliation(s)
- Hannah A. D. King
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
| | - Sharon R. Lewin
- Department of Infectious DiseasesThe University of Melbourne at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Victorian Infectious Diseases ServiceRoyal Melbourne Hospital at The Peter Doherty Institute for Infection and ImmunityMelbourneVictoriaAustralia
- Department of Infectious DiseasesAlfred Hospital and Monash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
2
|
Segbefia SP, Asandem DA, Pobee A, Asare B, Prah AD, Baba‐Adam R, Amponsah JA, Kyei‐Baafour E, van der Puije W, Osei F, Teye‐Adjei D, Agyemang S, Brenko T, Bentum‐Ennin L, Tetteh JKA, Bonney KJH, Sakyi SA, Amoah LE, Kusi KA. Expression patterns of immune checkpoint proteins and Plasmodium falciparum-induced cytokines in chronic hepatitis B virus-infected and uninfected individuals: A cross-sectional study. Health Sci Rep 2024; 7:e2280. [PMID: 39086506 PMCID: PMC11286663 DOI: 10.1002/hsr2.2280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Background and Aim Chronic hepatitis B virus (CHB) infection remains a major public health problem. The American Association for the Study of Liver Diseases (AASLD) 2018 Hepatitis B Guidelines provide that CHB individuals not requiring antiviral therapy yet are monitored to determine the need for antiviral therapy in the future; however, these tests do not include measurement of cytokines and immune cell characterization. This case-control study compared the cytokine and immune checkpoint protein expression profiles between CHB individuals not yet on antiviral treatment and hepatitis B virus (HBV)-negative individuals. Methods CD4 and CD8 T cells from CHB and HBV-negative individuals were characterized for immune checkpoint proteins programmed cell death-1 (PD1), T cell Immunoglobulin domain and mucin domain-containing protein 3 (TIM-3), and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) (CD152), and a memory marker CXCR3 (CD183) using flow cytometry. Malaria-induced cytokine expression levels were determined by stimulating their blood cells with Plasmodium falciparum 3D7 strain antigens (CSP, AMA-1, and TRAP) in whole blood assays, and cytokine levels were measured using a 13-plex Luminex kit. Results HBV-negative and CHB individuals had comparable levels of CD4+ and CD8+ T cells. However, a proportion of the CD4+ and CD8+ populations from both groups, which were CXCR3+, expressed PD-1 and CD152. The ability to produce cytokines in response to malaria antigen stimulation was not significantly different between the groups. Conclusion These findings support excluding CHB individuals from antiviral therapy at this stage of infection. However, CHB individuals require regular monitoring to determine the need for later antiviral treatment.
Collapse
Affiliation(s)
- Selorm P. Segbefia
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
- Department of Molecular Medicine, School of Medicine and DentistryCollege of Health Sciences, KNUSTKumasiGhana
| | - Diana A. Asandem
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
- Department of Virology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Abigail Pobee
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Bright Asare
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
- Department of Animal Biology and Conservation Science, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Ahu Diana Prah
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Rawdat Baba‐Adam
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Jones Amo Amponsah
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Eric Kyei‐Baafour
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - William van der Puije
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Frank Osei
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Doreen Teye‐Adjei
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Seth Agyemang
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Theophilus Brenko
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Lutterodt Bentum‐Ennin
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - John K. A. Tetteh
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Kofi J. H. Bonney
- Department of Virology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
| | - Samuel Asamoah Sakyi
- Department of Molecular Medicine, School of Medicine and DentistryCollege of Health Sciences, KNUSTKumasiGhana
| | - Linda E. Amoah
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| | - Kwadwo A. Kusi
- Department of Immunology, NMIMR, College of Health SciencesUniversity of GhanaAccraGhana
- Department of Biochemistry, Cell and Molecular Biology, West African Centre for Cell Biology of Infectious Pathogens, College of Basic and Applied SciencesUniversity of GhanaAccraGhana
| |
Collapse
|
3
|
Wu D, Huang D, Yan W, Ning Q. Response to: Comment on 'End-of-treatment HBcrAg and HBsAb levels identify durable functional cure after Peg-IFN-based therapy in patients with CHB'. J Hepatol 2023; 79:e204-e206. [PMID: 37558136 DOI: 10.1016/j.jhep.2023.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/18/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023]
Affiliation(s)
- Di Wu
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Da Huang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Weiming Yan
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Ning
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonostic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Dumolard L, Aspord C, Marche PN, Macek Jilkova Z. Immune checkpoints on T and NK cells in the context of HBV infection: Landscape, pathophysiology and therapeutic exploitation. Front Immunol 2023; 14:1148111. [PMID: 37056774 PMCID: PMC10086248 DOI: 10.3389/fimmu.2023.1148111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
In hepatitis B virus (HBV) infection, the interplay between the virus and the host immune system is crucial in determining the pathogenesis of the disease. Patients who fail to mount a sufficient and sustained anti-viral immune response develop chronic hepatitis B (CHB). T cells and natural killer (NK) cells play decisive role in viral clearance, but they are defective in chronic HBV infection. The activation of immune cells is tightly controlled by a combination of activating and inhibitory receptors, called immune checkpoints (ICs), allowing the maintenance of immune homeostasis. Chronic exposure to viral antigens and the subsequent dysregulation of ICs actively contribute to the exhaustion of effector cells and viral persistence. The present review aims to summarize the function of various ICs and their expression in T lymphocytes and NK cells in the course of HBV infection as well as the use of immunotherapeutic strategies targeting ICs in chronic HBV infection.
Collapse
Affiliation(s)
- Lucile Dumolard
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Caroline Aspord
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhone-Alpes, Grenoble, France
| | - Patrice N. Marche
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Zuzana Macek Jilkova
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
- *Correspondence: Zuzana Macek Jilkova,
| |
Collapse
|
5
|
Corkum CP, Wiede LL, Ruble CLA, Qiu J, Mulrooney-Cousins PM, Steeves MA, Watson DE, Michalak TI. Identification of antibodies cross-reactive with woodchuck immune cells and activation of virus-specific and global cytotoxic T cell responses by anti-PD-1 and anti-PD-L1 in experimental chronic hepatitis B and persistent occult hepadnaviral infection. Front Microbiol 2022; 13:1011070. [PMID: 36560951 PMCID: PMC9764628 DOI: 10.3389/fmicb.2022.1011070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Woodchuck (Marmota monax) infected with woodchuck hepatitis virus (WHV) is the most pathogenically compatible naturally occurring model of human hepatitis B virus (HBV) infection, chronic hepatitis B, and HBV-induced hepatocellular carcinoma. This system plays a crucial role in discovery and preclinical evaluation of anti-HBV therapies. Its utilization remains tempered by the relatively narrow range of validated immunologic and molecular tools. We evaluated commercial antibodies against immune cell phenotypic markers and T cell molecules for cross-reactivity with woodchuck antigenic equivalents. The confirmed antibodies against programed cell death protein-1 (PD-1) and its ligand (PD-L1) were examined for ex vivo ability to activate WHV-specific, global and bystander cytotoxic T cells (CTLs) in chronic hepatitis and asymptomatic infection persisting after self-resolved acute hepatitis. Examination of 65 antibodies led to identification or confirmation of 23 recognizing woodchuck T, regulatory T, B and natural killer cells, T cell-associated PD-1, PD-L1, CTLA-4 and TIM-3 molecules, CD25 and CD69 markers of T cell activation, and interferon gamma (IFNγ). Antibodies against woodchuck PD-1 and PD-L1 triggered in vitro highly individualized WHV-specific and global activation of CTLs in both chronic hepatitis and persistent occult infection. WHV-specific CTLs were more robustly augmented by anti-PD-1 than by anti-PD-L1 in chronic hepatitis, while global IFNγ-positive CTL response was significantly suppressed in chronic hepatitis compared to persistent occult infection. Anti-PD-1 and anti-PD-L1 also occasionally activated CTLs to specificities other than those tested suggesting their potency to trigger side effects. This was particularly apparent when T cells from chronic hepatitis were treated with anti-PD-L1. The current findings indicate that inhibition of the PD-1/PD-L1 pathway could reactivate virus-specific and global T cell responses in both chronic hepatitis and asymptomatic persistent infection. They suggest a mechanism of potential reactivation of clinically silent infection during anti-PD-1/PD-L1 treatment and indicate that this therapy may also subdue occult HBV infection.
Collapse
Affiliation(s)
- Christopher P. Corkum
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Louisa L. Wiede
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Cara L.-A. Ruble
- Lilly Research Laboratories, Elli Lilly and Company, Indianapolis, IN, United States
| | - Jiabin Qiu
- Lilly Research Laboratories, Elli Lilly and Company, Indianapolis, IN, United States
| | - Patricia M. Mulrooney-Cousins
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Meredith A. Steeves
- Non-Clinical Safety Assessment, Toxicology, Elli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, United States
| | - David E. Watson
- Lilly Research Laboratories, Elli Lilly and Company, Indianapolis, IN, United States
| | - Tomasz I. Michalak
- Molecular Virology and Hepatology Research Group, Division of BioMedical Sciences, Faculty of Medicine, Health Sciences Centre, Memorial University of Newfoundland, St. John’s, NL, Canada,*Correspondence: Tomasz I. Michalak,
| |
Collapse
|
6
|
Lau G, Yu ML, Wong G, Thompson A. Are immune-checkpoint inhibitors immunosuppressive to hepatitis B virus? Hepatol Int 2022; 16:482-483. [PMID: 35229274 DOI: 10.1007/s12072-022-10318-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/16/2022] [Indexed: 01/03/2023]
Affiliation(s)
- George Lau
- Humanity and Health Clinical Trial Center, Humanity & Health Medical Group, Hong Kong SAR, China.
- The Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 100039, China.
| | - Ming-Lung Yu
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Grace Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong SAR, China
| | | |
Collapse
|
7
|
A Systematic Review of T Cell Epitopes Defined from the Proteome of Hepatitis B Virus. Vaccines (Basel) 2022; 10:vaccines10020257. [PMID: 35214714 PMCID: PMC8878595 DOI: 10.3390/vaccines10020257] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) infection remains a worldwide health problem and no eradicative therapy is currently available. Host T cell immune responses have crucial influences on the outcome of HBV infection, however the development of therapeutic vaccines, T cell therapies and the clinical evaluation of HBV-specific T cell responses are hampered markedly by the lack of validated T cell epitopes. This review presented a map of T cell epitopes functionally validated from HBV antigens during the past 33 years; the human leukocyte antigen (HLA) supertypes to present these epitopes, and the methods to screen and identify T cell epitopes. To the best of our knowledge, a total of 205 CD8+ T cell epitopes and 79 CD4+ T cell epitopes have been defined from HBV antigens by cellular functional experiments thus far, but most are restricted to several common HLA supertypes, such as HLA-A0201, A2402, B0702, DR04, and DR12 molecules. Therefore, the currently defined T cell epitope repertoire cannot cover the major populations with HLA diversity in an indicated geographic region. More researches are needed to dissect a more comprehensive map of T cell epitopes, which covers overall HBV proteome and global patients.
Collapse
|
8
|
Immunotherapy of HBV-related advanced hepatocellular carcinoma with short-term HBV-specific TCR expressed T cells: results of dose escalation, phase I trial. Hepatol Int 2021; 15:1402-1412. [PMID: 34850325 PMCID: PMC8651587 DOI: 10.1007/s12072-021-10250-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Background & aims Immunotherapy with hepatitis B virus (HBV)-specific TCR redirected T (HBV-TCR-T) cells in HBV-related hepatocellular carcinoma (HBV-HCC) patients after liver transplantation was reported to be safe and had potential therapeutic efficacy. We aim to investigate the safety of HBV-TCR-T-cell immunotherapy in advanced HBV-HCC patients who had not met the criteria for liver transplantation. Methods We enrolled eight patients with advanced HBV-HCC and adoptively transferred short-lived autologous T cells expressing HBV-specific TCR to perform an open-label, phase 1 dose-escalation study (NCT03899415). The primary endpoint was to evaluate the safety of HBV-TCR-T-cell therapy according to National Cancer Institute Common Terminology Criteria for Adverse Events (version 4.03) during the dose-escalation process. The secondary endpoint was to assess the efficacy of HBV-TCR-T-cell therapy by evaluating the anti-tumor responses using RECIST criteria (version 1.1) and the overall survival. Results Adverse events were observed in two participants among the 8 patients enrolled. Only one patient experienced a Grade 3 liver-related adverse event after receiving a dose of 1 × 105 HBV-TCR-T cells/kg, then normalized without interventions with immunosuppressive agents. Among the patients, one achieved a partial response lasting for 27.7 months. Importantly, most of the patients exhibited a reduction or stabilization of circulating HBsAg and HBV DNA levels after HBV-TCR-T-cell infusion, indicating the on-target effects. Conclusions The adoptive transfer of HBV-TCR-T cells into advanced HBV-HCC patients were generally safe and well-tolerated. Observations of clinical efficacy support the continued development and eventual application of this treatment strategy in patients with advanced HBV-related HCC. Clinical trials registration This study was registered at ClinicalTrials.gov (NCT03899415).
Collapse
|
9
|
Li C, Yu T, Shi X, Yu J. Interleukin-33 Reinvigorates Antiviral Function of Viral-Specific CD8 + T Cells in Chronic Hepatitis B Virus Infection. Viral Immunol 2021; 35:41-49. [PMID: 34818081 DOI: 10.1089/vim.2021.0140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
Restoration of exhausted hepatitis B virus (HBV)-specific CD8+ T cells is one of the important strategies for inhibition of viral replication. The role of interleukin (IL)-33 to recovery of CD8+ T cell activity is not fully elucidated. We investigated the effect of IL-33 on viral-specific CD8+ T cell responses in chronic hepatitis B (CHB) patients in vitro by both phenotypic and functional analysis. Plasma IL-33 was downregulated in CHB patients, while effective antiviral therapy rescued IL-33 expression. There was no significant difference of IL-33 receptor mRNA relative level in CD8+ T cells between CHB patients and controls. IL-33 induced the proliferation of HBV-specific CD8+ T cells, and reduced programmed death-1 expression on HBV-specific CD8+ T cells. IL-33 promoted the direct cytolytic activity of CD8+ T cells against HepG2.2.15 cells through boosting perforin and granzyme B production. Furthermore, IL-33 administration increased HBV-specific CD8+ T cell-mediated HBV replication and HBV antigen secretion mainly via enhancement of interferon-γ and tumor necrosis factor-α. IL-33 reinvigorated antiviral activity of HBV-specific CD8+ T cells, revealing that IL-33 might contribute to viral clearance in persistent HBV infection.
Collapse
Affiliation(s)
- Chao Li
- The First Operating Room, First Hospital of Jilin University, Changchun, China
| | - Tao Yu
- Neurosurgical Intensive Care Unit, First Hospital of Jilin University, Changchun, China
| | - Xiaoju Shi
- Hepatobiliary Pancreatic Department, First Hospital of Jilin University, Changchun, China
| | - Jing Yu
- The First Operating Room, First Hospital of Jilin University, Changchun, China
| |
Collapse
|
10
|
Xiong S, Zhu D, Liang B, Li M, Pan W, He J, Wang H, Sutter K, Dittmer U, Lu M, Liu D, Yang D, Liu J, Zheng X. Longitudinal characterization of phenotypic profile of T cells in chronic hepatitis B identifies immune markers associated with HBsAg loss. EBioMedicine 2021; 69:103464. [PMID: 34233260 PMCID: PMC8261015 DOI: 10.1016/j.ebiom.2021.103464] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 02/08/2023] Open
Abstract
Background The current desirable endpoint of treatment against chronic hepatitis B virus infection (cHBV) is to achieve a functional cure, which is defined as HBsAg loss (sAg-L) with or without anti-HBs seroconversion. However, the immunological features that are associated with functional cure have not been studied in detail. Methods 172 cHBV patients (67 HBeAg+ and 105 HBeAg-), including 141 HBsAg retained (sAg-R) patients (115 chronic hepatitis and 26 asymptomatic carriers), 31 sAg-L patients, and 24 healthy individuals (vaccinated but not infected with HBV) were examined for their T cell phenotypic profile and HBV-specific T cell responses by flow cytometry. 18 cHBV patients with low serum HBsAg levels were also longitudinally followed for their T cell phenotypic profile and HBV-specific T cell responses up to 60 weeks. Findings sAg-L patients showed distinct CD4+ and CD8+ T cell phenotype fingerprints compared to those of sAg-R patients, as mainly indicated by the upregulation of HLA-DR on both CD4+ and CD8+ T cells, and a potent HBcAg-specific CD8+ T cell response. The changes in the T cell phenotype in cHBV patients were even more profound during rapid HBsAg decrease and was associated with interferon α treatment. The expression of HLA-DR (r = 0·3269, p = 0·0037), CD95 (r = 0·2796, p = 0·0151), CD40L (r = 0·2747, p = 0·0156), CTLA-4 (r = 0·2786, p = 0·0148), TIM-3 (r = 0·3082, p = 0·0068), CD107a (r = 0·3597, p = 0·0013) on CD4+ T cells, and HLA-DR (r = 0·3542, p = 0·0016), CD69 (r = 0·2507, p = 0·0279), CD107a (r = 0·2875, p = 0·0112) on CD8+ T cells were positively correlated with the rate of HBsAg decrease. The expression of HLA-DR (r = 0·2846, p = 0·0009) and CD95 (r = 0·2442, p = 0·0049) on CD8+ T cells were positively correlated with the magnitude of the HBcAg-specific T cell responses in cHBV patients. Importantly, CTLA-4, CD95 and CD107a expression on CD4+ T cells, as well as HLA-DR and TIM-3 expression on CD8+ T cells in combination with HBsAg quantification were identified as potential predictive factors for sAg-L within 48 weeks in cHBV patients. Interpretation The onset of HBsAg decrease and subsequent loss in cHBV patients on treatment is associated with significant alterations of both CD4+ and CD8+ T cell phenotypes. Characterization of the T cell phenotype in cHBV patients may present predicative value for sAg-L. Funding National Natural Science Foundation of China, National Scientific and Technological Major Project of China, Integrated Innovative Team for Major Human Diseases Program of Tongji Medical College, “Double-First Class” Project for the International Cooperation Center on Infection and Immunity, HUST.
Collapse
Affiliation(s)
- Shue Xiong
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Dan Zhu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Boyun Liang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mingyue Li
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wen Pan
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junyi He
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hua Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kathrin Sutter
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ulf Dittmer
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Mengji Lu
- Institute for Virology, University Hospital of Essen, University of Duisburg-Essen, Essen 45147, Germany; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Liu
- Pritzker School of Medicine, University of Chicago, Chicago, USA
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Xin Zheng
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Joint International Laboratory of Infection and Immunity, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
11
|
Abstract
BACKGROUND Chemokine (C-C motif) ligand 19 (CCL19) is a leukocyte chemoattractant that plays a crucial role in cell trafficking and leukocyte activation. Dysfunctional CD8+ T cells play a crucial role in persistent HBV infection. However, whether HBV can be cleared by CCL19-activated immunity remains unclear. METHODS We assessed the effects of CCL19 on the activation of PBMCs in patients with HBV infection. We also examined how CCL19 influences HBV clearance and modulates HBV-responsive T cells in a mouse model of chronic hepatitis B (CHB). In addition, C-C chemokine-receptor type 7 (CCR7) knockdown mice were used to elucidate the underlying mechanism of CCL19/CCR7 axis-induced immune activation. RESULTS From in vitro experiments, we found that CCL19 enhanced the frequencies of Ag-responsive IFN-γ+ CD8+ T cells from patients by approximately twofold, while CCR7 knockdown (LV-shCCR7) and LY294002 partially suppressed IFN-γ secretion. In mice, CCL19 overexpression led to rapid clearance of intrahepatic HBV likely through increased intrahepatic CD8+ T-cell proportion, decreased frequency of PD-1+ CD8+ T cells in blood and compromised suppression of hepatic APCs, with lymphocytes producing a significantly high level of Ag-responsive TNF-α and IFN-γ from CD8+ T cells. In both CCL19 over expressing and CCR7 knockdown (AAV-shCCR7) CHB mice, the frequency of CD8+ T-cell activation-induced cell death (AICD) increased, and a high level of Ag-responsive TNF-α and low levels of CD8+ regulatory T (Treg) cells were observed. CONCLUSIONS Findings in this study provide insights into how CCL19/CCR7 axis modulates the host immune system, which may promote the development of immunotherapeutic strategies for HBV treatment by overcoming T-cell tolerance.
Collapse
|
12
|
Jiaming Z, Pinzhu H, Xiaoyan G, Shuyun T, Rongwan L, Huanmiao Z, Xiaofeng W, Yuanlv X, Mingzhe H, Hongen Y, Meijin H, Jianping W. HBV infection may reduce the risk of metachronous liver metastasis in postoperative pathological stage 2 colorectal cancer. Int J Colorectal Dis 2020; 35:2205-2217. [PMID: 32728919 DOI: 10.1007/s00384-020-03712-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 05/13/2025]
Abstract
PURPOSE To analyze whether HBV infection can reduce the risk of colorectal liver metastasis (CRLM) in stage 2 colorectal cancer (CRC). METHODS The data of postoperative pathological stage 2 CRC patients treated at the Sixth Affiliated Hospital of Sun Yat-sen University between 2013 and 2015 were analyzed. The patients were divided into an infection group (group A) and a non-infection group (group B). The correlations between HBV infection and CRLM, 5-year liver disease-free survival, and 5-year overall survival were compared. RESULTS A total of 884 patients who met the inclusion criteria were included in the study. Group A included 297 patients (33.60%), and 5 patients (1.68%) had CRLM. Group B included 587 patients (66.40%), and 31 patients (5.28%) had CRLM. The results of correlation analysis and logistic regression analysis showed that HBV infection (P = 0.013, HR = 0.29, 95% CI 0.11-0.77) was a protective factor for CRLM, while CEA > 5 ng/ml (P = 0.002, HR = 3.12, 95% CI 1.51-6.47) and hypertension (P = 0.010, HR = 3.50, 95% CI 1.34-9.09) were risk factors for CRLM. Group A had a significantly better 5-year liver disease-free survival than group B (P = 0.011, HR = 0.31, 95% CI 0.16-0.63), but there was no significant difference in the 5-year overall survival (P = 0.433). CONCLUSION HBV infection may reduce the risk of metachronous liver metastasis in stage 2 colorectal cancer.
Collapse
Affiliation(s)
- Zhou Jiaming
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huang Pinzhu
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Guo Xiaoyan
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Tan Shuyun
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Lin Rongwan
- Department of Clinical Laboratory, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhan Huanmiao
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wu Xiaofeng
- Department of Medical Records Management, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao Yuanlv
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huang Mingzhe
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yu Hongen
- Department of Chemotherapy, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huang Meijin
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Wang Jianping
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital of Sun Yat-sen University, No. 26 Yuancun Erheng Road, Tianhe District, Guangzhou, Guangdong, China. .,Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Disease, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
13
|
Fisicaro P, Barili V, Rossi M, Montali I, Vecchi A, Acerbi G, Laccabue D, Zecca A, Penna A, Missale G, Ferrari C, Boni C. Pathogenetic Mechanisms of T Cell Dysfunction in Chronic HBV Infection and Related Therapeutic Approaches. Front Immunol 2020; 11:849. [PMID: 32477347 PMCID: PMC7235343 DOI: 10.3389/fimmu.2020.00849] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
A great effort of research has been devoted in the last few years to developing new anti-HBV therapies of finite duration that also provide effective sustained control of virus replication and antigen production. Among the potential therapeutic strategies, immune-modulation represents a promising option to cure HBV infection and the adaptive immune response is a rational target for novel therapeutic interventions, in consideration of the key role played by T cells in the control of virus infections. HBV-specific T cells are severely dysfunctional in chronic HBV infection as a result of several inhibitory mechanisms which are simultaneously active within the chronically inflamed liver. Indeed, the liver is a tolerogenic organ harboring different non-parenchymal cell populations which can serve as antigen presenting cells (APC) but are poorly efficient in effector T cell priming, with propensity to induce T cell tolerance rather than T cell activation, because of a poor expression of co-stimulatory molecules, up-regulation of the co-inhibitory ligands PD-L1 and PD-L2 upon IFN stimulation, and production of immune regulatory cytokines, such as IL10 and TGF-β. They include resident dendritic cells (DCs), comprising myeloid and plasmacytoid DCs, liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs) as well as the hepatocytes themselves. Additional regulatory mechanisms which contribute to T cell attrition in the chronically infected liver are the high levels of soluble mediators, such as arginase, indoleamine 2,3-dioxygenase (IDO) and suppressive cytokines, the up-regulation of inhibitory checkpoint receptor/ligand pairs, the expansion of regulatory cells, such as CD4+FOXp3+ Treg cells, myeloid-derived suppressor cells and NK cells. This review will deal with the interactions between immune cells and liver environment discussing the different mechanisms which contribute to T cell dysfunction in chronic hepatitis B, some of which are specifically activated in HBV infection and others which are instead common to chronic inflammatory liver diseases in general. Therapeutic interventions targeting dysregulated pathways and cellular functions will be also delineated.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Greta Acerbi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
14
|
Hoogeveen RC, Boonstra A. Checkpoint Inhibitors and Therapeutic Vaccines for the Treatment of Chronic HBV Infection. Front Immunol 2020; 11:401. [PMID: 32194573 PMCID: PMC7064714 DOI: 10.3389/fimmu.2020.00401] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/20/2020] [Indexed: 12/11/2022] Open
Abstract
Treatment of chronic hepatitis B virus (HBV) infection is highly effective in suppressing viral replication, but complete cure is rarely achieved. In recent years, substantial progress has been made in the development of immunotherapy to treat cancer. Applying these therapies to improve the management of chronic HBV infection is now being attempted, and has become an area of active research. Immunotherapy with vaccines and checkpoint inhibitors can boost T cell functions in vitro, and therefore may be used to reinvigorate the impaired HBV-specific T cell response. However, whether these approaches will suffice and restore antiviral T cell immunity to induce long-term HBV control remains an open question. Recent efforts have begun to describe the phenotype and function of HBV-specific T cells on the single epitope level. An improved understanding of differing T cell specificities and their contribution to HBV control will be instrumental for advancement of the field. In this review, we outline correlates of successful versus inadequate T cell responses to HBV, and discuss the rationale behind therapeutic vaccines and checkpoint inhibitors for the treatment of chronic HBV infection.
Collapse
Affiliation(s)
- Ruben C Hoogeveen
- Division of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - André Boonstra
- Division of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
15
|
Sun Y, Yu M, Qu M, Ma Y, Zheng D, Yue Y, Guo S, Tang L, Li G, Zheng W, Wang M, Guo D, Li C. Hepatitis B virus-triggered PTEN/β-catenin/c-Myc signaling enhances PD-L1 expression to promote immune evasion. Am J Physiol Gastrointest Liver Physiol 2020; 318:G162-G173. [PMID: 31604033 DOI: 10.1152/ajpgi.00197.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatitis B virus (HBV) exploits multiple strategies to evade host immune surveillance. Programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) signaling plays a critical role in regulating T cell homeostasis. However, it remains largely unknown as to how HBV infection elevates PD-L1 expression in hepatocytes. A mouse model of HBV infection was established by hydrodynamic injection with a vector containing 1.3-fold overlength HBV genome (pHBV1.3) via the tail vein. Coculture experiments with HBV-expressing hepatoma cells and Jurkat T cells were established in vitro. We observed significant decrease in the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and increase in β-catenin/PD-L1 expression in liver tissues from patients with chronic hepatitis B and mice subjected to pHBV1.3 hydrodynamic injection. Mechanistically, decrease in PTEN enhanced β-catenin/c-Myc signaling and PD-L1 expression in HBV-expressing hepatoma cells, which in turn augmented PD-1 expression, lowered IL-2 secretion, and induced T cell apoptosis. However, β-catenin disruption inhibited PTEN-mediated PD-L1 expression, which was accompanied by decreased PD-1 expression, and increased IL-2 production in T cells. Luciferase reporter assays revealed that c-Myc stimulated transcriptional activity of PD-L1. In addition, HBV X protein (HBx) and HBV polymerase (HBp) contributed to PTEN downregulation and β-catenin/PD-L1 upregulation. Strikingly, PTEN overexpression in hepatocytes inhibited β-catenin/PD-L1 signaling and promoted HBV clearance in vivo. Our findings suggest that HBV-triggered PTEN/β-catenin/c-Myc signaling via HBx and HBp enhances PD-L1 expression, leading to inhibition of T cell response, and promotes HBV immune evasion.NEW & NOTEWORTHY This study demonstrates that during HBV infection, HBV can increase PD-L1 expression via PTEN/β-catenin/c-Myc signaling pathway, which in turn inhibits T cell response and ultimately promotes HBV immune evasion. Targeting this signaling pathway is a potential strategy for immunotherapy of chronic hepatitis B.
Collapse
Affiliation(s)
- Yishuang Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Mengxue Yu
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Mengmeng Qu
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yuhong Ma
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Dandan Zheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yanan Yue
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Shuting Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Li Tang
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Guorui Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Weishuai Zheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Min Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Deyin Guo
- Laboratory of Medical Virology, School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Changyong Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
16
|
Hakim MS, Rahmadika N, Jariah ROA. Expressions of inhibitory checkpoint molecules in acute and chronic HBV and HCV infections: Implications for therapeutic monitoring and personalized therapy. Rev Med Virol 2019; 30:e2094. [DOI: 10.1002/rmv.2094] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Mohamad S. Hakim
- Department of Microbiology, Faculty of Medicine, Public Health and NursingUniversitas Gadjah Mada Yogyakarta Indonesia
| | - Nofri Rahmadika
- Infectious Disease Research Center, Faculty of MedicineUniversitas Padjadjaran Bandung Indonesia
| | - Rizka O. A. Jariah
- Department of Health Science, Faculty of Vocational StudiesUniversitas Airlangga Surabaya Indonesia
| |
Collapse
|
17
|
Yan Y, Chen R, Wang X, Hu K, Huang L, Lu M, Hu Q. CCL19 and CCR7 Expression, Signaling Pathways, and Adjuvant Functions in Viral Infection and Prevention. Front Cell Dev Biol 2019; 7:212. [PMID: 31632965 PMCID: PMC6781769 DOI: 10.3389/fcell.2019.00212] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 09/18/2019] [Indexed: 12/11/2022] Open
Abstract
Chemokine (C–C motif) ligand 19 (CCL19) is a critical regulator of the induction of T cell activation, immune tolerance, and inflammatory responses during continuous immune surveillance, homeostasis, and development. Migration of CC-chemokine receptor 7 (CCR7)-expressing cells to secondary lymphoid organs is a crucial step in the onset of adaptive immunity, which is initiated by a complex interaction between CCR7 and its cognate ligands. Recent advances in knowledge regarding the response of the CCL19-CCR7 axis to viral infections have elucidated the complex network of interplay among the invading virus, target cells and host immune responses. Viruses use various strategies to evade or delay the cytokine response, gaining additional time to replicate in the host. In this review, we summarize the impacts of CCL19 and CCR7 expression on the regulation of viral pathogenesis with an emphasis on the corresponding signaling pathways and adjuvant mechanisms. We present and discuss the expression, signaling adaptor proteins and effects of CCL19 and CCR7 as these molecules differentially impact different viral infections and viral life cycles in host homeostatic strategies. The underlying mechanisms discussed in this review may assist in the design of novel agents to modulate chemokine activity for viral prevention.
Collapse
Affiliation(s)
- Yan Yan
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China.,The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China
| | - Renfang Chen
- The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China.,Hepatology Institute of Wuxi, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Xu Wang
- Center of Clinical Laboratory, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Kai Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Lihua Huang
- The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China.,Hepatology Institute of Wuxi, The Fifth People's Hospital of Wuxi, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Mengji Lu
- The International Joint Research Laboratory for Infection and Immunity (China-Germany), Jiangnan University, Wuxi, China.,Institute of Virology, University Hospital of Essen, University Duisburg-Essen, Essen, Germany
| | - Qinxue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,Institute for Infection and Immunity, St. George's, University of London, London, United Kingdom
| |
Collapse
|
18
|
Hoogeveen RC, Robidoux MP, Schwarz T, Heydmann L, Cheney JA, Kvistad D, Aneja J, Melgaço JG, Fernandes CA, Chung RT, Boonstra A, Kim AY, Baumert TF, Timm J, Lewis-Ximenez LL, Tonnerre P, Lauer GM. Phenotype and function of HBV-specific T cells is determined by the targeted epitope in addition to the stage of infection. Gut 2019; 68:893-904. [PMID: 30580250 DOI: 10.1136/gutjnl-2018-316644] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 11/16/2018] [Accepted: 11/17/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Chronic HBV infection affects more than 250 million people worldwide and remains a global healthcare problem in part because we lack curative treatment. Sustained viral control requires HBV-specific T cells, but these become functionally impaired in chronic infection. Clinical evidence indicates that functional cure of HBV infection by the host immune response is feasible. Developing T cell-based therapies able to achieve functional cure will require identification of the requirements for a successful T cell response against HBV and the relative contribution of individual T cell specificities to HBV control. DESIGN The phenotype and function of HBV-specific T cells were studied directly ex vivo using fluorochrome-labelled multimers. We studied multiple HBV-specific T cell specificities targeting different HBV proteins in individuals with either an acute self-limiting or chronic HBV infection. RESULTS We detected strong T cell responses targeting multiple HBV viral proteins in acute self-limiting and low-frequency core and polymerase-specific T cells in chronic infection. Expression of the T cell inhibitory receptor PD-1, as well as T cell differentiation, T cell function and T cell regulation differed by stages and outcomes of infection. In addition, these features differed significantly between T cells targeting different HBV specificities. CONCLUSION HBV-specific T cells with different target specificities are characterised by distinct phenotypical and functional profiles. These results have direct implications for the design of immunological studies in HBV infection, and are potentially relevant for informing immunotherapeutic approaches to induce functional cure.
Collapse
Affiliation(s)
- Ruben C Hoogeveen
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - Maxwell P Robidoux
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Tatjana Schwarz
- Institute of Virology, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | - Laura Heydmann
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm U1110, Strasbourg, France
| | - James A Cheney
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Kvistad
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jasneet Aneja
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Juliana G Melgaço
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Carlos A Fernandes
- Laboratório Central de Saúde Pública Noel Nutels, Rio de Janeiro, Brazil
| | - Raymond T Chung
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, Rotterdam, The Netherlands
| | - Arthur Y Kim
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Thomas F Baumert
- Institut de Recherche sur les Maladies Virales et Hépatiques, Inserm U1110, Strasbourg, France
| | - Jörg Timm
- Institute of Virology, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | | | - Pierre Tonnerre
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Cencioni MT, Magliozzi R, Nicholas R, Ali R, Malik O, Reynolds R, Borsellino G, Battistini L, Muraro PA. Programmed death 1 is highly expressed on CD8 + CD57 + T cells in patients with stable multiple sclerosis and inhibits their cytotoxic response to Epstein-Barr virus. Immunology 2017; 152:660-676. [PMID: 28767147 DOI: 10.1111/imm.12808] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/27/2017] [Accepted: 07/20/2017] [Indexed: 02/06/2023] Open
Abstract
Growing evidence points to a deregulated response to Epstein-Barr virus (EBV) in the central nervous system of patients with multiple sclerosis (MS) as a possible cause of disease. We have investigated the response of a subpopulation of effector CD8+ T cells to EBV in 36 healthy donors and in 35 patients with MS in active and inactive disease. We have measured the expression of markers of degranulation, the release of cytokines, cytotoxicity and the regulation of effector functions by inhibitory receptors, such as programmed death 1 (PD-1) and human inhibitor receptor immunoglobulin-like transcript 2 (ILT2). We demonstrate that polyfunctional cytotoxic CD8+ CD57+ T cells are able to kill EBV-infected cells in healthy donors. In contrast, an anergic exhaustion-like phenotype of CD8+ CD57+ T cells with high expression of PD-1 was observed in inactive patients with MS compared with active patients with MS or healthy donors. Detection of CD8+ CD57+ T cells in meningeal inflammatory infiltrates from post-mortem MS tissue confirmed the association of this cell phenotype with the disease pathological process. The overall results suggest that ineffective immune control of EBV in patietns with MS during remission may be one factor preceding and enabling the reactivation of the virus in the central nervous system and may cause exacerbation of the disease.
Collapse
Affiliation(s)
- Maria T Cencioni
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK
| | - Roberta Magliozzi
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK.,Department of Neurosciences, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Richard Nicholas
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK.,Department of Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| | - Rehiana Ali
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK.,Department of Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| | - Omar Malik
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK.,Department of Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| | - Richard Reynolds
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK
| | | | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Paolo A Muraro
- Department of Medicine, Division of Brain Sciences, Centre for Neuroscience, Wolfson Neuroscience Laboratories, Imperial College London, London, UK.,Department of Neurosciences, Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
20
|
Torres-Cornejo A, Lauer GM. Hurdles to the Development of Effective HBV Immunotherapies and HCV Vaccines. Pathog Immun 2017; 2:102-125. [PMID: 28664194 PMCID: PMC5486412 DOI: 10.20411/pai.v2i1.201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Chronic infections with HBV and HCV continue to be major public health problems, with hundreds of millions of people infected worldwide; this is despite the availability of both an effective prophylactic HBV vaccine for more than 3 decades and potent direct antivirals for HBV and, more recently, HCV infection. Consequently, development of HBV immunotherapies and prophylactic HCV vaccines remains extremely urgent, but limited funding and significant gaps in our understanding of the correlates of immune protection pose serious hurdles for the development of novel immune-based interventions. Here we discuss immunological questions related to HBV and HCV, some shared and some pertinent to only 1 of the viruses, that should be addressed for the rational design of HBV immunotherapies and HCV vaccines.
Collapse
Affiliation(s)
- Almudena Torres-Cornejo
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Georg M. Lauer
- Gastrointestinal Unit and Liver Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
21
|
Abstract
PURPOSE The aim of this study is to investigate the T-lymphocyte subpopulation and expression of programmed cell death-1 (PD-1), toll-like receptor (TLR)3, TLR4, and interferon (INF)-γ to illustrate the relationship between hepatitis B e antigen (HBeAg) and persistent hepatitis B virus (HBV) infection. METHODS Blood was taken from normal subjects into anticoagulation tubes to separate peripheral blood mononuclear cells (PBMCs). The PBMCs were divided into four groups and cultured with various concentrations of HBeAg for 72 h. Changes in the T-cell subset were analyzed through cell counting by flow cytometry, and expression of TLR3, TLR4, and PD-1 was assessed by flow cytometry and Western blot. The concentration of IFN-γ was analyzed using enzyme-linked immunospot (ELISPOT) experiments. RESULTS PBMCs were stimulated with various concentrations of HBeAg for 72 h and assayed by flow cytometry to determine CD4+ and CD8+ cell counts. The relative frequencies of CD4+ and CD8+ subpopulations and the CD4+/CD8+ ratio decreased compared with the control group, and T-cell impairment was significantly associated with higher HBeAg load. TLR3, TLR4, and PD-1 protein expression was assessed using flow cytometry and Western blotting. Expression of TLR3, TLR4, and PD-1 increased with increasing concentration of HBeAg. ELISPOT experiments were used to determine the concentration of IFN-γ. IFN-γ production in treatment groups was lower than in the control group. Comparing IFN-γ production in treatment groups, IFN-γ production in PBMCs stimulated with high dose of HBeAg was lower than for those stimulated with low-dose HBeAg. CONCLUSIONS HBeAg can inhibit proliferation of lymphocytes, increase TLR3, TLR4, and PD-1 expression, and decrease IFN-γ production. This may be one of the molecular mechanisms of HBV immune tolerance.
Collapse
|
22
|
Fan R, Lan Y, Chen J, Huang Y, Yan Q, Jiang L, Song S, Li Y. T-bet expression in CD8+ T cells associated with chronic hepatitis B virus infection. Virol J 2016; 13:14. [PMID: 26809262 PMCID: PMC4727400 DOI: 10.1186/s12985-016-0473-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 01/20/2016] [Indexed: 01/05/2023] Open
Abstract
Background The mechanisms leading to virus-specific CD8+ T cell dysfuction in chronic hepatitis B virus (HBV) infection remain to be elucidated. Our study focused on the role of transcription factor T-bet in HBV infection because it is a crucial regulator of T cell immunity. Methods We assessed the expression of T-bet along with PD-1, IFN-γ and perforin, in HBV-specific CD8+ T cells from resolved acute hepatitis B (rAHB) patients, chronic hepatitis B (CHB) patients, as well as asymptomatic HBV carriers (ASCs). We observed dynamic changes of T-bet, PD-1, IFN-γ and perforin in acute stage and recovery stage of acute hepatitis B (AHB). Results Comparing with other cohorts, HBV-specific CD8+ T cells from rAHB demonstrated a superior ability in T-bet, IFN-γ and perforin expression, but an inferior ability in PD-1 expression. In the CHB group, the level of T-bet has a linear relationship with the level of PD-1, IFN-γ and HBV DNA, respectively. A lower expression of T-bet and PD-1 was observed in ASCs when compared with CHB. A higher expression of T-bet, PD-1, IFN-r and perforin was observed in acute stage when compared with the recovery stage of AHB. Conclusions Our results suggest that expression of T-bet may influence the function of HBV-specific CD8+ T cells and thus can be an attractive target for modulation to improve HBV-specific immunity in CHB.
Collapse
Affiliation(s)
- Rongshan Fan
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Post Street 23rd, Nangang District, Harbin, 150001, People's Republic of China.
| | - Yinghua Lan
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Post Street 23rd, Nangang District, Harbin, 150001, People's Republic of China.
| | - Jiwang Chen
- Department of Infectious Diseases, The Second Hospital of Daqing City, Daqing City, People's Republic of China.
| | - Yanxin Huang
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Post Street 23rd, Nangang District, Harbin, 150001, People's Republic of China.
| | - Qin Yan
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Post Street 23rd, Nangang District, Harbin, 150001, People's Republic of China.
| | - Lisheng Jiang
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Post Street 23rd, Nangang District, Harbin, 150001, People's Republic of China.
| | - Shupeng Song
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Post Street 23rd, Nangang District, Harbin, 150001, People's Republic of China.
| | - Yongguo Li
- Department of Infectious Diseases, The First Affiliated Hospital of Harbin Medical University, Post Street 23rd, Nangang District, Harbin, 150001, People's Republic of China.
| |
Collapse
|
23
|
Feedback regulation of IFN-α/β signaling by Axl receptor tyrosine kinase modulates HBV immunity. Eur J Immunol 2015; 45:1696-705. [DOI: 10.1002/eji.201445239] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 02/16/2015] [Accepted: 03/24/2015] [Indexed: 12/29/2022]
|
24
|
Abstract
Memory CD8 T cells generated after acute viral infections or live vaccines can persist for extended periods, in some instances for life, and play an important role in protective immunity. This long-lived immunity is achieved in part through cytokine-mediated homeostatic proliferation of memory T cells while maintaining the acquired capacity for rapid recall of effector cytokines and cytolytic molecules. The ability of memory CD8 T cells to retain their acquired properties, including their ability to remain poised to recall effector functions, is a truly impressive feat given that these acquired properties can be maintained for decades without exposure to cognate antigen. Here, we discuss general mechanisms for acquisition and maintenance of transcriptional programs in memory CD8 T cells and the potential role of epigenetic programming in maintaining the phenotypic and functional heterogeneity of cellular subsets among the pool of memory cells.
Collapse
Affiliation(s)
- Ben Youngblood
- Department of Microbiology and Immunology, Emory University1510 Clifton Road, Atlanta, GA 30322USA
- Department of Immunology, St Jude Children's Research Hospital262 Danny Thomas Place, Memphis, TN 38105-3678USA
| | - J. Scott Hale
- Department of Microbiology and Immunology, Emory University1510 Clifton Road, Atlanta, GA 30322USA
- Emory Vaccine Center, Emory University School of MedicineAtlanta, GA 30329
| | - Rafi Ahmed
- Department of Microbiology and Immunology, Emory University1510 Clifton Road, Atlanta, GA 30322USA
- Emory Vaccine Center, Emory University School of MedicineAtlanta, GA 30329
| |
Collapse
|
25
|
Yang J, Lu H, Guo R, Yan D, Ye P, Jin L, Chen C, Cao H, Diao H, Li L. Molecular profile of the T cell receptor beta variable in peripheral blood lymphocytes from chronic asymptomatic HBV carriers. Pathog Dis 2015; 73:1-9. [PMID: 25722488 DOI: 10.1093/femspd/ftu018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
T cell receptor beta variable (TCRBV) repertoire could imply the composition and function status of T cells in subjects with HBV infection. The gene melting spectral pattern (GMSP) can be used to determine the profile of TCRBV gene family. The molecular profile of TCRBV in peripheral lymphocytes from asymptomatic HBV carriers (AsC) remains ill-defined. Peripheral blood mononuclear cells (PBMCs) were separated and sorted, and the profiles of TCRBV complementarity-determining region 3 (CDR3) in CD4(+), CD8(+) T subsets and PBMCs were assayed using GMSP. The number of skewed TCRBV in the PBMCs was significantly lower than that in the CD4(+) or CD8(+) T subsets, and the number of monoclonal TCRBV families in the CD8(+) T subset was significantly higher than that in CD4(+) T subset. Compared to healthy donors, TCRBV11, BV13.1, BV20 and BV24 were used more frequently than other TCRBV members in PBMCs from AsC subjects. Furthermore, the relatively conserved CDR3 motifs were detected in these TCRBVs. The results indicate that the T cell response in AsC subjects involves several TCRBVs, and that the CD8(+) T subset maybe more relevant to pathogenesis of AsC. Moreover, the four relative conserved TCRBVs maybe a target for personalized treatments for persistent HBV infection.
Collapse
Affiliation(s)
- Jiezuan Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Haifeng Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Renyong Guo
- Department of Laboratory Medicine, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Dong Yan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Ping Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Linfeng Jin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Chunlei Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Hongcui Cao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Hongyan Diao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
26
|
Yang W, Song Y, Lu YL, Sun JZ, Wang HW. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia. Immunology 2013; 139:513-22. [PMID: 23521696 DOI: 10.1111/imm.12101] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 12/12/2022] Open
Abstract
Impaired local cellular immunity contributes to the pathogenesis of persistent high-risk human papillomavirus (HR-HPV) infection and related cervical intraepithelial neoplasia (CIN), but the underlying molecular mechanisms remain unclear. Recently, the programmed death 1/programmed death 1 ligand (PD-1/PD-L1; CD279/CD274) pathway was demonstrated to play a critical role in attenuating T-cell responses and promoting T-cell tolerance during chronic viral infections. In this study, we examined the expression of PD-1 and PD-L1 on cervical T cells and dendritic cells (DCs), respectively, from 40 women who were HR-HPV-negative (-) or HR-HPV-positive (+) with CIN grades 0, I and II-III. We also measured interferon-γ, interleukin-12 (IL-12) and IL-10 in cervical exudates. The most common HPV type was HPV 16, followed by HPV 18, 33, 51 and 58. PD-1 and PD-L1 expression on cervical T cells and DCs, respectively, was associated with HR-HPV positivity and increased in parallel with increasing CIN grade. The opposite pattern was observed for CD80 and CD86 expression on DCs, which decreased in HR-HPV+ patients in parallel with increasing CIN grade. Similarly, reduced levels of the T helper type 1 cytokines interferon-γ and IL-12 and increased levels of the T helper type 2 cytokine IL-10 in cervical exudates correlated with HR-HPV positivity and CIN grade. Our results suggest that up-regulation of the inhibitory PD-1/PD-L1 pathway may negatively regulate cervical cell-mediated immunity to HPV and contribute to the progression of HR-HPV-related CIN. These results may aid in the development of PD-1/PD-L1 pathway-based strategies for immunotherapy of HR-HPV-related CIN.
Collapse
Affiliation(s)
- Wen Yang
- Department of Gynaecology and Obstetrics, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China
| | | | | | | | | |
Collapse
|
27
|
A deficient translocation of CD3ζ, ZAP-70 and Grb2 to lipid raft, as a hallmark of defective adaptive immune response during chronic hepatitis B infection. Cell Immunol 2013; 284:9-19. [PMID: 23916875 DOI: 10.1016/j.cellimm.2013.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 05/24/2013] [Accepted: 05/30/2013] [Indexed: 01/28/2023]
Abstract
Hepatitis B is considered to be a worldwide public health problem. An immunosuppressor microenvironment has been proposed to contribute to viral persistence during chronic disease. Understanding the intracellular signaling cascade in T-cells from HBV-infected patients, will contribute to unravel the mechanisms that control the development of immune response during hepatitis B. We analyze lipid rafts formation and early activation signals in chronic HBV infected patients, compared to naturally immune subjects (NIS). Patients show: (1) diminished GM1 clustering, (2) A deficient lipid rafts recruitment of CD3ζ/ZAP-70/Grb2, and (3) these proteins do not merge with GM1 within the lipid rafts. Finally, immunoprecipitation assays proved that ZAP-70 does not associate to CD3ζ. These results show for the first time, defects regarding early key events in T-cell activation, in chronically infected HBV patients, which may contribute not only to understand HBV immune tolerance, but to reveal new potential therapeutic targets to control the infection.
Collapse
|
28
|
Toe JG, Pellegrini M, Mak TW. Promoting immunity during chronic infection--the therapeutic potential of common gamma-chain cytokines. Mol Immunol 2013; 56:38-47. [PMID: 23685259 DOI: 10.1016/j.molimm.2013.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/08/2013] [Indexed: 10/26/2022]
Abstract
The continued global burden wrought by chronic infectious disease is unrelenting. Current therapies have curbed the severity of disease for patients, but Human Immunodeficiency Virus (HIV) and Hepatitis B (HBV) infection remain incurable and Mycobacterium tuberculosis (MTB) is rapidly becoming resistant to our existing antibiotics. Much attention has been given to enhancing T cell immunity through the use of certain common gamma-chain cytokines, which have proven to be essential and necessary for T cell survival and function. This article reviews the pre-clinical and clinical literature surrounding IL-2, IL-7, IL-15 and IL-21 and we comment on the potential therapeutic promise of these cytokines as adjuvant treatments for chronic infectious diseases.
Collapse
Affiliation(s)
- Jesse G Toe
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | |
Collapse
|
29
|
Strength of PD-1 signaling differentially affects T-cell effector functions. Proc Natl Acad Sci U S A 2013; 110:E2480-9. [PMID: 23610399 DOI: 10.1073/pnas.1305394110] [Citation(s) in RCA: 236] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
High surface expression of programmed death 1 (PD-1) is associated with T-cell exhaustion; however, the relationship between PD-1 expression and T-cell dysfunction has not been delineated. We developed a model to study PD-1 signaling in primary human T cells to study how PD-1 expression affected T-cell function. By determining the number of T-cell receptor/peptide-MHC complexes needed to initiate a Ca(2+) flux, we found that PD-1 ligation dramatically shifts the dose-response curve, making T cells much less sensitive to T-cell receptor-generated signals. Importantly, other T-cell functions were differentially sensitive to PD-1 expression. We observed that high levels of PD-1 expression were required to inhibit macrophage inflammatory protein 1 beta production, lower levels were required to block cytotoxicity and IFN-γ production, and very low levels of PD-1 expression could inhibit TNF-α and IL-2 production as well as T-cell expansion. These findings provide insight into the role of PD-1 expression in enforcing T-cell exhaustion and the therapeutic potential of PD-1 blockade.
Collapse
|
30
|
Wu W, Shi Y, Li S, Zhang Y, Liu Y, Wu Y, Chen Z. Blockade of Tim-3 signaling restores the virus-specific CD8⁺ T-cell response in patients with chronic hepatitis B. Eur J Immunol 2012; 42:1180-91. [PMID: 22539292 DOI: 10.1002/eji.201141852] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Chronic hepatitis B (CHB) is characterized by functionally impaired virus-specific CD8(+) T-cell responses. However, the mechanism underlying this dysfunction has not been fully clarified. We examined the role of a newly identified protein, T-cell immunoglobulin domain and mucin domain-containing molecule-3 (Tim-3), in regulating the antiviral CD8(+) T-cell response in CHB patients. Tim-3 expression on peripheral virus-specific CD8(+) T cells from 20 CHB patients and 20 healthy controls was determined by flow cytometry. The phenotypes and cytokine-producing capacity were compared between Tim-3(+) CD8(+) and Tim-3(-) CD8(+) T cells. The impact of Tim-3 signaling on cellular proliferation and cytokine-producing capacity was also studied. Tim-3 expression on hepatitis B virus (HBV)-specific CD8(+) T cells was higher than expression on cytomegalovirus (CMV)-specific CD8(+) T cells. Tim-3(+) CD8(+) T cells exhibited proliferative senescence phenotypes and decreased cytokine production upon antigen challenge. Finally, blocking the Tim-3 pathway significantly improved proliferation and antiviral cytokine secretion of CD8(+) T cells in response to HBV-specific antigen peptides. Tim-3 negatively regulates antiviral responses of CD8(+) T cells isolated from CHB patients, and this response is reversed by blocking the Tim-3 pathway.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Sandalova E, Laccabue D, Boni C, Watanabe T, Tan A, Zong HZ, Ferrari C, Bertoletti A. Increased levels of arginase in patients with acute hepatitis B suppress antiviral T cells. Gastroenterology 2012; 143:78-87.e3. [PMID: 22475535 DOI: 10.1053/j.gastro.2012.03.041] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 03/07/2012] [Accepted: 03/26/2012] [Indexed: 12/21/2022]
Abstract
BACKGROUND & AIMS During viral infection, the activities of virus-specific CD8(+) T cells are carefully regulated to prevent severe damage of the infected organs. We investigated the mechanisms that control the functions of activated T cells. METHODS We measured the size of the population of activated and proliferating CD8(+) T cells and the functional pattern of CD8(+) T cells specific for the entire hepatitis B virus proteome and for selected heterologous virus (Epstein-Barr virus, human cytomegalovirus, and influenza virus) using blood samples from 18 patients with acute hepatitis B. We analyzed the effects of different modulatory mechanisms, such as inhibitory molecules, suppressive cytokines (interleukin-10), and arginase, on the activities of CD8(+) T cells. RESULTS In patients with acute hepatitis B, the expansion of activated and proliferating (HLA-DR/CD38(+), Ki-67(+)/Bcl-2(low)) CD8(+) T cells did not quantitatively match their specific functions ex vivo; virus-specific CD8(+) T cells had functional impairments that were temporally restricted to the acute phase of viral hepatitis. These impairments in function were not limited to HBV-specific CD8(+) T cells but were also observed in CD8(+) T cells with specificities for other viruses. We investigated possible causes of antigen-independent CD8(+) T cell inhibition and found that the increased levels of arginase observed in patients with acute hepatitis could suppress the function of activated, but not resting, CD8(+) T cells. CONCLUSIONS The increased level of arginase in patients with acute hepatitis B suppresses the functions of activated CD8(+) T cells. This mechanism might limit the amount of liver damage caused by activated CD8(+) T cells in patients with acute HBV infection.
Collapse
Affiliation(s)
- Elena Sandalova
- Infection & Immunity Program, Singapore Institute for Clinical Sciences, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Tzeng HT, Tsai HF, Liao HJ, Lin YJ, Chen L, Chen PJ, Hsu PN. PD-1 blockage reverses immune dysfunction and hepatitis B viral persistence in a mouse animal model. PLoS One 2012; 7:e39179. [PMID: 22761734 PMCID: PMC3382233 DOI: 10.1371/journal.pone.0039179] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 05/21/2012] [Indexed: 12/24/2022] Open
Abstract
Persistent hepatitis B viral (HBV) infection results in chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). Recent studies in animal models of viral infection indicate that the interaction between the inhibitory receptor, programmed death (PD)-1, on lymphocytes and its ligand (PD-L1) play a critical role in T-cell exhaustion by inducing T-cell inactivation. High PD-1 expression levels by peripheral T-lymphocytes and the possibility of improving T-cell function by blocking PD-1-mediated signaling confirm the importance of this inhibitory pathway in inducing T-cell exhaustion. We studied T-cell exhaustion and the effects of PD-1 and PD-L1 blockade on intrahepatic infiltrating T-cells in our recently developed mouse model of HBV persistence. In this mouse animal model, we demonstrated that there were increased intrahepatic PD-1-expressing CD8+ and CD4+ T cells in mice with HBV persistence, but PD-1 upregulation was resolved in mice which had cleared HBV. The Intrahepatic CD8+ T-cells expressed higher levels of PD-1 and lower levels of CD127 in mice with HBV persistence. Blockade of PD-1/PD-L1 interactions increased HBcAg-specific interferon (IFN)-γ production in intrahepatic T lymphocytes. Furthermore, blocking the interaction of PD-1 with PD-L1 by an anti-PD-1 monoclonal antibody (mAb) reversed the exhausted phenotype in intrahepatic T lymphocytes and viral persistence to clearance of HBV in vivo. Our results indicated that PD-1 blockage reverses immune dysfunction and viral persistence of HBV infection in a mouse animal model, suggesting that the anti-PD-1 mAb might be a good therapeutic candidate for chronic HBV infection.
Collapse
Affiliation(s)
- Horng-Tay Tzeng
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hwei-Fang Tsai
- Department of Internal Medicine, Taipei Medical University, Shuang Ho Hospital, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Jung Liao
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Jiun Lin
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Lieping Chen
- Cancer Immunology Program at Yale Cancer Center, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Pei-Jer Chen
- Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ping-Ning Hsu
- Graduate Institute of Immunology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
33
|
Luan Y, Ju J, Luo L, Zhang Z, Wang J, Zhu DM, Cheng L, Zhang SY, Chen L, Wang FS, Wang S. Potential role of soluble B7-H3 in liver immunopathogenesis during chronic HBV infection. J Viral Hepat 2012; 19:23-31. [PMID: 22187944 DOI: 10.1111/j.1365-2893.2010.01421.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Immune-mediated mechanisms have been implicated in liver pathogenesis and subsequent progression in hepatitis B virus (HBV) infection. Costimulatory molecules, the important regulators of immune responses, participate in the regulation of liver pathology in HBV infection. However, the role of B7-H3 (CD276, a new member of B7 family) in this process has not been investigated. In this study, we detected abundant soluble B7-H3 (sB7-H3) in the plasma of patients with chronic HBV infections. The increase of the plasma B7-H3 was associated with the progression of liver cirrhosis and accompanied by decreased expression of B7-H3 on hepatocytes. The identification analysis suggests that the plasma B7-H3 might be derived from the membrane-bound B7-H3 on hepatocytes. A functional study showed that immobilized (4Ig) B7-H3Ig fusion protein could inhibit TCR-induced proliferation and IFN-γ secretion of T cells, which could be partially blocked by soluble B7-H3flag fusion protein. These results suggest that the reduced expression of B7-H3 in the livers might temper the inhibition of T-cell responses mediated by B7-H3 expressed on hepatocytes and thus promote the hepatic inflammation and hepatitis progression in the chronic HBV-infected patients.
Collapse
Affiliation(s)
- Y Luan
- Key Laboratory of Infection and Immunity of Chinese Academy of Sciences, Institute of Biophysics Graduate University, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Youngblood B, Oestreich KJ, Ha SJ, Duraiswamy J, Akondy RS, West EE, Wei Z, Lu P, Austin JW, Riley JL, Boss JM, Ahmed R. Chronic virus infection enforces demethylation of the locus that encodes PD-1 in antigen-specific CD8(+) T cells. Immunity 2011; 35:400-12. [PMID: 21943489 DOI: 10.1016/j.immuni.2011.06.015] [Citation(s) in RCA: 342] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 02/18/2011] [Accepted: 06/17/2011] [Indexed: 12/14/2022]
Abstract
Functionally exhausted T cells have high expression of the PD-1 inhibitory receptor, and therapies that block PD-1 signaling show promise for resolving chronic viral infections and cancer. By using human and murine systems of acute and chronic viral infections, we analyzed epigenetic regulation of PD-1 expression during CD8(+) T cell differentiation. During acute infection, naive to effector CD8(+) T cell differentiation was accompanied by a transient loss of DNA methylation of the Pdcd1 locus that was directly coupled to the duration and strength of T cell receptor signaling. Further differentiation into functional memory cells coincided with Pdcd1 remethylation, providing an adapted program for regulation of PD-1 expression. In contrast, the Pdcd1 regulatory region was completely demethylated in exhausted CD8(+) T cells and remained unmethylated even when virus titers decreased. This lack of DNA remethylation leaves the Pdcd1 locus poised for rapid expression, potentially providing a signal for premature termination of antiviral functions.
Collapse
Affiliation(s)
- Ben Youngblood
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The expression of PD-1 ligands and their involvement in regulation of T cell functions in acute and chronic woodchuck hepatitis virus infection. PLoS One 2011; 6:e26196. [PMID: 22022563 PMCID: PMC3194835 DOI: 10.1371/journal.pone.0026196] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/22/2011] [Indexed: 12/20/2022] Open
Abstract
Background The programmed cell death 1 (PD-1)/programmed death-1 ligand 1 (PD-L1) system may play a role in the negative regulation of T cell functions in hepatitis B virus (HBV) infection. Thus, it is important to study its role in the widely used animal model for HBV infection of woodchucks with woodchuck hepatitis virus (WHV). Methods Woodchuck PD-L1 (wPD-L1) and -L2 (wPD-L2) were cloned and characterized. The levels of wPD-L1 expression in primary woodchuck hepatocytes (PWH), peripheral blood mononuclear cells (PBMCs), and liver tissue of naive and WHV-infected woodchucks were examined by real time reverse transcription (RT)-PCR and flow cytometry. Using antibodies against wPD-L1 and -L2, the effect of blocking PD-1/PD-L1/PD-L2 interaction on the proliferation and degranulation of woodchuck PBMCs was examined. Principal Findings Both wPD-L1 and -L2 showed a high homology to their counterparts of other mammalian species and humans. WPD-L1 expression in PWH and PBMCs of naive animals was low but could be stimulated by Toll-like receptor (TLR) ligands and interferons (IFN). WPD-L1 expression in liver tissue was significantly higher than that measured in PWHs and was slightly elevated during acute and chronic WHV infection. However, wPD-1 and wPD-L1 expression on PBMCs was strongly up-regulated during acute and chronic infection. In vitro blockade with antibodies against wPD-L1 and -L2 partially enhanced proliferation and degranulation of PBMCs from WHV-infected woodchucks. Conclusions Our results demonstrated that wPD-1/wPD-L1 expression in hepatocytes and PBMCs can be induced by different inflammatory stimuli and is up-regulated mainly on PBMCs during WHV infection. A blockade of the woodchuck PD-1/PD-L pathway could partially enhance T cell functions in WHV infection.
Collapse
|
36
|
Zhou CB, Li ZW. Progress in understanding the role of PD-1/PD-L1 signaling pathway in the immunoregulation of HBV infection. Shijie Huaren Xiaohua Zazhi 2011; 19:2752-2759. [DOI: 10.11569/wcjd.v19.i26.2752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Programmed cell death-1 (PD-1) is an inhibitory co-stimulatory molecule belonging to the CD28 family. It plays an important role in the maintenance of immune tolerance through binding to its ligands. Recent studies showed that the PD-1/PD-1 ligand 1 (PD-L1) pathway played an essential role in the development of chronic viral infection, autoimmune diseases and tumor immunity. Manipulating this pathway may have possible clinical applications to HBV treatment. This article will review the recent progress in understanding the role of PD-1/PD-L1 signaling pathway in the immunoregulation of HBV infection.
Collapse
|
37
|
Conrad JA, Ramalingam RK, Smith RM, Barnett L, Lorey SL, Wei J, Simons BC, Sadagopal S, Meyer-Olson D, Kalams SA. Dominant clonotypes within HIV-specific T cell responses are programmed death-1high and CD127low and display reduced variant cross-reactivity. THE JOURNAL OF IMMUNOLOGY 2011; 186:6871-85. [PMID: 21562156 DOI: 10.4049/jimmunol.1004234] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
HIV epitope-specific T cell responses are often comprised of clonotypic expansions with distinct functional properties. In HIV(+) individuals, we measured programmed death-1 (PD-1) and IL-7Rα expression, MHC class I tetramer binding, cytokine production, and proliferation profiles of dominant and subdominant TCR clonotypes to evaluate the relationship between the composition of the HIV-specific T cell repertoire and clonotypic phenotype and function. Dominant clonotypes are characterized by higher PD-1 expression and lower C127 expression compared with subdominant clonotypes, and TCR avidity positively correlates with PD-1 expression. At low peptide concentrations, dominant clonotypes fail to survive in culture. In response to stimulation with peptides representing variant epitopes, subdominant clonotypes produce higher relative levels of cytokines and display greater capacity for cross-recognition compared with dominant clonotypes. These data indicate that dominant clonotypes within HIV-specific T cell responses display a phenotype consistent with ongoing exposure to cognate viral epitopes and suggest that cross-reactive, subdominant clonotypes may retain greater capacity to suppress replication of viral variants as well as to survive in the absence of strong antigenic signaling.
Collapse
Affiliation(s)
- Joseph A Conrad
- Department of Microbiology and Immunology, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yuan L, Li ZW. Involvement of the PD-1/PD-L pathway in outcome of hepatitis B virus infection. Shijie Huaren Xiaohua Zazhi 2011; 19:1051-1056. [DOI: 10.11569/wcjd.v19.i10.1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Programmed death 1 (PD-1) is a costimulatory molecule which can be expressed on T cells. PD-1 and its ligands (PD-Ls) have been demonstrated to be able to inhibit the effector functions of T cells and even result in T cell function. Recently, many studies have demonstrated that the activation of the PD-1/PD-L pathway may affect the outcome of HBV infection. Blockade of the PD-1/PD-L pathway may enhance body's immune responses, which provides a new avenue for therapy of chronic hepatitis B.
Collapse
|
39
|
Wu W, Shi Y, Li J, Chen F, Chen Z, Zheng M. Tim-3 expression on peripheral T cell subsets correlates with disease progression in hepatitis B infection. Virol J 2011; 8:113. [PMID: 21392402 PMCID: PMC3061941 DOI: 10.1186/1743-422x-8-113] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 03/11/2011] [Indexed: 02/08/2023] Open
Abstract
Background and objective T-cell immunoglobulin domain and mucin domain-containing molecule-3 (Tim-3) represents a novel mechanism of T-cell dysfunction in chronic viral diseases. However, the role of Tim-3 in the pathogenesis of chronic hepatitis B (CHB) is not well understood. We investigated Tim-3 expression on peripheral T cell subsets and analyzed the relationship between Tim-3 expression and disease progression in HBV infection. Methods peripheral blood samples were obtained from CHB patients (n = 40), including 23 patients with moderate CHB [MCHB] and 17 with severe CHB [SCHB]. Control samples were obtained from nine acute hepatitis B patients (AHB) and 26 age-matched healthy subjects. The expression of Tim-3 on T cells was determined by flow cytometry. Results Tim-3 expression was elevated on peripheral CD4+ and CD8+ T cells from AHB and CHB patients compared to those from healthy controls. The percentage of Tim-3+ T cells was further increased in SCHB patients relative to MCHB patients and showed a positive correlation with conventional markers for liver injury (alanine aminotransferase (ALT), aspartate transaminase (AST), total bilirubin (TB) and international normalized ratio (INR) level). The frequency of Tim-3-expressing T cells was negatively correlated with T-bet mRNA expression and plasma interferon-gamma (INF-gamma) levels. Further, Tim-3 expression on CD4+ or CD8+ T cells was reduced in CHB patients with disease remission after antiviral treatment and in AHB patients during the convalescence phase. Conclusions Our results suggest that over-expression of Tim-3 is involved in disease progression of CHB and that Tim-3 may participate in skewing of Th1/Tc1 response, which contributes to persistency of HBV infection.
Collapse
Affiliation(s)
- Wei Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | | | | | | | | | | |
Collapse
|
40
|
Watanabe T, Bertoletti A, Tanoto TA. PD-1/PD-L1 pathway and T-cell exhaustion in chronic hepatitis virus infection. J Viral Hepat 2010; 17:453-8. [PMID: 20487259 DOI: 10.1111/j.1365-2893.2010.01313.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Dysfunctional virus-specific T cells are a hallmark of many chronic viral infections. Recent studies have implicated the inhibitory PD-1/PD-L1 pathway with the functional impairment of T cells. In this respect, we will review the latest research on PD-1/PD-L1 pathway and T-cell exhaustion in the context of human chronic hepatitis B and C virus infections. We will also discuss the therapeutic potential of PD-1 blockade and how it may be enhanced through the modulation of other co-stimulatory/inhibitory pathways.
Collapse
Affiliation(s)
- T Watanabe
- Viral Hepatitis Laboratory, Singapore Institute for Clinical Sciences, Agency of Science Technology and Research (A*Star), Singapore, Singapore
| | | | | |
Collapse
|
41
|
Shen T, Chen X, Chen Y, Xu Q, Lu F, Liu S. Increased PD-L1 expression and PD-L1/CD86 ratio on dendritic cells were associated with impaired dendritic cells function in HCV infection. J Med Virol 2010; 82:1152-1159. [PMID: 20513078 DOI: 10.1002/jmv.21809] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Impaired hepatitis C virus (HCV)-specific T cell immunity was associated with the persistence of HCV infection. Dysfunction of dentritic cells (DCs) was believed to be involved in T cell exhaustion, but the mechanisms were rarely understood. In this study, surface costimulatory marker (CD83, CD86, and CD40), coinhibitory marker (PD-L1) expression and allostimulatory capacity of plasmacytoid DCs (pDCs) and myeloid DCs (mDCs) were evaluated in HCV-infected patients. Results showed that the expression of both costimulatory and coinhibitory markers was increased in HCV-infected patients compared with healthy controls. PD-L1/CD86 ratio was increased and positively correlated with PD-L1 expression on DCs in HCV-infected patients. Allostimulatory capacity of DCs was impaired and inversely correlated with PD-L1 expression and PD-L1/CD86 ratio. These findings suggested that the effect of inhibitory marker PD-L1 overwhelmed the effect of costimulatory markers and down regulated DC-T activation in HCV-infected patients. The results will be helpful to understand the mechanism of dysfunction of DCs in HCV infection and shed light on the DC-based immunotherapeutic strategy.
Collapse
Affiliation(s)
- Tao Shen
- Department of Microbiology, Peking University Health Science Center, Beijing, China.
| | | | | | | | | | | |
Collapse
|
42
|
Larrubia JR, Benito-Martínez S, Miquel J, Calvino M, Sanz-de-Villalobos E, Parra-Cid T. Costimulatory molecule programmed death-1 in the cytotoxic response during chronic hepatitis C. World J Gastroenterol 2009; 15:5129-40. [PMID: 19891011 PMCID: PMC2773891 DOI: 10.3748/wjg.15.5129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV)-specific CD8+ T cells play an important role in the resolution of HCV infection. Nevertheless, during chronic hepatitis C these cells lack their effector functions and fail to control the virus. HCV has developed several mechanisms to escape immune control. One of these strategies is the up-regulation of negative co-stimulatory molecules such us programmed death-1 (PD-1). This molecule is up-regulated on intrahepatic and peripheral HCV-specific cytotoxic T cells during acute and chronic phases of the disease, whereas PD-1 expression is low in resolved infection. PD-1 expressing HCV-specific CD8+ T cells are exhausted with impairment of several effector mechanisms, such as: type-1 cytokine production, expansion ability after antigen encounter and cytotoxic ability. However, PD-1 associated exhaustion can be restored by blocking the interaction between PD-1 and its ligand (PD-L1). After this blockade, HCV-specific CD8+ T cells reacquire their functionality. Nevertheless, functional restoration depends on PD-1 expression level. High PD-1-expressing intrahepatic HCV-specific CD8+ T cells do not restore their effector abilities after PD-1/PD-L1 blockade. The mechanisms by which HCV is able to induce PD-1 up-regulation to escape immune control are unknown. Persistent TCR stimulation by a high level of HCV antigens could favour early PD-1 induction, but the interaction between HCV core protein and gC1q receptor could also participate in this process. The PD-1/PD-L1 pathway modulation could be a therapeutic strategy, in conjunction with the regulation of others co-stimulatory pathways, in order to restore immune response against HCV to succeed in clearing the infection.
Collapse
|
43
|
Wang FS, Zhang Z. Host immunity influences disease progression and antiviral efficacy in humans infected with hepatitis B virus. Expert Rev Gastroenterol Hepatol 2009; 3:499-512. [PMID: 19817672 DOI: 10.1586/egh.09.50] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hepatitis B virus (HBV) infection can lead to several severe liver diseases, including hepatitis, cirrhosis and hepatocellular carcinoma, although the underlying mechanisms responsible for the clinical outcome have not been well characterized. In this review, we retrospectively examine the history of immunological responses to HBV infection and summarize the current understanding of innate and adaptive immunity in the context of HBV-associated liver disease. Recent data indicate that the interaction between HBV and the host immune response not only substantially drives disease progression, but also significantly influences antiviral efficacy in HBV-infected individuals. Advances in the field have provided insight into the immunopathology of HBV infection. Based on the characteristics of host immune responses in patients with HBV infection, a 'climbing slope hypothesis' is proposed to suggest that therapeutic strategies aimed at modulating the immune activity of the host may represent a complementary approach to antiviral drug treatment for the management of chronically HBV-infected patients.
Collapse
Affiliation(s)
- Fu-Sheng Wang
- Research Center for Biological Therapy, Beijing 302 Hospital, Beijing 100039, China.
| | | |
Collapse
|
44
|
Bertoletti A, Tan AT, Gehring AJ. HBV-Specific Adaptive Immunity. Viruses 2009; 1:91-103. [PMID: 21994540 PMCID: PMC3185487 DOI: 10.3390/v1020091] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/08/2009] [Accepted: 07/16/2009] [Indexed: 02/08/2023] Open
Abstract
The successful control of HBV infection requires an efficient expansion of distinct elements of the adaptive immune system (B cells, helper and cytotoxic T cells) that, due to the hepatotropic nature of HBV, need to operate in the liver parenchyma. In this respect, we will discuss broad features of HBV immunity in patients with resolved or chronic HBV infection and analyze how the liver environment can directly modulate HBV-immunity.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Laboratory of Hepatic Viral Diseases, Singapore Institute for Clinical Sciences, Agency of Science Technology and Research (A*Star), 30 Medical Drive, 117609, Singapore; E-Mails: ;
- Singapore Immunology Network, Agency of Science Technology and Research (A*Star), Singapore
- Program Emerging Viral Diseases Unit, Duke-NUS Graduate Medical School, Singapore
- Author to whom correspondence should be addressed; E-mail: ; Tel.: +65 64070091; Fax: +65 67766837
| | - Anthony T. Tan
- Laboratory of Hepatic Viral Diseases, Singapore Institute for Clinical Sciences, Agency of Science Technology and Research (A*Star), 30 Medical Drive, 117609, Singapore; E-Mails: ;
| | - Adam J. Gehring
- Laboratory of Hepatic Viral Diseases, Singapore Institute for Clinical Sciences, Agency of Science Technology and Research (A*Star), 30 Medical Drive, 117609, Singapore; E-Mails: ;
| |
Collapse
|