1
|
Matsuda T, Kaji K, Nishimura N, Asada S, Koizumi A, Tanaka M, Yorioka N, Tsuji Y, Kitagawa K, Sato S, Namisaki T, Akahane T, Yoshiji H. Cabozantinib prevents the progression of metabolic dysfunction-associated steatohepatitis by inhibiting the activation of hepatic stellate cell and macrophage and attenuating angiogenic activity. Heliyon 2024; 10:e38647. [PMID: 39398008 PMCID: PMC11470516 DOI: 10.1016/j.heliyon.2024.e38647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/05/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Cabozantinib, a multiple tyrosine kinase inhibitor targeting AXL, vascular endothelial growth factor receptor (VEGFR), and MET, is used clinically to treat certain cancers, including hepatocellular carcinoma. This study aimed to assess the impact of cabozantinib on liver fibrosis and hepatocarcinogenesis in a rat model of metabolic dysfunction-associated steatohepatitis (MASH). MASH-based liver fibrosis and hepatocarcinogenesis were induced in rats by feeding them a choline-deficient, L-amino acid-defined, high-fat diet (CDAHFD) for eight and 16 weeks, respectively. Cabozantinib (1 or 2 mg/kg, daily) was administered concurrently with the diet in the fibrosis model and after eight weeks in the carcinogenesis model. Treatment with cabozantinib significantly attenuated hepatic inflammation and fibrosis without affecting hepatocyte steatosis and ballooning in CDAHFD-fed rats. Cabozantinib-treated rats exhibited a marked reduction in α-smooth muscle actin+ activated hepatic stellate cell (HSC) expansion, CD68+ macrophage infiltration, and CD34+ pathological angiogenesis, along with reduced hepatic AXL, VEGF, and VEGFR2 expression. Consistently, cabozantinib downregulated the hepatic expression of profibrogenic markers (Acta2, Col1a1, Tgfb1), inflammatory cytokines (Tnfa, Il1b, Il6), and proangiogenic markers (Vegfa, Vwf, Ang2). In a cell-based assay of human activated HSCs, cabozantinib inhibited Akt activation induced by GAS6, a ligand of AXL, leading to reduced cell proliferation and profibrogenic activity. Cabozantinib also suppressed lipopolysaccharide-induced proinflammatory responses in human macrophages, VEGFA-induced collagen expression and proliferation in activated HSCs, and VEGFA-stimulated proliferation in vascular endothelial cells. Meanwhile, administration of cabozantinib did not affect Ki67+ hepatocyte proliferation or serum albumin levels, indicating no negative impact on regenerative capacity. Treatment with cabozantinib also reduced the placental glutathione transferase+ preneoplastic lesions in CDAHFD-fed rats. In conclusion, cabozantinib shows promise as a novel option for preventing MASH progression.
Collapse
Affiliation(s)
- Takuya Matsuda
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Kosuke Kaji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Norihisa Nishimura
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Shohei Asada
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Aritoshi Koizumi
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Misako Tanaka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Nobuyuki Yorioka
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Yuki Tsuji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Koh Kitagawa
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Shinya Sato
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Tadashi Namisaki
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Takemi Akahane
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| | - Hitoshi Yoshiji
- Department of Gastroenterology, Nara Medical University, Kashihara, Nara, 634-8521, Japan
| |
Collapse
|
2
|
Apostolo D, D’Onghia D, Nerviani A, Ghirardi GM, Sola D, Perazzi M, Tonello S, Colangelo D, Sainaghi PP, Bellan M. Could Gas6/TAM Axis Provide Valuable Insights into the Pathogenesis of Systemic Sclerosis? Curr Issues Mol Biol 2024; 46:7486-7504. [PMID: 39057085 PMCID: PMC11275301 DOI: 10.3390/cimb46070444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Systemic sclerosis (SSc) is a connective tissue disorder characterized by microvascular injury, extracellular matrix deposition, autoimmunity, inflammation, and fibrosis. The clinical complexity and high heterogeneity of the disease make the discovery of potential therapeutic targets difficult. However, the recent progress in the comprehension of its pathogenesis is encouraging. Growth Arrest-Specific 6 (Gas6) and Tyro3, Axl, and MerTK (TAM) receptors are involved in multiple biological processes, including modulation of the immune response, phagocytosis, apoptosis, fibrosis, inflammation, cancer development, and autoimmune disorders. In the present manuscript, we review the current evidence regarding SSc pathogenesis and the role of the Gas6/TAM system in several human diseases, suggesting its likely contribution in SSc and highlighting areas where further research is necessary to fully comprehend the role of TAM receptors in this condition. Indeed, understanding the involvement of TAM receptors in SSc, which is currently unknown, could provide valuable insights for novel potential therapeutic targets.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Davide D’Onghia
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
| | - Alessandra Nerviani
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Giulia Maria Ghirardi
- Centre for Experimental Medicine and Rheumatology, Barts and The London School of Medicine and Dentistry, William Harvey Research Institute, Queen Mary University of London, London E1 4NS, UK;
| | - Daniele Sola
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- IRCCS Istituto Auxologico Italiano, UO General Medicine, 28824 Oggebbio, Italy
| | - Mattia Perazzi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
| | - Stelvio Tonello
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
| | - Donato Colangelo
- Department of Health Sciences, Pharmacology, University of Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
- Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, University of Piemonte Orientale (UPO), 28100 Novara, Italy; (D.A.); (D.D.); (D.S.); (M.P.); (S.T.); (P.P.S.); (M.B.)
- Internal Medicine and Rheumatology Unit, A.O.U. Maggiore della Carità, 28100 Novara, Italy
- Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| |
Collapse
|
3
|
Tutusaus A, Morales A, García de Frutos P, Marí M. GAS6/TAM Axis as Therapeutic Target in Liver Diseases. Semin Liver Dis 2024; 44:99-114. [PMID: 38395061 PMCID: PMC11027478 DOI: 10.1055/a-2275-0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
TAM (TYRO3, AXL, and MERTK) protein tyrosine kinase membrane receptors and their vitamin K-dependent ligands GAS6 and protein S (PROS) are well-known players in tumor biology and autoimmune diseases. In contrast, TAM regulation of fibrogenesis and the inflammation mechanisms underlying metabolic dysfunction-associated steatohepatitis (MASH), cirrhosis, and, ultimately, liver cancer has recently been revealed. GAS6 and PROS binding to phosphatidylserine exposed in outer membranes of apoptotic cells links TAMs, particularly MERTK, with hepatocellular damage. In addition, AXL and MERTK regulate the development of liver fibrosis and inflammation in chronic liver diseases. Acute hepatic injury is also mediated by the TAM system, as recent data regarding acetaminophen toxicity and acute-on-chronic liver failure have uncovered. Soluble TAM-related proteins, mainly released from activated macrophages and hepatic stellate cells after hepatic deterioration, are proposed as early serum markers for disease progression. In conclusion, the TAM system is becoming an interesting pharmacological target in liver pathology and a focus of future biomedical research in this field.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Albert Morales
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Cardiovasculares (CIBERCV), Barcelona, Comunidad de Madrid, Spain
| | - Montserrat Marí
- Department of Cell Death and Proliferation, IIBB-CSIC, IDIBAPS, Barcelona, Catalunya, Spain
- Barcelona Clinic Liver Cancer (BCLC) Group, Barcelona, Spain
| |
Collapse
|
4
|
Apostolo D, Ferreira LL, Vincenzi F, Vercellino N, Minisini R, Latini F, Ferrari B, Burlone ME, Pirisi M, Bellan M. From MASH to HCC: the role of Gas6/TAM receptors. Front Immunol 2024; 15:1332818. [PMID: 38298195 PMCID: PMC10827955 DOI: 10.3389/fimmu.2024.1332818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 02/02/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is the replacement term for what used to be called nonalcoholic steatohepatitis (NASH). It is characterized by inflammation and injury of the liver in the presence of cardiometabolic risk factors and may eventually result in the development of hepatocellular carcinoma (HCC), the most common form of primary liver cancer. Several pathogenic mechanisms are involved in the transition from MASH to HCC, encompassing metabolic injury, inflammation, immune dysregulation and fibrosis. In this context, Gas6 (Growth Arrest-Specific 6) and TAM (Tyro3, Axl, and MerTK) receptors may play important roles. The Gas6/TAM family is involved in the modulation of inflammation, lipid metabolism, fibrosis, tumor progression and metastasis, processes which play an important role in the pathophysiology of acute and chronic liver diseases. In this review, we discuss MASH-associated HCC and the potential involvement of the Gas6/TAM system in disease development and progression. In addition, since therapeutic strategies for MASH and HCC are limited, we also speculate regarding possible future treatments involving the targeting of Gas6 or TAM receptors.
Collapse
Affiliation(s)
- Daria Apostolo
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Luciana L. Ferreira
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Federica Vincenzi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Nicole Vercellino
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Federico Latini
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Barbara Ferrari
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
| | - Michela E. Burlone
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria Maggiore Della Carità, Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria Maggiore Della Carità, Novara, Italy
- Center on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy
| | - Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale, Novara, Italy
- Department of Internal Medicine, Azienda Ospedaliero-Universitaria Maggiore Della Carità, Novara, Italy
- Center on Autoimmune and Allergic Diseases, Università del Piemonte Orientale, Novara, Italy
| |
Collapse
|
5
|
Huang X, Zheng L, Zhou Y, Hu S, Ning W, Li S, Lin Z, Huang S. Controllable Adaptive Molybdate-Oligosaccharide Nanoparticles Regulate M2 Macrophage Mitochondrial Function and Promote Angiogenesis via PI3K/HIF-1α/VEGF Pathway to Accelerate Diabetic Wound Healing. Adv Healthc Mater 2024; 13:e2302256. [PMID: 37922497 DOI: 10.1002/adhm.202302256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/22/2023] [Indexed: 11/05/2023]
Abstract
The complex wound environment of diabetic wounds leads to poor treatment efficacy, and the inflammatory disorders and vascular injury are the primary causes of death in such patients. Herein, a sprayable, controllable adaptive, pH-responsive nanosystem of molybdate and oligosaccharide (CMO) is specially developed as an immunomodulatory and angiogenesis-promotion material for diabetic wound healing. CMO exhibited pH-responsive release of Mo2+ and oligosaccharide (COS), specifically in response to the alkalescent environment observed in diabetic wounds. CMO provide an anti-inflammatory environment by promoting M2 polarization through significantly stimulating macrophage mitochondrial function. Specifically, CMO with a certain concentration reduce reactive oxygen species (ROS) and tumor necrosis factor α (TNF-α) expression, and upregulated mitochondrial membrane potential (MMP), superoxide dismutase (SOD), and interleukin 10 (IL-10) expression in macrophages. Moreover, CMO facilitate angiogenesis via upregulating the PI3K/HIF-1α/VEGF pathway-a critical process for the formation of new blood vessels that supply nutrients and oxygen to the healing tissue. Remarkably, CMO promote cell viability and migration of endothelial cells, and enhance the expression of angiogenic genes. In vitro and in vivo studies suggest this simple but powerful nanosystem targeting mitochondrial function has the potential to become an effective treatment for diabetic wound healing.
Collapse
Affiliation(s)
- Xiuhong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Liqin Zheng
- Department of The First Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Yueshan Zhou
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Shaonan Hu
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Wancheng Ning
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Simin Li
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| | - Ziling Lin
- Department of Orthopedic Trauma, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510405, China
| | - Shaohong Huang
- Department of Preventive Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, 510280, China
| |
Collapse
|
6
|
Li W, Yang Y, Yang L, Chang N, Li L. Monocyte-derived Kupffer cells dominate in the Kupffer cell pool during liver injury. Cell Rep 2023; 42:113164. [PMID: 37740916 DOI: 10.1016/j.celrep.2023.113164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 06/12/2023] [Accepted: 09/07/2023] [Indexed: 09/25/2023] Open
Abstract
Healthy Kupffer cell (KC) pool is dominated by embryonic KCs (EmKCs), preserving liver homeostasis. How the KC pool varies upon injury remains unclear. Using chimeric mice with bone marrow (BM) cells labeled with enhanced green fluorescent protein, we identify that BM monocyte-derived KCs (MoKCs) become dominant in cholestatic- or toxic-injured livers via immunofluorescence and mass cytometry. Single-cell RNA sequencing (scRNA-seq) unveils the enhanced proliferative, anti-apoptotic properties and repair potential of MoKCs compared with EmKCs, which are confirmed in vivo and ex vivo through flow cytometry, qPCR, Cell Counting Kit-8, and immunofluorescence. Furthermore, compared with EmKC-dominated livers, MoKC-dominated livers exhibit less functional damage, necrosis, and fibrosis under damage, as tested by serum alanine aminotransferase activity detection, H&E and Sirius red staining, qPCR, and western blot. Collectively, we highlight that MoKCs dominate the KC pool in injured livers and show enhanced proliferative and anti-apoptotic properties while also promoting repair and attenuating fibrosis.
Collapse
Affiliation(s)
- Weiyang Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Yuanru Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Lin Yang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China
| | - Na Chang
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| | - Liying Li
- Department of Cell Biology, Municipal Laboratory for Liver Protection and Regulation of Regeneration, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Shaker ME, Gomaa HAM, Abdelgawad MA, El-Mesery M, Shaaban AA, Hazem SH. Emerging roles of tyrosine kinases in hepatic inflammatory diseases and therapeutic opportunities. Int Immunopharmacol 2023; 120:110373. [PMID: 37257270 DOI: 10.1016/j.intimp.2023.110373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/06/2023] [Accepted: 05/19/2023] [Indexed: 06/02/2023]
Abstract
Inflammation has been convicted of causing and worsening many liver diseases like acute liver failure, fibrosis, cirrhosis, fatty liver and liver cancer. Pattern recognition receptors (PRRs) like TLRs 4 and 9 localized on resident or recruited immune cells are well known cellular detectors of pathogen and damage-associated molecular patterns (PAMPs/DAMPs). Stimulation of these receptors generates the sterile and non-sterile inflammatory responses in the liver. When these responses are repeated, there will be a sustained liver injury that may progress to fibrosis and its outcomes. Crosstalk between inflammatory/fibrogenic-dependent streams and certain tyrosine kinases (TKs) has recently evolved in the context of hepatic diseases. Because of TKs increasing importance, their role should be elucidated to highlight effective approaches to manage the diverse liver disorders. This review will give a brief overview of types and functions of some TKs like BTK, JAKs, Syk, PI3K, Src and c-Abl, as well as receptors for TAM, PDGF, EGF, VEGF and HGF. It will then move to discuss the roles of these TKs in the regulation of the proinflammatory, fibrogenic and tumorigenic responses in the liver. Lastly, the therapeutic opportunities for targeting TKs in hepatic inflammatory disorders will be addressed. Overall, this review sheds light on the diverse TKs that have substantial roles in hepatic disorders and potential therapeutics modulating their activity.
Collapse
Affiliation(s)
- Mohamed E Shaker
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia.
| | - Hesham A M Gomaa
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72341, Aljouf, Saudi Arabia
| | - Mohamed El-Mesery
- Department of Biochemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Division of Biochemical Pharmacology, Department of Biology, University of Konstanz, Germany
| | - Ahmed A Shaaban
- Department of Pharmacology & Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sara H Hazem
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
8
|
Zhang H, Ni M, Wang H, Zhang J, Jin D, Busuttil RW, Kupiec-Weglinski JW, Li W, Wang X, Zhai Y. Gsk3β regulates the resolution of liver ischemia/reperfusion injury via MerTK. JCI Insight 2023; 8:e151819. [PMID: 36422999 PMCID: PMC9870084 DOI: 10.1172/jci.insight.151819] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Although glycogen synthase kinase β (Gsk3β) has been shown to regulate tissue inflammation, whether and how it regulates inflammation resolution versus inflammation activation is unclear. In a murine liver, partial warm ischemia/reperfusion injury (IRI) model, we found that Gsk3β inhibitory phosphorylation increased at both the early-activation and late-resolution stages of the disease. Myeloid Gsk3β deficiency not only alleviated liver injuries, it also facilitated the restoration of liver homeostasis. Depletion of Kupffer cells prior to the onset of liver ischemia diminished the differences between the WT and Gsk3β-KO mice in the activation of liver IRI. However, the resolution of liver IRI remained accelerated in Gsk3β-KO mice. In CD11b-DTR mice, Gsk3β-deficient BM-derived macrophages (BMMs) facilitated the resolution of liver IRI as compared with WT cells. Furthermore, Gsk3β deficiency promoted the reparative phenotype differentiation in vivo in liver-infiltrating macrophages and in vitro in BMMs. Gsk3 pharmacological inhibition promoted the resolution of liver IRI in WT, but not myeloid MerTK-deficient, mice. Thus, Gsk3β regulates liver IRI at both activation and resolution stages of the disease. Gsk3 inactivation enhances the proresolving function of liver-infiltrating macrophages in an MerTK-dependent manner.
Collapse
Affiliation(s)
- Hanwen Zhang
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Ming Ni
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Hepatobiliary Center, Key Laboratory of Liver Transplantation of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Han Wang
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Hepatobiliary Center, Key Laboratory of Liver Transplantation of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Dan Jin
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronald W. Busuttil
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Wei Li
- Department of Hepatobiliary-Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuehao Wang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Zhai
- Dumont-UCLA Transplant Center, Department of Surgery, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
- Transplant Surgery, College of Medicine, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
9
|
Huang H, Jiang J, Chen R, Lin Y, Chen H, Ling Q. The role of macrophage TAM receptor family in the acute-to-chronic progression of liver disease: From friend to foe? Liver Int 2022; 42:2620-2631. [PMID: 35900248 DOI: 10.1111/liv.15380] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 12/12/2022]
Abstract
Hepatic macrophages, the key cellular components of the liver, emerge as essential players in liver inflammation, tissue repair and subsequent fibrosis, as well as tumorigenesis. Recently, the TAM receptor tyrosine kinase family, consisting of Tyro3, Axl and MerTK, was found to be a pivotal modulator of macrophages. Activation of macrophage TAM receptor signalling promotes the efferocytosis of apoptotic cells and skews the polarization of macrophages. After briefly reviewing the mechanisms of TAM receptor signalling in macrophage polarization, we focus on their role in liver diseases from acute injury to chronic inflammation, fibrosis and then to tumorigenesis. Notably, macrophage TAM receptor signalling seems to be a two-edged sword for liver diseases. On one hand, the activation of TAM receptor signalling inhibits inflammation and facilitates tissue repair during acute liver injury. On the other hand, continuous activation of the signalling contributes to the process of chronic inflammation into fibrosis and tumorigenesis by evoking hepatic stellate cells and inhibiting anti-tumour immunity. Therefore, targeting macrophage TAM receptors and clarifying its downstream pathways will be exciting prospects for the precaution and treatment of liver diseases, particularly at different stages or statuses.
Collapse
Affiliation(s)
- Haitao Huang
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Jingyu Jiang
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Ruihan Chen
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Yimou Lin
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Hui Chen
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
| | - Qi Ling
- Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, China
- Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou, China
| |
Collapse
|
10
|
Smirne C, Croce E, Di Benedetto D, Cantaluppi V, Comi C, Sainaghi PP, Minisini R, Grossini E, Pirisi M. Oxidative Stress in Non-Alcoholic Fatty Liver Disease. LIVERS 2022; 2:30-76. [DOI: 10.3390/livers2010003] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a challenging disease caused by multiple factors, which may partly explain why it still remains an orphan of adequate therapies. This review highlights the interaction between oxidative stress (OS) and disturbed lipid metabolism. Several reactive oxygen species generators, including those produced in the gastrointestinal tract, contribute to the lipotoxic hepatic (and extrahepatic) damage by fatty acids and a great variety of their biologically active metabolites in a “multiple parallel-hit model”. This leads to inflammation and fibrogenesis and contributes to NAFLD progression. The alterations of the oxidant/antioxidant balance affect also metabolism-related organelles, leading to lipid peroxidation, mitochondrial dysfunction, and endoplasmic reticulum stress. This OS-induced damage is at least partially counteracted by the physiological antioxidant response. Therefore, modulation of this defense system emerges as an interesting target to prevent NAFLD development and progression. For instance, probiotics, prebiotics, diet, and fecal microbiota transplantation represent new therapeutic approaches targeting the gut microbiota dysbiosis. The OS and its counter-regulation are under the influence of individual genetic and epigenetic factors as well. In the near future, precision medicine taking into consideration genetic or environmental epigenetic risk factors, coupled with new OS biomarkers, will likely assist in noninvasive diagnosis and monitoring of NAFLD progression and in further personalizing treatments.
Collapse
Affiliation(s)
- Carlo Smirne
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Eleonora Croce
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Davide Di Benedetto
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Vincenzo Cantaluppi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Cristoforo Comi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Pier Paolo Sainaghi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Elena Grossini
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale, Via Solaroli 17, 28100 Novara, Italy
| |
Collapse
|
11
|
Abstract
TAM receptors (Tyro3, Axl and MerTK) are a family of tyrosine kinase receptors that are expressed in a variety of cell populations, including liver parenchymal and non-parenchymal cells. These receptors are vital for immune homeostasis, as they regulate the innate immune response by suppressing inflammation via toll-like receptor inhibition and by promoting tissue resolution through efferocytosis. However, there is increasing evidence indicating that aberrant TAM receptor signaling may play a role in pathophysiological processes in the context of liver disease. This review will explore the roles of TAM receptors and their ligands in liver homeostasis as well as a variety of disease settings, including acute liver injury, steatosis, fibrosis, cirrhosis-associated immune dysfunction and hepatocellular carcinoma. A better understanding of our current knowledge of TAM receptors in liver disease may identify new opportunities for disease monitoring as well as novel therapeutic targets. Nonetheless, this review also aims to highlight areas where further research on TAM receptor biology in liver disease is required.
Collapse
|
12
|
Zhang Y, Wang Y, Ding J, Liu P. Efferocytosis in multisystem diseases (Review). Mol Med Rep 2022; 25:13. [PMID: 34779503 PMCID: PMC8600411 DOI: 10.3892/mmr.2021.12529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 01/22/2023] Open
Abstract
Efferocytosis, the phagocytosis of apoptotic cells performed by both specialized phagocytes (such as macrophages) and non‑specialized phagocytes (such as epithelial cells), is involved in tissue repair and homeostasis. Effective efferocytosis prevents secondary necrosis, terminates inflammatory responses, promotes self‑tolerance and activates pro‑resolving pathways to maintain homeostasis. When efferocytosis is impaired, apoptotic cells that could not be cleared in time aggregate, resulting in the necrosis of apoptotic cells and release of pro‑inflammatory factors. In addition, defective efferocytosis inhibits the intracellular cholesterol reverse transportation pathways, which may lead to atherosclerosis, lung damage, non‑alcoholic fatty liver disease and neurodegenerative diseases. The uncleared apoptotic cells can also release autoantigens, which can cause autoimmune diseases. Cancer cells escape from phagocytosis via efferocytosis. Therefore, new treatment strategies for diseases related to defective efferocytosis are proposed. This review illustrated the mechanisms of efferocytosis in multisystem diseases and organismal homeostasis and the pathophysiological consequences of defective efferocytosis. Several drugs and treatments available to enhance efferocytosis are also mentioned in the review, serving as new evidence for clinical application.
Collapse
Affiliation(s)
- Yifan Zhang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yiru Wang
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jie Ding
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
- Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ping Liu
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, P.R. China
| |
Collapse
|
13
|
Ni M, Zhang J, Sosa R, Zhang H, Wang H, Jin D, Crowley K, Naini B, Elaine RF, Busuttil RW, Kupiec-Weglinski JW, Wang X, Zhai Y. T-Cell Immunoglobulin and Mucin Domain-Containing Protein-4 Is Critical for Kupffer Cell Homeostatic Function in the Activation and Resolution of Liver Ischemia Reperfusion Injury. Hepatology 2021; 74:2118-2132. [PMID: 33999437 PMCID: PMC9060306 DOI: 10.1002/hep.31906] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/26/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Liver ischemia reperfusion injury (IRI) remains an unresolved clinical problem. This study dissected roles of liver-resident macrophage Kupffer cells (KCs), with a functional focus on efferocytosis receptor T-cell immunoglobulin and mucin domain-containing protein-4 (TIM-4), in both the activation and resolution of IRI in a murine liver partial warm ischemia model. APPROACH AND RESULTS Fluorescence-activated cell sorting results showed that TIM-4 was expressed exclusively by KCs, but not infiltrating macrophages (iMФs), in IR livers. Anti-TIM-4 antibody depleted TIM-4+ macrophages in vivo, resulting in either alleviation or deterioration of liver IRI, which was determined by the repopulation kinetics of the KC niche with CD11b+ macrophages. To determine the KC-specific function of TIM-4, we reconstituted clodronate-liposome-treated mice with exogenous wild-type or TIM-4-deficient KCs at either 0 hour or 24 hours postreperfusion. TIM-4 deficiency in KCs resulted in not only increases in the severity of liver IRI (at 6 hours postreperfusion), but also impairment of the inflammation resolution (at 7 days postreperfusion). In vitro analysis revealed that TIM-4 promoted KC efferocytosis to regulate their Toll-like receptor response by up-regulating IL-10 and down-regulating TNF-α productions. CONCLUSIONS TIM-4 is critical for KC homeostatic function in both the activation and resolution of liver IRI by efferocytosis.
Collapse
Affiliation(s)
- Ming Ni
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery,Hepatobiliary Center, Key Laboratory of Liver Transplantation of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Jing Zhang
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery
| | - Rebecca Sosa
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA
| | - Hanwen Zhang
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery
| | - Han Wang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Dan Jin
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery,Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kaitlyn Crowley
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery
| | - Bita Naini
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery
| | - Reed, F. Elaine
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at University of California-Los Angeles, Los Angeles, CA
| | - Ronald W. Busuttil
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery
| | - Jerzy W. Kupiec-Weglinski
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery
| | - Xuehao Wang
- Hepatobiliary Center, Key Laboratory of Liver Transplantation of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China,Address for correspondence: Yuan Zhai, MD, PhD. Dumont-UCLA Transplant Center 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095. Phone: (310) 825-9426; Fax: (310) 267-2367, , Xuehao Wang, MD, Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, P.R.China 210029, Phone: 86-25-68136053; Fax:86-25-84630769,
| | - Yuan Zhai
- Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery,Address for correspondence: Yuan Zhai, MD, PhD. Dumont-UCLA Transplant Center 77-120 CHS, 10833 Le Conte Ave, Los Angeles, CA 90095. Phone: (310) 825-9426; Fax: (310) 267-2367, , Xuehao Wang, MD, Department of Liver Surgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, P.R.China 210029, Phone: 86-25-68136053; Fax:86-25-84630769,
| |
Collapse
|
14
|
Hayashi M, Abe K, Fujita M, Takahashi A, Hashimoto Y, Ohira H. Serum Gas6 and Axl as non-invasive biomarkers of advanced histological stage in primary biliary cholangitis. Hepatol Res 2020; 50:1337-1346. [PMID: 32885557 DOI: 10.1111/hepr.13568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 08/10/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
AIM Advanced histological stage is an important factor in individual risk stratification in patients with primary biliary cholangitis (PBC). Non-invasive biomarkers for advanced histological stage are needed. We assessed the utility of Gas6 and Axl as biomarkers for advanced histological stage in patients with PBC. METHODS A total of 113 biopsy-proven PBC patients and 20 healthy controls were included in this study. Serum Axl and Gas6 were measured using enzyme-linked immunosorbent assay. The Gas6 / albumin ratio and Axl / albumin ratio were also evaluated as biomarkers of histological stage. RESULTS Serum Axl (42.6 ng/mL vs. 30.6 ng/mL, P < 0.001) and Gas6 (21.1 ng/mL vs. 18.8 ng/mL, P = 0.007) levels in PBC patients were significantly higher than those in healthy controls. The Axl / albumin ratio was 10.4, and the Gas6 / albumin ratio was 7.6 in patients with PBC. Gas6 and Axl were significantly correlated with aspartate aminotransferase, bilirubin, albumin, and platelets. Gas6 and Axl levels in patients with an advanced Scheuer stage and an advanced Nakanuma stage were significantly higher than those in other patients. The area under the receiver operating characteristic curve (AUROC) of Axl, Gas6, Axl / albumin, and Gas6 / albumin for diagnosing Scheuer stage 4 was 0.733, 0.837, 0.845, and 0.893, respectively. The AUROC of Axl, Gas6, Axl / albumin, and Gas6 / albumin for diagnosing Nakanuma stage 4 was 0.794, 0.834, 0.869, and 0.898, respectively. CONCLUSION High levels of Gas6 and Axl were associated with advanced histological stage in PBC patients. Furthermore, the Gas6 / albumin ratio and the Axl / albumin ratio showed a high AUROC for diagnosing advanced histological stage.
Collapse
Affiliation(s)
- Manabu Hayashi
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Kazumichi Abe
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Masashi Fujita
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Atsushi Takahashi
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University, Fukushima, Japan
| | - Hiromasa Ohira
- Department of Gastroenterology, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
15
|
Li W, Xie L, Ma J, Cheng M, Fan L, Xu Y, Wang B, Chen W. Gas6 or Mer deficiency ameliorates silica-induced autophagosomes accumulation in mice lung. Toxicol Lett 2020; 337:28-37. [PMID: 33232774 DOI: 10.1016/j.toxlet.2020.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Published evidences have shown that autophagy plays an important role in silica-induced lung inflammation and collagen deposition. Our previous study found that the level of growth arrest-specific protein 6 (Gas6) in bronchoalveolar lavage fluid was increased after silica exposure. However, it is unclear whether Gas6 is involved in the regulation of silica-induced autophagy dysfunction. In this study, we observed an autophagosomes accumulation in wild-type C57BL/6 (WT) mice lung after silica intratracheal instillation and then investigated whether genetic loss of Gas6 (Gas6-/-) could ameliorate it. Our data showed that Gas6-/- mice exhibited a limited autophagosomes accumulation from days 7-84 after silica exposure, revealed by reduced induction and increased degradation of autophagosomes in mice lung tissue. Interestingly, silica particles could elevate the expression of Mer receptor, which was significantly decreased in Gas6-/- mice (P < 0.05). Furthermore, we found that Mer deficiency (Mer-/-) could also reduce the formation of autophagosomes and restore the function of impaired lysosomes in silica-treated mice. Taken together, our results indicate that genetic loss of Gas6 attenuates silica-induced autophagosomes accumulation partly through down-regulating the expression of Mer receptor. Targeting Gas6/Mer-mediated autophagy pathway may provide a novel insight into the prevention and therapy of silica-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Wei Li
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Li Xie
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jixuan Ma
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Man Cheng
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lieyang Fan
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yiju Xu
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Weihong Chen
- Department of Occupational and Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
16
|
Role of Gas6 and TAM Receptors in the Identification of Cardiopulmonary Involvement in Systemic Sclerosis and Scleroderma Spectrum Disorders. DISEASE MARKERS 2020; 2020:2696173. [PMID: 32454903 PMCID: PMC7240795 DOI: 10.1155/2020/2696173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 04/24/2020] [Indexed: 01/25/2023]
Abstract
Background Few biomarkers are available for early identification of pulmonary arterial hypertension (PAH) and interstitial lung disease (ILD) in systemic sclerosis (SS) and scleroderma spectrum disorders (SSD). Aims To evaluate Gas6, sAxl, and sMer as biomarkers for cardiopulmonary complications of SS and SSD. Methods In a cross-sectional observational study, we recruited 125 consecutive patients, affected by SS and SSD and referred to a tertiary-level pulmonary hypertension outpatient clinic. All patients underwent a comprehensive evaluation for identification of PAH and ILD. Gas6, sMer, and sAxl concentrations were measured with ELISA protocols, and concentrations were compared according to PAH or ILD. Results Nineteen subjects had pulmonary hypertension (PH) (14 PAH), and 39 had ILD (6 severe). Plasma sMer was increased in PAH (18.6 ng/ml IQR [11.7-20.3]) with respect to the absence (12.4 [8.0-15.8]) or other form of pulmonary hypertension (9.6 [7.4-12.5]; K–W variance p < 0.04). Conversely, Gas6 and sAxl levels were slightly increased in mild ILD (25.8 ng/ml [19.5-32.1] and 24.6 [20.1-32.5]) and reduced in severe ILD (16.6 [15.0-22.1] and 15.5 [14.9-22.4]) in comparison to no evidence of ILD (23.4 [18.8-28.1] and 21.6 [18.1-28.4]; K–W, p ≤ 0.05). Plasma sMer ≥ 19 ng/ml has 50% sensitivity and 92% specificity in PAH identification (area under the ROC curve (AUC) 0.697, p < 0.03). Values of Gas6 ≤ 24.5 ng/ml and of sAxl ≤ 15.5 ng/ml have 100% and 67% sensitivity and 47% and 86% specificity, respectively, in identifying severe ILD (Gas6 AUC 0.787, p < 0.001; sAxl AUC 0.705, p < 0.05). Conclusions The assay of Gas6 sAxl and sMer may be useful to help in the identification of PAH and ILD in SS and SSD patients. The Gas6/TAM system seems to be relevant in cardiopulmonary complications of SS and SSD and merits further investigations.
Collapse
|
17
|
Zhao M, Jung Y, Jiang Z, Svensson KJ. Regulation of Energy Metabolism by Receptor Tyrosine Kinase Ligands. Front Physiol 2020; 11:354. [PMID: 32372975 PMCID: PMC7186430 DOI: 10.3389/fphys.2020.00354] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Metabolic diseases, such as diabetes, obesity, and fatty liver disease, have now reached epidemic proportions. Receptor tyrosine kinases (RTKs) are a family of cell surface receptors responding to growth factors, hormones, and cytokines to mediate a diverse set of fundamental cellular and metabolic signaling pathways. These ligands signal by endocrine, paracrine, or autocrine means in peripheral organs and in the central nervous system to control cellular and tissue-specific metabolic processes. Interestingly, the expression of many RTKs and their ligands are controlled by changes in metabolic demand, for example, during starvation, feeding, or obesity. In addition, studies of RTKs and their ligands in regulating energy homeostasis have revealed unexpected diversity in the mechanisms of action and their specific metabolic functions. Our current understanding of the molecular, biochemical and genetic control of energy homeostasis by the endocrine RTK ligands insulin, FGF21 and FGF19 are now relatively well understood. In addition to these classical endocrine signals, non-endocrine ligands can govern local energy regulation, and the intriguing crosstalk between the RTK family and the TGFβ receptor family demonstrates a signaling network that diversifies metabolic process between tissues. Thus, there is a need to increase our molecular and mechanistic understanding of signal diversification of RTK actions in metabolic disease. Here we review the known and emerging molecular mechanisms of RTK signaling that regulate systemic glucose and lipid metabolism, as well as highlighting unexpected roles of non-classical RTK ligands that crosstalk with other receptor pathways.
Collapse
Affiliation(s)
- Meng Zhao
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Yunshin Jung
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Zewen Jiang
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| | - Katrin J Svensson
- Department of Pathology, Stanford University, Stanford, CA, United States.,Stanford Diabetes Research Center, Stanford, CA, United States
| |
Collapse
|
18
|
Wang Q, Zhao Y, Zang B. Anti-inflammation and anti-apoptosis effects of growth arrest-specific protein 6 in acute liver injury induced by LPS/D-GalN in mice. Acta Cir Bras 2020; 35:e202000204. [PMID: 32294688 PMCID: PMC7158606 DOI: 10.1590/s0102-865020200020000004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/16/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose To investigate the effect of growth arrest-specific protein 6 (Gas6) on acute liver injury in mice and related mechanisms. Methods Thirty C57BL/6 (6-8 weeks old) mice were randomly divided into control, LPS/D-GalN, and LPS/D-GalN+Gas6 groups (10 mice in each group). The LPS/D-GalN group was intraperitoneally administered with LPS (0.25 mg/Kg) and D-GalN (400 mg/Kg) for 5h. The LPS/D-GalN+Gas6 group was intraperitoneally administered with rmGas6 one hour before intraperitoneal application of LPS/D-GalN. All subjects were sacrificed at 5 h for blood and tissue analysis. The expression of protein and mRNA was assessed by western blotting and RT-PCR, respectively. Results Compared with the control group, AST, ALT, IL-1β, TNF-α, IL-6 IL-10, MPO activity were increased in the LPS/D-GalN group. However, they were significantly inhibited by Gas6. Gas6 markedly suppressed the expression of apoptosis-related protein induced by LPS/D-GalN. Moreover, Gas6 attenuated the activation of the NF-κB signaling pathway in acute liver injury induced by LPS/D-GalN. Conclusions Gas6 alleviates acute liver injury in mice through regulating NF-κB signaling pathways. Gas6 can be a potential therapeutic agent in treating LPS/D-GalN-induced acute liver injury in the future.
Collapse
Affiliation(s)
- Qian Wang
- China Medical University, China; China Medical University, China
| | | | | |
Collapse
|
19
|
Cubero FJ. Staging NAFLD: Diagnostic and Therapeutic Value of TAM Signaling. Cell Mol Gastroenterol Hepatol 2019; 9:545-546. [PMID: 31881182 PMCID: PMC7078440 DOI: 10.1016/j.jcmgh.2019.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/10/2022]
Affiliation(s)
- Francisco Javier Cubero
- Correspondence Address correspondence to: Francisco Javier Cubero, PhD, Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, c/Doctor Severo Ochoa, 9, Madrid 28040, Spain.
| |
Collapse
|
20
|
Horst AK, Tiegs G, Diehl L. Contribution of Macrophage Efferocytosis to Liver Homeostasis and Disease. Front Immunol 2019; 10:2670. [PMID: 31798592 PMCID: PMC6868070 DOI: 10.3389/fimmu.2019.02670] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
The clearance of apoptotic cells is pivotal for both maintaining tissue homeostasis and returning to homeostasis after tissue injury as part of the regenerative resolution response. The liver is known for its capacity to remove aged and damaged cells from the circulation and can serve as a graveyard for effector T cells. In particular Kupffer cells are active phagocytic cells, but during hepatic inflammatory responses incoming neutrophils and monocytes may contribute to pro-inflammatory damage. To stimulate resolution of such inflammation, myeloid cell function can change, via sensing of environmental changes in the inflammatory milieu. Also, the removal of apoptotic cells via efferocytosis and the signaling pathways that are activated in macrophages/phagocytes upon their engulfment of apoptotic cells are important for a return to tissue homeostasis. Here, we will discuss, how efferocytosis mechanisms in hepatic macrophages/phagocytes may regulate tissue homeostasis and be involved in tissue regeneration in liver disease.
Collapse
Affiliation(s)
- Andrea Kristina Horst
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gisa Tiegs
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Linda Diehl
- Institute for Experimental Immunology and Hepatology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
21
|
Tutusaus A, de Gregorio E, Cucarull B, Cristóbal H, Aresté C, Graupera I, Coll M, Colell A, Gausdal G, Lorens JB, García de Frutos P, Morales A, Marí M. A Functional Role of GAS6/TAM in Nonalcoholic Steatohepatitis Progression Implicates AXL as Therapeutic Target. Cell Mol Gastroenterol Hepatol 2019; 9:349-368. [PMID: 31689560 PMCID: PMC7013198 DOI: 10.1016/j.jcmgh.2019.10.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS GAS6 signaling, through the TAM receptor tyrosine kinases AXL and MERTK, participates in chronic liver pathologies. Here, we addressed GAS6/TAM involvement in Non-Alcoholic SteatoHepatitis (NASH) development. METHODS GAS6/TAM signaling was analyzed in cultured primary hepatocytes, hepatic stellate cells (HSC) and Kupffer cells (KCs). Axl-/-, Mertk-/- and wild-type C57BL/6 mice were fed with Chow, High Fat Choline-Deficient Methionine-Restricted (HFD) or methionine-choline-deficient (MCD) diet. HSC activation, liver inflammation and cytokine/chemokine production were measured by qPCR, mRNA Array analysis, western blotting and ELISA. GAS6, soluble AXL (sAXL) and MERTK (sMERTK) levels were analyzed in control individuals, steatotic and NASH patients. RESULTS In primary mouse cultures, GAS6 or MERTK activation protected primary hepatocytes against lipid toxicity via AKT/STAT-3 signaling, while bemcentinib (small molecule AXL inhibitor BGB324) blocked AXL-induced fibrogenesis in primary HSCs and cytokine production in LPS-treated KCs. Accordingly; bemcentinib diminished liver inflammation and fibrosis in MCD- and HFD-fed mice. Upregulation of AXL and ADAM10/ADAM17 metalloproteinases increased sAXL in HFD-fed mice. Transcriptome profiling revealed major reduction in fibrotic- and inflammatory-related genes in HFD-fed mice after bemcentinib administration. HFD-fed Mertk-/- mice exhibited enhanced NASH, while Axl-/- mice were partially protected. In human serum, sAXL levels augmented even at initial stages, whereas GAS6 and sMERTK increased only in cirrhotic NASH patients. In agreement, sAXL increased in HFD-fed mice before fibrosis establishment, while bemcentinib prevented liver fibrosis/inflammation in early NASH. CONCLUSION AXL signaling, increased in NASH patients, promotes fibrosis in HSCs and inflammation in KCs, while GAS6 protects cultured hepatocytes against lipotoxicity via MERTK. Bemcentinib, by blocking AXL signaling and increasing GAS6 levels, reduces experimental NASH, revealing AXL as an effective therapeutic target for clinical practice.
Collapse
Affiliation(s)
- Anna Tutusaus
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Estefanía de Gregorio
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Blanca Cucarull
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Departament de Biomedicina, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
| | - Helena Cristóbal
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Cristina Aresté
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | - Isabel Graupera
- Liver Unit, Hospital Clínic, Biomedical Research Networking Center in Hepatic and Digestive Diseases, Barcelona, Spain
| | - Mar Coll
- Liver Unit, Hospital Clínic, Biomedical Research Networking Center in Hepatic and Digestive Diseases, Barcelona, Spain
| | - Anna Colell
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain
| | | | - James B. Lorens
- BerGenBio AS, Bergen, Norway,Department of Biomedicine, Centre for Cancer Biomarkers, University of Bergen, Bergen, Norway
| | - Pablo García de Frutos
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Correspondence Address correspondence to: Montserrat Marí, PhD, Albert Morales, PhD, or Pablo García de Frutos, PhD, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), C/ Rosselló 161, 6th Floor, 08036 Barcelona, Spain. fax: +34-93-3638301.
| | - Albert Morales
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Barcelona Clinic Liver Cancer Group, Liver Unit, Hospital Clínic, Biomedical Research Networking Center in Hepatic and Digestive Diseases, Barcelona, Spain,Correspondence Address correspondence to: Montserrat Marí, PhD, Albert Morales, PhD, or Pablo García de Frutos, PhD, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), C/ Rosselló 161, 6th Floor, 08036 Barcelona, Spain. fax: +34-93-3638301.
| | - Montserrat Marí
- Department of Cell Death and Proliferation, Institute of Biomedical Research of Barcelona-Spanish Council of Scientific Research, August Pi i Sunyer Biomedical Research Institute, Barcelona, Spain,Correspondence Address correspondence to: Montserrat Marí, PhD, Albert Morales, PhD, or Pablo García de Frutos, PhD, Instituto de Investigaciones Biomédicas de Barcelona (IIBB-CSIC), C/ Rosselló 161, 6th Floor, 08036 Barcelona, Spain. fax: +34-93-3638301.
| |
Collapse
|
22
|
Gas6/TAM System: A Key Modulator of the Interplay between Inflammation and Fibrosis. Int J Mol Sci 2019; 20:ijms20205070. [PMID: 31614787 PMCID: PMC6834320 DOI: 10.3390/ijms20205070] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 02/06/2023] Open
Abstract
Fibrosis is the result of an overly abundant deposition of extracellular matrix (ECM) due to the fact of repetitive tissue injuries and/or dysregulation of the repair process. Fibrogenesis is a pathogenetic phenomenon which is involved in different chronic human diseases, accounting for a high burden of morbidity and mortality. Despite being triggered by different causative factors, fibrogenesis follows common pathways, the knowledge of which is, however, still unsatisfactory. This represents a significant limit for the development of effective antifibrotic drugs. In the present paper, we aimed to review the current evidence regarding the potential role played in fibrogenesis by growth arrest-specific 6 (Gas6) and its receptors Tyro3 protein tyrosine kinase (Tyro3), Axl receptor tyrosine kinase (Axl), and Mer tyrosine kinase protooncogene (MerTK) (TAM). Moreover, we aimed to review data about the pathogenetic role of this system in the development of different human diseases characterized by fibrosis. Finally, we aimed to explore the potential implications of these findings in diagnosis and treatment.
Collapse
|
23
|
Gas6/TAM Signaling Components as Novel Biomarkers of Liver Fibrosis. DISEASE MARKERS 2019; 2019:2304931. [PMID: 31583026 PMCID: PMC6754881 DOI: 10.1155/2019/2304931] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/20/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022]
Abstract
Liver fibrosis consists in the accumulation of extracellular matrix components mainly derived from activated hepatic stellate cells. This is commonly the result of chronic liver injury repair and represents an important health concern. As liver biopsy is burdened with many drawbacks, not surprisingly there is great interest to find new reliable noninvasive methods. Among the many are new potential fibrosis biomarkers under study, some of the most promising represented by the growth arrest-specific gene 6 (Gas6) serum protein and its family of tyrosine kinase receptors, namely, Tyro3, Axl, and MERTK (TAM). Gas6/TAM system (mainly, Axl and MERTK) has in fact recently emerged as an important player in the progression of liver fibrosis. This review is aimed at giving an overall perspective of the roles played by these molecules in major chronic liver diseases. The most promising findings up to date acknowledge that both Gas6 and its receptor serum levels (such as sAxl and, probably, sMERTK) have been shown to potentially allow for easy and accurate measurement of hepatic fibrosis progression, also providing indicative parameters of hepatic dysfunction. Although most of the current scientific evidence is still preliminary and there are no in vivo validation studies on large patient series, it still looks very promising to imagine a possible future prognostic role for these biomarkers in the multidimensional assessment of a liver patient. One may also speculate on a potential role for this system targeting (e.g., with small molecule inhibitors against Axl) as a therapeutic strategy for liver fibrosis management, always bearing in mind that any such therapeutic approach might face toxicity.
Collapse
|
24
|
Li W, Xie L, Ma J, Yang M, Wang B, Xu Y, Fan L, Mu G, Shi T, Chen W. Genetic loss of Gas6/Mer pathway attenuates silica-induced lung inflammation and fibrosis in mice. Toxicol Lett 2019; 313:178-187. [PMID: 31284023 DOI: 10.1016/j.toxlet.2019.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/06/2023]
Abstract
Long-term inhalation of crystalline silica particles leads to silicosis characterized by pulmonary inflammation and interstitial fibrosis. The growth arrest-specific protein 6 (Gas6) and its tyrosine receptor Mer have been implicated to involve in the regulation of inflammation, innate immunity and tissue repair. However, the role of Gas6 or Mer in silica-induced lung inflammation and fibrosis has not been investigated previously. In this study, we observed a remarkable increase of Gas6 in bronchoalveolar lavage fluid (BALF) from wild-type C57BL/6 mice after silica intratracheal administration. Then, we investigated whether genetic loss of Gas6 or Mer could attenuate silica-induced lung inflammation and fibrosis. Our results showed that Gas6-/- and Mer-/- mice exhibited reduced lung inflammation response from days 7 to 84 after silica exposure. We also uncovered an overexpression of the suppressor of cytokine signaling protein 1 in silica-treated deficient mice. Moreover, Gas6 or Mer deficiency attenuated silica-induced collagen deposition by inhibiting the expression of transforming growth factor-β. We conclude that gene absence of Gas6 or Mer is protective against silica-induced lung inflammation and fibrosis in mice. Targeting Gas6/Mer pathway may be a potential therapeutic approach to treat pulmonary fibrosis in patients with silicosis.
Collapse
Affiliation(s)
- Wei Li
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Li Xie
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jixuan Ma
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Meng Yang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Bin Wang
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yiju Xu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Lieyang Fan
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ge Mu
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Tingming Shi
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Institute of Health Surveillance, Analysis and Protection, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei, 430079, China.
| | - Weihong Chen
- Department of Occupational & Environmental Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China; Key Laboratory of Environment and Health, Ministry of Education & Ministry of Environmental Protection, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
25
|
Dynamics of Axl Receptor Shedding in Hepatocellular Carcinoma and Its Implication for Theranostics. Int J Mol Sci 2018; 19:ijms19124111. [PMID: 30567378 PMCID: PMC6321118 DOI: 10.3390/ijms19124111] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Signaling of the receptor tyrosine kinase Axl and its ligand Gas6 is crucially involved in the development of liver fibrosis and hepatocellular carcinoma (HCC) by activation of hepatic stellate cells and modulation of hepatocyte differentiation. Shedding of Axl’s ectodomain leads to the release of soluble Axl (sAxl), which is increased in advanced fibrosis and in early-to-late stage HCC in the presence and absence of cirrhosis. Here, we focus on the dynamics of Axl receptor shedding and delineate possible scenarios how Axl signaling might act as driver of fibrosis progression and HCC development. Based on experimental and clinical data, we discuss the consequences of modifying Axl signaling by sAxl cleavage, as well as cellular strategies to escape from antagonizing effects of Axl shedding by the involvement of the hepatic microenvironment. We emphasize a correlation between free Gas6 and free sAxl levels favoring abundant Gas6/Axl signaling in advanced fibrosis and HCC. The raised scenario provides a solid basis for theranostics allowing the use of sAxl as an accurate diagnostic biomarker of liver cirrhosis and HCC, as well as Axl receptor signaling for therapeutic intervention in stratified HCC patients.
Collapse
|
26
|
Bellan M, Castello LM, Pirisi M. Candidate Biomarkers of Liver Fibrosis: A Concise, Pathophysiology-oriented Review. J Clin Transl Hepatol 2018; 6:317-325. [PMID: 30271745 PMCID: PMC6160308 DOI: 10.14218/jcth.2018.00006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/25/2018] [Accepted: 05/03/2018] [Indexed: 12/11/2022] Open
Abstract
Repair of sustained liver injury results in fibrosis (i.e. the accumulation of extracellular matrix proteins), and ultimately the complete distortion of parenchymal architecture of the liver, which we call cirrhosis. Detecting and staging of fibrosis is thus a mainstay in the management of chronic liver diseases, since many clinically relevant decisions, such as starting treatment and/or monitoring for complications including hepatocellular carcinoma, may depend on it. The gold standard for fibrosis staging is liver biopsy, the role of which, however, is questioned nowadays because of cost, hazards and poor acceptance by patients. On the other hand, imaging techniques and/or measurement of direct and indirect serum markers have not proved to be completely satisfactory under all circumstances as alternatives to liver biopsy. Making progress in this field is now more crucial than ever, since treatments for established fibrosis appear on the horizon. Fine dissection of the pathways involved in the pathophysiology of liver diseases has put forward several novel candidate biomarkers of liver fibrosis, such as growth arrest-specific6, Mac-2-binding protein, osteopontin, placental growth factor, growth/differentiation factor 15 and hepatocyte growth factor. All molecules have been suggested to have potential to complement or substitute methods currently used to stage liver diseases. Here, we review the pros and cons for their use in this setting.
Collapse
Affiliation(s)
- Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy
- Division of Internal Medicine, “Sant’Andrea Hospital”, Vercelli, Italy
- IRCAD, Interdisciplinary Research Center of Autoimmune Diseases, Novara, Italy
- *Correspondence to: Mattia Bellan, Department of Translational Medicine, Università del Piemonte Orientale UPO, via Solaroli 17, Novara (NO) 28100, Italy. Tel: +39-321-3733966, Fax: +39-321-3733361, E-mail:
| | - Luigi Mario Castello
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy
- Emergency Medicine Department, “AOU Maggiore della Carità”, Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy
- Division of Internal Medicine, “AOU Maggiore della Carità, Novara, Italy
| |
Collapse
|
27
|
Bellan M, Sainaghi PP, Minh MT, Minisini R, Molinari L, Baldrighi M, Salmi L, Barbaglia MN, Castello LM, Ravanini P, Avanzi GC, Pirisi M. Gas6 as a predictor of esophageal varices in patients affected by hepatitis C virus related-chronic liver disease. Biomark Med 2017; 12:27-34. [PMID: 29243516 DOI: 10.2217/bmm-2017-0171] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
AIM Plasma Gas6 was tested as an alternative to Baveno VI criteria (liver stiffness <20 kPa and platelet count >150 × 109/l) in an endoscopy-sparing strategy. METHODS A total of 160 patients with chronic hepatitis C and advanced fibrosis/cirrhosis underwent, on the same occasion, liver elastography, upper endoscopy, a platelet count and serum Gas6 measurement. RESULTS A total of 74/160 (46%) patients had esophageal varices, that were small (diameter <5 mm) in 57/160 (34%) and large in 17/160 (11%) cases. A total of 34/160 (21%) patients satisfied Baveno VI criteria, according to which screening for esophageal varices could have been omitted; 1/34 had large varices (sensitivity 94%). A plasma Gas6 value <45 ng/ml, detected in 34/160 (21%) patients, was also 94% sensitive. CONCLUSION Plasma Gas6 might represent a feasible alternative to Baveno VI criteria when transient elastography is unavailable/unsuccessful.
Collapse
Affiliation(s)
- Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy.,Division of Internal Medicine, "Sant'Andrea Hospital", Vercelli, Italy
| | - Pier Paolo Sainaghi
- Division of Internal Medicine, "AOU Maggiore della Carità, Novara, Italy.,IRCAD, Interdisciplinary Research Center of Autoimmune Diseases, Novara, Italy
| | - Margherita Tran Minh
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy.,Division of Internal Medicine, "AOU Maggiore della Carità, Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy
| | - Luca Molinari
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy.,Emergency Medicine Department, "AOU Maggiore della Carità", Novara, Italy
| | - Marco Baldrighi
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy.,Emergency Medicine Department, "AOU Maggiore della Carità", Novara, Italy
| | - Livia Salmi
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy
| | | | - Luigi Mario Castello
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy.,Emergency Medicine Department, "AOU Maggiore della Carità", Novara, Italy
| | - Paolo Ravanini
- Laboratory of Molecular Virology, "AOU Maggiore della Carità", Novara, Italy
| | - Gian Carlo Avanzi
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy.,Emergency Medicine Department, "AOU Maggiore della Carità", Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale UPO, Novara, Italy.,Division of Internal Medicine, "AOU Maggiore della Carità, Novara, Italy.,IRCAD, Interdisciplinary Research Center of Autoimmune Diseases, Novara, Italy
| |
Collapse
|
28
|
Kim D, Cho GS, Han C, Park DH, Park HK, Woo DH, Kim JH. Current Understanding of Stem Cell and Secretome Therapies in Liver Diseases. Tissue Eng Regen Med 2017; 14:653-665. [PMID: 30603518 PMCID: PMC6171672 DOI: 10.1007/s13770-017-0093-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/23/2017] [Accepted: 10/29/2017] [Indexed: 12/14/2022] Open
Abstract
Liver failure is one of the main risks of death worldwide, and it originates from repetitive injuries and inflammations of liver tissues, which finally leads to the liver cirrhosis or cancer. Currently, liver transplantation is the only effective treatment for the liver diseases although it has a limitation due to donor scarcity. Alternatively, cell therapy to regenerate and reconstruct the damaged liver has been suggested to overcome the current limitation of liver disease cures. Several transplantable cell types could be utilized for recovering liver functions in injured liver, including bone marrow cells, mesenchymal stem cells, hematopoietic stem cells, macrophages, and stem cell-derived hepatocytes. Furthermore, paracrine effects of transplanted cells have been suggested as a new paradigm for liver disease cures, and this application would be a new strategy to cure liver failures. Therefore, here we reviewed the current status and challenges of therapy using stem cells for liver disease treatments.
Collapse
Affiliation(s)
- Dongkyu Kim
- Laboratory of Stem Cells, NEXEL Co., Ltd., 9th Floor, 21 Wangsan-ro, Dongdaemun-gu, Seoul, 02580 Korea
| | - Gun-Sik Cho
- Laboratory of Stem Cells, NEXEL Co., Ltd., 9th Floor, 21 Wangsan-ro, Dongdaemun-gu, Seoul, 02580 Korea
| | - Choongseong Han
- Laboratory of Stem Cells, NEXEL Co., Ltd., 9th Floor, 21 Wangsan-ro, Dongdaemun-gu, Seoul, 02580 Korea
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, #101 Daehak-ro, Jongro-gu, Seoul, 03080 Korea
| | - Dong-Hyuk Park
- Department of Neurosurgery, Korea University Medical Center, Anam Hospital, Korea University College of Medicine, 73 Inchonro, Sungbuk-gu, Seoul, 02841 Korea
| | - Hee-Kyung Park
- Department of Oral Medicine and Oral Diagnosis, School of Dentistry and Dental Research Institute, Seoul National University, #101 Daehak-ro, Jongro-gu, Seoul, 03080 Korea
| | - Dong-Hun Woo
- Laboratory of Stem Cells, NEXEL Co., Ltd., 9th Floor, 21 Wangsan-ro, Dongdaemun-gu, Seoul, 02580 Korea
| | - Jong-Hoon Kim
- Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Science Campus, Korea University, 145 Anam-ro, Seongbu-gu, Seoul, 02841 Korea
| |
Collapse
|
29
|
Han J, Bae J, Choi CY, Choi SP, Kang HS, Jo EK, Park J, Lee YS, Moon HS, Park CG, Lee MS, Chun T. Autophagy induced by AXL receptor tyrosine kinase alleviates acute liver injury via inhibition of NLRP3 inflammasome activation in mice. Autophagy 2017; 12:2326-2343. [PMID: 27780404 DOI: 10.1080/15548627.2016.1235124] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Severe hepatic inflammation is a common cause of acute or chronic liver disease. Macrophages are one of the key mediators which regulate the progress of hepatic inflammation. Increasing evidence shows that the TAM (TYRO3, AXL and MERTK) family of RTKs (receptor tyrosine kinases), which is expressed in macrophages, alleviates inflammatory responses through a negative feedback loop. However, the functional contribution of each TAM family member to the progression of hepatic inflammation remains elusive. In this study, we explore the role of individual TAM family proteins during autophagy induction and evaluate their contribution to hepatic inflammation. Among the TAM family of RTKs, AXL (AXL receptor tyrosine kinase) only induces autophagy in macrophages after interaction with its ligand, GAS6 (growth arrest specific 6). Based on our results, autophosphorylation of 2 tyrosine residues (Tyr815 and Tyr860) in the cytoplasmic domain of AXL in mice is required for autophagy induction and AXL-mediated autophagy induction is dependent on MAPK (mitogen-activated protein kinase)14 activity. Furthermore, induction of AXL-mediated autophagy prevents CASP1 (caspase 1)-dependent IL1B (interleukin 1, β) and IL18 (interleukin 18) maturation by inhibiting NLRP3 (NLR family, pyrin domain containing 3) inflammasome activation. In agreement with these observations, axl-/- mice show more severe symptoms than do wild-type (Axl+/+) mice following acute hepatic injury induced by administration of lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). Hence, GAS6-AXL signaling-mediated autophagy induction in murine macrophages ameliorates hepatic inflammatory responses by inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Jihye Han
- a Department of Biotechnology , College of Life Sciences and Biotechnology, Korea University , Seoul , Korea
| | - Joonbeom Bae
- a Department of Biotechnology , College of Life Sciences and Biotechnology, Korea University , Seoul , Korea
| | - Chang-Yong Choi
- a Department of Biotechnology , College of Life Sciences and Biotechnology, Korea University , Seoul , Korea
| | - Sang-Pil Choi
- a Department of Biotechnology , College of Life Sciences and Biotechnology, Korea University , Seoul , Korea
| | - Hyung-Sik Kang
- b School of Biological Sciences and Technology, Biotechnology Research Institute, Chonnam National University , Kwangju , Korea
| | - Eun-Kyeong Jo
- c Infection Signaling Network Research Center , Department of Microbiology , College of Medicine, Chungnam National University , Daejeon , Korea
| | - Jongsun Park
- d Department of Pharmacology , Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University , Daejeon , Korea
| | - Young Sik Lee
- a Department of Biotechnology , College of Life Sciences and Biotechnology, Korea University , Seoul , Korea
| | - Hyun-Seuk Moon
- a Department of Biotechnology , College of Life Sciences and Biotechnology, Korea University , Seoul , Korea
| | - Chung-Gyu Park
- e Department of Microbiology and Immunology , Seoul National University College of Medicine , Seoul , Korea
| | - Myung-Shik Lee
- f Severance Biomedical Science Institute , Department of Internal Medicine , College of Medicine, Yonsei University , Seoul , Korea
| | - Taehoon Chun
- a Department of Biotechnology , College of Life Sciences and Biotechnology, Korea University , Seoul , Korea
| |
Collapse
|
30
|
Dengler M, Staufer K, Huber H, Stauber R, Bantel H, Weiss KH, Starlinger P, Pock H, Klöters-Plachky P, Gotthardt DN, Rauch P, Lackner C, Stift J, Brostjan C, Gruenberger T, Kumada T, Toyoda H, Tada T, Weiss TS, Trauner M, Mikulits W. Soluble Axl is an accurate biomarker of cirrhosis and hepatocellular carcinoma development: results from a large scale multicenter analysis. Oncotarget 2017; 8:46234-46248. [PMID: 28526812 PMCID: PMC5542263 DOI: 10.18632/oncotarget.17598] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
Patients with chronic liver disease (CLD) and cirrhosis are at high risk for hepatocellular carcinoma (HCC). Current diagnostic tools for HCC detection include imaging techniques and serum biomarkers such as α-fetoprotein (AFP). Yet, these methods are limited in sensitivity and specificity to accurately detect early HCC. Here we focused on the potential of soluble Axl (sAxl) as a biomarker in CLD patients by analyzing serum samples of 1067 patients and healthy controls from centers in Europe and Asia. We show that serum concentrations of sAxl were significantly increased at early (82.57 ng/mL) and later stages of HCC (114.50 ng/mL) as compared to healthy controls (40.15 ng/mL). Notably, no elevated sAxl levels were detected in patients with CLD including chronic viral hepatitis, autoimmune hepatitis, cholestatic liver disease, or non-alcoholic fatty liver disease versus healthy controls. Furthermore, sAxl did not rise in liver adenomas or cholangiocarcinoma (CCA). Yet, patients with advanced fibrosis (F3) or cirrhosis (F4) showed enhanced sAxl concentrations (F3: 54.67 ng/mL; F4: 94.74 ng/mL). Hepatic myofibroblasts exhibited an increased release of sAxl, suggesting that elevated sAxl levels arise from these cells during fibrosis. Receiver operating characteristic curve analysis of sAxl displayed a strongly increased sensitivity and specificity to detect both cirrhosis (80.8%/92.0%) and HCC (83.3%/86.7%) with an area under the curve of 0.935/0.903 as compared to AFP. In conclusion, sAxl shows high diagnostic accuracy at early stage HCC as well as cirrhosis, thereby outperforming AFP. Importantly, sAxl remains normal in most common CLDs, liver adenomas and CCA.
Collapse
Affiliation(s)
- Mirko Dengler
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Katharina Staufer
- Department of Surgery, Division of Transplantation, Medical University of Vienna, Vienna, Austria
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Heidemarie Huber
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| | - Rudolf Stauber
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Heike Bantel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | | | - Patrick Starlinger
- Department of Surgery, Division of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Hannelore Pock
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | | | - Peter Rauch
- Candor Bioscience GmbH, Wangen im Allgäu, Germany
| | - Carolin Lackner
- Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Judith Stift
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Christine Brostjan
- Department of Surgery, Division of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Thomas Gruenberger
- Department of Surgery, Division of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Takashi Kumada
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Toshifumi Tada
- Department of Gastroenterology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Thomas S. Weiss
- Center for Liver Cell Research, Children's University Hospital (KUNO), University of Regensburg Hospital, Regensburg, Germany
| | - Michael Trauner
- Department of Internal Medicine III, Division of Gastroenterology and Hepatology, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Mikulits
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
31
|
Sun YY, Li XF, Meng XM, Huang C, Zhang L, Li J. Macrophage Phenotype in Liver Injury and Repair. Scand J Immunol 2017; 85:166-174. [PMID: 27491503 DOI: 10.1111/sji.12468] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 07/19/2016] [Indexed: 12/14/2022]
Abstract
Macrophages hold a critical position in the pathogenesis of liver injury and repair, in which their infiltrations is regarded as a main feature for both acute and chronic liver diseases. It is noted that, based on the distinct phenotypes and origins, hepatic macrophages are capable of clearing pathogens, promoting/or inhibiting liver inflammation, while regulating liver fibrosis and fibrolysis through interplaying with hepatocytes and hepatic stellate cells (HSC) via releasing different types of pro- or anti-inflammatory cytokines and growth factors. Macrophages are typically categorized into M1 or M2 phenotypes by adapting to local microenvironment during the progression of liver injury. In most occasions, M1 macrophages play a pro-inflammatory role in liver injury, while M2 macrophages exert an anti-inflammatory or pro-fibrotic role during liver repair and fibrosis. In this review, we focused on the up-to-date information about the phenotypic and functional plasticity of the macrophages and discussed the detailed mechanisms through which the phenotypes and functions of macrophages are regulated in different stages of liver injury and repair. Moreover, their roles in determining the fate of liver diseases were also summarized. Finally, the macrophage-targeted therapies against liver diseases were also be evaluated.
Collapse
Affiliation(s)
- Y-Y Sun
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - X-F Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - X-M Meng
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - C Huang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - L Zhang
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| | - J Li
- School of Pharmacy, Anhui Key Laboratory of Bioactivity of Natural Products, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University (AMU), Anhui Medical University, Hefei, China.,Anhui Institute of Innovative Drugs, Hefei, China
| |
Collapse
|
32
|
Uehara S, Fukuzawa Y, Matuyama T, Gotoh K. Role of Tyro3, Axl, and Mer Receptors and Their Ligands (Gas6, and Protein S) in Patients with Hepatocellular Carcinoma. ACTA ACUST UNITED AC 2017. [DOI: 10.4236/jct.2017.82010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Bellan M, Pogliani G, Marconi C, Minisini R, Franzosi L, Alciato F, Magri A, Avanzi GC, Pirisi M, Sainaghi PP. Gas6 as a putative noninvasive biomarker of hepatic fibrosis. Biomark Med 2016; 10:1241-1249. [PMID: 27924629 DOI: 10.2217/bmm-2016-0210] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
AIM To evaluate serum growth arrest-specific gene 6 (Gas6) concentration as a biomarker of liver fibrosis progression. MATERIALS & METHODS One hundred and thirteen consecutive patients affected by chronic liver disease underwent transient elastography, Gas6 measurement and, if clinically indicated, liver biopsy. RESULTS Gas6 concentration was directly correlated to liver stiffness (r = 0.67; p < 0.0001) and was significantly higher in patients with advanced fibrosis (Ishak 4-5; p < 0.001). A plasma concentration <30 ng/ml Gas6 ruled out fibrosis with 84% sensitivity and 56% specificity, while values >42 ng/ml identified severe fibrosis with a sensitivity of 64% and a specificity of 95%; the diagnostic accuracy was comparable to that of transient elastography. CONCLUSION Gas6 is a novel biomarker of liver fibrosis, with a potential clinical and pathophysiological relevance.
Collapse
Affiliation(s)
- Mattia Bellan
- Department of Translational Medicine, Università del Piemonte Orientale UPO, via Solaroli 17, 28100 Novara, Italy.,Division of Internal Medicine, "AOU Maggiore della Carità", Corso Mazzini 18, 28100 Novara, Italy
| | - Gabriele Pogliani
- Department of Translational Medicine, Università del Piemonte Orientale UPO, via Solaroli 17, 28100 Novara, Italy.,Division of Internal Medicine, "AOU Maggiore della Carità", Corso Mazzini 18, 28100 Novara, Italy
| | - Cecilia Marconi
- Department of Translational Medicine, Università del Piemonte Orientale UPO, via Solaroli 17, 28100 Novara, Italy.,Division of Internal Medicine, "AOU Maggiore della Carità", Corso Mazzini 18, 28100 Novara, Italy
| | - Rosalba Minisini
- Department of Translational Medicine, Università del Piemonte Orientale UPO, via Solaroli 17, 28100 Novara, Italy.,Division of Internal Medicine, "AOU Maggiore della Carità", Corso Mazzini 18, 28100 Novara, Italy
| | - Lisa Franzosi
- Department of Translational Medicine, Università del Piemonte Orientale UPO, via Solaroli 17, 28100 Novara, Italy.,Division of Internal Medicine, "AOU Maggiore della Carità", Corso Mazzini 18, 28100 Novara, Italy
| | - Federica Alciato
- Department of Translational Medicine, Università del Piemonte Orientale UPO, via Solaroli 17, 28100 Novara, Italy
| | - Andrea Magri
- Department of Translational Medicine, Università del Piemonte Orientale UPO, via Solaroli 17, 28100 Novara, Italy.,Division of Internal Medicine, "AOU Maggiore della Carità", Corso Mazzini 18, 28100 Novara, Italy
| | - Gian Carlo Avanzi
- Department of Translational Medicine, Università del Piemonte Orientale UPO, via Solaroli 17, 28100 Novara, Italy.,Emergency Medicine Department, "AOU Maggiore della Carità", Corso Mazzini 18, Novara, Italy
| | - Mario Pirisi
- Department of Translational Medicine, Università del Piemonte Orientale UPO, via Solaroli 17, 28100 Novara, Italy.,Division of Internal Medicine, "AOU Maggiore della Carità", Corso Mazzini 18, 28100 Novara, Italy.,IRCAD, Interdisciplinary Research Center of Autoimmune Diseases, via Solaroli 17, Novara, Italy
| | - Pier Paolo Sainaghi
- Division of Internal Medicine, "AOU Maggiore della Carità", Corso Mazzini 18, 28100 Novara, Italy.,IRCAD, Interdisciplinary Research Center of Autoimmune Diseases, via Solaroli 17, Novara, Italy
| |
Collapse
|
34
|
Cui X, Dang S, Wang Y, Chen Y, Zhou J, Shen C, Kuang Y, Fei J, Lu L, Wang Z. Retinol dehydrogenase 13 deficiency diminishes carbon tetrachloride-induced liver fibrosis in mice. Toxicol Lett 2016; 265:17-22. [PMID: 27865848 DOI: 10.1016/j.toxlet.2016.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/11/2016] [Accepted: 11/15/2016] [Indexed: 01/06/2023]
Abstract
Retinol dehydrogenase 13 (RDH13) is a mitochondrion-localized member of the short-chain dehydrogenases/reductases (SDRs) superfamily that participates in metabolism of some compounds. Rdh13 mRNA is most highly expressed in mouse liver. Rdh13 deficiency reduces the extent of liver injury and fibrosis, reduces hepatic stellate cell (HSC) activation, attenuates collagen I (II), tissue inhibitor of metalloproteinase 1 (TIMP-1) and transforming growth factor beta 1 (Tgf-β1) expression. The results indicate an important role of Rdh13 and suggest RDH13 as a possible new therapeutic target for CCl4-induced fibrosis.
Collapse
Affiliation(s)
- Xiaofang Cui
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China; Model Organism Division, E-Institutes of Shanghai Jiao Tong Universities School of Medicine (SJTUSM), Shanghai, 200025, China; Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Suying Dang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China; Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Yan Wang
- Department of Gastroenterology, Shanghai First People's Hospital Affiliated to SJTUSM, Shanghai, 200080, China
| | - Yan Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Jia Zhou
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China; Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Ying Kuang
- Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Jian Fei
- Shanghai Research Center for Model Organisms, Shanghai, 201203, China
| | - Lungen Lu
- Department of Gastroenterology, Shanghai First People's Hospital Affiliated to SJTUSM, Shanghai, 200080, China
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Shanghai Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, 200025, China; Model Organism Division, E-Institutes of Shanghai Jiao Tong Universities School of Medicine (SJTUSM), Shanghai, 200025, China; Shanghai Research Center for Model Organisms, Shanghai, 201203, China.
| |
Collapse
|
35
|
Bárcena C, Stefanovic M, Tutusaus A, Joannas L, Menéndez A, García-Ruiz C, Sancho-Bru P, Marí M, Caballeria J, Rothlin CV, Fernández-Checa JC, de Frutos PG, Morales A. Gas6/Axl pathway is activated in chronic liver disease and its targeting reduces fibrosis via hepatic stellate cell inactivation. J Hepatol 2015; 63:670-8. [PMID: 25908269 PMCID: PMC4543529 DOI: 10.1016/j.jhep.2015.04.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 04/07/2015] [Accepted: 04/10/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Liver fibrosis, an important health concern associated to chronic liver injury that provides a permissive environment for cancer development, is characterized by accumulation of extracellular matrix components mainly derived from activated hepatic stellate cells (HSCs). Axl, a receptor tyrosine kinase and its ligand Gas6, are involved in cell differentiation, immune response and carcinogenesis. METHODS HSCs were obtained from WT and Axl(-/-) mice, treated with recombinant Gas6 protein (rGas6), Axl siRNAs or the Axl inhibitor BGB324, and analyzed by western blot and real-time PCR. Experimental fibrosis was studied in CCl4-treated WT and Axl(-/-) mice, and in combination with Axl inhibitor. Gas6 and Axl serum levels were measured in alcoholic liver disease (ALD) and hepatitis C virus (HCV) patients. RESULTS In primary mouse HSCs, Gas6 and Axl levels paralleled HSC activation. rGas6 phosphorylated Axl and AKT prior to HSC phenotypic changes, while Axl siRNA silencing reduced HSC activation. Moreover, BGB324 blocked Axl/AKT phosphorylation and diminished HSC activation. In addition, Axl(-/-) mice displayed decreased HSC activation in vitro and liver fibrogenesis after chronic damage by CCl4 administration. Similarly, BGB324 reduced collagen deposition and CCl4-induced liver fibrosis in mice. Importantly, Gas6 and Axl serum levels increased in ALD and HCV patients, inversely correlating with liver functionality. CONCLUSIONS The Gas6/Axl axis is required for full HSC activation. Gas6 and Axl serum levels increase in parallel to chronic liver disease progression. Axl targeting may be a therapeutic strategy for liver fibrosis management.
Collapse
Affiliation(s)
- Cristina Bárcena
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Catalonia, Sain,Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Catalonia, Spain
| | - Milica Stefanovic
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Catalonia, Sain,Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Catalonia, Spain
| | - Anna Tutusaus
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Catalonia, Sain,Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Catalonia, Spain
| | - Leonel Joannas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Anghara Menéndez
- Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Catalonia, Spain
| | - Carmen García-Ruiz
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Catalonia, Sain,Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Catalonia, Spain
| | - Pau Sancho-Bru
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Catalonia, Sain
| | - Montserrat Marí
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Catalonia, Sain,Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Catalonia, Spain
| | - Joan Caballeria
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Catalonia, Sain
| | - Carla V. Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - José C. Fernández-Checa
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Catalonia, Sain,Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Catalonia, Spain,Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, CA USA
| | | | - Albert Morales
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Catalonia, Spain; Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Catalonia, Spain.
| |
Collapse
|
36
|
Minamino T, Ito Y, Ohkubo H, Shimuzu Y, Kojo K, Nishizwa N, Amano H, Narumiya S, Koizumi W, Majima M. Adhesion of platelets through thromboxane A₂ receptor signaling facilitates liver repair during acute chemical-induced hepatotoxicity. Life Sci 2015; 132:85-92. [PMID: 25921763 DOI: 10.1016/j.lfs.2015.03.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 03/02/2015] [Accepted: 03/13/2015] [Indexed: 01/18/2023]
Abstract
AIMS Platelets have been suggested to play an important role in liver regeneration and repair after hepatic resection and acute liver injury. However, the underlying mechanisms of liver repair remain elusive. Signaling through thromboxane prostanoid (TP) receptor participates in inflammation and tissue injury through platelet aggregation. On the other hand, TP receptor signaling also is involved in tissue repair and tumor growth through angiogenesis. The present study was examined whether or not TP receptor signaling contributes to liver repair and sinusoidal restoration from acute liver injury through platelet adhesion to the hepatic sinusoids. MAIN METHODS Carbon tetrachrolide (CCl4) was used to induce acute liver injury in TP receptor knockout mice (TP(-/-) mice) and their wild-type littermates (WT mice). KEY FINDINGS Compared with WT mice, TP(-/-) mice exhibited delayed in liver repair and sinusoidal restoration after CCl4 treatment, which were associated with attenuated hepatic expression of pro-angiogenic factors. Intravital microscopic observation revealed that adhering platelets to the sinusoids was increased in WT livers during the repair phase as compared with TP(-/-) livers, and platelet adhesion was dependent on TP receptor signaling. The levels of hepatocyte growth factor (HGF) in platelets from WT mice treated with CCl4 for 48h were greater than those form TP(-/-) mice, and HGF enhanced the expression of angiogenic factors in cultured human umbilical vein endothelial cells (HUVECs). SIGNIFICANCE These results suggested that TP receptor signaling facilitates liver repair and sinusoidal restoration from acute liver injury through HGF release from platelets adhering to the sinusoids.
Collapse
Affiliation(s)
- Tsutomu Minamino
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Department of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Yoshiya Ito
- Department of Surgery, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Hirotoki Ohkubo
- Department of Surgery, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Yuki Shimuzu
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Department of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Ken Kojo
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Department of Surgery, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Nobuyuki Nishizwa
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan; Department of Surgery, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Hideki Amano
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Shuh Narumiya
- Innovation Center for Immunoregulation Technologies and Drugs (AK project), Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan
| | - Wasaburo Koizumi
- Department of Gastroenterology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan
| | - Masataka Majima
- Department of Pharmacology, Kitasato University School of Medicine, Kanagawa 252-0374, Japan.
| |
Collapse
|
37
|
Abstract
The control of cellular growth and proliferation is key to the maintenance of homeostasis. Survival, proliferation, and arrest are regulated, in part, by Growth Arrest Specific 6 (Gas6) through binding to members of the TAM receptor tyrosine kinase family. Activation of the TAM receptors leads to downstream signaling through common kinases, but the exact mechanism within each cellular context varies and remains to be completely elucidated. Deregulation of the TAM family, due to its central role in mediating cellular proliferation, has been implicated in multiple diseases. Axl was cloned as the first TAM receptor in a search for genes involved in the progression of chronic to acute-phase leukemia, and has since been established as playing a critical role in the progression of cancer. The oncogenic nature of Axl is demonstrated through its activation of signaling pathways involved in proliferation, migration, inhibition of apoptosis, and therapeutic resistance. Despite its recent discovery, significant progress has been made in the development of effective clinical therapeutics targeting Axl. In order to accurately define the role of Axl in normal and diseased processes, it must be analyzed in a cell type-specific context.
Collapse
|
38
|
Hsiao FC, Lin YF, Hsieh PS, Chu NF, Chen YDI, Shieh YS, Hsieh CH, Lee CH, Lee TI, Hung YJ. Effect of GAS6 and AXL Gene Polymorphisms on Adiposity, Systemic Inflammation, and Insulin Resistance in Adolescents. Int J Endocrinol 2014; 2014:674069. [PMID: 24696684 PMCID: PMC3948192 DOI: 10.1155/2014/674069] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 12/21/2013] [Accepted: 01/07/2014] [Indexed: 01/21/2023] Open
Abstract
The present study was designed to explore the effects of GAS6 and AXL gene polymorphisms on adiposity, systemic inflammation, and insulin resistance in adolescents. After multistage sampling from the data of the Taipei Children Heart Study-III, we collected 358 boys and 369 girls with an average age of 13.3 years. We genotyped the adolescents' GAS6 rs8191973, GAS6 rs8191974, AXL rs4802113, and AXL rs2304232 polymorphisms. Significantly higher body mass index (BMI), waist circumference (WC), and hsCRP levels were found in boys with the GG genotype of GAS6 rs8191974 than A allele carriers; higher IL-6 and insulin levels and increased HOMA-IR were found in boys with the GG genotype of AXL rs2304232 than the A allele carriers. There was a significant difference in hsCRP levels of boys with the TT, TC, and CC genotypes of AXL rs4802113. Boys with both the GG genotype of GAS6 rs8191973 and the GG genotype of GAS6 rs8191974 exhibited higher BMI, WC, IL-6, and hsCRP levels than the boys carrying both the C allele of the GAS6 rs8191973 and the A allele of the GAS6 rs8191974. In conclusion, GAS6 and AXL polymorphisms are associated with adiposity, systemic inflammation, and insulin resistance in adolescents, especially in boys.
Collapse
Affiliation(s)
- Fone-Ching Hsiao
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
| | - Po-Shiuan Hsieh
- Department of Physiology and Biophysics, National Defense Medical Center, Taipei City 114, Taiwan
| | - Nain-Feng Chu
- School of Public Health Department, National Defense Medical Center, Taipei City 114, Taiwan
| | - Yii-Der Ida Chen
- Los Angeles Biomedical Research Institute, Harbor-UCLA Medical Center, Torrance, CA 90509, USA
| | - Yi-Shing Shieh
- Department of Oral Diagnosis and Pathology, School of Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| | - Chang-Hsun Hsieh
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| | - Chien-Hsing Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| | - Ting-I Lee
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei City 110, Taiwan
- Division of Endocrinology and Metabolism, Wan Fang Hospital, Taipei Medical University, Taipei City 116, Taiwan
| | - Yi-Jen Hung
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
- *Yi-Jen Hung:
| |
Collapse
|
39
|
Haase TN, Rasmussen M, Jaksch CAM, Gaarn LW, Petersen CK, Billestrup N, Nielsen JH. Growth arrest specific protein (GAS) 6: a role in the regulation of proliferation and functional capacity of the perinatal rat beta cell. Diabetologia 2013; 56:763-73. [PMID: 23334461 DOI: 10.1007/s00125-012-2821-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 12/13/2012] [Indexed: 11/28/2022]
Abstract
AIMS/HYPOTHESIS Maternal low-protein (LP) diet during gestation results in a reduced beta cell mass in the offspring at birth and this may hamper the ability to adapt to high-energy food and sedentary lifestyle later in life. To investigate the biology behind the LP-offspring phenotype, this study aimed to identify differentially expressed genes in the pancreas and their potential role in the fetal programming. METHODS Wistar rats were given either an LP diet or normal-chow (NC) diet during gestation and differentially expressed genes in the offspring around the time of birth were identified using RNA microarray and quantitative PCR. The role of a differentially expressed gene, growth arrest specific protein 6 (GAS6), was evaluated in vitro using neonatal rat islets. RESULTS The mRNA level of Gas6, known to be mitogenic in other tissues, was reduced in LP offspring. The mRNA content of Mafa was increased in LP offspring suggesting an early maturation of beta cells. When applied in vitro, GAS6 increased proliferation of neonatal pancreatic beta cells, while reducing glucose-stimulated insulin secretion without changing the total insulin content of the islets. In addition, GAS6 decreased the mRNA content of Mafa. CONCLUSIONS/INTERPRETATION We propose a role for GAS6 in the regulation of pancreatic beta cells in the critical period around the time of birth. Our results support the hypothesis that the reduced beta cell mass seen in LP offspring is caused by a change in the intra-uterine environment that favours premature maturation of the beta cells.
Collapse
Affiliation(s)
- T N Haase
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3b, Building 6.5, 2200 Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
40
|
Woo DH, Kim SK, Lim HJ, Heo J, Park HS, Kang GY, Kim SE, You HJ, Hoeppner DJ, Kim Y, Kwon H, Choi TH, Lee JH, Hong SH, Song KW, Ahn EK, Chenoweth JG, Tesar PJ, McKay RDG, Kim JH. Direct and indirect contribution of human embryonic stem cell-derived hepatocyte-like cells to liver repair in mice. Gastroenterology 2012; 142:602-11. [PMID: 22138358 DOI: 10.1053/j.gastro.2011.11.030] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/02/2011] [Accepted: 11/19/2011] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Many studies of embryonic stem cells have investigated direct cell replacement of damaged tissues, but little is known about how donor cell-derived signals affect host tissue regeneration. We investigated the direct and indirect roles of human embryonic stem cell-derived cells in liver repair in mice. METHODS To promote the initial differentiation of human embryonic stem cells into mesendoderm, we activated the β-catenin signaling pathway with lithium; cells were then further differentiated into hepatocyte-like cells. The differentiated cells were purified by indocyanine green staining and laser microdissection and characterized by immunostaining, polymerase chain reaction, biochemical function, electron microscopy, and transplantation analyses. To investigate indirect effects of these cells, secreted proteins (secretomes) were analyzed by a label-free quantitative mass spectrometry. Carbon tetrachloride was used to induce acute liver injury in mice; cells or secreted proteins were administered by intrasplenic or intraperitoneal injection, respectively. RESULTS The differentiated hepatocyte-like cells had multiple features of normal hepatocytes, engrafted efficiently into mice, and continued to have hepatic features; they promoted proliferation of host hepatocytes and revascularization of injured host liver tissues. Proteomic analysis identified proteins secreted from these cells that might promote host tissue repair. Injection of the secreted proteins into injured livers of mice promoted significant amounts of tissue regeneration without cell grafts. CONCLUSIONS Hepatocyte-like cells derived from human embryonic stem cells contribute to recovery of injured liver tissues in mice, not only by cell replacement but also by delivering trophic factors that support endogenous liver regeneration.
Collapse
Affiliation(s)
- Dong-Hun Woo
- Laboratory of Stem Cell Biology, Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Minamino T, Ito Y, Ohkubo H, Hosono K, Suzuki T, Sato T, Ae T, Shibuya A, Sakagami H, Narumiya S, Koizumi W, Majima M. Thromboxane A2 receptor signaling promotes liver tissue repair after toxic injury through the enhancement of macrophage recruitment. Toxicol Appl Pharmacol 2012; 259:104-14. [DOI: 10.1016/j.taap.2011.12.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/10/2011] [Accepted: 12/12/2011] [Indexed: 01/15/2023]
|
42
|
Chobert MN, Couchie D, Fourcot A, Zafrani ES, Laperche Y, Mavier P, Brouillet A. Liver precursor cells increase hepatic fibrosis induced by chronic carbon tetrachloride intoxication in rats. J Transl Med 2012; 92:135-50. [PMID: 21946857 PMCID: PMC3425737 DOI: 10.1038/labinvest.2011.143] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Hepatic fibrosis, the major complication of virtually all types of chronic liver damage, usually begins in portal areas, and its severity has been correlated to liver progenitor cells (LPC) expansion from periportal areas, even if the primary targets of injury are intralobular hepatocytes. The aim of this study was to determine the potential fibrogenic role of LPC, using a new experimental model in which rat liver fibrosis was induced by chronic carbon tetrachloride (CCl(4)) administration for 6 weeks, in combination with chronic acetylaminofluorene treatment (AAF), which promotes activation of LPC compartment. Treatment with CCl(4) alone caused a significant increase in serum transaminase activity as well as liver fibrosis initiating around central veins and leading to formation of incomplete centro-central septa with sparse fibrogenic cells expressing α-smooth muscle actin (αSMA). In AAF/CCl(4)-treated animals, the fibrogenic response was profoundly worsened, with formation of multiple porto-central bridging septa leading to cirrhosis, whereas hepatocellular necrosis and inflammation were similar to those observed in CCl(4)-treated animals. Enhanced fibrosis in AAF/CCl(4) group was accompanied by ductule forming LPC expanding from portal areas, αSMA-positive cells accumulation in the fibrotic areas and increased expression of hepatic collagen type 1, 3 and 4 mRNA. Moreover, CK19-positive LPC expressed the most potent fibrogenic cytokine transforming growth factor-β (TGFβ) without any expression of αSMA, desmin or fibroblast-specific protein-1, demonstrating that LPC did not undergo an epithelial-mesenchymal transition. In this new experimental model, LPC, by expressing TGFβ, contributed to the accumulation of αSMA-positive myofibroblasts in the ductular reaction leading to enhanced fibrosis but also to disease progression and to a fibrotic pattern similar to that observed in humans.
Collapse
Affiliation(s)
- Marie-Noële Chobert
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII - Paris Est Créteil Val-de-MarneIFR108 rue du général Sarrail 94010 Créteil, FR
| | - Dominique Couchie
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII - Paris Est Créteil Val-de-MarneIFR108 rue du général Sarrail 94010 Créteil, FR
| | - Agnès Fourcot
- UFR Médecine
Université Paris XII - Paris Est Créteil Val-de-MarneAvenue du Général de Gaulle 94010 Créteil Cedex, FR
| | - Elie-Serge Zafrani
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII - Paris Est Créteil Val-de-MarneIFR108 rue du général Sarrail 94010 Créteil, FR,Service d'anatomie et cytologie pathologiques [Mondor]
Assistance publique - Hôpitaux de Paris (AP-HP)Hôpital Henri MondorUniversité Paris XII - Paris Est Créteil Val-de-Marne51 Av Maréchal de Lattre de Tassigny, 94000 Créteil,FR
| | - Yannick Laperche
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII - Paris Est Créteil Val-de-MarneIFR108 rue du général Sarrail 94010 Créteil, FR
| | - Philippe Mavier
- UFR Médecine
Université Paris XII - Paris Est Créteil Val-de-MarneAvenue du Général de Gaulle 94010 Créteil Cedex, FR
| | - Arthur Brouillet
- Institut Mondor de Recherche Biomédicale
INSERM : U955Université Paris XII - Paris Est Créteil Val-de-MarneIFR108 rue du général Sarrail 94010 Créteil, FR,* Correspondence should be adressed to: Arthur Brouillet
| |
Collapse
|
43
|
Fourcot A, Couchie D, Chobert MN, Zafrani ES, Mavier P, Laperche Y, Brouillet A. Gas6 deficiency prevents liver inflammation, steatohepatitis, and fibrosis in mice. Am J Physiol Gastrointest Liver Physiol 2011; 300:G1043-53. [PMID: 21350191 DOI: 10.1152/ajpgi.00311.2010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The Gas6/Axl pathway has been increasingly implicated in regeneration and tissue repair and, recently, in the control of innate immunity. In liver, we have demonstrated that Gas6 and its receptor Axl are expressed in macrophages, progenitor cells, and myofibroblasts and that Gas6 deficiency reduced inflammation and myofibroblast activation, causing delayed liver repair in response to acute injury. All these data suggest a role of Gas6/Axl signaling in pathogenesis of chronic liver diseases. In the present study, we address the role of Gas6 in steatohepatitis and progression to liver fibrosis using Gas6-deficient mice fed a choline-deficient ethionine-supplemented diet (CDE) or receiving a chronic carbon tetrachloride (CCl(4)) treatment. Gas6 deficiency attenuated hepatic steatosis by limiting CDE-induced downregulation of genes involved in β-oxidation observed in wild-type animals. Moreover, Gas6-deficient mice displayed reduction of hepatic inflammation, revealed by limited F4/80-positive macrophage infiltration, decreased expression of IL-1β, TNF-α, lymphotoxin-β, and monocyte chemotactic protein-1, and attenuated hepatic progenitor cell response to CDE diet. Gas6 deficiency reduced CDE-induced fibrogenesis and hepatic myofibroblast activation and decreased expression of TGF-β and collagen 1 mRNAs. After chronic CCl(4) injury, Gas6-deficient mice also exhibited reduced liver fibrosis as a consequence of defective macrophage recruitment compared with wild-type animals. We conclude that improvement of steatohepatitis and fibrosis in Gas6(-/-) mice is linked to an inhibition of the inflammatory response that controls lipid metabolism and myofibroblast activation. This study highlights the deleterious effect of Gas6 in the progression of steatosis to steatohepatitis and fibrosis.
Collapse
Affiliation(s)
- Agnès Fourcot
- INSERM, UMR-S, Groupe Henri Mondor-Albert Chenevier, Département de Pathologie, Créteil, France
| | | | | | | | | | | | | |
Collapse
|
44
|
Llacuna L, Bárcena C, Bellido-Martín L, Fernández L, Stefanovic M, Marí M, García-Ruiz C, Fernández-Checa JC, de Frutos PG, Morales A. Growth arrest-specific protein 6 is hepatoprotective against murine ischemia/reperfusion injury. Hepatology 2010; 52:1371-9. [PMID: 20730776 PMCID: PMC2947564 DOI: 10.1002/hep.23833] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
UNLABELLED Growth arrest-specific gene 6 (GAS6) promotes growth and cell survival during tissue repair and development in different organs, including the liver. However, the specific role of GAS6 in liver ischemia/reperfusion (I/R) injury has not been previously addressed. Here we report an early increase in serum GAS6 levels after I/R exposure. Moreover, unlike wild-type (WT) mice, Gas6(-/-) mice were highly sensitive to partial hepatic I/R, with 90% of the mice dying within 12 hours of reperfusion because of massive hepatocellular injury. I/R induced early hepatic protein kinase B (AKT) phosphorylation in WT mice but not in Gas6(-/-) mice without significant changes in c-Jun N-terminal kinase phosphorylation or nuclear factor kappa B translocation, whereas hepatic interleukin-1β (IL-1β) and tumor necrosis factor (TNF) messenger RNA levels were higher in Gas6(-/-) mice versus WT mice. In line with the in vivo data, in vitro studies indicated that GAS6 induced AKT phosphorylation in primary mouse hepatocytes and thus protected them from hypoxia-induced cell death, whereas GAS6 diminished lipopolysaccharide-induced cytokine expression (IL-1β and TNF) in murine macrophages. Finally, recombinant GAS6 treatment in vivo not only rescued GAS6 knockout mice from severe I/R-induced liver damage but also attenuated hepatic damage in WT mice after I/R. CONCLUSION Our data have revealed GAS6 to be a new player in liver I/R injury that is emerging as a potential therapeutic target for reducing postischemic hepatic damage.
Collapse
Affiliation(s)
- Laura Llacuna
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Spain,Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain
| | - Cristina Bárcena
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Spain,Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain
| | | | - Laura Fernández
- Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain
| | - Milica Stefanovic
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Spain,Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain
| | - Montserrat Marí
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Spain,Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain
| | - Carmen García-Ruiz
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Spain,Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain
| | - José C. Fernández-Checa
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Spain,Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain,Research Center for Alcoholic Liver and Pancreatic Diseases, Keck School of Medicine of the University of Southern California, Los Angeles, CA, USA
| | | | - Albert Morales
- Liver Unit, Hospital Clinic, IDIBAPS-CIBEK, CIBEREHD, Barcelona, Spain,Department of Cell Death and Proliferation, IIBB-CSIC, Barcelona, Spain
| |
Collapse
|
45
|
McCann JC, Ames BN. Vitamin K, an example of triage theory: is micronutrient inadequacy linked to diseases of aging? Am J Clin Nutr 2009; 90:889-907. [PMID: 19692494 DOI: 10.3945/ajcn.2009.27930] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The triage theory posits that some functions of micronutrients (the approximately 40 essential vitamins, minerals, fatty acids, and amino acids) are restricted during shortage and that functions required for short-term survival take precedence over those that are less essential. Insidious changes accumulate as a consequence of restriction, which increases the risk of diseases of aging. For 16 known vitamin K-dependent (VKD) proteins, we evaluated the relative lethality of 11 known mouse knockout mutants to categorize essentiality. Results indicate that 5 VKD proteins that are required for coagulation had critical functions (knockouts were embryonic lethal), whereas the knockouts of 5 less critical VKD proteins [osteocalcin, matrix Gla protein (Mgp), growth arrest specific protein 6, transforming growth factor beta-inducible protein (Tgfbi or betaig-h3), and periostin] survived at least through weaning. The VKD gamma-carboxylation of the 5 essential VKD proteins in the liver and the 5 nonessential proteins in nonhepatic tissues sets up a dichotomy that takes advantage of the preferential distribution of dietary vitamin K1 to the liver to preserve coagulation function when vitamin K1 is limiting. Genetic loss of less critical VKD proteins, dietary vitamin K inadequacy, human polymorphisms or mutations, and vitamin K deficiency induced by chronic anticoagulant (warfarin/coumadin) therapy are all linked to age-associated conditions: bone fragility after estrogen loss (osteocalcin) and arterial calcification linked to cardiovascular disease (Mgp). There is increased spontaneous cancer in Tgfbi mouse knockouts, and knockdown of Tgfbi causes mitotic spindle abnormalities. A triage perspective reinforces recommendations of some experts that much of the population and warfarin/coumadin patients may not receive sufficient vitamin K for optimal function of VKD proteins that are important to maintain long-term health.
Collapse
Affiliation(s)
- Joyce C McCann
- Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA.
| | | |
Collapse
|