1
|
Marino L, Kim A, Ni B, Celi FS. Thyroid hormone action and liver disease, a complex interplay. Hepatology 2025; 81:651-669. [PMID: 37535802 PMCID: PMC11737129 DOI: 10.1097/hep.0000000000000551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023]
Abstract
Thyroid hormone action is involved in virtually all physiological processes. It is well known that the liver and thyroid are intimately linked, with thyroid hormone playing important roles in de novo lipogenesis, beta-oxidation (fatty acid oxidation), cholesterol metabolism, and carbohydrate metabolism. Clinical and mechanistic research studies have shown that thyroid hormone can be involved in chronic liver diseases, including alcohol-associated or NAFLD and HCC. Thyroid hormone action and synthetic thyroid hormone analogs can exert beneficial actions in terms of lowering lipids, preventing chronic liver disease and as liver anticancer agents. More recently, preclinical and clinical studies have indicated that some analogs of thyroid hormone could also play a role in the treatment of liver disease. These synthetic molecules, thyromimetics, can modulate lipid metabolism, particularly in NAFLD/NASH. In this review, we first summarize the thyroid hormone signaling axis in the context of liver biology, then we describe the changes in thyroid hormone signaling in liver disease and how liver diseases affect the thyroid hormone homeostasis, and finally we discuss the use of thyroid hormone-analog for the treatment of liver disease.
Collapse
Affiliation(s)
- Luigi Marino
- Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| | - Adam Kim
- Division of Gastroenterology and Hepatology, Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| | - Bin Ni
- Alliance Pharma, Philadelphia, Pennsylvania, USA
| | - Francesco S. Celi
- Department of Medicine, UConn Health, University of Connecticut, Farmington, Connecticut, USA
| |
Collapse
|
2
|
Sinha RA, Bruinstroop E, Yen PM. Actions of thyroid hormones and thyromimetics on the liver. Nat Rev Gastroenterol Hepatol 2025; 22:9-22. [PMID: 39420154 PMCID: PMC7616774 DOI: 10.1038/s41575-024-00991-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/19/2024]
Abstract
Thyroid hormones (triiodothyronine and thyroxine) are pivotal for metabolic balance in the liver and entire body. Dysregulation of the hypothalamus-pituitary-thyroid axis can contribute to hepatic metabolic disturbances, affecting lipid metabolism, glucose regulation and protein synthesis. In addition, reductions in circulating and intrahepatic thyroid hormone concentrations increase the risk of metabolic dysfunction-associated steatotic liver disease by inducing lipotoxicity, inflammation and fibrosis. Amelioration of hepatic metabolic disease by thyroid hormones in preclinical and clinical studies has spurred the development of thyromimetics that target THRB (the predominant thyroid hormone receptor isoform in the liver) and/or the liver itself to provide more selective activation of hepatic thyroid hormone-regulated metabolic pathways while reducing thyrotoxic side effects in tissues that predominantly express THRA such as the heart and bone. Resmetirom, a liver and THRB-selective thyromimetic, recently became the first FDA-approved drug for metabolic dysfunction-associated steatohepatitis (MASH). Thus, a better understanding of the metabolic actions of thyroid hormones and thyromimetics in the liver is timely and clinically relevant. Here, we describe the roles of thyroid hormones in normal liver function and pathogenesis of MASH, as well as some potential clinical issues that might arise when treating patients with MASH with thyroid hormone supplementation or thyromimetics.
Collapse
Affiliation(s)
- Rohit A Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Eveline Bruinstroop
- Department of Endocrinology and Metabolism, Amsterdam UMC, Location University of Amsterdam, Amsterdam, Netherlands
| | - Paul M Yen
- Laboratory of Hormonal Regulation, Cardiovascular and Metabolic Disorders Program, Duke-NUS Medical School, Singapore, Singapore.
- Division of Endocrinology, Metabolism, and Nutrition, Department of Medicine, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
3
|
Soares De Oliveira L, Kaserman JE, Van Der Spek AH, Lee NJ, Undeutsch HJ, Werder RB, Wilson AA, Hollenberg AN. Thyroid hormone receptor beta (THRβ1) is the major regulator of T3 action in human iPSC-derived hepatocytes. Mol Metab 2024; 90:102057. [PMID: 39481850 PMCID: PMC11615914 DOI: 10.1016/j.molmet.2024.102057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/08/2024] [Accepted: 10/24/2024] [Indexed: 11/03/2024] Open
Abstract
OBJECTIVE Thyroid hormone (TH) action is mediated by thyroid hormone receptor (THR) isoforms. While THRβ1 is likely the main isoform expressed in liver, its role in human hepatocytes is not fully understood. METHODS To elucidate the role of THRβ1 action in human hepatocytes we used CRISPR/Cas9 editing to knock out THRβ1 in induced pluripotent stem cells (iPSC). Following directed differentiation to the hepatic lineage, iPSC-derived hepatocytes were then interrogated to determine the role of THRβ1 in ligand-independent and -dependent functions. RESULTS We found that the loss of THRβ1 promoted alterations in proliferation rate and metabolic pathways regulated by T3, including gluconeogenesis, lipid oxidation, fatty acid synthesis, and fatty acid uptake. We observed that key genes involved in liver metabolism are regulated through both T3 ligand-dependent and -independent THRβ1 signaling mechanisms. Finally, we demonstrate that following THRβ1 knockout, several key metabolic genes remain T3 responsive suggesting they are THRα targets. CONCLUSIONS These results highlight that iPSC-derived hepatocytes are an effective platform to study mechanisms regulating TH signaling in human hepatocytes.
Collapse
Affiliation(s)
- Lorraine Soares De Oliveira
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Joseph E Kaserman
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA; Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chobanian & Avedisian School of Medicine, Boston Medical Center, MA 02118, USA
| | - Anne H Van Der Spek
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam 1081 HV, Netherlands
| | - Nora J Lee
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Hendrik J Undeutsch
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Rhiannon B Werder
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA
| | - Andrew A Wilson
- Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA; Department of Medicine, Section of Pulmonary and Critical Care Medicine, Chobanian & Avedisian School of Medicine, Boston Medical Center, MA 02118, USA.
| | - Anthony N Hollenberg
- Department of Medicine, Section of Endocrinology, Diabetes and Nutrition, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; Center for Regenerative Medicine (CReM) of Boston University and Boston Medical Center, Boston, MA 02118, USA.
| |
Collapse
|
4
|
Lu Y, Chen C, Zhuang D, Qian L. Molecular Dynamic Simulation To Reveal the Mechanism Underlying MGL-3196 Resistance to Thyroxine Receptor Beta. ACS OMEGA 2024; 9:20957-20965. [PMID: 38764645 PMCID: PMC11097192 DOI: 10.1021/acsomega.4c00089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024]
Abstract
Thyroxine receptor beta (TRβ) is a ligand-dependent nuclear receptor that participates in regulating multiple biological processes, particularly playing an important role in lipid metabolism regulation. TRβ is currently a popular therapeutic target for nonalcoholic steatohepatitis (NASH), while no drugs have been approved to treat this disease. MGL-3196 (Resmetirom) is the first TRβ agonist that has succeeded in phase III clinical trials for the treatment of NASH; therefore, studying its molecular mechanism of action is of great significance. In this study, we employed molecular dynamic simulation to investigate the interaction mode between MGL-3196 and TRβ at the all-atom level. More importantly, by comparing the binding patterns of MGL-3196 in several prevalent TRβ mutants, it was identified that the mutations R243Q and H435R located, respectively, around and within the ligand-binding pocket of TRβ cause TRβ to be insensitive to MGL-3196. This indicates that patients with NASH carrying these two mutations may exhibit resistance to the medication of MGL-3196, thereby highlighting the potential impact of TRβ mutations on TRβ-targeted treatment of NASH and beyond.
Collapse
Affiliation(s)
- Yi Lu
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
- Department
of Pediatrics, Chidren’s Hospital
of Fudan University, Shanghai 201102, China
| | - Chun Chen
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
| | - Deyi Zhuang
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
| | - Liling Qian
- Fujian
Key Laboratory of Neonatal Diseases, Xiamen Key Laboratory of Neonatal
Diseases, Xiamen Childreǹs Hospital
(Children’s Hospital of Fudan University at Xiamen), Xiamen 361006, China
- Division
of Pulmonary Medicine, Shanghai Children’s Hospital, School
of Medicine, Shanghai Jiao Tong University, Shanghai 200062, China
| |
Collapse
|
5
|
Xu J, Guo P, Hao S, Shangguan S, Shi Q, Volpe G, Huang K, Zuo J, An J, Yuan Y, Cheng M, Deng Q, Zhang X, Lai G, Nan H, Wu B, Shentu X, Wu L, Wei X, Jiang Y, Huang X, Pan F, Song Y, Li R, Wang Z, Liu C, Liu S, Li Y, Yang T, Xu Z, Du W, Li L, Ahmed T, You K, Dai Z, Li L, Qin B, Li Y, Lai L, Qin D, Chen J, Fan R, Li Y, Hou J, Ott M, Sharma AD, Cantz T, Schambach A, Kristiansen K, Hutchins AP, Göttgens B, Maxwell PH, Hui L, Xu X, Liu L, Chen A, Lai Y, Esteban MA. A spatiotemporal atlas of mouse liver homeostasis and regeneration. Nat Genet 2024; 56:953-969. [PMID: 38627598 DOI: 10.1038/s41588-024-01709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/06/2024] [Indexed: 05/09/2024]
Abstract
The mechanism by which mammalian liver cell responses are coordinated during tissue homeostasis and perturbation is poorly understood, representing a major obstacle in our understanding of many diseases. This knowledge gap is caused by the difficulty involved with studying multiple cell types in different states and locations, particularly when these are transient. We have combined Stereo-seq (spatiotemporal enhanced resolution omics-sequencing) with single-cell transcriptomic profiling of 473,290 cells to generate a high-definition spatiotemporal atlas of mouse liver homeostasis and regeneration at the whole-lobe scale. Our integrative study dissects in detail the molecular gradients controlling liver cell function, systematically defining how gene networks are dynamically modulated through intercellular communication to promote regeneration. Among other important regulators, we identified the transcriptional cofactor TBL1XR1 as a rheostat linking inflammation to Wnt/β-catenin signaling for facilitating hepatocyte proliferation. Our data and analytical pipelines lay the foundation for future high-definition tissue-scale atlases of organ physiology and malfunction.
Collapse
Affiliation(s)
- Jiangshan Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Pengcheng Guo
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
- 3DC STAR, Spatiotemporal Campus at BGI Shenzhen, Shenzhen, China.
| | - Shijie Hao
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shuncheng Shangguan
- BGI Research, Shenzhen, China
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
| | - Quan Shi
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS-Istituto Tumori 'Giovanni Paolo II', Bari, Italy
| | - Keke Huang
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jing Zuo
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Juan An
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yue Yuan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Mengnan Cheng
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Qiuting Deng
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China
| | - Guangyao Lai
- Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health and Guangzhou Medical University, Guangzhou, China
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Haitao Nan
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Baihua Wu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xinyi Shentu
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Liang Wu
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xiaoyu Wei
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yujia Jiang
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Xin Huang
- BGI Research, Shenzhen, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fengyu Pan
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Yumo Song
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Ronghai Li
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Zhifeng Wang
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Chuanyu Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China
| | - Shiping Liu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | | | - Tao Yang
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Zhicheng Xu
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Wensi Du
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Ling Li
- China National GeneBank, BGI Research, Shenzhen, China
- Guangdong Provincial Genomics Data Center, BGI Research, Shenzhen, China
| | - Tanveer Ahmed
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Kai You
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Zhen Dai
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Li Li
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Baoming Qin
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yinxiong Li
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Liangxue Lai
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dajiang Qin
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Junling Chen
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Rong Fan
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Yongyin Li
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Jinlin Hou
- Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Guangzhou, China
| | - Michael Ott
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Amar Deep Sharma
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Tobias Cantz
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Axel Schambach
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | | | - Andrew P Hutchins
- Shenzhen Key Laboratory of Gene Regulation and Systems Biology, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Berthold Göttgens
- Department of Haematology and Wellcome MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Patrick H Maxwell
- Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge, UK
| | - Lijian Hui
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Xun Xu
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China.
| | - Longqi Liu
- BGI Research, Hangzhou, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Ao Chen
- BGI Research, Shenzhen, China.
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- BGI Research, Chongqing, China.
- JFL-BGI STOmics Center, BGI-Shenzhen, Chongqing, China.
| | - Yiwei Lai
- BGI Research, Hangzhou, China.
- BGI Research, Shenzhen, China.
- 3DC STAR, Spatiotemporal Campus at BGI Shenzhen, Shenzhen, China.
- BGI Collaborative Center for Future Medicine, Shanxi Medical University, Taiyuan, China.
| | - Miguel A Esteban
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, China.
- 3DC STAR, Spatiotemporal Campus at BGI Shenzhen, Shenzhen, China.
- Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Laboratory of Integrative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- The Fifth Affiliated Hospital of Guangzhou Medical University-BGI Research Center for Integrative Biology, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
6
|
Asghar MY, Knuutinen T, Holm E, Nordström T, Nguyen VD, Zhou Y, Törnquist K. Suppression of Calcium Entry Modulates the Expression of TRβ1 and Runx2 in Thyroid Cancer Cells, Two Transcription Factors That Regulate Invasion, Proliferation and Thyroid-Specific Protein Levels. Cancers (Basel) 2022; 14:cancers14235838. [PMID: 36497320 PMCID: PMC9740761 DOI: 10.3390/cancers14235838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
The thyroid hormone receptor beta 1 (TRβ1) is downregulated in several human cancer cell types, which has been associated with development of an aggressive tumor phenotype and the upregulation of Runt-related transcription factor 2 (Runx2). In this study, we show that the expression of TRβ1 protein is downregulated in human thyroid cancer tissues and cell lines compared with the normal thyroid tissues and primary cell line, whilst Runx2 is upregulated under the same conditions. In contrast, the expression of TRβ1 is upregulated, whereas Runx2 is downregulated, in STIM1, Orai1 and TRPC1 knockdown cells, compared to mock transfected cells. To study the functional significance of Runx2 in follicular thyroid cancer ML-1 cells, we downregulated it by siRNA. This increased store-operated calcium entry (SOCE), but decreased cell proliferation and invasion. Moreover, restoring TRβ1 expression in ML-1 cells decreased SOCE, basal and sphingosine 1-phosphate (S1P)-evoked invasion, the expression of the promigratory S1P3 receptor and pERK1/2, and at the same time increased the expression of the thyroid specific proteins thyroglobulin, thyroperoxidase, and thyroid transcription factor-1. In conclusion, we show that TRβ1 is downregulated in thyroid cancer cells and that restoration of its expression can reverse the cancer cell phenotype towards a normal thyroid cell phenotype.
Collapse
Affiliation(s)
- Muhammad Yasir Asghar
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, HiLIFE, University of Helsinki, Viikinkaari 9, FI-00014 Helsinki, Finland
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland
- Correspondence: (M.Y.A.); (K.T.)
| | - Taru Knuutinen
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Emilia Holm
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Tommy Nordström
- Department of Physiology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, FI-00014 Helsinki, Finland
| | - Van Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff CF10 3AT, UK
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Systems Immunity University Research Institute, Cardiff University, Cardiff CF10 3AT, UK
| | - Kid Törnquist
- Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki 2U, Tukholmankatu 8, FI-00290 Helsinki, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6A, FI-20520 Turku, Finland
- Correspondence: (M.Y.A.); (K.T.)
| |
Collapse
|
7
|
Giolito MV, Plateroti M. Thyroid hormone signaling in the intestinal stem cells and their niche. Cell Mol Life Sci 2022; 79:476. [PMID: 35947210 PMCID: PMC11072102 DOI: 10.1007/s00018-022-04503-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/18/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022]
Abstract
Several studies emphasized the function of the thyroid hormones in stem cell biology. These hormones act through the nuclear hormone receptor TRs, which are T3-modulated transcription factors. Pioneer work on T3-dependent amphibian metamorphosis showed that the crosstalk between the epithelium and the underlying mesenchyme is absolutely required for intestinal maturation and stem cell emergence. With the recent advances of powerful animal models and 3D-organoid cultures, similar findings have now begun to be described in mammals, where the action of T3 and TRα1 control physiological and cancer-related stem cell biology. In this review, we have summarized recent findings on the multiple functions of T3 and TRα1 in intestinal epithelium stem cells, cancer stem cells and their niche. In particular, we have highlighted the regulation of metabolic functions directly linked to normal and/or cancer stem cell biology. These findings help explain other possible mechanisms by which TRα1 controls stem cell biology, beyond the more classical Wnt and Notch signaling pathways.
Collapse
Affiliation(s)
- Maria Virginia Giolito
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 3 Avenue Molière 67200, Strasbourg, France
| | - Michelina Plateroti
- Université de Strasbourg, Inserm, IRFAC/UMR-S1113, FMTS, 3 Avenue Molière 67200, Strasbourg, France.
| |
Collapse
|
8
|
Li Q, Yao B, Zhao S, Lu Z, Zhang Y, Xiang Q, Wu X, Yu H, Zhang C, Li J, Zhuang X, Wu D, Li Y, Xu Y. Discovery of a Highly Selective and H435R-Sensitive Thyroid Hormone Receptor β Agonist. J Med Chem 2022; 65:7193-7211. [PMID: 35507418 DOI: 10.1021/acs.jmedchem.2c00144] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The design and development of agonists selectively targeting thyroid hormone receptor β (TRβ) and TRβ mutants remain challenging tasks. In this study, we first adopted the strategy of breaking the "His-Phe switch" to solve two problems, simultaneously. A structure-based design approach was successfully utilized to obtain compound 16g, which is a potent TRβ agonist (EC50: 21.0 nM, 85.0% of the maximum efficacy of 1) with outstanding selectivity for TRβ over TRα and also effectively activates the TRβH435R mutant. Then, we developed a highly efficient synthetic method for 16g. Our serials of cocrystal structures revealed detailed structural mechanisms in overcoming subtype selectivity and rescuing the H435R mutation. 16g also showed excellent lipid metabolism, safety, metabolic stability, and pharmacokinetic properties. Collectively, 16g is a well-characterized selective and mutation-sensitive TRβ agonist for further investigating its function in treating dyslipidemia, nonalcoholic steatohepatitis (NASH), and resistance to thyroid hormone (RTH).
Collapse
Affiliation(s)
- Qiu Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Benqiang Yao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Shiting Zhao
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,University of Chinese Academy of Sciences, No. 19 Yuquan Road, Beijing 100049, China
| | - Zhou Lu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yan Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Qiuping Xiang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xishan Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Haonan Yu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Cheng Zhang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Junhua Li
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Xiaoxi Zhuang
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Donghai Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen 361005, China
| | - Yong Xu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.,China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou 510530, China.,Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| |
Collapse
|
9
|
Hönes GS, Kerp H, Hoppe C, Kowalczyk M, Zwanziger D, Baba HA, Führer D, Moeller LC. Canonical Thyroid Hormone Receptor β Action Stimulates Hepatocyte Proliferation in Male Mice. Endocrinology 2022; 163:6509895. [PMID: 35038735 DOI: 10.1210/endocr/bqac003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Indexed: 11/19/2022]
Abstract
CONTEXT 3,5,3'-L-triiodothyronine (T3) is a potent inducer of hepatocyte proliferation via the Wnt/β-catenin signaling pathway. Previous studies suggested the involvement of rapid noncanonical thyroid hormone receptor (TR) β signaling, directly activating hepatic Wnt/β-catenin signaling independent from TRβ DNA binding. However, the mechanism by which T3 increases Wnt/β-catenin signaling in hepatocytes has not yet been determined. OBJECTIVE We aimed to determine whether DNA binding of TRβ is required for stimulation of hepatocyte proliferation by T3. METHODS Wild-type (WT) mice, TRβ knockout mice (TRβ KO), and TRβ mutant mice with either specifically abrogated DNA binding (TRβ GS) or abrogated direct phosphatidylinositol 3 kinase activation (TRβ 147F) were treated with T3 for 6 hours or 7 days. Hepatocyte proliferation was assessed by Kiel-67 (Ki67) staining and apoptosis by terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. Activation of β-catenin signaling was measured in primary murine hepatocytes. Gene expression was analyzed by microarray, gene set enrichment analysis (GSEA), and quantitative reverse transcription polymerase chain reaction. RESULTS T3 induced hepatocyte proliferation with an increased number of Ki67-positive cells in WT and TRβ 147F mice (9.2% ± 6.5% and 10.1% ± 2.9%, respectively) compared to TRβ KO and TRβ GS mice (1.2% ± 1.1% and 1.5% ± 0.9%, respectively). Microarray analysis and GSEA showed that genes of the Wnt/β-catenin pathway-among them, Fzd8 (frizzled receptor 8) and Ctnnb1 (β-catenin)-were positively enriched only in T3-treated WT and TRβ 147F mice while B-cell translocation gene anti-proliferation factor 2 was repressed. Consequently, expression of Ccnd1 (CyclinD1) was induced. CONCLUSIONS Instead of directly activating Wnt signaling, T3 and TRβ induce key genes of the Wnt/β-catenin pathway, ultimately stimulating hepatocyte proliferation via CyclinD1. Thus, canonical transcriptional TRβ action is necessary for T3-mediated stimulation of hepatocyte proliferation.
Collapse
Affiliation(s)
- Georg Sebastian Hönes
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Helena Kerp
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Christoph Hoppe
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Manuela Kowalczyk
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | | | - Dagmar Führer
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lars Christian Moeller
- Department of Endocrinology, Diabetes and Metabolism and Division of Laboratory Research, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
10
|
Zhao M, Xie H, Shan H, Zheng Z, Li G, Li M, Hong L. Development of Thyroid Hormones and Synthetic Thyromimetics in Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2022; 23:1102. [PMID: 35163026 PMCID: PMC8835192 DOI: 10.3390/ijms23031102] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the fastest-growing liver disease in the world. Despite targeted agents which are needed to provide permanent benefits for patients with NAFLD, no drugs have been approved to treat NASH. Thyroid hormone is an important signaling molecule to maintain normal metabolism, and in vivo and vitro studies have shown that regulation of the 3,5,3'-triiodothyronine (T3)/ thyroid hormone receptor (TR) axis is beneficial not only for metabolic symptoms but also for the improvement of NAFLD and even for the repair of liver injury. However, the non-selective regulation of T3 to TR subtypes (TRα/TRβ) could cause unacceptable side effects represented by cardiotoxicity. To avoid deleterious effects, TRβ-selective thyromimetics were developed for NASH studies in recent decades. Herein, we will review the development of thyroid hormones and synthetic thyromimetics based on TR selectivity for NAFLD, and analyze the role of TR-targeted drugs for the treatment of NAFLD in the future.
Collapse
Affiliation(s)
- Man Zhao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| | - Huazhong Xie
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| | - Hao Shan
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| | - Zhihua Zheng
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| | - Guofeng Li
- Health Science Centre, School of Pharmaceutical Sciences, Shenzhen University, Shenzhen 518060, China;
| | - Min Li
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| | - Liang Hong
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, China; (M.Z.); (H.X.); (H.S.); (Z.Z.)
| |
Collapse
|
11
|
Ezh2 promotes TRβ lysine methylation-mediated degradation in hepatocellular carcinoma. Genes Genomics 2021; 44:369-377. [PMID: 34851506 DOI: 10.1007/s13258-021-01196-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/23/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND Post-translational modification (PTM) of proteins controls various cellular functions of transcriptional regulators and participates in diverse signal transduction pathways in cancer. The thyroid hormone (triiodothyronine, T3) plays a critical role in metabolic homeostasis via its direct interaction with the thyroid hormone receptor beta (TRβ). TRβ is involved in physiological processes, such as cell growth, differentiation, apoptosis, and maintenance of metabolic homeostasis through transcriptional regulation of target genes. OBJECTIVE This study was performed to characterize the specific PTM of TRβ is an active control mechanism for the proteasomal degradation of TRβ in transcriptional signaling pathways in hepatocellular carcinoma cells. METHODS Based on a previous study, we predicted that the lysine methyltransferase and methylation sites of TRβ by comparing the amino acid sequences of histone H3 and TRβ. Methyl-acceptor site of TRβ was confirmed by point mutation. TRβ protein stability was evaluated by ubiquitination assay with MG132. For glucose starvation, HepG2 cells were incubated in media without D-glucose. Proliferation-related proteins were detected by western blotting. MicroRNA level and autophagy marker were measured by real-time qPCR. RESULTS The presence of enhancer of zeste homolog 2 (Ezh2), a methyltransferase of H3 lysine 27, as a methyltransferase of TRβ also revealed that direct lysine methylation and consequent stimulated protein degradation of TRβ underlies the negative correlation between Ezh2 and TRβ. Notably, glucose starvation significantly increased lysine methylation, and methylated TRβ showed further protein instability leading to an increase in the proliferation and growth of hepatocellular carcinoma cells. CONCLUSIONS TRβ functions as a tumor suppressor in various cancers; therefore, we evaluated the effect of TRβ degradation on oncogenesis during glucose starvation. These data clearly define a functional model and provide a link between metabolism and cancer by regulating methyl-dependent protein levels of tumor suppressors. Taken together, maintaining TRβ against methyl-dependent degradation is considered a possible therapeutic target for cancer progression.
Collapse
|
12
|
Kong D, Li J, Li N, Zhang S, Xu Y. Multiple bioanalytical methods reveal a thyroid-disrupting mechanism related to the membrane receptor integrin α vβ 3. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116933. [PMID: 33773180 DOI: 10.1016/j.envpol.2021.116933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 06/12/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP), a manufactured chemical, is suitable for large-scale production and has extensive applications. Although restricted for use, DEHP is still ubiquitous in the environment and shows potential to disrupt the structure or function of the thyroid system. However, its toxic mechanism is complex and not clearly understood. In this study, a battery of methods was employed to investigate DEHP-induced thyroid-disrupting effects and their mechanism of action, focusing on a newly discovered membrane receptor-mediated mechanism. The results showed that DEHP promoted rat pituitary tumor (GH3) cell proliferation and c-fos gene expression at environment level concentrations (2 and 5 μmol/L) in a manner similar to that of the natural thyroid hormone 3,3',5-triiodo-L-thyronine (T3). The macromolecule DEHP-BSA cannot pass through the cell membrane to interact with nuclear receptors but upregulated the c-fos gene expression when administered at concentrations comparable to DEHP concentrations; molecular docking demonstrated that DEHP has affinity for the membrane receptor integrin αvβ3; DEHP at 2 μmol/L upregulated the β3 gene expression in GH3 cells; after the addition of integrin αvβ3-inhibiting RGD peptide, DEHP-induced c-fos gene upregulation decreased. All of these findings support the supposition that DEHP-induced thyroid-disrupting effects might be mediated by the membrane receptor integrin αvβ3. Moreover, DEHP activated the downstream extracellular regulated protein kinase (ERK1/2) pathway, upregulating the gene expression of raf-1, MEK-1 and MAPK1 and increasing the protein levels of p-ERK; interestingly, ERK1/2 activation and c-fos upregulation induced by DEHP were attenuated by PD98059 (an ERK1/2 inhibitor). Taken together, the data suggest that the membrane receptor integrin αvβ3 and the downstream ERK1/2 pathway might be involved in DEHP-induced thyroid-disrupting effects. This study provides new insight into the thyroid-disrupting effect and the underlying mechanism and will advance the effort to construct adverse outcome pathways of DEHP and other thyroid hormone disrupting chemicals.
Collapse
Affiliation(s)
- Dongdong Kong
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shurong Zhang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Ying Xu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
13
|
Thyroid Hormone Effect on the Differentiation of Human Induced Pluripotent Stem Cells into Hepatocyte-Like Cells. Pharmaceuticals (Basel) 2021; 14:ph14060544. [PMID: 34200130 PMCID: PMC8230271 DOI: 10.3390/ph14060544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 12/23/2022] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) hold great potential as an unlimited source for obtaining hepatocyte-like cells (HLCs) for drug research. However, current applications of HLCs have been severely limited by the inability to produce mature hepatocytes from hiPSCs in vitro. Thyroid hormones are one of the hormones that surge during the perinatal period when liver maturation takes place. Here we assessed the influence of thyroid hormone on hepatic progenitor differentiation to HLCs. We analyzed gene and protein expression of early and late hepatic markers and demonstrated the selective activity of thyroid hormone on different genes. Particularly, we demonstrated thyroid hormone-dependent inhibition of the fetal hepatic marker AFP. Our study sheds light on the role of thyroid hormone during liver differentiation and maturation.
Collapse
|
14
|
Aranda A. MicroRNAs and thyroid hormone action. Mol Cell Endocrinol 2021; 525:111175. [PMID: 33515639 DOI: 10.1016/j.mce.2021.111175] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/29/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) are small noncoding RNAs that post-transcriptionally repress gene expression by binding generally to the 3'-untranslated regions of their target mRNAs. miRNAs regulate a large fraction of the genome, playing a key role in most physiological and pathological processes. The thyroid hormones (T4 and T3) are major regulators of development, metabolism and cell growth. The thyroid hormones (THs) are synthetized in the thyroid gland and enter the cells through transporter proteins. In the cells, T4 and T3 are metabolized by deiodinase enzymes and bind to nuclear receptors (TRs), which have a higher affinity by T3. TRs act as hormone dependent transcription factors by binding to thyroid hormone response elements (TREs) in the target genes and recruiting transcriptional coregulators. There is increasing evidence that a variety of miRNAs target deiodinases and the receptor, thus regulating TH signaling is different tissues. In turn, the THs have been shown to modulate the expression of specific miRNAs and their mRNA targets in different cell types and organs. In many cases, the existence of TREs in the regulatory regions of these miRNAs has been identified, and the hormone bound receptors transcriptionally regulate expression of these molecules. Changes in the levels of miRNAs have been demonstrated to mediate some of the important actions of the THs in processes such as muscle and heart function, lipid liver metabolism or skin physiology. In addition, miRNA regulation is involved in the effects of TRs on cell proliferation and cancer.
Collapse
Affiliation(s)
- Ana Aranda
- Instituto de Investigaciones Biomédicas "Alberto Sols", Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
15
|
Li J, Liu H, Li N, Wang J, Song L. TDCPP mimics thyroid hormones associated with the activation of integrin α vβ 3 and ERK1/2. CHEMOSPHERE 2020; 256:127066. [PMID: 32434091 DOI: 10.1016/j.chemosphere.2020.127066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/24/2020] [Accepted: 05/11/2020] [Indexed: 06/11/2023]
Abstract
Tri(1,3-dichloropropyl) phosphate (TDCPP) potentially damages the thyroid system in humans and animals. However, knowledge of its toxic effects and underlying mechanisms is limited. The present study was conducted to determine the thyroid hormone-disrupting effects of TDCPP and its major metabolite, bis(1,3-dichloro-2-propyl) phosphate (BDCPP) in rat pituitary cell lines (GH3). TDCPP and BDCPP, that mimic the thyroid hormone (TH), promoted GH3 cell proliferation and modulated the progression of the cell cycle at 20 and 200 μmol/L, respectively. Similar to T3, TDCPP and BDCPP also significantly upregulated c-fos and downregulated Tshβ gene expression. Although the binding affinity of these chemicals for thyroid receptor β (TRβ) was not measured, significant competition between these chemicals to bind to the membrane thyroid hormone receptor (integrin αvβ3) was found, suggesting that TDCPP and BDCPP were strongly bound to integrin αvβ3. Results from a molecular docking analysis provided further evidence of strong binding affinities of TDCPP and BDCPP for integrin αvβ3, and the ligand binding site of Arg-Gly-Asp (RGD) was identified. Real-time PCR also supported the supposition that, after binding to integrin αvβ3, TDCPP and BDCPP may induce the activation of the extracellular signal-regulated protein kinase (ERK1/2) signal transduction pathway. Taken together, our data suggest that TDCPP and BDCPP have the ability to mimic THs and that the underlying mechanism might be associated with their interactions with integrin αvβ3 and the activation of the ERK1/2 pathway, providing new insight into the mechanism of TDCPP- and BDCPP-induced cytotoxicity.
Collapse
Affiliation(s)
- Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Hedan Liu
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Na Li
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinsheng Wang
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Liuting Song
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
16
|
Saponaro F, Sestito S, Runfola M, Rapposelli S, Chiellini G. Selective Thyroid Hormone Receptor-Beta (TRβ) Agonists: New Perspectives for the Treatment of Metabolic and Neurodegenerative Disorders. Front Med (Lausanne) 2020; 7:331. [PMID: 32733906 PMCID: PMC7363807 DOI: 10.3389/fmed.2020.00331] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022] Open
Abstract
Thyroid hormones (THs) elicit significant effects on numerous physiological processes, such as growth, development, and metabolism. A lack of thyroid hormones is not compatible with normal health. Most THs effects are mediated by two different thyroid hormone receptor (TR) isoforms, namely TRα and TRβ, with the TRβ isoform known to be responsible for the main beneficial effects of TH on liver. In brain, despite the crucial role of TRα isoform in neuronal development, TRβ has been proposed to play a role in the remyelination processes. Consequently, over the past two decades, much effort has been applied in developing thyroid hormone analogs capable of uncoupling beneficial actions on liver (triglyceride and cholesterol lowering) and central nervous system (CNS) (oligodendrocyte proliferation) from deleterious effects on the heart, muscle and bone. Sobetirome (GC-1) and subsequently Eprotirome (KB2115) were the first examples of TRβ selective thyromimetics, with Sobetirome differing from the structure of thyronines because of the absence of halogens, biaryl ether oxygen, and amino-acidic side chain. Even though both thyromimetics showed encouraging actions against hypercholesterolemia, non-alcoholic steatohepatitis (NASH) and in the stimulation of hepatocytes proliferation, they were stopped after Phase 1 and Phase 2–3 clinical trials, respectively. In recent years, advances in molecular and structural biology have facilitated the design of new selective thyroid hormone mimetics that exhibit TR isoform-selective binding, and/or liver- and tissue-selective uptake, with Resmetirom (MGL-3196) and Hep-Direct prodrug VK2809 (MB07811) probably representing two of the most promising lipid lowering agents, currently under phase 2–3 clinical trials. More recently the application of a comprehensive panel of ADME-Toxicity assays enabled the selection of novel thyromimetic IS25 and its prodrug TG68, as very powerful lipid lowering agents both in vitro and in vivo. In addition to dyslipidemia and other liver pathologies, THs analogs could also be of value for the treatment of neurodegenerative diseases, such as multiple sclerosis (MS). Sob-AM2, a CNS- selective prodrug of Sobetirome has been shown to promote significant myelin repair in the brain and spinal cord of mouse demyelinating models and it is rapidly moving into clinical trials in humans. Taken together all these findings support the great potential of selective thyromimetics in targeting a large variety of human pathologies characterized by altered metabolism and/or cellular differentiation.
Collapse
Affiliation(s)
| | - Simona Sestito
- Department of Pathology, University of Pisa, Pisa, Italy
| | | | - Simona Rapposelli
- Department of Pharmacy, University of Pisa, Pisa, Italy.,Interdepartmental Research Centre for Biology and Pathology of Aging, University of Pisa, Pisa, Italy
| | | |
Collapse
|
17
|
Perra A, Kowalik MA, Cabras L, Runfola M, Sestito S, Migliore C, Giordano S, Chiellini G, Rapposelli S, Columbano A. Potential role of two novel agonists of thyroid hormone receptor-β on liver regeneration. Cell Prolif 2020; 53:e12808. [PMID: 32347601 PMCID: PMC7260063 DOI: 10.1111/cpr.12808] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/11/2020] [Accepted: 03/23/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES Although the hepatomitogenic activity of triiodothyronine (T3) is well established, the wide range of harmful effects exerted by this hormone precludes its use in liver regenerative therapy. Selective agonists of the beta isoform of thyroid hormone receptor (TRβ) do not exhibit T3-induced cardiotoxicity and show a good safety profile in patients with NASH. The aim of this study was to investigate whether two novel TRβ agonists, the prodrug TG68 and the active compound IS25 could stimulate hepatocyte proliferation without T3/TRα-dependent side effects. METHODS Rats were treated with three different doses (12.5, 25 and 50 μg/100 g body weight) for one week. Hepatocyte proliferation, liver injury and serum biochemical parameters were measured by immunohistochemistry, qRT-PCR and Western blot. RESULTS Both drugs increased hepatocyte proliferation as assessed by bromodeoxyuridine incorporation (from 14% to 28% vs 5% of controls) and mitotic activity. Enhanced proliferation occurred in the absence of significant signs of liver injury as shown by lack of increased serum transaminase levels or of apoptosis. No cardiac or renal hypertrophy typically associated with treatment with T3 was observed. Importantly, no proliferation of pancreatic acinar cells, such as that seen after administration of T3 or the TRβ agonist GC1 was detected following either TG68 or IS25, demonstrating the hepato-specificity of these novel TRβ agonists. CONCLUSIONS The present study shows that TG68 and IS25 induce massive hepatocyte proliferation without overt toxicity. Hence, these agents may have a significant clinical application for regenerative therapies in liver transplantation or other surgical settings.
Collapse
Affiliation(s)
- Andrea Perra
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Marta Anna Kowalik
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Lavinia Cabras
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | | | - Simona Sestito
- Department of Pathology, University of Pisa, Pisa, Italy
| | - Cristina Migliore
- Department of Oncology, University of Turin, Turin, Italy.,Institute-FPO, IRCCS, Italy
| | - Silvia Giordano
- Department of Oncology, University of Turin, Turin, Italy.,Institute-FPO, IRCCS, Italy
| | | | | | - Amedeo Columbano
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
18
|
Kosar K, Cornuet P, Singh S, Liu S, Nejak-Bowen K. The Thyromimetic Sobetirome (GC-1) Alters Bile Acid Metabolism in a Mouse Model of Hepatic Cholestasis. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:1006-1017. [PMID: 32205094 DOI: 10.1016/j.ajpath.2020.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/03/2020] [Accepted: 01/23/2020] [Indexed: 10/25/2022]
Abstract
Chronic cholestasis results from bile secretory defects or impaired bile flow with few effective medical therapies available. Thyroid hormone triiodothyronine and synthetic thyroid hormone receptor agonists, such as sobetirome (GC-1), are known to impact lipid and bile acid (BA) metabolism and induce hepatocyte proliferation downstream of Wnt/β-catenin signaling after surgical resection; however, these drugs have yet to be studied as potential therapeutics for cholestatic liver disease. Herein, GC-1 was administered to ATP binding cassette subfamily B member 4 (Abcb4-/-; Mdr2-/-) knockout (KO) mice, a sclerosing cholangitis model. KO mice fed GC-1 diet for 2 and 4 weeks had decreased serum alkaline phosphatase but increased serum transaminases compared with KO alone. KO mice on GC-1 also had higher levels of total liver BA due to alterations in expression of BA detoxification, transport, and synthesis genes, with the net result being retention of BA in the hepatocytes. Interestingly, GC-1 does not induce hepatocyte proliferation or Wnt/β-catenin signaling in KO mice, likely a result of decreased thyroid hormone receptor β expression without Mdr2. Therefore, although GC-1 treatment induces a mild protection against biliary injury in the early stages of treatment, it comes at the expense of hepatocyte injury and is suboptimal because of lower expression of thyroid hormone receptor β. Thus, thyromimetics may have limited therapeutic benefits in treating cholestatic liver disease.
Collapse
Affiliation(s)
- Karis Kosar
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Pamela Cornuet
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Kari Nejak-Bowen
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania.
| |
Collapse
|
19
|
Effect of thyroid hormones on rat exocrine pancreas morphology and function. Life Sci 2020; 245:117385. [PMID: 32014425 DOI: 10.1016/j.lfs.2020.117385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 11/22/2022]
Abstract
AIM The influence of thyroid hormones on exocrine pancreas function is poorly understood, and limited to the postnatal development period. Here, we evaluated the effects of hypo- and hyperthyroidism on the morphology and enzyme content of this tissue. MAIN METHODS To induce hypothyroidism male Wistar rats were subjected to a thyroidectomy (Tx) or sham operated (SO). After 40 days, some of the Tx and SO rats were treated with T3 for 7 days. Following euthanization, the pancreas was removed and evaluated for morphology, as well as amylase, lipase and trypsin content, using histological and immunoreactive techniques analyses, respectively. Serum amylase levels were also evaluated. KEY FINDINGS The pancreatic acinar cells of Tx rats were smaller, exhibited reduced Haematoxyllin stained areas, and contained lower amylase and lipase levels, indicative of low cell activity. Tx rats also presented higher collagen levels, and high trypsin content in pancreatic extracts. Interestingly, T3 administration reversed the observed acinar cell alterations and restored pancreatic enzyme content, by augmenting amylase and lipase and attenuating trypsin levels, but failed to change collagen content. Increased levels of lipase and decreased trypsin were also observed in T3-treated SO rats. SIGNIFICANCE Thyroid hormones play an important role in acinar cell morphology and function. In the hypothyroid state there is a decrease in pancreatic enzyme levels that is restored with T3 treatment. In addition to participating in insulin sensitivity and glycemic control, THs also modulate enzyme expression and activity in the exocrine pancreas, consequently, delivering metabolic substrates to specific organs and tissues.
Collapse
|
20
|
Rho NY, Ashkar FA, Revay T, Madan P, Rho GJ, King WA, Favetta LA. De novo transcription of thyroid hormone receptors is essential for early bovine embryo development in vitro. Reprod Fertil Dev 2019; 30:779-788. [PMID: 29179810 DOI: 10.1071/rd17165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 10/18/2017] [Indexed: 11/23/2022] Open
Abstract
Thyroid hormone receptor (THR) α and THRβ mediate the genomic action of thyroid hormones (THs) that affect bovine embryo development. However, little is known about THRs in the preimplantation embryo. The aim of the present study was to investigate the importance of THRs in in vitro preimplantation bovine embryos. THR transcripts and protein levels were detected in developing preimplantation embryos up to the blastocyst stage. Embryonic transcription of THRs was inhibited by α-amanitin supplementation, and both maternal and embryonic transcription were knocked down by short interference (si) RNA microinjection. In the control group, mRNA and protein levels of THRs increased after fertilisation. In contrast, in both the transcription inhibition and knockdown groups there were significant (P<0.05) decreases in mRNA expression of THRs from the 2-cell stage onwards. However, protein levels of THRs were not altered at 2-cell stage, although they did exhibit a significant (P<0.05) decrease from the 4-cell stage. Moreover, inhibition of de novo transcripts of THRs using siRNA led to a significant (P<0.01) decrease in the developmental rate and cell number, as well as inducing a change in embryo morphology. In conclusion, THRs are transcribed soon after fertilisation, before major activation of the embryonic genome, and they are essential for bovine embryo development in vitro.
Collapse
Affiliation(s)
- N-Y Rho
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - F A Ashkar
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - T Revay
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - P Madan
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - G-J Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - W A King
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - L A Favetta
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
21
|
Barahman M, Zhang W, Harris HY, Aiyer A, Kabarriti R, Kinkhabwala M, Roy-Chowdhury N, Beck AP, Scanlan TS, Roy-Chowdhury J, Asp P, Guha C. Radiation-primed hepatocyte transplantation in murine monogeneic dyslipidemia normalizes cholesterol and prevents atherosclerosis. J Hepatol 2019; 70:1170-1179. [PMID: 30654068 PMCID: PMC6986679 DOI: 10.1016/j.jhep.2019.01.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 01/03/2019] [Accepted: 01/08/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Inherited abnormalities in apolipoprotein E (ApoE) or low-density lipoprotein receptor (LDLR) function result in early onset cardiovascular disease and death. Currently, the only curative therapy available is liver transplantation. Hepatocyte transplantation is a potential alternative; however, physiological levels of hepatocyte engraftment and repopulation require transplanted cells to have a competitive proliferative advantage of over host hepatocytes. Herein, we aimed to test the efficacy and safety of a novel preparative regimen for hepatocyte transplantation. METHODS Herein, we used an ApoE-deficient mouse model to test the efficacy of a new regimen for hepatocyte transplantation. We used image-guided external-beam hepatic irradiation targeting the median and right lobes of the liver to enhance cell transplant engraftment. This was combined with administration of the hepatic mitogen GC-1, a thyroid hormone receptor-β agonist mimetic, which was used to promote repopulation. RESULTS The non-invasive preparative regimen of hepatic irradiation and GC-1 was well-tolerated in ApoE-/- mice. This regimen led to robust liver repopulation by transplanted hepatocytes, which was associated with significant reductions in serum cholesterol levels after transplantation. Additionally, in mice receiving this regimen, ApoE was detected in the circulation 4 weeks after treatment and did not induce an immunological response. Importantly, the normalization of serum cholesterol prevented the formation of atherosclerotic plaques in this model. CONCLUSIONS Significant hepatic repopulation and the cure of dyslipidemia in this model, using a novel and well-tolerated preparative regimen, demonstrate the clinical potential of applying this method to the treatment of inherited metabolic diseases of the liver. LAY SUMMARY Hepatocyte transplantation is a promising alternative to liver transplantation for the treatment of liver diseases. However, it is inefficient, as restricted growth of transplanted cells in the liver limits its therapeutic benefits. Preparative treatments improve the efficiency of this procedure, but no clinically-feasible options are currently available. In this study we develop a novel well-tolerated preparative treatment to improve growth of cells in the liver and then demonstrate that this treatment completely cures an inherited lipid disorder in a mouse model.
Collapse
Affiliation(s)
- Mark Barahman
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Wei Zhang
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Hillary Yaffe Harris
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Anita Aiyer
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Milan Kinkhabwala
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Namita Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,Department of Genetics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Amanda P. Beck
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Thomas S. Scanlan
- Departments of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR, United States
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,Department of Genetics, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States,The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Patrik Asp
- Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States
| | - Chandan Guha
- Department of Pathology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Surgery, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Radiation Oncology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Medicine, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; The Marion Bessin Liver Research Center, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States; Department of Urology, Montefiore Medical Center and Albert Einstein College of Medicine, Bronx, NY, United States.
| |
Collapse
|
22
|
Manka P, Coombes JD, Boosman R, Gauthier K, Papa S, Syn WK. Thyroid hormone in the regulation of hepatocellular carcinoma and its microenvironment. Cancer Lett 2019; 419:175-186. [PMID: 29414304 DOI: 10.1016/j.canlet.2018.01.055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/14/2018] [Accepted: 01/18/2018] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC) commonly arises from a liver damaged by extensive inflammation and fibrosis. Various factors including cytokines, morphogens, and growth factors are involved in the crosstalk between HCC cells and the stromal microenvironment. Increasing our understanding of how stromal components interact with HCC and the signaling pathways involved could help identify new therapeutic and/or chemopreventive targets. It has become increasingly clear that the cross-talk between tumor cells and host stroma plays a key role in modulating tumor growth. Emerging reports suggest a relationship between HCC and thyroid hormone signaling (dysfunction), raising the possibility that perturbed thyroid hormone (TH) regulation influences the cancer microenvironment and cancer phenotype. This review provides an overview of the role of thyroid hormone and its related pathways in HCC and, specifically, its role in regulating the tumor microenvironment.
Collapse
Affiliation(s)
- P Manka
- Department of Gastroenterology and Hepatology, University Hospital Essen, Essen, Germany; Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston (SC), USA.
| | - J D Coombes
- Regeneration and Repair, Institute of Hepatology, Division of Transplantation Immunology and Mucosal Biology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - R Boosman
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - K Gauthier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Lyon, France
| | - S Papa
- Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, United Kingdom
| | - W K Syn
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston (SC), USA; Section of Gastroenterology, Ralph H Johnson Veteran Affairs Medical Center, Charleston (SC), USA.
| |
Collapse
|
23
|
Liu Z, Chen Y, Chen G, Mao X, Wei X, Li X, Xu Y, Jiang F, Wang K, Liu C. Impaired Glucose Metabolism in Young Offspring of Female Rats with Hypothyroidism. J Diabetes Res 2019; 2019:4713906. [PMID: 30918900 PMCID: PMC6409023 DOI: 10.1155/2019/4713906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/29/2018] [Indexed: 11/18/2022] Open
Abstract
PURPOSE Because thyroid hormones from the maternal thyroid glands are known to influence the growth, development, and metabolic functioning of offspring, we used a rat model to preliminarily investigate the effects of maternal hypothyroidism on glucose metabolism, pancreas cell proliferation, and insulin production in young male offspring and the possible underlying mechanisms. METHODS Female rats were divided into a maternal hypothyroidism (MH) group, which received water containing 0.02% 6-propyl-2-thiouracil before and during pregnancy to induce hypothyroidism, and a control group which consumed tap water. RESULTS Our results showed that there were no differences of islets structure between the offspring from the two groups, but glucose metabolism was impaired with higher plasma glucose concentrations at 0 and 15 min in the OGTT in 8-week-old offspring of the MH group. From birth to 8 weeks, pancreatic TRβ1 and TRβ2 mRNA level declined significantly in MH offspring, accompanied by decreased Ki67 and insulin mRNA expression. CONCLUSIONS Maternal hypothyroidism results in impaired pancreatic insulin synthesis and pancreatic cell proliferation in neonatal offspring and subsequent glucose intolerance in young offspring, which may be related to TRβ gene downregulation in the pancreas.
Collapse
Affiliation(s)
- Zhoujun Liu
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Chen
- Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Guofang Chen
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaodong Mao
- Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao Wei
- Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xingjia Li
- Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yijiao Xu
- Endocrine Research Center, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fan Jiang
- The Third College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Wang
- The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chao Liu
- Department of Endocrinology, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
24
|
Kong D, Liu Y, Zuo R, Li J. DnBP-induced thyroid disrupting activities in GH3 cells via integrin α vβ 3 and ERK1/2 activation. CHEMOSPHERE 2018; 212:1058-1066. [PMID: 30286535 DOI: 10.1016/j.chemosphere.2018.09.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 07/26/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Abstract
Di-n-butylphthalate (DnBP) exhibits alarming thyroid disrupting activities. However, the toxic mechanism of DnBP is not completely understood. In this study, we investigated the mechanism of DnBP in thyroid disruption. Rat pituitary tumor cell lines (GH3) were treated with DnBP in different scenarios, and cell viabilities, target gene transcriptions and protein levels were measured accordingly. The results showed that after treatment with DnBP (20 μmol/L), cell proliferation increased to 114.69% (p < 0.01) and c-fos gene was up-regulated by 1.57-fold (p < 0.01). Both nuclear thyroid hormone receptor β (TRβ) and membrane TR (integrin αv and integrin β3) genes were up-regulated by 1.31-, 1.08- and 2.39-fold (p < 0.01), respectively, the latter was inhibited by Arg-Gly-Asp (RGD) peptides; the macromolecular DnBP-BSA was unable to bind nuclear TRs, but still promoted cell proliferation to 104.18% and up-regulated c-fos by 2.99-fold (p < 0.01); after silencing TRβ gene, cell proliferation (106.64%, p < 0.05) and up-regulation of c-fos (1.23-fold, p < 0.01) were also observed. All of these findings indicated the existence of non-genomic pathway for DnBP-induced thyroid disruption. Finally, DnBP activated the downstream extracellular regulated protein kinases (ERK1/2) pathway, up-regulating Mapk1 (1.15-, p < 0.05), Mapk3 (1.26-fold, p < 0.01) and increasing protein levels of p-ERK (p < 0.01); notably, DnBP-induced ERK1/2 activation along with c-fos up-regulation were attenuated by PD98059 (ERK1/2 inhibitor). Taken together, it could be suggested that integrin αvβ3 and ERK1/2 pathway play significant roles in DnBP-induced thyroid disruption, and this novel mechanism warrants further investigation in living organisms.
Collapse
Affiliation(s)
- Dongdong Kong
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yun Liu
- South China Institute of Environmental Science, Ministry of Environmental Protection, No.7 West Street, Yuancun, Guangzhou 510655, China
| | - Rui Zuo
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Jian Li
- Engineering Research Center of Groundwater Pollution Control and Remediation, Ministry of Education, College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
25
|
Barahman M, Asp P, Roy-Chowdhury N, Kinkhabwala M, Roy-Chowdhury J, Kabarriti R, Guha C. Hepatocyte Transplantation: Quo Vadis? Int J Radiat Oncol Biol Phys 2018; 103:922-934. [PMID: 30503786 DOI: 10.1016/j.ijrobp.2018.11.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 10/10/2018] [Accepted: 11/10/2018] [Indexed: 12/21/2022]
Abstract
Orthotopic liver transplantation (OLT) has been effective in managing end-stage liver disease since the advent of cyclosporine immunosuppression therapy in 1980. The major limitations of OLT are organ supply, monetary cost, and the burden of lifelong immunosuppression. Hepatocyte transplantation, as a substitute for OLT, has been an exciting topic of investigation for several decades. HT is potentially minimally invasive and can serve as a vehicle for delivery of personalized medicine through autologous cell transplant after modification ex vivo. However, 3 major hurdles have prevented large-scale clinical application: (1) availability of transplantable cells; (2) safe and efficient ex vivo gene therapy methods; and (3) engraftment and repopulation efficiency. This review will discuss new sources for transplantable liver cells obtained by lineage reprogramming, clinically acceptable methods of genetic manipulation, and the development of hepatic irradiation-based preparative regimens for enhancing engraftment and repopulation of transplanted hepatocytes. We will also review the results of the first 3 patients with genetic liver disorders who underwent preparative hepatic irradiation before hepatocyte transplantation.
Collapse
Affiliation(s)
- Mark Barahman
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Patrik Asp
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Namita Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Milan Kinkhabwala
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Jayanta Roy-Chowdhury
- Department of Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Genetics, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Rafi Kabarriti
- Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York
| | - Chandan Guha
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Radiation Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York; Department of Urology, Montefiore Medical Center, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
26
|
Bombardo M, Malagola E, Chen R, Carta A, Seleznik GM, Hills AP, Graf R, Sonda S. Enhanced proliferation of pancreatic acinar cells in MRL/MpJ mice is driven by severe acinar injury but independent of inflammation. Sci Rep 2018; 8:9391. [PMID: 29925922 PMCID: PMC6010442 DOI: 10.1038/s41598-018-27422-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/09/2018] [Indexed: 11/23/2022] Open
Abstract
Adult pancreatic acinar cells have the ability to re-enter the cell cycle and proliferate upon injury or tissue loss. Despite this mitotic ability, the extent of acinar proliferation is often limited and unable to completely regenerate the injured tissue or restore the initial volume of the organ, thus leading to pancreatic dysfunction. Identifying molecular determinants of enhanced proliferation is critical to overcome this issue. In this study, we discovered that Murphy Roths Large (MRL/MpJ) mice can be exploited to identify molecular effectors promoting acinar proliferation upon injury, with the ultimate goal to develop therapeutic regimens to boost pancreatic regeneration. Our results show that, upon cerulein-induced acinar injury, cell proliferation was enhanced and cell cycle components up-regulated in the pancreas of MRL/MpJ mice compared to the control strain C57BL/6. Initial damage of acinar cells was exacerbated in these mice, manifested by increased serum levels of pancreatic enzymes, intra-pancreatic trypsinogen activation and acinar cell apoptosis. In addition, MRL/MpJ pancreata presented enhanced inflammation, de-differentiation of acinar cells and acinar-to-ductal metaplasia. Manipulation of inflammatory levels and mitogenic stimulation with the thyroid hormone 5,3-L-tri-iodothyronine revealed that factors derived from initial acinar injury rather than inflammatory injury promote the replicative advantage in MRL/MpJ mice.
Collapse
Affiliation(s)
- Marta Bombardo
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Ermanno Malagola
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Rong Chen
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Arcangelo Carta
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Gitta M Seleznik
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Andrew P Hills
- School of Health Sciences, College of Health and Medicine, University of Tasmania, Tasmania, Australia
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland. .,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland. .,School of Health Sciences, College of Health and Medicine, University of Tasmania, Tasmania, Australia.
| |
Collapse
|
27
|
Pireddu R, Pibiri M, Valenti D, Sinico C, Fadda AM, Simbula G, Lai F. A novel lactoferrin-modified stealth liposome for hepatoma-delivery of triiodothyronine. Int J Pharm 2018; 537:257-267. [PMID: 29294323 DOI: 10.1016/j.ijpharm.2017.12.048] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 01/10/2023]
Abstract
Triiodothyronine (T3), a thyroid hormone synthesized and secreted by the thyroid gland, plays an essential role in morphogenesis and differentiation through interaction with its nuclear receptors (TRs). However, there are increasing evidences for its role in hepatocellular carcinoma (HCC) suppression. The aim of this work was to develop an effective hepatocellular carcinoma targeting drug delivery system to improve T3 delivery to hepatic cancer cells as well as to reduce toxic side effects. Three different liposomal systems, such as unmodified, Stealth (PEGylated) and Lactoferrin (Lf)-modified-Stealth liposomes were successfully prepared by the film hydration method, and fully characterized. Liposome cell interactions and cellular uptake were evaluated in three different HCC target cells (FaO, HepG2 and SKHep) by confocal microscopy. Finally, in vitro cytotoxicity studies were carried out by using MTT assay to evaluate toxicity of the liposome delivery system and to test the effect of T3 when incorporated into liposomes. Internalization studies, performed using Lf-modified-liposomes labeled with the lipophilic marker Rho-PE and loaded with the hydrophilic probe CF, clearly demonstrated the effective internalization of both hydrophilic and lipophilic markers. Lf-liposomes might markedly enhance the specific cell binding and cellular uptake in hepatoma cells due to the mediating of Lf that could bind with high affinity to multiple receptors on cell surface, such as ASGP-R. Results obtained from this study highlight that the Lf- modified-liposomal delivery system may ensure a specific and sustained T3 delivery, thus, allowing reduced therapeutic doses and deleterious side effects of T3.
Collapse
Affiliation(s)
- Rosa Pireddu
- Università degli Studi di Cagliari, Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Monica Pibiri
- Università degli Studi di Cagliari, Dept. of Biomedical Sciences, University of Cagliari, via Porcell 4, Cagliari, 09124, Italy
| | - Donatella Valenti
- Università degli Studi di Cagliari, Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Chiara Sinico
- Università degli Studi di Cagliari, Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Anna Maria Fadda
- Università degli Studi di Cagliari, Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy
| | - Gabriella Simbula
- Università degli Studi di Cagliari, Dept. of Biomedical Sciences, University of Cagliari, via Porcell 4, Cagliari, 09124, Italy
| | - Francesco Lai
- Università degli Studi di Cagliari, Dept. Scienze della Vita e dell'Ambiente, University of Cagliari, via Ospedale 72, 09124, Cagliari, Italy.
| |
Collapse
|
28
|
Kowalik MA, Columbano A, Perra A. Thyroid Hormones, Thyromimetics and Their Metabolites in the Treatment of Liver Disease. Front Endocrinol (Lausanne) 2018; 9:382. [PMID: 30042736 PMCID: PMC6048875 DOI: 10.3389/fendo.2018.00382] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/22/2018] [Indexed: 12/13/2022] Open
Abstract
The signaling pathways activated by thyroid hormone receptors (THR) are of fundamental importance for organogenesis, growth and differentiation, and significantly influence energy metabolism, lipid utilization and glucose homeostasis. Pharmacological control of these pathways would likely impact the treatment of several human diseases characterized by altered metabolism, growth or differentiation. Not surprisingly, biomedical research has been trying for the past decades to pharmacologically target the 3,5,3'-triiodothyronine (T3)/THR axis. In vitro and in vivo studies have provided evidence of the potential utility of the activation of the T3-dependent pathways in metabolic syndrome, non-alcoholic fatty liver disease (NAFLD), and in the treatment of hepatocellular carcinoma (HCC). Unfortunately, supra-physiological doses of the THR agonist T3 cause severe thyrotoxicosis thus hampering its therapeutic use. However, the observation that most of the desired beneficial effects of T3 are mediated by the activation of the beta isoform of THR (THRβ) in metabolically active organs has led to the synthesis of a number of THRβ-selective thyromimetics. Among these drugs, GC-1, GC-24, KB141, KB2115, and MB07344 displayed a promising therapeutic strategy for liver diseases. However, although these drugs exhibited encouraging results when tested in the treatment of experimentally-induced obesity, dyslipidemia, and HCC, significant adverse effects limited their use in clinical trials. More recently, evidence has been provided that some metabolites of thyroid hormones (TH), mono and diiodothyronines, could also play a role in the treatment of liver disease. These molecules, for a long time considered inactive byproducts of the metabolism of thyroid hormones, have now been proposed to be able to modulate and control lipid and cell energy metabolism. In this review, we will summarize the current knowledge regarding T3, its metabolites and analogs with reference to their possible clinical application in the treatment of liver disease. In particular, we will focus our attention on NAFLD, non-alcoholic steatohepatitis (NASH) and HCC. In addition, the possible therapeutic use of mono- and diiodothyronines in metabolic and/or neoplastic liver disease will be discussed.
Collapse
|
29
|
Columbano A, Chiellini G, Kowalik MA. GC-1: A Thyromimetic With Multiple Therapeutic Applications in Liver Disease. Gene Expr 2017; 17:265-275. [PMID: 28635586 PMCID: PMC5885148 DOI: 10.3727/105221617x14968563796227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Thyroid hormones (THs), namely, 3,5,3'-triiodo-l-thyronine (T3) and 3,5,3',5'-tetraiodo-l-thyronine (thyroxine or T4), influence a variety of physiological processes that have important implications in fetal development, metabolism, cell growth, and proliferation. While THs elicit several beneficial effects on lipid metabolism and improve myocardial contractility, these therapeutically desirable effects are associated to a thyrotoxic state that severely limits the possible use of THs as therapeutic agents. Therefore, several efforts have been made to develop T3 analogs that could retain the beneficial actions (triglyceride, cholesterol, obesity, and body mass lowering) without the adverse TH-dependent side effects. This goal was achieved by the synthesis of TRβ-selective agonists. In this review, we summarize the current knowledge on the effects of one of the best characterized TH analogs, the TRβ1-selective thyromimetic, GC-1. In particular, we review some of the effects of GC-1 on different liver disorders, with reference to its possible clinical application. A brief comment on the possible therapeutic use of GC-1 in extrahepatic disorders is also included.
Collapse
Affiliation(s)
- Amedeo Columbano
- *Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Grazia Chiellini
- †Department of Surgical, Medical and Molecular Pathology, University of Pisa, Pisa, Italy
| | - Marta Anna Kowalik
- *Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
30
|
Matsuda H, Mullapudi ST, Zhang Y, Hesselson D, Stainier DYR. Thyroid Hormone Coordinates Pancreatic Islet Maturation During the Zebrafish Larval-to-Juvenile Transition to Maintain Glucose Homeostasis. Diabetes 2017; 66:2623-2635. [PMID: 28698262 DOI: 10.2337/db16-1476] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/24/2017] [Indexed: 11/13/2022]
Abstract
Thyroid hormone (TH) signaling promotes tissue maturation and adult organ formation. Developmental transitions alter an organism's metabolic requirements, and it remains unclear how development and metabolic demands are coordinated. We used the zebrafish as a model to test whether and how TH signaling affects pancreatic islet maturation, and consequently glucose homeostasis, during the larval to juvenile transition. We found that exogenous TH precociously activates the β-cell differentiation genes pax6b and mnx1 while downregulating arxa, a master regulator of α-cell development and function. Together, these effects induced hypoglycemia, at least in part by increasing insulin and decreasing glucagon expression. We visualized TH target tissues using a novel TH-responsive reporter line and found that both α- and β-cells become targets of endogenous TH signaling during the larval-to-juvenile transition. Importantly, endogenous TH is required during this transition for the functional maturation of α- and β-cells in order to maintain glucose homeostasis. Thus, our study sheds new light on the regulation of glucose metabolism during major developmental transitions.
Collapse
Affiliation(s)
- Hiroki Matsuda
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Sri Teja Mullapudi
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Yuxi Zhang
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
| | - Daniel Hesselson
- Diabetes and Metabolism Division, Garvan Institute of Medical Research, Sydney, Australia
- St. Vincent's Clinical School, University of New South Wales, Sydney, Australia
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| |
Collapse
|
31
|
Puliga E, Min Q, Tao J, Zhang R, Pradhan-Sundd T, Poddar M, Singh S, Columbano A, Yu J, Monga SP. Thyroid Hormone Receptor-β Agonist GC-1 Inhibits Met-β-Catenin-Driven Hepatocellular Cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2473-2485. [PMID: 28807594 DOI: 10.1016/j.ajpath.2017.07.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/02/2017] [Accepted: 07/05/2017] [Indexed: 12/13/2022]
Abstract
The thyromimetic agent GC-1 induces hepatocyte proliferation via Wnt/β-catenin signaling and may promote regeneration in both acute and chronic liver insufficiencies. However, β-catenin activation due to mutations in CTNNB1 is seen in a subset of hepatocellular carcinomas (HCC). Thus, it is critical to address any effect of GC-1 on HCC growth and development before its use can be advocated to stimulate regeneration in chronic liver diseases. In this study, we first examined the effect of GC-1 on β-catenin-T cell factor 4 activity in HCC cell lines harboring wild-type or mutated-CTNNB1. Next, we assessed the effect of GC-1 on HCC in FVB mice generated by hydrodynamic tail vein injection of hMet-S45Y-β-catenin, using the sleeping beauty transposon-transposase. Four weeks following injection, mice were fed 5 mg/kg GC-1 or basal diet for 10 or 21 days. GC-1 treatment showed no effect on β-catenin-T cell factor 4 activity in HCC cells, irrespective of CTNNB1 mutations. Treatment with GC-1 for 10 or 21 days led to a significant reduction in tumor burden, associated with decreased tumor cell proliferation and dramatic decreases in phospho-(p-)Met (Y1234/1235), p-extracellular signal-related kinase, and p-STAT3 without affecting β-catenin and its downstream targets. GC-1 exerts a notable antitumoral effect on hMet-S45Y-β-catenin HCC by inactivating Met signaling. GC-1 does not promote β-catenin activation in HCC. Thus, GC-1 may be safe for use in inducing regeneration during chronic hepatic insufficiency.
Collapse
Affiliation(s)
- Elisabetta Puliga
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Qian Min
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junyan Tao
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Rong Zhang
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Tirthadipa Pradhan-Sundd
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Minakshi Poddar
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jinming Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China; Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Science, Jinan, China.
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania; Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania.
| |
Collapse
|
32
|
Szydlowska M, Pibiri M, Perra A, Puliga E, Mattu S, Ledda-Columbano GM, Columbano A, Leoni VP. The Thyromimetic KB2115 (Eprotirome) Induces Rat Hepatocyte Proliferation. Gene Expr 2017; 17:207-218. [PMID: 28409553 PMCID: PMC5896737 DOI: 10.3727/105221617x695438] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Although the hepatomitogenic activity of T3 is well established, the wide range of harmful effects exerted by this hormone precludes its use in regenerative therapy. The aim of this study was to investigate whether an agonist of TRβ, KB2115 (Eprotirome), could exert a mitogenic effect in the liver, without most of the adverse T3/TRα-dependent side effects. F-344 rats treated with KB2115 for 1 week displayed a massive increase in bromodeoxyuridine incorporation (from 20% to 40% vs. 5% of controls), which was associated with increased mitotic activity in the absence of significant signs of liver toxicity. Noteworthy, while cardiac hypertrophy typical of T3 was not observed, beneficial effects, such as lowering blood cholesterol levels, were associated to KB2115 administration. Following a single dose of KB2115, hepatocyte proliferation was evident as early as 18 h, demonstrating its direct mitogenic effect. No increase in serum transaminase levels or apoptosis was observed prior to or concomitantly with the S phase. While KB2115-induced mitogenesis was not associated to enhance expression of c-fos, c-jun, and c-myc, cyclin D1 levels rapidly increased. In conclusion, KB2115 induces hepatocyte proliferation without overt toxicity. Hence, this agent may be useful for regenerative therapies in liver transplantation or other surgical settings.
Collapse
Affiliation(s)
- Marta Szydlowska
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Monica Pibiri
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Andrea Perra
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Elisabetta Puliga
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Sandra Mattu
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Giovanna M. Ledda-Columbano
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Amedeo Columbano
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| | - Vera P. Leoni
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy
| |
Collapse
|
33
|
Bombardo M, Malagola E, Chen R, Rudnicka A, Graf R, Sonda S. Ibuprofen and diclofenac treatments reduce proliferation of pancreatic acinar cells upon inflammatory injury and mitogenic stimulation. Br J Pharmacol 2017; 175:335-347. [PMID: 28542719 DOI: 10.1111/bph.13867] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 05/03/2017] [Accepted: 05/11/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE Nonsteroidal anti-inflammatory drugs (NSAIDs) are administered to manage the pain typically found in patients suffering from pancreatitis. NSAIDs also display anti-proliferative activity against cancer cells; however, their effects on normal, untransformed cells are poorly understood. Here, we evaluated whether NSAIDs inhibit the proliferation of pancreatic acinar cells during the development of acute pancreatitis. EXPERIMENTAL APPROACH The NSAIDs ibuprofen and diclofenac were administered to C57BL/6 mice after induction of pancreatitis with serial injections of cerulein. In addition, ibuprofen was administered concomitantly with 3,5,3-L-tri-iodothyronine (T3), which induces acinar cell proliferation in the absence of tissue inflammation. The development of pancreatic inflammation, acinar de-differentiation into metaplastic lesions and acinar proliferation were quantified by histochemical, biochemical and RT-PCR approaches. KEY RESULTS Therapeutic ibuprofen treatment selectively reduced pancreatic infiltration of activated macrophages in vivo, and M1 macrophage polarization and pro-inflammatory cytokine expression both in vivo and in vitro. Reduced macrophage activation was accompanied by reduced acinar de-differentiation into acinar-to-ductal metaplasia. Acinar proliferation was significantly impaired in the presence of ibuprofen and diclofenac, as demonstrated at both the level of proliferation markers and expression of cell cycle regulators. Ibuprofen also reduced acinar cell proliferation induced by mitogenic stimulation with T3, a treatment that does not elicit pancreatic inflammation. CONCLUSIONS AND IMPLICATIONS Our study provides evidence that the NSAIDs ibuprofen and diclofenac inhibit pancreatic acinar cell division. This suggests that prolonged treatment with these NSAIDs may negatively affect the regeneration of the pancreas and further studies are needed to confirm these findings in a clinical setting. LINKED ARTICLES This article is part of a themed section on Inventing New Therapies Without Reinventing the Wheel: The Power of Drug Repurposing. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.2/issuetoc.
Collapse
Affiliation(s)
- Marta Bombardo
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Ermanno Malagola
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Rong Chen
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Alina Rudnicka
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland
| | - Rolf Graf
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | - Sabrina Sonda
- Swiss Hepato-Pancreato-Biliary Center, Department of Visceral and Transplantation Surgery, University Hospital of Zurich, Zurich, Switzerland.,Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland.,Biomedical Science, School of Health Sciences, Faculty of Health, University of Tasmania, Newnham Campus, Launceston, TAS, Australia
| |
Collapse
|
34
|
The thyroid hormone nuclear receptors and the Wnt/β-catenin pathway: An intriguing liaison. Dev Biol 2017; 422:71-82. [DOI: 10.1016/j.ydbio.2017.01.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 12/26/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022]
|
35
|
Perra A, Plateroti M, Columbano A. T3/TRs axis in hepatocellular carcinoma: new concepts for an old pair. Endocr Relat Cancer 2016; 23:R353-69. [PMID: 27353037 DOI: 10.1530/erc-16-0152] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related death worldwide, and its burden is expected to further increase in the next years. Chronic inflammation, induced by multiple viruses or metabolic alterations, and epigenetic and genetic modifications, cooperate in cancer development via a combination of common and distinct aetiology-specific pathways. In spite of the advances of classical therapies, the prognosis of this neoplasm has not considerably improved over the past few years. The advent of targeted therapies and the approval of the systemic treatment of advanced HCC with the kinase inhibitor sorafenib have provided some hope for the future. However, the benefits obtained from this treatment are still disappointing, as it extends the median life expectancy of patients by only few months. It is thus mandatory to find alternative effective treatments. Although the role played by thyroid hormones (THs) and their nuclear receptors (TRs) in human cancer is still unclear, mounting evidence indicates that they behave as oncosuppressors in HCC. However, the molecular mechanisms by which they exert this effect and the consequence of their activation following ligand binding on HCC progression remain elusive. In this review, we re-evaluate the existing evidence of the role of TH/TRs in HCC development; we will also discuss how TR alterations could affect fundamental biological processes, such as hepatocyte proliferation and differentiation, and consequently HCC progression. Finally, we will discuss if and how TRs can be foreseen as therapeutic targets in HCC and whether selective TR modulation by TH analogues may hold promise for HCC treatment.
Collapse
Affiliation(s)
- Andrea Perra
- Department of Biomedical SciencesUniversity of Cagliari, Cagliari, Italy
| | - Michelina Plateroti
- Cancer Research Center of Lyon INSERM U1052CNRS UMR5286, Université de Lyon, Université Lyon 1, Centre Léon Bérard, Département de la Recherche, Lyon, France
| | - Amedeo Columbano
- Department of Biomedical SciencesUniversity of Cagliari, Cagliari, Italy
| |
Collapse
|
36
|
Gnocchi D, Steffensen KR, Bruscalupi G, Parini P. Emerging role of thyroid hormone metabolites. Acta Physiol (Oxf) 2016; 217:184-216. [PMID: 26748938 DOI: 10.1111/apha.12648] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/28/2015] [Accepted: 01/03/2016] [Indexed: 12/15/2022]
Abstract
Thyroid hormones (THs) are essential for the regulation of development and metabolism in key organs. THs produce biological effects both by directly affecting gene expression through the interaction with nuclear receptors (genomic effects) and by activating protein kinases and/or ion channels (short-term effects). Such activations can be either direct, in the case of ion channels, or mediated by membrane or cytoplasmic receptors. Short-term-activated signalling pathways often play a role in the regulation of genomic effects. Several TH intermediate metabolites, which were previously considered without biological activity, have now been associated with a broad range of actions, mostly attributable to short-term effects. Here, we give an overview of the physiological roles and mechanisms of action of THs, focusing on the emerging position that TH metabolites are acquiring as important regulators of physiology and metabolism.
Collapse
Affiliation(s)
- D. Gnocchi
- Division of Clinical Chemistry; Department of Laboratory Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
| | - K. R. Steffensen
- Division of Clinical Chemistry; Department of Laboratory Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
| | - G. Bruscalupi
- Department of Biology and Biotechnology ‘Charles Darwin’; Sapienza University of Rome; Rome Italy
| | - P. Parini
- Division of Clinical Chemistry; Department of Laboratory Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
- Metabolism Unit; Department of Medicine; Karolinska Institutet at Karolinska University Hospital Huddinge; Stockholm Sweden
| |
Collapse
|
37
|
Mondal S, Raja K, Schweizer U, Mugesh G. Chemie und Biologie der Schilddrüsenhormon-Biosynthese und -Wirkung. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601116] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Santanu Mondal
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore Indien
| | - Karuppusamy Raja
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore Indien
| | - Ulrich Schweizer
- Rheinische Friedrich-Wilhelms-Universität Bonn; Institut für Biochemie und Molekularbiologie; Nussallee 11 53115 Bonn Deutschland
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore Indien
| |
Collapse
|
38
|
Mondal S, Raja K, Schweizer U, Mugesh G. Chemistry and Biology in the Biosynthesis and Action of Thyroid Hormones. Angew Chem Int Ed Engl 2016; 55:7606-30. [DOI: 10.1002/anie.201601116] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Santanu Mondal
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore India
| | - Karuppusamy Raja
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore India
| | - Ulrich Schweizer
- Rheinische Friedrich-Wilhelms-Universität Bonn; Institut für Biochemie und Molekularbiologie; Nussallee 11 53115 Bonn Germany
| | - Govindasamy Mugesh
- Department of Inorganic and Physical Chemistry; Indian Institute of Science; Bangalore India
| |
Collapse
|
39
|
Alvarado TF, Puliga E, Preziosi M, Poddar M, Singh S, Columbano A, Nejak-Bowen K, Monga SPS. Thyroid Hormone Receptor β Agonist Induces β-Catenin-Dependent Hepatocyte Proliferation in Mice: Implications in Hepatic Regeneration. Gene Expr 2016; 17:19-34. [PMID: 27226410 PMCID: PMC5215473 DOI: 10.3727/105221616x691631] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Triiodothyronine (T3) induces hepatocyte proliferation in rodents. Recent work has shown molecular mechanism for T3's mitogenic effect to be through activation of β-catenin signaling. Since systemic side effects of T3 may preclude its clinical use, and hepatocytes mostly express T3 hormone receptor β (TRβ), we investigated if selective TRβ agonists like GC-1 may also have β-catenin-dependent hepatocyte mitogenic effects. Here we studied the effect of GC-1 and T3 in conditional knockouts of various Wnt pathway components. We also assessed any regenerative advantage of T3 or GC-1 when given prior to partial hepatectomy in mice. Mice administered GC-1 showed increased pSer675-β-catenin, cyclin D1, BrdU incorporation, and PCNA. No abnormalities in liver function tests were noted. GC-1-injected liver-specific β-catenin knockouts (β-catenin LKO) showed decreased proliferation when compared to wild-type littermates. To address if Wnt signaling was required for T3- or GC-1-mediated hepatocyte proliferation, we used LRP5-6-LKO, which lacks the two redundant Wnt coreceptors. Surprisingly, decreased hepatocyte proliferation was also evident in LRP5-6-LKO in response to T3 and GC-1, despite increased pSer675-β-catenin. Further, increased levels of active β-catenin (hypophosphorylated at Ser33, Ser37, and Thr41) were evident after T3 and GC-1 treatment. Finally, mice pretreated with T3 or GC-1 for 7 days followed by partial hepatectomy showed a significant increase in hepatocyte proliferation both at the time (T0) and 24 h after surgery. In conclusion, like T3, TRβ-selective agonists induce hepatocyte proliferation through β-catenin activation via both PKA- and Wnt-dependent mechanisms and confer a regenerative advantage following surgical resection. Hence, these agents may be useful regenerative therapies in liver transplantation or other surgical settings.
Collapse
Affiliation(s)
- Tamara Feliciano Alvarado
- *Division of Gastroenterology, Department of Pediatrics, Children’s Hospital of Pittsburgh of UPMC, Pittsburgh, PA, USA
| | - Elisabetta Puliga
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Morgan Preziosi
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amedeo Columbano
- ‡Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Kari Nejak-Bowen
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Satdarshan P. S. Monga
- †Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- §Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
40
|
Saponara E, Grabliauskaite K, Bombardo M, Buzzi R, Silva AB, Malagola E, Tian Y, Hehl AB, Schraner EM, Seleznik GM, Zabel A, Reding T, Sonda S, Graf R. Serotonin promotes acinar dedifferentiation following pancreatitis-induced regeneration in the adult pancreas. J Pathol 2015; 237:495-507. [PMID: 26235267 DOI: 10.1002/path.4595] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 06/16/2015] [Accepted: 07/16/2015] [Indexed: 12/29/2022]
Abstract
The exocrine pancreas exhibits a distinctive capacity for tissue regeneration and renewal following injury. This regenerative ability has important implications for a variety of disorders, including pancreatitis and pancreatic cancer, diseases associated with high morbidity and mortality. Thus, understanding its underlying mechanisms may help in developing therapeutic interventions. Serotonin has been recognized as a potent mitogen for a variety of cells and tissues. Here we investigated whether serotonin exerts a mitogenic effect in pancreatic acinar cells in three regenerative models, inflammatory tissue injury following pancreatitis, tissue loss following partial pancreatectomy, and thyroid hormone-stimulated acinar proliferation. Genetic and pharmacological techniques were used to modulate serotonin levels in vivo. Acinar dedifferentiation and cell cycle progression during the regenerative phase were investigated over the course of 2 weeks. By comparing acinar proliferation in the different murine models of regeneration, we found that serotonin did not affect the clonal regeneration of mature acinar cells. Serotonin was, however, required for acinar dedifferentiation following inflammation-mediated tissue injury. Specifically, lack of serotonin resulted in delayed up-regulation of progenitor genes and delayed the formation of acinar-to-ductal metaplasia and defective acinar cell proliferation. We identified serotonin-dependent acinar secretion as a key step in progenitor-based regeneration, as it promoted acinar cell dedifferentiation and the recruitment of type 2 macrophages. Finally, we identified a regulatory Hes1-Ptfa axis in the uninjured adult pancreas, activated by zymogen secretion. Our findings indicated that serotonin plays a critical role in the regeneration of the adult pancreas following pancreatitis by promoting the dedifferentiation of acinar cells.
Collapse
Affiliation(s)
- Enrica Saponara
- Swiss Hepato-pancreato-biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Kamile Grabliauskaite
- Swiss Hepato-pancreato-biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Marta Bombardo
- Swiss Hepato-pancreato-biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Raphael Buzzi
- Swiss Hepato-pancreato-biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Alberto B Silva
- Swiss Hepato-pancreato-biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Ermanno Malagola
- Swiss Hepato-pancreato-biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Yinghua Tian
- Swiss Hepato-pancreato-biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Adrian B Hehl
- Institute of Parasitology, University of Zurich, Switzerland
| | - Elisabeth M Schraner
- Institutes of Veterinary Anatomy and Virology, University of Zurich, Switzerland
| | - Gitta M Seleznik
- Swiss Hepato-pancreato-biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Anja Zabel
- Swiss Hepato-pancreato-biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Theresia Reding
- Swiss Hepato-pancreato-biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Sabrina Sonda
- Swiss Hepato-pancreato-biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| | - Rolf Graf
- Swiss Hepato-pancreato-biliary Centre, Department of Visceral and Transplantation Surgery, University Hospital, Zurich, Switzerland
| |
Collapse
|
41
|
Lin YH, Wu MH, Liao CJ, Huang YH, Chi HC, Wu SM, Chen CY, Tseng YH, Tsai CY, Chung IH, Tsai MM, Chen CY, Lin TP, Yeh YH, Chen WJ, Lin KH. Repression of microRNA-130b by thyroid hormone enhances cell motility. J Hepatol 2015; 62:1328-40. [PMID: 25617495 DOI: 10.1016/j.jhep.2014.12.035] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 12/02/2014] [Accepted: 12/23/2014] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Thyroid hormone (T3) and its receptor (TR) are involved in cell growth and cancer progression. Although deregulation of microRNA (miRNA) expression has been detected in many tumor types, the mechanisms underlying functional impairment and specific involvement of miRNAs in tumor metastasis remain unclear. In the current study, we aimed to elucidate the involvement of deregulated miRNA-130b (miR-130b) and its target genes mediated by T3/TR in cancer progression. METHODS Quantitative reverse transcription-PCR, luciferase and chromatin immunoprecipitation assays were performed to identify the miR-130b transcript and the mechanisms implicated in its regulation. The effects of miR-130b on hepatocellular carcinoma (HCC) invasion were further examined in vitro and in vivo. Clinical correlations among miR-130b, TRs and interferon regulatory factor 1 (IRF1) were examined in HCC samples using Spearman correlation analysis. RESULTS Our experiments disclosed negative regulation of miR-130b expression by T3/TR. Overexpression of miR-130b led to marked inhibition of cell migration and invasion, which was mediated via suppression of IRF1. Cell migration ability was promoted by T3, but partially suppressed upon miR-130b overexpression. Furthermore, miR-130b suppressed expression of epithelial-mesenchymal transition (EMT)-related genes, matrix metalloproteinase-9, phosphorylated mammalian target of rapamycin (mTOR), p-ERK1/2, p-AKT and p-signal transducer and activator of transcription (STAT)-3. Notably, miR-130b was downregulated in hepatoma samples and its expression patterns were inversely correlated with those of TRα1 and IRF1. CONCLUSIONS Our data collectively highlight a novel pathway interlinking T3/TR, miR-130b, IRF1, the EMT-related genes, p-mTOR, p-STAT3 and the p-AKT cascade, which regulates the motility and invasion of hepatoma cells.
Collapse
Affiliation(s)
- Yang-Hsiang Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Meng-Han Wu
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Chia-Jung Liao
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Ya-Hui Huang
- Liver Research Center, Department of Hepato-Gastroenterology, Chang-Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan
| | - Hsiang-Cheng Chi
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Sheng-Ming Wu
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Cheng-Yi Chen
- Department of Medical Research, Mackay Memorial Hospital, Taipei 251, Taiwan
| | - Yi-Hsin Tseng
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Chung-Ying Tsai
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - I-Hsiao Chung
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Ming-Ming Tsai
- Department of Nursing, Chang-Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Ching-Ying Chen
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan
| | - Tina P Lin
- Pre-med Program, Pacific Union College, Angwin 94508, USA
| | - Yung-Hsin Yeh
- Division of Cardiology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Wei-Jan Chen
- Division of Cardiology, Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, Taoyuan 333, Taiwan
| | - Kwang-Huei Lin
- Department of Biochemistry, College of Medicine, Chang-Gung University, Taoyuan 333, Taiwan.
| |
Collapse
|
42
|
Rodríguez-Castelán J, Nicolás L, Morimoto S, Cuevas E. The Langerhans islet cells of female rabbits are differentially affected by hypothyroidism depending on the islet size. Endocrine 2015; 48:811-7. [PMID: 25213470 DOI: 10.1007/s12020-014-0418-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 09/01/2014] [Indexed: 12/31/2022]
Abstract
Effects of hypothyroidism on the glucose and insulin levels are controversial, and its impact on the Langerhans islet morphology of adult subjects has been poorly addressed. In spite of hypothyroidism and diabetes mellitus are more frequent in females than in males, most studies using animal models have been done in males. The effect of hypothyroidism on the immunolabeling of thyroid hormone receptors (TRs) and thyrotropin receptor (TSHR) of islet cells is unknown. The aim of this study was to determine the effect of hypothyroidism on the glucose and insulin concentrations, morphometry of islets, and immunostaining of TRs α1-2 and β1 and TSHR of islet cells in female rabbits. Control and hypothyroid (0.02% of methimazole for 30 days) animals were used to quantify blood levels of glucose and insulin, density of islets, cross-sectional area (CSA) of islets, number of cells per islet, cell proliferation, and the immunolabeling of TRs α1-2, TRβ1, and TSHR. Student's t or Mann-Whitney-U tests, two-way ANOVAs, and Fischer's tests were applied. Concentrations of glucose and insulin, as well as the insulin resistance were similar between groups. Hypothyroidism did not affect the density or the CSA of islets. The analysis of islets by size showed that hypothyroidism reduced the cell number in large and medium islets, but not in small ones. In small islets, cell proliferation was increased. The immunoreactivity of TRα1-2, TRβ1, and TSHR was increased by hypothyroidism in all islet sizes. Our results show that hypothyroidism affects differentially the islet cells depending on the size of islets.
Collapse
Affiliation(s)
- J Rodríguez-Castelán
- Maestría en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | | | | | |
Collapse
|
43
|
Rodríguez-Castelán J, Martínez-Gómez M, Castelán F, Cuevas E. Hypothyroidism Affects Vascularization and Promotes Immune Cells Infiltration into Pancreatic Islets of Female Rabbits. Int J Endocrinol 2015; 2015:917806. [PMID: 26175757 PMCID: PMC4484561 DOI: 10.1155/2015/917806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/07/2015] [Accepted: 05/26/2015] [Indexed: 02/07/2023] Open
Abstract
Thyroidectomy induces pancreatic edema and immune cells infiltration similarly to that observed in pancreatitis. In spite of the controverted effects of hypothyroidism on serum glucose and insulin concentrations, the number and proliferation of Langerhans islet cells as well as the presence of extracellular matrix are affected depending on the islet size. In this study, we evaluated the effect of methimazole-induced hypothyroidism on the vascularization and immune cells infiltration into islets. A general observation of pancreas was also done. Twelve Chinchilla-breed female adult rabbits were divided into control (n = 6) and hypothyroid groups (n = 6, methimazole, 0.02% in drinking water for 30 days). After the treatment, rabbits were sacrificed and their pancreas was excised, histologically processed, and stained with Periodic Acid-Schiff (PAS) or Masson's Trichrome techniques. Islets were arbitrarily classified into large, medium, and small ones. The external and internal portions of each islet were also identified. Student-t-test and Mann-Whitney-U test or two-way ANOVAs were used to compare variables between groups. In comparison with control rabbits, hypothyroidism induced a strong infiltration of immune cells and a major presence of collagen and proteoglycans in the interlobular septa. Large islets showed a high vascularization and immune cells infiltration. The present results show that hypothyroidism induces pancreatitis and insulitis.
Collapse
Affiliation(s)
- Julia Rodríguez-Castelán
- Doctorado en Ciencias Biológicas, Universidad Autónoma de Tlaxcala, 90070 Tlaxcala, TLAX, Mexico
| | - Margarita Martínez-Gómez
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, 90070 Tlaxcala, TLAX, Mexico
- Departamento de Biología Celular y Fisiología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Unidad Periférica, 90070 Tlaxcala, TLAX, Mexico
| | - Francisco Castelán
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, 90070 Tlaxcala, TLAX, Mexico
| | - Estela Cuevas
- Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, 90070 Tlaxcala, TLAX, Mexico
- *Estela Cuevas:
| |
Collapse
|
44
|
Medina MC, Fonesca TL, Molina J, Fachado A, Castillo M, Dong L, Soares R, Hernández A, Caicedo A, Bianco AC. Maternal inheritance of an inactive type III deiodinase gene allele affects mouse pancreatic β-cells and disrupts glucose homeostasis. Endocrinology 2014; 155:3160-71. [PMID: 24885572 PMCID: PMC4097999 DOI: 10.1210/en.2013-1208] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dio3 is the most distal gene of the imprinted Dlk1-Dio3 gene locus and is expressed according to parental origin. Dio3 encodes the type 3 deiodinase (D3), a thioredoxin-fold like containing selenoenzyme that inactivates thyroid hormone and dampens thyroid hormone signaling. Here we used heterozygous animals with disruption of the Dio3 gene to study the allelic expression pattern of Dio3 in pancreatic β-cells and the metabolic phenotype resulting from its inactivation. Adult heterozygous mice with disruption of the Dio3 gene with maternal inheritance of the inactive Dio3 allele exhibited a total loss of D3 activity in isolated pancreatic islets, approximately 30% reduction in total pancreatic islet area, a marked decrease in insulin2 mRNA and in vivo glucose intolerance. In contrast, inheritance of the inactive Dio3 allele from the father did not affect D3 activity in isolated pancreatic islets and did not result in a pancreatic phenotype. Furthermore, exposure of pancreatic explants, D3-expressing MIN6-C3 cells or isolated pancreatic islets to 100 nM T3 for 24 hours reduced insulin2 mRNA by approximately 50% and the peak of glucose-induced insulin secretion. An unbiased analysis of T3-treated pancreatic islets revealed the down-regulation of 21 gene sets (false discovery rate q value < 25%) involved in nucleolar function and transcription of rRNA, ribonucleotide binding, mRNA translation, and membrane organization. We conclude that the Dio3 gene is preferentially expressed from the maternal allele in pancreatic islets and that the inactivation of this allele is sufficient to disrupt glucose homeostasis by reducing the pancreatic islet area, insulin2 gene expression, and glucose-stimulated insulin secretion.
Collapse
Affiliation(s)
- Mayrin C Medina
- University of Miami Miller School of Medicine, Division of Endocrinology and Metabolism (M.C.M., J.M., M.C., L.D., R.S., A.C.), Miami, Florida 33136; Rush University Medical Center (T.L.F., A.C.B.), Chicago, Illinois 60612; and Diabetes Research Institute (A.F.), Maine Medical Center Research Institute (A.H.), Scarborough, Maine 04074
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Desjardin C, Charles C, Benoist-Lasselin C, Riviere J, Gilles M, Chassande O, Morgenthaler C, Laloé D, Lecardonnel J, Flamant F, Legeai-Mallet L, Schibler L. Chondrocytes play a major role in the stimulation of bone growth by thyroid hormone. Endocrinology 2014; 155:3123-35. [PMID: 24914940 DOI: 10.1210/en.2014-1109] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Thyroid hormone (T3) is required for postnatal skeletal growth. It exerts its effect by binding to nuclear receptors, TRs including TRα1 and TRβ1, which are present in most cell types. These cell types include chondrocytes and osteoblasts, the interactions of which are known to regulate endochondral bone formation. In order to analyze the respective functions of T3 stimulation in chondrocytes and osteoblasts during postnatal growth, we use Cre/loxP recombination to express a dominant-negative TRα1(L400R) mutant receptor in a cell-specific manner. Phenotype analysis revealed that inhibiting T3 response in chondrocytes is sufficient to reproduce the defects observed in hypothyroid mice, not only for cartilage maturation, but also for ossification and mineralization. TRα1(L400R) in chondrocytes also results in skull deformation. In the meantime, TRα1(L400R) expression in mature osteoblasts has no visible effect. Transcriptome analysis identifies a number of changes in gene expression induced by TRα1(L400R) in cartilage. These changes suggest that T3 normally cross talks with several other signaling pathways to promote chondrocytes proliferation, differentiation, and skeletal growth.
Collapse
Affiliation(s)
- Clémence Desjardin
- Institut National de la Recherche Agronomique (INRA) (C.D., J.R., M.G., C.M., D.L., J.L., L.S.), UMR1313, Biologie Intégrative et Génétique Animale, Jouy-en-Josas, France; Centre National de la Recherche Scientifique (CNRS) UMR 5242 (C.C.), ENS Lyon, Institut de Génomique Fonctionnelle, Université de Lyon, Lyon, France; Institut Imagine (C.B.-L., L.L.-G.) Institut National de la Santé et de la Recherche Medicale, U1163, Université Paris Descartes, 75015 Paris, France; University of Bordeaux (O.C.), U1026, Bioingénierie Tissulaire, Bordeaux, France; and Institut de Génomique Fonctionnelle de Lyon (F.F.), Université de Lyon, CNRS, INRA, École Normale Supérieure de Lyon, 69364 Lyon Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Gebhardt R. Speeding up hepatocyte proliferation: how triiodothyronine and β-catenin join forces. Hepatology 2014; 59:2074-6. [PMID: 24919451 DOI: 10.1002/hep.26984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 12/15/2013] [Indexed: 01/20/2023]
Affiliation(s)
- Rolf Gebhardt
- Institute of Biochemistry, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
47
|
Fanti M, Singh S, Ledda-Columbano GM, Columbano A, Monga SP. Tri-iodothyronine induces hepatocyte proliferation by protein kinase A-dependent β-catenin activation in rodents. Hepatology 2014; 59:2309-20. [PMID: 24122933 PMCID: PMC3979513 DOI: 10.1002/hep.26775] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 09/25/2013] [Indexed: 12/31/2022]
Abstract
UNLABELLED Thyroid hormone (T3), like many other ligands of the steroid/thyroid hormone nuclear receptor superfamily, is a strong inducer of liver cell proliferation in rats and mice. However, the molecular basis of its mitogenic activity, which is currently unknown, must be elucidated if its use in hepatic regenerative medicine is to be considered. F-344 rats or C57BL/6 mice were fed a diet containing T3 for 2-7 days. In rats, administration of T3 led to an increased cytoplasmic stabilization and nuclear translocation of β-catenin in pericentral hepatocytes with a concomitant increase in cyclin-D1 expression. T3 administration to wild-type (WT) mice resulted in increased hepatocyte proliferation; however, no mitogenic response in hepatocytes to T3 was evident in the hepatocyte-specific β-catenin knockout mice (KO). In fact, T3 induced β-catenin-TCF4 reporter activity both in vitro and in vivo. Livers from T3-treated mice demonstrated no changes in Ctnnb1 expression, activity of glycogen synthase kinase-3β, known to phosphorylate and eventually promote β-catenin degradation, or E-cadherin-β-catenin association. However, T3 treatment increased β-catenin phosphorylation at Ser675, an event downstream of protein kinase A (PKA). Administration of PKA inhibitor during T3 treatment of mice and rats as well as in cell culture abrogated Ser675-β-catenin and simultaneously decreased cyclin-D1 expression to block hepatocyte proliferation. CONCLUSION We have identified T3-induced hepatocyte mitogenic response to be mediated by PKA-dependent β-catenin activation. Thus, T3 may be of therapeutic relevance to stimulate β-catenin signaling to in turn induce regeneration in selected cases of hepatic insufficiency.
Collapse
Affiliation(s)
- Maura Fanti
- Department of Pathology, University of Pittsburgh, School of Medicine, USA,Department of Biomedical Sciences, University of Cagliari, Italy
| | - Sucha Singh
- Department of Pathology, University of Pittsburgh, School of Medicine, USA
| | | | - Amedeo Columbano
- Department of Biomedical Sciences, University of Cagliari, Italy,Address correspondence to: Satdarshan Pal Singh Monga, MD, Endowed Chair, Vice Chair and Division Director of Experimental Pathology (EP), Professor of Pathology (EP) & Medicine (GI, Hepatology & Nutrition), University of Pittsburgh School of Medicine, 200 Lothrop Street S-422 BST, Pittsburgh, PA 15261; Tel: (412) 648-9966; Fax: (412) 648-1916; ; Amedeo Columbano, PhD, Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy, Tel: +39-070-6758345; Fax: +39-070-666062;
| | - Satdarshan P Monga
- Department of Pathology, University of Pittsburgh, School of Medicine, USA,Address correspondence to: Satdarshan Pal Singh Monga, MD, Endowed Chair, Vice Chair and Division Director of Experimental Pathology (EP), Professor of Pathology (EP) & Medicine (GI, Hepatology & Nutrition), University of Pittsburgh School of Medicine, 200 Lothrop Street S-422 BST, Pittsburgh, PA 15261; Tel: (412) 648-9966; Fax: (412) 648-1916; ; Amedeo Columbano, PhD, Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy, Tel: +39-070-6758345; Fax: +39-070-666062;
| |
Collapse
|
48
|
Perri A, Catalano S, Bonofiglio D, Vizza D, Rovito D, Qi H, Aquila S, Panza S, Rizza P, Lanzino M, Andò S. T3 enhances thyroid cancer cell proliferation through TRβ1/Oct-1-mediated cyclin D1 activation. Mol Cell Endocrinol 2014; 382:205-217. [PMID: 24121026 DOI: 10.1016/j.mce.2013.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Revised: 09/30/2013] [Accepted: 10/01/2013] [Indexed: 10/26/2022]
Abstract
Several studies have demonstrated that thyroid hormone T3 promotes cancer cell growth, even though the molecular mechanism involved in such processes still needs to be elucidated. In this study we demonstrated that T3 induced proliferation in papillary thyroid carcinoma cell lines concomitantly with an up-regulation of cyclin D1 expression, that is a critical mitogen-regulated cell-cycle control element. Our data revealed that T3 enhanced the recruitment of the TRβ1/Oct-1 complex on Octamer-transcription factor-1 site within cyclin D1 promoter, leading to its transactivation. In addition, silencing of TRβ1 or Oct-1 expression by RNA interference reversed both increased cell proliferation and up-regulation of cyclin D1, underlying the important role of both transcriptional factors in mediating these effects. Finally, T3-induced increase in cell growth was abrogated after knocking down cyclin D1 expression. All these findings highlight a new molecular mechanism by which T3 promotes thyroid cancer cell growth.
Collapse
Affiliation(s)
- Anna Perri
- Centro Sanitario, University of Calabria, Rende, Italy
| | - Stefania Catalano
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Daniela Bonofiglio
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | | | - Daniela Rovito
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Hongyan Qi
- Centro Sanitario, University of Calabria, Rende, Italy
| | - Saveria Aquila
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Salvatore Panza
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Pietro Rizza
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Marilena Lanzino
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| | - Sebastiano Andò
- Dept. Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy; Centro Sanitario, University of Calabria, Rende, Italy.
| |
Collapse
|
49
|
Design, synthesis, and structure–activity relationship (SAR) of N-[7-(4-hydroxyphenoxy)-6-methylindan-4-yl]malonamic acids as thyroid hormone receptor β (TRβ) selective agonists. Bioorg Med Chem 2013; 21:592-607. [DOI: 10.1016/j.bmc.2012.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/02/2012] [Accepted: 12/03/2012] [Indexed: 11/22/2022]
|
50
|
Gnocchi D, Leoni S, Incerpi S, Bruscalupi G. 3,5,3'-triiodothyronine (T3) stimulates cell proliferation through the activation of the PI3K/Akt pathway and reactive oxygen species (ROS) production in chick embryo hepatocytes. Steroids 2012; 77:589-95. [PMID: 22366194 DOI: 10.1016/j.steroids.2012.01.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 11/18/2022]
Abstract
Thyroid hormones (THs) have a wide variety of essential roles in vertebrates, ranging from the regulation of key metabolic processes to cell proliferation and apoptosis. The classical mechanism of action of THs is genomic; 3,5,3'-triiodothyronine (T3) binds to specific nuclear receptors (TRs) and modifies the expression of specific genes. Recently, a new category of mechanisms, termed nongenomic, has been discovered for T3. These mechanisms include, among others, the rapid activation of signal transduction pathways, such as PI3K/Akt and MAPK, which eventually lead to cell proliferation. These effects are mediated in some cell types by a plasma membrane receptor, identified as integrin αvβ3, and in other cell types by cytoplasmic TRβ1. The aim of this work was to analyze the effect of T3 on the cell growth of chick embryo hepatocytes at two different stages of development, 14 and 19 days, and to determine the activation of the signal transduction pathways, focusing on the potential involvement of a plasma membrane receptor and the possible participation of PI3K/Akt and reactive oxygen species (ROS). Our results clearly show that T3 stimulates cell proliferation at both stages of development through the activation of the PI3K/Akt pathway and the production of small amounts of ROS, which operate as effective second messengers. Moreover, we prove that these effects are not initiated at the plasma membrane receptor for T3.
Collapse
Affiliation(s)
- Davide Gnocchi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, Rome, Italy.
| | | | | | | |
Collapse
|