1
|
Meral R, Celik Guler M, Kaba D, Prativadi J, Frontera ED, Foss-Freitas MC, Nachawi N, Broome DT, Lightbourne M, Brown RJ, Taylor SI, Oral EA. Metabolic Improvements With Tirzepatide in Lipodystrophy: A Novel Option? Diabetes Care 2025; 48:756-762. [PMID: 40063619 PMCID: PMC12034899 DOI: 10.2337/dc24-2408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/04/2025] [Indexed: 03/19/2025]
Abstract
OBJECTIVE Lipodystrophy encompasses a group of rare disorders associated with severe metabolic disease. These disorders are defined by abnormal fat distribution, with near-total (generalized lipodystrophy [GL]) or partial (partial lipodystrophy [PL]; e.g., familial partial lipodystrophy [FPLD]) absence of adipocyte mass, leading to a decreased ability to store lipids safely. Excess lipids are more likely to be stored in nonadipose tissues, which leads to the metabolic manifestations. We have recently shown that glucagon-like peptide-1 agonists are associated with metabolic improvements in FPLD. Here, we hypothesize that tirzepatide, a dual incretin, may also lead to metabolic improvement in patients with lipodystrophy. RESEARCH DESIGN AND METHODS An observational cohort of patients with lipodystrophy who received tirzepatide clinically were tracked in the context of ongoing natural history studies. RESULTS Seventeen patients received tirzepatide, 14 who had FPLD (aged 30-74 years; n = 12 female and 2 male). After a median 8.7 months of follow-up, the following were significantly reduced: BMI (median difference, -1.7; range, -5.9 to 0.9 kg/m2; P = 0.008), HbA1c (median difference, -1.1%; range, -6.3% to -0.1%; P < 0.001), triglycerides (median difference, -65 mg/dL [-0.73 mmol/L]; range, -3,820 to 43 mg/dL [-43.2 to 0.49 mmol/L]; P = 0.003), and total daily insulin requirements (median difference, -109; range, -315 to 0 units/day; P = 0.002). Three additional patients with rarer forms of lipodystrophy, also with robust response to tirzepatide, are also discussed (atypical PL, n = 1; acquired GL, n = 2; aged 35-64 years; all female). Side effects were limited to benign gastrointestinal symptoms. CONCLUSIONS Tirzepatide may be an effective treatment for patients with lipodystrophy.
Collapse
Affiliation(s)
- Rasimcan Meral
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
- Institute of Graduate Studies in Health Sciences, Department of Medical Biology, Istanbul University, Istanbul, Türkiye
| | - Merve Celik Guler
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
- Division of Internal Medicine, Dokuz Eylul University, İzmir, Türkiye
| | - Diarratou Kaba
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Jeevitha Prativadi
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Eric D. Frontera
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Maria Cristina Foss-Freitas
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Noura Nachawi
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - David T. Broome
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Marissa Lightbourne
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Rebecca J. Brown
- Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Simeon I. Taylor
- Department of Medicine, Division of Endocrinology, Diabetes, and Nutrition, University of Maryland, Baltimore, MD
| | - Elif A. Oral
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
2
|
Alsayegh A, Alsuwilem Z, Alsalem A, Alanzan A, Alashjaee R, Almuslem M, Raffah O, Almutairi R, Arab K. Global Analysis and Latest Research Hot Spots of Lipoedema/Lipodystrophy Investigation and Management: A Bibliometric Analysis and Visualized Review. Aesthetic Plast Surg 2025:10.1007/s00266-025-04855-3. [PMID: 40295372 DOI: 10.1007/s00266-025-04855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 03/22/2025] [Indexed: 04/30/2025]
Abstract
BACKGROUND Lipodystrophy presents clinical management challenges due to its varied expression and low incidence. Despite the clinical importance, there has been no systematic evaluation of the research output in terms of geographical distribution, institutional contributions, or emerging trends. This study aims to fill that gap by conducting a comprehensive bibliometric analysis of the global research landscape on lipodystrophy. METHODS Utilizing the Web of Science core collection, studies from 2010 to 2024 were analyzed. Bibliometric indicators were processed using VOSviewer to identify trends through graphical co-occurrence mapping. RESULTS A total of 826 studies from 57 countries were included. The USA led with 259 publications (30.51%). The most productive institutions were the National Institute of Diabetes and Digestive and Kidney Diseases with 43 publications (14.98%). Among 166 journals, the Journal of Clinical Endocrinology and Metabolism had the highest publications (43, 25.90%) and citations per publication (58). The most co-cited article was The Diagnosis and Management of Lipodystrophy Syndromes (2016), which was referenced 290 times. CONCLUSION This analysis highlights research trends and collaborative networks, areas for future investigation, and identifies the gaps and emerging trends that will inform future research directions. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Ammar Alsayegh
- College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia.
| | - Ziyad Alsuwilem
- College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Rasha Alashjaee
- King Abdulaziz Specialist Hospital, Sakaka, Al Jouf, Saudi Arabia
| | - Maryam Almuslem
- College of Medicine, King Faisal University, Al Hofuf, Al Ahsa, Saudi Arabia
| | - Obai Raffah
- College of Medicine, Alrayan Medical Colleges, Medinah, Saudi Arabia
| | - Rahaf Almutairi
- College of Medicine, Imam Mohammad bin Saud Islamic University, Riyadh, Saudi Arabia
| | - Khalid Arab
- Division of Plastic Surgery, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
3
|
Beghini M, Metz M, Baumgartner C, Wolf P, Bastian M, Hackl M, Baumgartner-Parzer S, Marculescu R, Krebs M, Harreiter J, Brandt S, Miehle K, Ceccarini G, Magno S, Pelosini C, Tran C, Gambineri A, Cecchetti C, Gard LI, Risti R, Lõokene A, Krššák M, Pfleger L, Trauner M, Kautzky-Willer A, Stumvoll M, Wabitsch M, Santini F, Turan I, Akinci B, Frommlet F, Stangl H, Fürnsinn C, Scherer T. Leptin acutely increases hepatic triglyceride secretion in patients with lipodystrophy. Metabolism 2025; 169:156261. [PMID: 40204211 DOI: 10.1016/j.metabol.2025.156261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND AND AIMS Metreleptin ameliorates hepatic steatosis partially independent of its anorexic action. We previously showed that metreleptin increases hepatic very low-density lipoprotein triglycerides (VLDL1-TG) export in rodents and healthy humans requiring intact hepatic autonomic innervation. The primary aim of this study was to investigate whether metreleptin has anti-steatotic properties in patients with lipodystrophy by increasing VLDL1-TG export. In addition, we present a case of generalized lipodystrophy undergoing metreleptin treatment after liver transplantation, a model for hepatic autonomic denervation. METHODS In this randomized, placebo-controlled, crossover trial (EudraCT 2017-003014-22) we assessed the acute effects of a single metreleptin injection in 10 patients (8 females, 2 males; mean age ± SD: 49 ± 14 yrs; 9 familial partial and 1 generalized lipodystrophy) on hepatic VLDL1-TG secretion and hepatocellular lipid content (HCL) measured via an intravenous fat emulsion test and 1H-magnetic resonance spectroscopy, respectively. RESULTS We found that a single injection of metreleptin increased hepatic VLDL1-TG secretion by 75 % (mean difference ± SD: +219 ± 149 mg/h metreleptin vs. placebo; p = 0.001), without significant changes in HCL within 3 h (mean difference ± SD: -8 ± 14 % metreleptin vs. placebo, p = 0.14). Metreleptin therapy in a patient with generalized lipodystrophy following liver transplantation failed to ameliorate hepatic steatosis despite improving glucose and lipid metabolism. CONCLUSIONS Leptin acutely increases hepatic VLDL1-TG secretion in patients with lipodystrophy, likely contributing to metreleptin's body weight-independent anti-steatotic effects. The case report suggests that intact autonomic liver innervation may be required for this action, warranting further research.
Collapse
Affiliation(s)
- Marianna Beghini
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Matthäus Metz
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Clemens Baumgartner
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Peter Wolf
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Magdalena Bastian
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Martina Hackl
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Sabina Baumgartner-Parzer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Rodrig Marculescu
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Michael Krebs
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Jürgen Harreiter
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Stephanie Brandt
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Konstanze Miehle
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Centre, Leipzig, Germany
| | - Giovanni Ceccarini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Italy
| | - Silvia Magno
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Italy
| | - Caterina Pelosini
- Chemistry and Endocrinology Laboratory, Department of Laboratory Medicine, University Hospital of Pisa, Pisa, Italy
| | - Christel Tran
- Division of Genetic Medicine, University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland
| | - Alessandra Gambineri
- Division of Endocrinology and Diabetes Prevention and Care, Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Carolina Cecchetti
- Division of Endocrinology and Diabetes Prevention and Care, Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy
| | - Liliana-Imi Gard
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Robert Risti
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Aivar Lõokene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Martin Krššák
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria; High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lorenz Pfleger
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Alexandra Kautzky-Willer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Michael Stumvoll
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Centre, Leipzig, Germany
| | - Martin Wabitsch
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, Ulm University Medical Centre, Ulm, Germany
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Italy
| | - Ihsan Turan
- Division of Pediatric Endocrinology, Department of Pediatrics, Cukurova University, Adana, Turkey
| | - Baris Akinci
- Depark, Dokuz Eylül University, Izmir, Turkey; Izmir Biomedicine and Genome Center, Izmir, Turkey
| | - Florian Frommlet
- Center for Medical Data Science (Institute of Medical Statistics), Medical University of Vienna, Vienna, Austria
| | - Herbert Stangl
- Institute of Medical Chemistry, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Clemens Fürnsinn
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Thomas Scherer
- Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Brush M, Auh S, Cochran E, Tuska R, Koh C, Kleiner DE, Lightbourne M, Brown RJ. Effects of Metreleptin in Patients With Generalized Lipodystrophy Before vs After the Onset of Severe Metabolic Disease. J Clin Endocrinol Metab 2025; 110:e1051-e1061. [PMID: 38757950 PMCID: PMC11913101 DOI: 10.1210/clinem/dgae335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Leptin replacement therapy with metreleptin improves metabolic abnormalities in patients with generalized lipodystrophy (GLD). OBJECTIVE Determine how timing of metreleptin initiation in the clinical course of GLD affects long-term metabolic health. METHODS Retrospective analysis of patients ≥6 months old with congenital (n = 47) or acquired (n = 16) GLD treated with metreleptin at the National Institutes of Health since 2001. Least squares means for glycated hemoglobin (HbA1c), insulin area under the curve from oral glucose tolerance tests, triglycerides, urine protein excretion, platelets, transaminases, and aspartate aminotransferase (AST) to Platelet Ratio Index for early and late treatment groups, defined by baseline metabolic health, were analyzed during median 72 (24-108) months' follow-up. RESULTS Compared to late groups, early groups based on metabolic status had higher mean ± SEM insulin area under the curve (20 831 ± 1 vs 11 948 ± 1), lower HbA1c (5.3 ± 0.3 vs 6.8 ± 0.3%), triglycerides (101 ± 1 vs 193 ± 1 mg/dL), urine protein excretion (85 ± 1.5 vs 404 ± 1.4 mg/24 h), alanine aminotransferase (30 ± 1 vs 53 ± 1 U/L), AST (23 ± 1 vs 40 ± 1 U/L), and AST to Platelet Ratio Index (0.22 ± 1.3 vs 0.78 ± 1.3), and higher platelets (257 ± 24 vs 152 ± 28 K/µL) during follow-up (P < .05). Compared to patients ≥6 years old at baseline, patients <6 years had lower HbA1c (4.5 ± 0.5 vs 6.4 ± 0.2%) and higher AST (40 ± 1vs 23 ± 1 U/L) during follow (P < .05). CONCLUSION Patients with GLD who initiated metreleptin before the onset of severe metabolic complications had better long-term control of diabetes, proteinuria, and hypertriglyceridemia. Early treatment may also result is less severe progression of liver fibrosis, but further histological studies are needed to determine the effects of metreleptin therapy on liver disease.
Collapse
Affiliation(s)
- Maiah Brush
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sungyoung Auh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elaine Cochran
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca Tuska
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christopher Koh
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - David E Kleiner
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Marissa Lightbourne
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
5
|
Perakakis N, Mantzoros CS. Evidence from clinical studies of leptin: current and future clinical applications in humans. Metabolism 2024; 161:156053. [PMID: 39490439 DOI: 10.1016/j.metabol.2024.156053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Leptin has been established as the prototype adipose tissue secreted hormone and as a major regulator of several human physiology functions. Here, we are primarily reviewing the findings from studies in humans involving leptin administration. We are describing the metabolic, endocrine and immunologic effects of leptin replacement in conditions of leptin deficiency, such as short-term fasting in healthy individuals, relative energy deficiency in sports (REDS), congenital leptin deficiency (CLD), generalized (GL) and partial lipodystrophy (PL), HIV-associated lipodystrophy (HIV-L) and of leptin treatment in conditions of leptin excess (common obesity, type 2 diabetes, steatotic liver disease). We are comparing the results with the findings from preclinical models and present the main conclusions regarding the role of leptin in human physiology, pathophysiology and therapeutics. We conclude that, in conditions of energy deficiency, leptin substitution effectively reduces body weight and fat mass through reduction of appetite, it improves hypertriglyceridemia, insulin resistance and hepatic steatosis (especially in GL and PL), it restores neuroendocrine function (especially the gonadotropic axis), it regulates adaptive immune system cell populations and it improves bone health. On the contrary, leptin treatment in conditions of leptin excess, such as common obesity and type 2 diabetes, does not improve any metabolic abnormalities. Strategies to overcome leptin tolerance/resistance in obesity and type 2 diabetes have provided promising results in animal studies, which should though be tested in humans in randomized clinical trials.
Collapse
Affiliation(s)
- Nikolaos Perakakis
- Division of Metabolic and Vascular Medicine, Department of Internal Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Paul Langerhans Institute Dresden (PLID), Helmholtz Center Munich, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany; German Center for Diabetes Research (DZD e.V.), Neuherberg, Germany.
| | - Christos S Mantzoros
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
6
|
Meral R, Celik Guler M, Kaba D, Prativadi J, Frontera ED, Foss-Freitas MC, Nachawi N, Broome DT, Lightbourne M, Brown RJ, Taylor SI, Oral EA. Tirzepatide for Lipodystrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.25.24313345. [PMID: 39802778 PMCID: PMC11722473 DOI: 10.1101/2024.09.25.24313345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Background Lipodystrophy encompasses a group of rare disorders associated with severe metabolic disease. These disorders are defined by abnormal fat distribution, with near-total (generalized lipodystrophy, GL) or partial (partial lipodystrophy, PL; i.e. familial partial lipodystrophy, FPLD) absence of adipocyte mass leading to a decreased ability to store lipids safely. Excess lipids are more likely to be stored in non-adipose tissues, which leads to the metabolic manifestations. We have recently shown that glucagon-like peptide-1 agonists are associated with metabolic improvements in FPLD. We hypothesized that tirzepatide, a dual incretin, may also lead to metabolic improvement in patients with lipodystrophy. Methods Observational cohort of patients with PL or GL who received tirzepatide clinically were tracked in the context of ongoing natural history studies. Results Seventeen patients received tirzepatide, 14 with FPLD (ages within 30-74 years; 12 female 2 male). After a median 8.7 months of follow-up, BMI (medianΔ -1.7; range -5.9 to 0.9 kg/m 2 ; p =0.008), HbA1c (medianΔ -1.1%; range -6.3 to -0.1%; p <0.001), triglycerides [medianΔ - 65 mg/dL (-0.73 mmol/L); range -3820 to 43 mg/dL (-43.2 to 0.49 mmol/L); p =0.003] and total daily insulin requirements (medianΔ -109; range -315 to 0 units/day; p =0.002) were significantly reduced. Three patients with acquired GL (Ages within 35-64 years; all female) also demonstrated a robust response to tirzepatide with reduced BMI (22.2->20.9; 26.2->25.4; 19.5->17.6 kg/m 2 ), HbA1c (8.5%->7.0%; 10.2%->7.8%; 9.1%->6.5%), triglycerides (91->80; 641->293; 1238->100 mg/dL or 1.03->0.90; 7.24->3.31; 14.0->1.13 mmol/L), and total daily insulin requirement (85->0; 0->0; 1000->750 units/day). Three patients did not tolerate dose escalation due to gastroesophageal reflux. Conclusions Tirzepatide may be an effective treatment for patients with lipodystrophy.
Collapse
|
7
|
Faienza MF, Farella I, Khalil M, Portincasa P. Converging Pathways between Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Diabetes in Children. Int J Mol Sci 2024; 25:9924. [PMID: 39337412 PMCID: PMC11432101 DOI: 10.3390/ijms25189924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
In the past thirty years, childhood obesity rates have risen significantly worldwide, affecting over 340 million children in affluent nations. This surge is intricately tied to metabolic disorders, notably insulin resistance, type 2 diabetes mellitus (T2DM), and the continually evolving spectrum of metabolic-associated (dysfunction) steatotic liver disease (MASLD). This review underscores the alarming escalation of childhood obesity and delves comprehensively into the evolving and dynamic changes of nomenclature surrounding diverse conditions of hepatic steatosis, from the initial recognition of non-alcoholic fatty liver disease (NAFLD) to the progressive evolution into MASLD. Moreover, it emphasizes the crucial role of pediatric endocrinologists in thoroughly and accurately investigating MASLD onset in children with T2DM, where each condition influences and exacerbates the progression of the other. This review critically highlights the inadequacies of current screening strategies and diagnosis, stressing the need for a paradigm shift. A proposed solution involves the integration of hepatic magnetic resonance imaging assessment into the diagnostic arsenal for children showing insufficient glycemic control and weight loss post-T2DM diagnosis, thereby complementing conventional liver enzyme testing. This holistic approach aims to significantly enhance diagnostic precision, fostering improved outcomes in this vulnerable high-risk pediatric population.
Collapse
Affiliation(s)
- Maria Felicia Faienza
- Pediatric Unit, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Ilaria Farella
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (M.K.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (M.K.)
| | - Piero Portincasa
- Clinica Medica “A. Murri”, Department of Precision and Regenerative Medicine and Ionian Area (DiMePre-J), Medical School, University of Bari “Aldo Moro”, 70124 Bari, Italy; (I.F.); (M.K.)
| |
Collapse
|
8
|
Fourman LT, Lima JG, Simha V, Cappa M, Alyaarubi S, Montenegro R, Akinci B, Santini F. A rapid action plan to improve diagnosis and management of lipodystrophy syndromes. Front Endocrinol (Lausanne) 2024; 15:1383318. [PMID: 38952397 PMCID: PMC11215967 DOI: 10.3389/fendo.2024.1383318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 05/13/2024] [Indexed: 07/03/2024] Open
Abstract
Introduction Lipodystrophy syndromes are rare diseases that can present with a broad range of symptoms. Delays in diagnosis are common, which in turn, may predispose to the development of severe metabolic complications and end-organ damage. Many patients with lipodystrophy syndromes are only diagnosed after significant metabolic abnormalities arise. Prompt action by clinical teams may improve disease outcomes in lipodystrophy syndromes. The aim of the Rapid Action Plan is to serve as a set of recommendations from experts that can support clinicians with limited experience in lipodystrophy syndromes. Methods The Rapid Action Plan was developed using insights gathered through a series of advisory meetings with clinical experts in lipodystrophy syndromes. A skeleton template was used to facilitate interviews. A consensus document was developed, reviewed, and approved by all experts. Results Lipodystrophy is a clinical diagnosis. The Rapid Action Plan discusses tools that can help diagnose lipodystrophy syndromes. The roles of clinical and family history, physical exam, patient and family member photos, routine blood tests, leptin levels, skinfold measurements, imaging studies, and genetic testing are explored. Additional topics such as communicating the diagnosis to the patients/families and patient referrals are covered. A set of recommendations regarding screening and monitoring for metabolic diseases and end-organ abnormalities is presented. Finally, the treatment of lipodystrophy syndromes is reviewed. Discussion The Rapid Action Plan may assist clinical teams with the prompt diagnosis and holistic work-up and management of patients with lipodystrophy syndromes, which may improve outcomes for patients with this rare disease.
Collapse
Affiliation(s)
- Lindsay T. Fourman
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Josivan Gomes Lima
- Hospital Universitário Onofre Lopes, Departamento de Clinica Medica, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Vinaya Simha
- Division of Endocrinology, Mayo Clinic, Rochester, MN, United States
| | - Marco Cappa
- Research Area for Innovative Therapies in Endocrinopathies Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Saif Alyaarubi
- Pediatric Endocrinology, Oman Medical Specialty Board, Muscat, Oman
| | - Renan Montenegro
- Brazilian Group for the Study of Inherited and Acquired Lipodystrophies (BRAZLIPO), Clinical Research Unit, Walter Cantidio University Hospital, Federal University of Ceará/Ebserh, Fortaleza, Brazil
| | - Baris Akinci
- Dokuz Eylul University Health Campus Technopark (DEPARK), Dokuz Eylul University, Izmir, Türkiye
- Department of Research Programs, Technological Research, Izmir Biomedicine and Genome Center (IBG), Izmir, Türkiye
| | - Ferruccio Santini
- Obesity and Lipodystrophy Center, Endocrinology Unit, University Hospital of Pisa, Pisa, Italy
| |
Collapse
|
9
|
Vigouroux C, Mosbah H, Vatier C. Leptin replacement therapy in the management of lipodystrophy syndromes. ANNALES D'ENDOCRINOLOGIE 2024; 85:201-204. [PMID: 38871500 DOI: 10.1016/j.ando.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Lipodystrophy syndromes are rare diseases of genetic or acquired origin, characterized by quantitative and qualitative defects in adipose tissue. The metabolic consequences of lipodystrophy syndromes, such as insulin resistant diabetes, hypertriglyceridemia and hepatic steatosis, are frequently very difficult to treat, resulting in significant risks of acute and/or chronic complications and of decreased quality of life. The production of leptin by lipodystrophic adipose tissue is decreased, more severely in generalized forms of lipodystrophy, where adipose tissue is absent from almost all body fat depots, than in partial forms of the disease, where lipoatrophy affects only some parts of the body and can be associated with increased body fat in other anatomical regions. Several lines of evidence in preclinical and clinical models have shown that leptin replacement therapy could improve the metabolic complications of lipodystrophy syndromes. Metreleptin, a recombinant leptin analogue, was approved as an orphan drug to treat the metabolic complications of leptin deficiency in patients with generalized lipodystrophy in the USA or with either generalized or partial lipodystrophy in Japan and Europe. In this brief review, we will discuss the benefits and limitations of this therapy, and the new expectations arising from the recent development of a therapeutic monoclonal antibody able to activate the leptin receptor.
Collapse
Affiliation(s)
- Corinne Vigouroux
- Service d'endocrinologie, diabétologie et endocrinologie de la reproduction, centre national de référence des pathologies rares de l'insulino-secrétion et de l'insulino-sensibilité (PRISIS), hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, Paris, France; Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Sorbonne université, Inserm UMR_S 938, Paris, France.
| | - Héléna Mosbah
- Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Sorbonne université, Inserm UMR_S 938, Paris, France; Service endocrinologie, diabétologie, nutrition, centre de compétence PRISIS, CHU La Milétrie, Poitiers, France; Université Paris Cité, ECEVE UMR 1123, Inserm, Paris, France
| | - Camille Vatier
- Service d'endocrinologie, diabétologie et endocrinologie de la reproduction, centre national de référence des pathologies rares de l'insulino-secrétion et de l'insulino-sensibilité (PRISIS), hôpital Saint-Antoine, Assistance publique-Hôpitaux de Paris, Paris, France; Centre de recherche Saint-Antoine, institut hospitalo-universitaire de cardio-métabolisme et nutrition (ICAN), Sorbonne université, Inserm UMR_S 938, Paris, France
| |
Collapse
|
10
|
Pei J, Zou D, Li L, Kang L, Sun M, Li X, Chen Q, Chen D, Qu B, Gao X, Lin Z. Senp7 deficiency impairs lipid droplets maturation in white adipose tissues via Plin4 deSUMOylation. J Biol Chem 2024; 300:107319. [PMID: 38677512 PMCID: PMC11134554 DOI: 10.1016/j.jbc.2024.107319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024] Open
Abstract
Lipid metabolism is important for the maintenance of physiological homeostasis. Several members of the small ubiquitin-like modifier (SUMO)-specific protease (SENP) family have been reported as the regulators of lipid homeostasis. However, the function of Senp7 in lipid metabolism remains unclear. In this study, we generated both conventional and adipocyte-specific Senp7 KO mice to characterize the role of Senp7 in lipid metabolism homeostasis. Both Senp7-deficient mice displayed reduced white adipose tissue mass and decreased size of adipocytes. By analyzing the lipid droplet morphology, we demonstrated that the lipid droplet size was significantly smaller in Senp7-deficient adipocytes. Mechanistically, Senp7 could deSUMOylate the perilipin family protein Plin4 to promote the lipid droplet localization of Plin4. Our results reveal an important role of Senp7 in the maturation of lipid droplets via Plin4 deSUMOylation.
Collapse
Affiliation(s)
- Jingwen Pei
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Dayuan Zou
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-Related Diseases, First Affiliated Hospital of Bengbu Medical University, Bengbu, Anhui, China
| | - Lu Li
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Lulu Kang
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Minli Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Xu Li
- Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qianyue Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Danning Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Homburg, Germany
| | - Xiang Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, China.
| |
Collapse
|
11
|
Hohlstein P, Salvarcioglu C, Pollmanns MR, Adams JK, Abu Jhaisha S, Kabak E, Eisert A, Hamesch K, Weiskirchen R, Koch A, Wirtz TH. Diagnostic and Prognostic Value of Serum Leptin in Critically Ill Patients with Acute versus Acute-on-Chronic Liver Failure. Biomedicines 2024; 12:1170. [PMID: 38927377 PMCID: PMC11200812 DOI: 10.3390/biomedicines12061170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Differentiation between acute liver failure (ALF) and acute-on-chronic liver failure (ACLF) can be challenging in patients with de novo liver disease but is important to indicate the referral to a transplant center and urgency of organ allocation. Leptin, an adipocyte-derived cytokine that regulates energy storage and satiety, has multiple regulatory functions in the liver. We enrolled 160 critically ill patients with liver disease and 20 healthy individuals to measure serum leptin concentrations as a potential biomarker for diagnostic and prognostic purposes. Notably, patients with ALF had higher concentrations of serum leptin compared to patients with decompensated advanced chronic liver disease (dACLD) or ACLF (110 vs. 50 vs. 29 pg/mL, p < 0.001). Levels of serum leptin below 56 pg/mL excluded ALF in patients with acute hepatic disease, with a negative predictive value (NPV) of 98.8% in our cohort. Lastly, serum leptin did not show any dynamic changes within the first 48 h of ICU treatment, especially not in comparison with patients with ALF vs. ACLF or survivors vs. non-survivors. In conclusion, serum leptin may represent a helpful biomarker to exclude ALF in critically ill patients who present with acute liver dysfunction.
Collapse
Affiliation(s)
- Philipp Hohlstein
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Can Salvarcioglu
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Maike R. Pollmanns
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Jule K. Adams
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Samira Abu Jhaisha
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Elena Kabak
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Albrecht Eisert
- Hospital Pharmacy, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
- Institute of Clinical Pharmacology, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Karim Hamesch
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany;
| | - Alexander Koch
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| | - Theresa H. Wirtz
- Department for Gastroenterology, Metabolic Disorders and Intensive Care Medicine, RWTH-University Hospital Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; (P.H.); (C.S.); (M.R.P.); (J.K.A.); (S.A.J.); (E.K.); (K.H.); (T.H.W.)
| |
Collapse
|
12
|
Lamesa TA. Biological Depiction of Lipodystrophy and Its Associated Challenges Among HIV AIDS Patients: Literature Review. HIV AIDS (Auckl) 2024; 16:123-132. [PMID: 38584795 PMCID: PMC10999207 DOI: 10.2147/hiv.s445605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Lipodystrophy syndrome is a medical condition characterized by the absence of adipose tissue without any underlying starvation or macromolecule breakdown. In HIV AIDS patients, the use of highly active antiretroviral therapy (HAART) can lead to an acquired form of lipodystrophy, with a prevalence ranging from 10% to 83% among HIV AIDS patients. It was aimed to review the current understanding of biological depiction and challenges related to lipodystrophy in AIDS patients. Relevant articles published in the English language were searched in PubMed, Google Scholar, and Google. Keywords used for the search were: lipodystrophy, lipodystrophy and HIV, ART and lipodystrophy, HIV treatment, metabolic syndrome and HIV. Articles with full abstract information were read for those that met the objective criteria of the review, then full text of the articles was accessed and used. It was revealed by the literature that patients who developed lipodystrophy are characterized by insulin abnormality, obesity, diabetes mellitus, dyslipidemia, fatty liver disease, and ovarian dysfunction. Anthropometric measurements have been known to change significantly with lipodystrophy. HIV patients suffering from hepatitis C virus, hepatitis B virus, who take a protease inhibitor, are changing treatment or duration of treatment, and are women are the common risk factors for lipodystrophy. The metabolic syndrome seen in HIV patients associated with lipodystrophy can further be complicated to different adverse health effects and can result in increased morbidity and mortality rate if not treated. Existing studies have successfully identified several challenges faced by HIV AIDS patients due to lipodystrophy, including low self-esteem, compromised quality of life, and poor treatment adherence. However, it is crucial to acknowledge that there may be numerous other challenges that have yet to be discovered, emphasizing the need for further studies. It is recommended that managing dyslipidemia, treating diabetes mellitus, modifying lifestyle, and improving the anthropometric measurements have crucial roles to halt further complications associated with lipodystrophy.
Collapse
|
13
|
Xie L, Wang H, Hu J, Liu Z, Hu F. The role of novel adipokines and adipose-derived extracellular vesicles (ADEVs): Connections and interactions in liver diseases. Biochem Pharmacol 2024; 222:116104. [PMID: 38428826 DOI: 10.1016/j.bcp.2024.116104] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/01/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
Adipose tissues (AT) are an important endocrine organ that secretes various functional adipokines, peptides, non-coding RNAs, and acts on AT themselves or other distant tissues or organs through autocrine, paracrine, or endocrine manners. An accumulating body of evidence has suggested that many adipokines play an important role in liver metabolism. Besides the traditional adipokines such as adiponectin and leptin, many novel adipokines have recently been identified to have regulatory effects on the liver. Additionally, AT can produce extracellular vesicles (EVs) that act on peripheral tissues. However, under pathological conditions, such as obesity and diabetes, dysregulation of adipokines is associated with functional changes in AT, which may cause liver diseases. In this review, we focus on the newly discovered adipokines and EVs secreted by AT and highlight their actions on the liver under the context of obesity, nonalcoholic fatty liver diseases (NAFLD), and some other liver diseases. Clarifying the action of adipokines and adipose tissue-derived EVs on the liver would help to identify novel therapeutic targets or biomarkers for metabolic diseases.
Collapse
Affiliation(s)
- Lijun Xie
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huiying Wang
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Jinying Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Zhuoying Liu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Health Law Research Center, School of Law, Central South University, Changsha, China.
| | - Fang Hu
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Department of Metabolism and Endocrinology, the Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
14
|
Tiniakos DG, Anstee QM, Brunt EM, Burt AD. Fatty Liver Disease. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:330-401. [DOI: 10.1016/b978-0-7020-8228-3.00005-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Klein RJ, Viana Rodriguez GM, Rotman Y, Brown RJ. Divergent pathways of liver fat accumulation, oxidation, and secretion in lipodystrophy versus obesity-associated NAFLD. Liver Int 2023; 43:2692-2700. [PMID: 37622286 DOI: 10.1111/liv.15707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND AND AIMS Fatty liver is common in obesity as well as in partial lipodystrophy (PL) syndromes, characterized by deficient adipose tissue. Insulin resistance is key to fatty liver pathogenesis in both entities. We aimed to compare the contributions of insulin resistance and adipose tissue to hepatic steatosis in PL and non-syndromic, obesity-associated non-alcoholic fatty liver disease (NS-NAFLD). METHODS In a cross-sectional comparison of people with NS-NAFLD (N = 73) and PL (N = 27), liver fat was measured by FibroScan® controlled attenuation parameter (CAP) and insulin resistance by HOMA-IR, Adipo-IR, and NMR-based LP-IR. RESULTS Insulin resistance was greater in PL versus NS-NAFLD by HOMA-IR (p = 0.005), Adipo-IR (p = 0.01) and LP-IR (p = 0.05) while liver fat was comparable (304 vs. 324 dB/m, p = 0.12). Liver fat correlated with HOMA-IR in both groups, but CAP values were lower by 32 dB/m in PL compared with NS-NAFLD for any given HOMA-IR. In contrast, Adipo-IR and LP-IR correlated with CAP only in the NS-NAFLD group, suggesting different pathways for fat accumulation. Plasma free fatty acids, reflecting substrate input from the adipose tissue, were comparable between groups. However, the levels of β-hydroxybutyrate, a marker of β-oxidation, and large triglyceride-rich lipoprotein particles, a marker of VLDL secretion, were both higher in PL (p < 0.001 for both). CONCLUSION Liver fat content was comparable in subjects with PL-associated NAFLD and NS-NAFLD, despite worse insulin resistance in partial lipodystrophy. Our data demonstrate higher triglyceride oxidation and export in PL, suggesting a compensatory shift of fat from liver storage into the circulation that does not occur in NS-NAFLD.
Collapse
Affiliation(s)
- Rachael J Klein
- Section on Translational Diabetes and Metabolic Syndromes, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gracia M Viana Rodriguez
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaron Rotman
- Liver & Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca J Brown
- Section on Translational Diabetes and Metabolic Syndromes, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Yildirim Simsir I, Tuysuz B, Ozbek MN, Tanrikulu S, Celik Guler M, Karhan AN, Denkboy Ongen Y, Gunes N, Soyaltin UE, Altay C, Nur B, Ozalkak S, Akgun Dogan O, Dursun F, Pekkolay Z, Eren MA, Usta Y, Ozisik S, Ozgen Saydam B, Adiyaman SC, Unal MC, Gungor Semiz G, Turan I, Eren E, Kayserili H, Jeru I, Vigouroux C, Atik T, Onay H, Ozen S, Arioglu Oral E, Akinci B. Clinical features of generalized lipodystrophy in Turkey: A cohort analysis. Diabetes Obes Metab 2023; 25:1950-1963. [PMID: 36946378 DOI: 10.1111/dom.15061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/23/2023]
Abstract
AIM To describe the Turkish generalized lipodystrophy (GL) cohort with the frequency of each complication and the death rate during the period of the follow-up. METHODS This study reports on 72 patients with GL (47 families) registered at different centres in Turkey that cover all regions of the country. The mean ± SD follow-up was 86 ± 78 months. RESULTS The Kaplan-Meier estimate of the median time to diagnosis of diabetes and/or prediabetes was 16 years. Hyperglycaemia was not controlled in 37 of 45 patients (82.2%) with diabetes. Hypertriglyceridaemia developed in 65 patients (90.3%). The Kaplan-Meier estimate of the median time to diagnosis of hypertriglyceridaemia was 14 years. Hypertriglyceridaemia was severe (≥ 500 mg/dl) in 38 patients (52.8%). Seven (9.7%) patients suffered from pancreatitis. The Kaplan-Meier estimate of the median time to diagnosis of hepatic steatosis was 15 years. Liver disease progressed to cirrhosis in nine patients (12.5%). Liver disease was more severe in congenital lipodystrophy type 2 (CGL2). Proteinuric chronic kidney disease (CKD) developed in 32 patients (44.4%) and cardiac disease in 23 patients (31.9%). Kaplan-Meier estimates of the median time to diagnosis of CKD and cardiac disease were 25 and 45 years, respectively. Females appeared to have a more severe metabolic disease, with an earlier onset of metabolic abnormalities. Ten patients died during the follow-up period. Causes of death were end-stage renal disease, sepsis (because of recurrent intestinal perforations, coronavirus disease, diabetic foot infection and following coronary artery bypass graft surgery), myocardial infarction, heart failure because of dilated cardiomyopathy, stroke, liver complications and angiosarcoma. CONCLUSIONS Standard treatment approaches have only a limited impact and do not prevent the development of severe metabolic abnormalities and early onset of organ complications in GL.
Collapse
Affiliation(s)
- Ilgin Yildirim Simsir
- Division of Endocrinology, Department of Internal Medicine, Ege University School of Medicine, Izmir, Turkey
| | - Beyhan Tuysuz
- Department of Genetics, Istanbul Cerrahpasa University, Istanbul, Turkey
| | - Mehmet Nuri Ozbek
- Division of Pediatric Endocrinology, Mardin Artuklu University, Mardin, Turkey
| | - Seher Tanrikulu
- Division of Endocrinology, Department of Internal Medicine, Acibadem Hospital, Istanbul, Turkey
| | - Merve Celik Guler
- Department of Internal Medicine, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Asuman Nur Karhan
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Yasemin Denkboy Ongen
- Division of Pediatric Endocrinology, Uludag University, Faculty of Medicine, Bursa, Turkey
| | - Nilay Gunes
- Department of Genetics, Istanbul Cerrahpasa University, Istanbul, Turkey
| | - Utku Erdem Soyaltin
- Division of Endocrinology, Department of Internal Medicine, Ege University School of Medicine, Izmir, Turkey
| | - Canan Altay
- Department of Radiology, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Banu Nur
- Division of Pediatric Genetics, Akdeniz University, Antalya, Turkey
| | - Servan Ozalkak
- Division of Pediatric Endocrinology, Diyarbakir Children's Hospital, Diyarbakir, Turkey
| | - Ozlem Akgun Dogan
- Department of Pediatric Genetics, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
| | - Fatma Dursun
- Department of Pediatric Endocrinology and Diabetes, Istanbul University of Health Science, Umraniye Training and Research Hospital, Istanbul, Turkey
| | - Zafer Pekkolay
- Division of Endocrinology and Metabolism, Dicle University Faculty of Medicine, Diyarbakir, Turkey
| | - Mehmet Ali Eren
- Department of Endocrinology and Metabolism, Harran University, Faculty of Medicine, Sanliurfa, Turkey
| | - Yusuf Usta
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Secil Ozisik
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Basak Ozgen Saydam
- Division of Endocrinology and Metabolism, Yildirim Beyazit University, Yenimahalle Training Hospital, Ankara, Turkey
| | - Suleyman Cem Adiyaman
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Mehmet Cagri Unal
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Gokcen Gungor Semiz
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Dokuz Eylul University School of Medicine, Izmir, Turkey
| | - Ihsan Turan
- Division of Pediatric Endocrinology, Faculty of Medicine, Cukurova University, Adana, Turkey
| | - Erdal Eren
- Division of Pediatric Endocrinology, Uludag University, Faculty of Medicine, Bursa, Turkey
| | - Hulya Kayserili
- Department of Medical Genetics, Koc University School of Medicine, Istanbul, Turkey
| | - Isabelle Jeru
- Department of Medical Genetics, DMU BioGeM, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Sorbonne University, Paris, France
| | - Corinne Vigouroux
- Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Department of Endocrinology, Diabetology and Reproductive Endocrinology and Department of Molecular Biology and Genetics, and Sorbonne University, Inserm U938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France
| | - Tahir Atik
- Division of Pediatric Genetics, Ege University School of Medicine, Izmir, Turkey
| | - Huseyin Onay
- Department of Medical Genetics, Ege University, Izmir, Turkey
| | - Samim Ozen
- Division of Pediatric Endocrinology and Diabetes, Ege University School of Medicine, Izmir, Turkey
| | - Elif Arioglu Oral
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | |
Collapse
|
17
|
Flori L, Brogi S, Sirous H, Calderone V. Disruption of Irisin Dimerization by FDA-Approved Drugs: A Computational Repurposing Approach for the Potential Treatment of Lipodystrophy Syndromes. Int J Mol Sci 2023; 24:ijms24087578. [PMID: 37108741 PMCID: PMC10145865 DOI: 10.3390/ijms24087578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
In this paper, we present the development of a computer-based repurposing approach to identify FDA-approved drugs that are potentially able to interfere with irisin dimerization. It has been established that altered levels of irisin dimers are a pure hallmark of lipodystrophy (LD) syndromes. Accordingly, the identification of compounds capable of slowing down or precluding the irisin dimers' formation could represent a valuable therapeutic strategy in LD. Combining several computational techniques, we identified five FDA-approved drugs with satisfactory computational scores (iohexol, XP score = -7.70 kcal/mol, SP score = -5.5 kcal/mol, ΔGbind = -61.47 kcal/mol, ΔGbind (average) = -60.71 kcal/mol; paromomycin, XP score = -7.23 kcal/mol, SP score = -6.18 kcal/mol, ΔGbind = -50.14 kcal/mol, ΔGbind (average) = -49.13 kcal/mol; zoledronate, XP score = -6.33 kcal/mol, SP score = -5.53 kcal/mol, ΔGbind = -32.38 kcal/mol, ΔGbind (average) = -29.42 kcal/mol; setmelanotide, XP score = -6.10 kcal/mol, SP score = -7.24 kcal/mol, ΔGbind = -56.87 kcal/mol, ΔGbind (average) = -62.41 kcal/mol; and theophylline, XP score = -5.17 kcal/mol, SP score = -5.55 kcal/mol, ΔGbind = -33.25 kcal/mol, ΔGbind (average) = -35.29 kcal/mol) that are potentially able to disrupt the dimerization of irisin. For this reason, they deserve further investigation to characterize them as irisin disruptors. Remarkably, the identification of drugs targeting this process can offer novel therapeutic opportunities for the treatment of LD. Furthermore, the identified drugs could provide a starting point for a repositioning approach, synthesizing novel analogs with improved efficacy and selectivity against the irisin dimerization process.
Collapse
Affiliation(s)
- Lorenzo Flori
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Simone Brogi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Hajar Sirous
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran
| | - Vincenzo Calderone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
18
|
Xu Y, Zhu H, Li W, Chen D, Xu Y, Xu A, Ye D. Targeting adipokines in polycystic ovary syndrome and related metabolic disorders: from experimental insights to clinical studies. Pharmacol Ther 2022; 240:108284. [PMID: 36162728 DOI: 10.1016/j.pharmthera.2022.108284] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 12/15/2022]
Abstract
Polycystic ovary syndrome (PCOS) affects approximately 15% of women of reproductive age worldwide. It is the most prevalent endocrine disorder with marked risks for female infertility, type 2 diabetes mellitus (T2DM), psychiatric disorders and gynecological cancers. Although the pathophysiology of PCOS remains largely elusive, growing evidence suggests a close link with obesity and its related metabolic disorders. As a highly active endocrine cell population, hypertrophic adipocytes in obesity have disturbed production of a vast array of adipokines, biologically active peptides that exert pleiotropic effects on homeostatic regulation of glucose and lipid metabolism. In parallel with their crucial roles in the pathophysiology of obesity-induced metabolic diseases, adipokines have recently been identified as promising targets for novel therapeutic strategies for multiple diseases. Current treatments for PCOS are suboptimal with insufficient alleviation of all symptoms. Novel findings in adipokine-targeted agents may provide important insight into the development of new drugs for PCOS. This Review presents an overview of the current understanding of mechanisms that link PCOS to obesity and highlights emerging evidence of adipose-ovary crosstalk as a pivotal mediator of PCOS pathogenesis. We summarize recent findings of preclinical and clinical studies that reveal the therapeutic potential of adipokine-targeted novel approaches to PCOS and its related metabolic disorders. We also discuss the critical gaps in knowledge that need to be addressed to guide the development of adipokine-based novel therapies for PCOS.
Collapse
Affiliation(s)
- Yidan Xu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Huiqiu Zhu
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Weiwei Li
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Danxia Chen
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Xu
- School of Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, China; Department of Medicine, The University of Hong Kong, Hong Kong, China.
| | - Dewei Ye
- Key Laboratory of Glucolipid Metabolic Diseases of the Ministry of Education, Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Metabolic Phenotyping in Model Animals, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
19
|
Prevalence and Risk Factor Analysis of Post-Intensive Care Syndrome in Patients with COVID-19 Requiring Mechanical Ventilation: A Multicenter Prospective Observational Study. J Clin Med 2022; 11:jcm11195758. [PMID: 36233627 PMCID: PMC9571505 DOI: 10.3390/jcm11195758] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/24/2022] [Accepted: 09/25/2022] [Indexed: 11/28/2022] Open
Abstract
Introduction: Post-intensive care syndrome (PICS) is an emerging problem in critically ill patients and the prevalence and risk factors are unclear in patients with severe coronavirus disease 2019 (COVID-19). This multicenter prospective observational study aimed to investigate the prevalence and risk factors of PICS in ventilated patients with COVID-19 after ICU discharge. Methods: Questionnaires were administered twice in surviving patients with COVID-19 who had required mechanical ventilation, concerning Barthel Index, Short-Memory Questionnaire, and Hospital Anxiety and Depression Scale scores. The risk factors for PICS were examined using a multivariate logistic regression analysis. Results: The first and second PICS surveys were obtained at 5.5 and 13.5 months (mean) after ICU discharge, with 251 and 209 patients completing the questionnaires and with a prevalence of PICS of 58.6% and 60.8%, respectively, along with the highest percentages of cognitive impairment. Delirium (with an odds ratio of (OR) 2.34, 95% CI 1.1–4.9, and p = 0.03) and the duration of mechanical ventilation (with an OR of 1.29, 95% CI 1.05–1.58, and p = 0.02) were independently identified as the risk factors for PICS in the first PICS survey. Conclusion: Approximately 60% of the ventilated patients with COVID-19 experienced persistent PICS, especially delirium, and required longer mechanical ventilation.
Collapse
|
20
|
Adipokines in Non-Alcoholic Fatty Liver Disease: Are We on the Road toward New Biomarkers and Therapeutic Targets? BIOLOGY 2022; 11:biology11081237. [PMID: 36009862 PMCID: PMC9405285 DOI: 10.3390/biology11081237] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/04/2022]
Abstract
Simple Summary Non-alcoholic fatty liver disease (NAFLD) is an unmet medical need due to its increasingly high incidence, severe clinical consequences, and the absence of feasible diagnostic tools and effective drugs. This review summarizes the preclinical and clinical data on adipokines, cytokine-like hormones secreted by adipose tissue, and NAFLD. The aim is to establish the potential of adipokines as diagnostic and prognostic biomarkers, as well as their potential as therapeutic targets for NAFLD. The limitations of current research are also discussed, and future perspectives are outlined. Abstract Non-alcoholic fatty liver disease (NAFLD) has become the major cause of chronic hepatic illness and the leading indication for liver transplantation in the future decades. NAFLD is also commonly associated with other high-incident non-communicable diseases, such as cardiovascular complications, type 2 diabetes, and chronic kidney disease. Aggravating the socio-economic impact of this complex pathology, routinely feasible diagnostic methodologies and effective drugs for NAFLD management are unavailable. The pathophysiology of NAFLD, recently defined as metabolic associated fatty liver disease (MAFLD), is correlated with abnormal adipose tissue–liver axis communication because obesity-associated white adipose tissue (WAT) inflammation and metabolic dysfunction prompt hepatic insulin resistance (IR), lipid accumulation (steatosis), non-alcoholic steatohepatitis (NASH), and fibrosis. Accumulating evidence links adipokines, cytokine-like hormones secreted by adipose tissue that have immunometabolic activity, with NAFLD pathogenesis and progression; however, much uncertainty still exists. Here, the current knowledge on the roles of leptin, adiponectin, ghrelin, resistin, retinol-binding protein 4 (RBP4), visfatin, chemerin, and adipocyte fatty-acid-binding protein (AFABP) in NAFLD, taken from preclinical to clinical studies, is overviewed. The effect of therapeutic interventions on adipokines’ circulating levels are also covered. Finally, future directions to address the potential of adipokines as therapeutic targets and disease biomarkers for NAFLD are discussed.
Collapse
|
21
|
Rojano-Toimil A, Rivera-Esteban J, Manzano-Nuñez R, Bañares J, Martinez Selva D, Gabriel-Medina P, Ferrer R, Pericàs JM, Ciudin A. When Sugar Reaches the Liver: Phenotypes of Patients with Diabetes and NAFLD. J Clin Med 2022; 11:jcm11123286. [PMID: 35743358 PMCID: PMC9225139 DOI: 10.3390/jcm11123286] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 01/27/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) and non-alcoholic fatty liver disease (NAFLD) have been traditionally linked to one another. Recent studies suggest that NAFLD may be increasingly common in other types of diabetes such as type 1 diabetes (T1DM) and less frequently ketone-prone and Maturity-onset Diabetes of the Young (MODY) diabetes. In this review, we address the relationship between hyperglycemia and insulin resistance and the onset and progression of NAFLD. In addition, despite the high rate of patients with T2DM and other diabetes phenotypes that can alter liver metabolism and consequently develop steatosis, fibrosis, and cirrhosis, NALFD screening is not still implemented in the daily care routine. Incorporating a clinical algorithm created around a simple, non-invasive, cost-effective model would identify high-risk patients. The principle behind managing these patients is to improve insulin resistance and hyperglycemia states with lifestyle changes, weight loss, and new drug therapies.
Collapse
Affiliation(s)
- Alba Rojano-Toimil
- Endocrinology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
| | - Jesús Rivera-Esteban
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Medicine Department Bellaterra, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Liver Unit, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Ramiro Manzano-Nuñez
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Liver Unit, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Juan Bañares
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Liver Unit, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - David Martinez Selva
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Spanish Network of Biomedical Research Centers, Diabetes and Metabolic Associated Disorders (CIBERdem), 28029 Madrid, Spain
| | - Pablo Gabriel-Medina
- Biochemistry Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (P.G.-M.); (R.F.)
- Biochemistry and Molecular Biology Department, Universitat Autònoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Spain
| | - Roser Ferrer
- Biochemistry Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain; (P.G.-M.); (R.F.)
| | - Juan M Pericàs
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Liver Unit, Vall d’Hebron University Hospital, 08035 Barcelona, Spain
- Spanish Network of Biomedical Research Centers, Liver and Digestive Diseases (CIBERehd), 28801 Madrid, Spain
- Correspondence: (J.M.P.); (A.C.)
| | - Andreea Ciudin
- Endocrinology Department, Vall d’Hebron University Hospital, 08035 Barcelona, Spain;
- Vall d’Hebron Institut de Recerca (VHIR), 08035 Barcelona, Spain; (J.R.-E.); (R.M.-N.); (J.B.); (D.M.S.)
- Medicine Department Bellaterra, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Spanish Network of Biomedical Research Centers, Diabetes and Metabolic Associated Disorders (CIBERdem), 28029 Madrid, Spain
- Correspondence: (J.M.P.); (A.C.)
| |
Collapse
|
22
|
Polyzos SA, Mantzoros CS. Metreleptin for the treatment of lipodystrophy: leading the way among novel therapeutics for this unmet clinical need. Curr Med Res Opin 2022; 38:885-888. [PMID: 35352624 DOI: 10.1080/03007995.2022.2059974] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Stergios A Polyzos
- First Laboratory of Pharmacology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Boston VA Healthcare System, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
23
|
Duell PB, Welty FK, Miller M, Chait A, Hammond G, Ahmad Z, Cohen DE, Horton JD, Pressman GS, Toth PP. Nonalcoholic Fatty Liver Disease and Cardiovascular Risk: A Scientific Statement From the American Heart Association. Arterioscler Thromb Vasc Biol 2022; 42:e168-e185. [PMID: 35418240 DOI: 10.1161/atv.0000000000000153] [Citation(s) in RCA: 325] [Impact Index Per Article: 108.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is an increasingly common condition that is believed to affect >25% of adults worldwide. Unless specific testing is done to identify NAFLD, the condition is typically silent until advanced and potentially irreversible liver impairment occurs. For this reason, the majority of patients with NAFLD are unaware of having this serious condition. Hepatic complications from NAFLD include nonalcoholic steatohepatitis, hepatic cirrhosis, and hepatocellular carcinoma. In addition to these serious complications, NAFLD is a risk factor for atherosclerotic cardiovascular disease, which is the principal cause of death in patients with NAFLD. Accordingly, the purpose of this scientific statement is to review the underlying risk factors and pathophysiology of NAFLD, the associations with atherosclerotic cardiovascular disease, diagnostic and screening strategies, and potential interventions.
Collapse
|
24
|
Brandt S, von Schnurbein J, Denzer C, Kratzer W, Wabitsch M. Lower Circulating Leptin Levels Are Related to Non-Alcoholic Fatty Liver Disease in Children With Obesity. Front Endocrinol (Lausanne) 2022; 13:881982. [PMID: 35677722 PMCID: PMC9169562 DOI: 10.3389/fendo.2022.881982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background While for individuals with obesity an association between hyperleptinemia and an increased risk of non-alcoholic fatty liver disease (NAFLD) is assumed, a leptin deficiency is also related to the development of NAFLD early in life in ob/ob mice, in patients with leptin deficiency due to biallelic likely pathogenic variants in the leptin gene, and in patients with lipodystrophy. Objectives To investigate the association of circulating leptin levels in pre-pubertal children with obesity and steatosis hepatis. Methods The cross-sectional study consisted data of n=97 (nmale=76) pre-pubertal children (11.8 ± 1.5 years) with obesity (BMIz: 2.4 ± 0.4). Fasting concentrations of cardiometabolic parameters were measured: insulin, c-peptide, glucose, triglyceride, cholesterol, HDL, LDL, AST, ALT, GGT, leptin. Steatosis hepatis was diagnosed by an ultrasound examination (mild, moderate or severe). Patients were categorized into two groups: low z-score of circulating leptin levels (≤25th percentile) vs. normal z-score of circulating leptin levels. Results One-third of the children with obesity were diagnosed with steatosis hepatis (I°: 63.6%, II°/III°: 36.4%). Children with steatosis hepatis had significantly lower z-scores of circulating leptin levels compared to children with an unremarkable liver ultrasonography (-2.1 ± 0.8 vs. -0.7 ± 0.6). Z-scores of circulating leptin levels correlate negatively with degree of steatosis hepatis. Children with low z-scores of circulating leptin levels had significantly higher triglyceride, fasting insulin and c-peptide levels compared to children with normal z-scores of circulating leptin levels. Conclusion Prepubertal children with NAFLD and obesity and partial leptin deficiency might be defined as a clinical subgroup.
Collapse
Affiliation(s)
- Stephanie Brandt
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Julia von Schnurbein
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christian Denzer
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Wolfgang Kratzer
- Department of Internal Medicine I, University Hospital Ulm, Ulm, Germany
| | - Martin Wabitsch
- Center for Rare Endocrine Diseases, Division of Paediatric Endocrinology and Diabetes, Department of Paediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
25
|
Abstract
Lipodystrophy constitutes a spectrum of diseases characterized by a generalized or partial absence of adipose tissue. Underscoring the role of healthy fat in maintenance of metabolic homeostasis, fat deficiency in lipodystrophy typically leads to profound metabolic disturbances including insulin resistance, hypertriglyceridemia, and ectopic fat accumulation. While rare, recent genetic studies indicate that lipodystrophy is more prevalent than has been previously thought, suggesting considerable underdiagnosis in clinical practice. In this article, we provide an overview of the etiology and management of generalized and partial lipodystrophy disorders. We bring together the latest scientific evidence and clinical guidelines and expose key gaps in knowledge. Through improved recognition of the lipodystrophy disorders, patients (and their affected family members) can be appropriately screened for cardiometabolic, noncardiometabolic, and syndromic abnormalities and undergo treatment with targeted interventions. Notably, insights gained through the study of this rare and extreme phenotype can inform our knowledge of more common disorders of adipose tissue overload, including generalized obesity.
Collapse
Affiliation(s)
- Lindsay T Fourman
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
- Correspondence: Lindsay T. Fourman, MD, Massachusetts General Hospital and Harvard Medical School, 55 Fruit St, 5LON207, Boston, MA 02114, USA.
| | - Steven K Grinspoon
- Metabolism Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
26
|
Du Y, Zhang W, Qiu H, Xiao C, Shi J, Reid LM, He Z. Mouse Models of Liver Parenchyma Injuries and Regeneration. Front Cell Dev Biol 2022; 10:903740. [PMID: 35721478 PMCID: PMC9198899 DOI: 10.3389/fcell.2022.903740] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 12/11/2022] Open
Abstract
Mice have genetic and physiological similarities with humans and a well-characterized genetic background that is easy to manipulate. Murine models have become the most favored, robust mammalian systems for experimental analyses of biological processes and disease conditions due to their low cost, rapid reproduction, a wealth of mouse strains with defined genetic conditions (both native ones as well as ones established experimentally), and high reproducibility with respect to that which can be done in experimental studies. In this review, we focus on murine models for liver, an organ with renown regenerative capacity and the organ most central to systemic, complex metabolic and physiological functions for mammalian hosts. Establishment of murine models has been achieved for all aspects of studies of normal liver, liver diseases, liver injuries, and regenerative repair mechanisms. We summarize key information on current mouse systems that partially model facets of clinical scenarios, particularly those associated with drug-induced acute or chronic liver injuries, dietary related, non-alcoholic liver disease (NAFLD), hepatitis virus infectious chronic liver diseases, and autoimmune hepatitis (AIH). In addition, we also include mouse models that are suitable for studying liver cancers (e.g., hepatocellular carcinomas), the aging process (senescence, apoptosis), and various types of liver injuries and regenerative processes associated with them.
Collapse
Affiliation(s)
- Yuan Du
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
| | - Hua Qiu
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Canjun Xiao
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
| | - Jun Shi
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- The First Affiliated Hospital of Nanchang University, Nanchang, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Lola M. Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, Chapel Hill, NC, United States
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| | - Zhiying He
- Department of General Surgery, Ji’an Hospital, Shanghai East Hospital, School of Medicine, Tongji University, Ji’an, China
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- *Correspondence: Zhiying He, ; Lola M. Reid, , ; Jun Shi,
| |
Collapse
|
27
|
Mosbah H, Donadille B, Vatier C, Janmaat S, Atlan M, Badens C, Barat P, Béliard S, Beltrand J, Ben Yaou R, Bismuth E, Boccara F, Cariou B, Chaouat M, Charriot G, Christin-Maitre S, De Kerdanet M, Delemer B, Disse E, Dubois N, Eymard B, Fève B, Lascols O, Mathurin P, Nobécourt E, Poujol-Robert A, Prevost G, Richard P, Sellam J, Tauveron I, Treboz D, Vergès B, Vermot-Desroches V, Wahbi K, Jéru I, Vantyghem MC, Vigouroux C. Dunnigan lipodystrophy syndrome: French National Diagnosis and Care Protocol (PNDS; Protocole National de Diagnostic et de Soins). Orphanet J Rare Dis 2022; 17:170. [PMID: 35440056 PMCID: PMC9019936 DOI: 10.1186/s13023-022-02308-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 03/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dunnigan syndrome, or Familial Partial Lipodystrophy type 2 (FPLD2; ORPHA 2348), is a rare autosomal dominant disorder due to pathogenic variants of the LMNA gene. The objective of the French National Diagnosis and Care Protocol (PNDS; Protocole National de Diagnostic et de Soins), is to provide health professionals with a guide to optimal management and care of patients with FPLD2, based on a critical literature review and multidisciplinary expert consensus. The PNDS, written by members of the French National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), is available on the French Health Authority website (in French). Dunnigan syndrome is characterized by a partial atrophy of the subcutaneous adipose tissue and by an insulin resistance syndrome, associated with a risk of metabolic, cardiovascular and muscular complications. Its prevalence, assessed at 1/100.000 in Europe, is probably considerably underestimated. Thorough clinical examination is key to diagnosis. Biochemical testing frequently shows hyperinsulinemia, abnormal glucose tolerance and hypertriglyceridemia. Elevated hepatic transaminases (hepatic steatosis) and creatine phosphokinase, and hyperandrogenism in women, are common. Molecular analysis of the LMNA gene confirms diagnosis and allows for family investigations. Regular screening and multidisciplinary monitoring of the associated complications are necessary. Diabetes frequently develops from puberty onwards. Hypertriglyceridemia may lead to acute pancreatitis. Early atherosclerosis and cardiomyopathy should be monitored. In women, polycystic ovary syndrome is common. Overall, the management of patients with Dunnigan syndrome requires the collaboration of several health care providers. The attending physician, in conjunction with the national care network, will ensure that the patient receives optimal care through regular follow-up and screening. The various elements of this PNDS are described to provide such a support.
Collapse
Affiliation(s)
- H Mosbah
- Endocrinology, Diabetology and Reproductive Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France.,Sorbonne University, Inserm UMR_S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France
| | - B Donadille
- Endocrinology, Diabetology and Reproductive Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - C Vatier
- Endocrinology, Diabetology and Reproductive Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France.,Sorbonne University, Inserm UMR_S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France
| | - S Janmaat
- Endocrinology, Diabetology and Reproductive Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France.,Sorbonne University, Inserm UMR_S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France
| | - M Atlan
- Sorbonne University, Inserm UMR_S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France.,Plastic Surgery Department, Assistance Publique-Hôpitaux de Paris, Tenon Hospital, Paris, France
| | - C Badens
- Department of Genetics, Assistance Publique-Hôpitaux de Marseille, Marseille, France
| | - P Barat
- Pediatric Endocrinology Unit, Bordeaux University Hospitals, Bordeaux, France
| | - S Béliard
- Nutrition Department, Assistance Publique-Hôpitaux de Marseille, La Conception Hospital, Marseille, France
| | - J Beltrand
- Paediatric Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Necker Hospital, Paris University, Paris, France
| | - R Ben Yaou
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Myology Institute, Sorbonne University, Paris, France
| | - E Bismuth
- Paediatric Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Paris University, Paris, France
| | - F Boccara
- Cardiology Department, Assistance Publique-Hôpitaux de Paris, St Antoine Hospital, Sorbonne University, Paris, France
| | - B Cariou
- Endocrinology Department, Nantes University Hospitals, Guillaume et René Laennec Hospital, Nantes University, Nantes, France
| | - M Chaouat
- Plastic Surgery Department, Assistance Publique-Hôpitaux de Paris, St Louis Hospital, Paris University, Paris, France
| | - G Charriot
- French Lipodystrophy Association (AFLIP; Association Française des Lipodystrophies), Pierrevert, France
| | - S Christin-Maitre
- Endocrinology, Diabetology and Reproductive Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France.,Sorbonne University, Inserm UMR_S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France.,Sorbonne University, Inserm UMR_S933, Paris, France
| | - M De Kerdanet
- Paediatric Endocrinology Department, Rennes University Hospitals, South Hospital, Rennes, France
| | - B Delemer
- Endocrinology Department, Reims University Hospitals, Robert Debré Hospital, Reims, France
| | - E Disse
- Endocrinology Department, Lyon University Hospitals, South Lyon Civil Hospital, Lyon University, Pierre Benite, France
| | - N Dubois
- Nutrition Department, Assistance Publique-Hôpitaux de Marseille, La Conception Hospital, Marseille, France
| | - B Eymard
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Myology Institute, Sorbonne University, Paris, France
| | - B Fève
- Endocrinology, Diabetology and Reproductive Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France.,Sorbonne University, Inserm UMR_S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France
| | - O Lascols
- Sorbonne University, Inserm UMR_S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France.,Molecular Biology and Genetics Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
| | - P Mathurin
- Hepatology Department, Lille 2 University Hospitals, Lille University, Lille, France
| | - E Nobécourt
- Endocrinology Department, La Reunion University Hospitals, Reunion South Hospital, St Pierre de la Reunion, France
| | - A Poujol-Robert
- Hepatology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, Sorbonne University, Paris, France
| | - G Prevost
- Endocrinology Department, Rouen University Hospitals, Bois-Guillaume Hospital, Rouen, France
| | - P Richard
- Cardiogenetics and Myogenetics Department, Assistance Publique-Hôpitaux de Paris, Pitie Salpêtrière Hospital, Sorbonne University, Paris, France
| | - J Sellam
- Sorbonne University, Inserm UMR_S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France.,Rhumatology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine Hospital, Sorbonne University, Paris, France
| | - I Tauveron
- Endocrinology Department, Clermont-Ferrand University Hospital, Clermont Auvergne University, Clermont-Ferrand, France
| | - D Treboz
- French Lipodystrophy Association (AFLIP; Association Française des Lipodystrophies), Pierrevert, France
| | - B Vergès
- Endocrinology-Diabetology Department, Dijon University Hospital, François Mitterand Hospital, Bourgogne University, Dijon, France
| | - V Vermot-Desroches
- Endocrinology, Diabetology and Reproductive Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France
| | - K Wahbi
- Cardiology Department, Assistance Publique-Hôpitaux de Paris, Cochin Hospital, Paris University, Paris, France
| | - I Jéru
- Sorbonne University, Inserm UMR_S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France.,Molecular Biology and Genetics Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France
| | - M C Vantyghem
- Endocrinology Department, Lille 2 University Hospitals, Lille University, Lille, France
| | - C Vigouroux
- Endocrinology, Diabetology and Reproductive Endocrinology Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, National Reference Center for Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Paris, France. .,Sorbonne University, Inserm UMR_S938, Saint-Antoine Research Centre, Institute of Cardiometabolism and Nutrition, Paris, France. .,Molecular Biology and Genetics Department, Assistance Publique-Hôpitaux de Paris, Saint-Antoine University Hospital, Paris, France.
| |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW Lipodystrophies are a group of rare, heterogeneous disorders characterized by a lack or maldistribution of adipose tissue. Treatment focusses on the management of complications, including hypertriglyceridemia, which can be severe. Patients are predisposed to early atherosclerotic cardiovascular disease and acute pancreatitis. This review summarizes the recent advances in the treatment of lipodystrophies, with a particular focus on the treatment of hypertriglyceridemia in familial partial lipodystrophy (FPLD). RECENT FINDINGS Treatment of dyslipidemia in FPLD requires management of secondary exacerbating factors, particularly insulin resistance and diabetes, together with modification of atherosclerotic cardiovascular disease risk factors. In addition, specific lipid-lowering therapies are usually needed, starting with statins and fibrates. Leptin therapy improves triglycerides. Several emerging treatments for hypertriglyceridemia include apo C-III antagonists (volanesorsen, AKCEA-APOCIII-LRx and ARO-APOC3) and angiopoietin-like 3 antagonists (evinacumab, vupanorsen and ARO-ANG3); efficacy observed in clinical trials of these agents in nonlipodystrophic patients with severe hypertriglyceridemia suggests that they may also be helpful in lipodystrophy. SUMMARY Emerging therapies for dyslipidemia show promise in advancing the care of patients with lipodystrophy. However, these treatments are not yet approved for use in lipodystrophy. Further study of their efficacy and safety in this patient population is needed.
Collapse
Affiliation(s)
- Isabel Shamsudeen
- Department of Medicine, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | | |
Collapse
|
29
|
Mainieri F, Tagi VM, Chiarelli F. Treatment Options for Lipodystrophy in Children. Front Endocrinol (Lausanne) 2022; 13:879979. [PMID: 35600578 PMCID: PMC9114741 DOI: 10.3389/fendo.2022.879979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022] Open
Abstract
Lipodystrophy includes a heterogeneous group of rare diseases characterized by different amounts of adipose tissue loss and several metabolic complications, including hypertriglyceridemia, steatohepatitis and particularly insulin resistance, that may lead to severe morbidity and, sometimes, mortality. Therefore, therapy for lipodystrophy primarily consists of a conventional approach that involves standard treatments of metabolic abnormalities. Given the evidence of leptin deficiency in lipodystrophy syndromes, leptin replacement therapy has been considered as a treatment option. Long-term studies on the use of therapy with a methionylated analog of human leptin, metreleptin, first on animals and subsequently on human patients, demonstrated enormous improvements of patients' clinical features and metabolic conditions. Recently, metreleptin was approved by Food and Drug Administration (FDA) for the treatment of generalized lipodystrophy and by European Medicines Agency (EMA) for the treatment of both generalized and partial lipodystrophy. However, further research is being conducted for new and different therapeutic agents, especially helpful for the treatment of patients with partial lipodystrophy, as some of them do not have access to metreleptin therapy or show poor response.
Collapse
|
30
|
Portincasa P, Bonfrate L, Khalil M, Angelis MD, Calabrese FM, D’Amato M, Wang DQH, Di Ciaula A. Intestinal Barrier and Permeability in Health, Obesity and NAFLD. Biomedicines 2021; 10:83. [PMID: 35052763 PMCID: PMC8773010 DOI: 10.3390/biomedicines10010083] [Citation(s) in RCA: 107] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 02/07/2023] Open
Abstract
The largest surface of the human body exposed to the external environment is the gut. At this level, the intestinal barrier includes luminal microbes, the mucin layer, gastrointestinal motility and secretion, enterocytes, immune cells, gut vascular barrier, and liver barrier. A healthy intestinal barrier is characterized by the selective permeability of nutrients, metabolites, water, and bacterial products, and processes are governed by cellular, neural, immune, and hormonal factors. Disrupted gut permeability (leaky gut syndrome) can represent a predisposing or aggravating condition in obesity and the metabolically associated liver steatosis (nonalcoholic fatty liver disease, NAFLD). In what follows, we describe the morphological-functional features of the intestinal barrier, the role of major modifiers of the intestinal barrier, and discuss the recent evidence pointing to the key role of intestinal permeability in obesity/NAFLD.
Collapse
Affiliation(s)
- Piero Portincasa
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Leonilde Bonfrate
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| | - Mohamad Khalil
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Maria De Angelis
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Francesco Maria Calabrese
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/a, 70126 Bari, Italy; (M.D.A.); (F.M.C.)
| | - Mauro D’Amato
- Gastrointestinal Genetics Lab, CIC bioGUNE-BRTA, 48160 Derio, Spain;
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - David Q.-H. Wang
- Department of Medicine and Genetics, Division of Gastroenterology and Liver Diseases, Marion Bessin Liver Research Center, Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, New York, NY 10461, USA;
| | - Agostino Di Ciaula
- Clinica Medica “A. Murri”, Department of Biomedical Sciences & Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (L.B.); (M.K.); (A.D.C.)
| |
Collapse
|
31
|
Manolis AS, Manolis AA, Manolis TA, Apostolaki NE, Melita H. COVID-19 infection and body weight: A deleterious liaison in a J-curve relationship. Obes Res Clin Pract 2021; 15:523-535. [PMID: 34799284 PMCID: PMC8563353 DOI: 10.1016/j.orcp.2021.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 10/10/2021] [Accepted: 10/29/2021] [Indexed: 02/07/2023]
Abstract
During the course of the COVID-19 pandemic, obesity has been shown to be an independent risk factor for high morbidity and mortality. Obesity confers poor outcomes in younger (<60 years) patients, an age-group considered low-risk for complications, a privilege that is negated by obesity. Findings are consistent, the higher the body mass index (BMI) the worse the outcomes. Ectopic (visceral) obesity also promotes proinflammatory, prothrombotic, and vasoconstrictive states, thus enhancing the deleterious effects of COVID-19 disease. Less, albeit robust, evidence also exists for a higher risk of COVID-19 infection incurred with underweight. Thus, the relationship of COVID-19 and BMI has a J-curve pattern, where patients with both overweight/obesity and underweight are more susceptible to the ailments of COVID-19. The pathophysiology underlying this link is multifactorial, mostly relating to the inflammatory state characterizing obesity, the impaired immune response to infectious agents coupled with increased viral load, the overexpression in adipose tissue of the receptors and proteases for viral entry, an increased sympathetic activity, limited cardiorespiratory reserve, a prothrombotic milieu, and the associated comorbidities. All these issues are herein reviewed, the results of large studies and meta-analyses are tabulated and the pathogenetic mechanisms and the BMI relationship with COVID-19 are pictorially illustrated.
Collapse
|
32
|
Parlati L, Régnier M, Guillou H, Postic C. New targets for NAFLD. JHEP Rep 2021; 3:100346. [PMID: 34667947 PMCID: PMC8507191 DOI: 10.1016/j.jhepr.2021.100346] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 02/08/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing cause of chronic liver disease worldwide. It is characterised by steatosis, liver inflammation, hepatocellular injury and progressive fibrosis. Several preclinical models (dietary and genetic animal models) of NAFLD have deepened our understanding of its aetiology and pathophysiology. Despite the progress made, there are currently no effective treatments for NAFLD. In this review, we will provide an update on the known molecular pathways involved in the pathophysiology of NAFLD and on ongoing studies of new therapeutic targets.
Collapse
Key Words
- ACC, acetyl-CoA carboxylase
- ASK1, apoptosis signal-regulating kinase 1
- CAP, controlled attenuation parameter
- ChREBP
- ChREBP, carbohydrate responsive element–binding protein
- FAS, fatty acid synthase
- FFA, free fatty acid
- FGF21, fibroblast growth factor-21
- FXR
- FXR, farnesoid X receptor
- GGT, gamma glutamyltransferase
- HCC, hepatocellular carcinoma
- HFD, high-fat diet
- HSC, hepatic stellate cells
- HSL, hormone-sensitive lipase
- HVPG, hepatic venous pressure gradient
- IL-, interleukin-
- JNK, c-Jun N-terminal kinase
- LXR
- LXR, liver X receptor
- MCD, methionine- and choline-deficient
- MUFA, monounsaturated fatty acids
- NAFLD
- NAFLD, non-alcoholic fatty liver disease
- NASH
- NASH, non-alcoholic steatohepatitis
- NEFA
- NEFA, non-esterified fatty acid
- PPARα
- PPARα, peroxisome proliferator-activated receptor-α
- PUFAs, polyunsaturated fatty acids
- PY, persons/years
- Phf2, histone demethylase plant homeodomain finger 2
- RCT, randomised controlled trial
- SCD1, stearoyl-CoA desaturase-1
- SFA, saturated fatty acid
- SREBP-1c
- SREBP-1c, sterol regulatory element–binding protein-1c
- TCA, tricarboxylic acid
- TLR4, Toll-like receptor 4
- TNF-α, tumour necrosis factor-α
- VLDL, very low-density lipoprotein
- animal models
- glucotoxicity
- lipotoxicity
Collapse
Affiliation(s)
- Lucia Parlati
- Université de Paris, Institut Cochin, CNRS, INSERM, F- 75014 Paris, France.,Hôpital Cochin, 24, rue du Faubourg Saint Jacques, 75014 Paris, France
| | - Marion Régnier
- UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Brussels, Belgium
| | - Hervé Guillou
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse 31027, France
| | - Catherine Postic
- Université de Paris, Institut Cochin, CNRS, INSERM, F- 75014 Paris, France
| |
Collapse
|
33
|
Saydam O, Ozgen Saydam B, Adiyaman SC, Sonmez Ince M, Eren MA, Keskin FE, Bilen H, Dagdeviren M, Kaya S, Akinci G, Balci A, Altay C, Bayraktar F, Oral EA, Akinci B. Risk factors for diabetic foot ulcers in metreleptin naïve patients with lipodystrophy. Clin Diabetes Endocrinol 2021; 7:18. [PMID: 34593051 PMCID: PMC8485489 DOI: 10.1186/s40842-021-00132-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
AIM Patients with lipodystrophy are at high risk for chronic complications of diabetes. Recently, we have reported 18 diabetic foot ulcer episodes in 9 subjects with lipodystrophy. This current study aims to determine risk factors associated with foot ulcer development in this rare disease population. METHODS Ninety metreleptin naïve patients with diabetes registered in our national lipodystrophy database were included in this observational retrospective cohort study (9 with and 81 without foot ulcers). RESULTS Patients with lipodystrophy developing foot ulcers had longer diabetes duration (p = 0.007), longer time since lipodystrophy diagnosis (p = 0.008), and higher HbA1c levels (p = 0.041). Insulin use was more prevalent (p = 0.003). The time from diagnosis of diabetes to first foot ulcer was shorter for patients with generalized lipodystrophy compared to partial lipodystrophy (p = 0.036). Retinopathy (p < 0.001), neuropathy (p < 0.001), peripheral artery disease (p = 0.001), and kidney failure (p = 0.003) were more commonly detected in patients with foot ulcers. Patients with foot ulcers tended to have lower leptin levels (p = 0.052). Multiple logistic regression estimated significant associations between foot ulcers and generalized lipodystrophy (OR: 40.81, 95% CI: 3.31-503.93, p = 0.004), long-term diabetes (≥ 15 years; OR: 27.07, 95% CI: 2.97-246.39, p = 0.003), and decreased eGFR (OR: 13.35, 95% CI: 1.96-90.67, p = 0.008). CONCLUSIONS Our study identified several clinical factors associated with foot ulceration among patients with lipodystrophy and diabetes. Preventive measures and effective treatment of metabolic consequences of lipodystrophy are essential to prevent the occurrence of foot ulcers in these high-risk individuals.
Collapse
Affiliation(s)
- O Saydam
- Division of Cardiovascular Surgery, Izmir Tepecik Training and Research Hospital, Izmir, Turkey
| | - B Ozgen Saydam
- Division of Endocrinology and Metabolism, Dokuz Eylul University Faculty of Medicine, Inciralti, Izmir, Turkey
| | - S C Adiyaman
- Division of Endocrinology and Metabolism, Dokuz Eylul University Faculty of Medicine, Inciralti, Izmir, Turkey
| | - M Sonmez Ince
- Department of Internal Medicine, William Beaumont Royal Oak Hospital, MI, Royal Oak, USA
| | - M A Eren
- Division of Endocrinology and Metabolism, Harran University Faculty of Medicine, Sanliurfa, Turkey
| | - F E Keskin
- Division of Endocrinology and Metabolism, Demiroglu Bilim University Faculty of Medicine, Istanbul, Turkey
| | - H Bilen
- Division of Endocrinology and Metabolism, Ataturk University Training and Research Hospital, Erzurum, Turkey
| | - M Dagdeviren
- Division of Endocrinology and Metabolism, Kecioren Training and Research Hospital, Ankara, Turkey
| | - S Kaya
- Department of Internal Medicine, Gulhane Training and Research Hospital, Ankara, Turkey
| | - G Akinci
- Division of Pediatric Neurology, Behcet Uz Children's Hospital, Izmir, Turkey.,Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - A Balci
- Department of Radiology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - C Altay
- Department of Radiology, Dokuz Eylul University Faculty of Medicine, Izmir, Turkey
| | - F Bayraktar
- Division of Endocrinology and Metabolism, Dokuz Eylul University Faculty of Medicine, Inciralti, Izmir, Turkey
| | - E A Oral
- Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 1000 Wall Street, 48105, Ann Arbor, MI, USA
| | - B Akinci
- Division of Endocrinology and Metabolism, Dokuz Eylul University Faculty of Medicine, Inciralti, Izmir, Turkey. .,Brehm Center for Diabetes Research and Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 1000 Wall Street, 48105, Ann Arbor, MI, USA.
| |
Collapse
|
34
|
Eslam M, Alkhouri N, Vajro P, Baumann U, Weiss R, Socha P, Marcus C, Lee WS, Kelly D, Porta G, El-Guindi MA, Alisi A, Mann JP, Mouane N, Baur LA, Dhawan A, George J. Defining paediatric metabolic (dysfunction)-associated fatty liver disease: an international expert consensus statement. Lancet Gastroenterol Hepatol 2021; 6:864-873. [PMID: 34364544 DOI: 10.1016/s2468-1253(21)00183-7] [Citation(s) in RCA: 187] [Impact Index Per Article: 46.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/17/2021] [Accepted: 05/18/2021] [Indexed: 12/11/2022]
Abstract
The term non-alcoholic fatty liver disease (NAFLD), and its definition, have limitations for both adults and children. The definition is most problematic for children, for whom alcohol consumption is usually not a concern. This problematic definition has prompted a consensus to rename and redefine adult NAFLD associated with metabolic dysregulation to metabolic (dysfunction)-associated fatty liver disease (MAFLD). Similarities, distinctions, and differences exist in the causes, natural history, and prognosis of fatty liver diseases in children compared with adults. In this Viewpoint we, an international panel, propose an overarching framework for paediatric fatty liver diseases and an age-appropriate MAFLD definition based on sex and age percentiles. The framework recognises the possibility of other coexisting systemic fatty liver diseases in children. The new MAFLD diagnostic criteria provide paediatricians with a conceptual scaffold for disease diagnosis, risk stratification, and improved clinical and multidisciplinary care, and they align with a definition that is valid across the lifespan.
Collapse
Affiliation(s)
- Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW, Australia.
| | - Naim Alkhouri
- Department of Hepatology, Arizona Liver Health, Chandler, AZ, USA
| | - Pietro Vajro
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno, Baronissi, Italy
| | - Ulrich Baumann
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Ram Weiss
- Department of Pediatrics, Ruth Rappaport Children's Hospital, Rambam Medical Center, Technion School of Medicine, Haifa, Israel
| | - Piotr Socha
- Department of Gastroenterology, Hepatology, Nutritional Disorders and Paediatrics, Children's Memorial Health Institute, Warsaw, Poland
| | - Claude Marcus
- Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Way Seah Lee
- Department of Paediatrics, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Deirdre Kelly
- The Liver Unit, Birmingham Women's & Children's Hospital, University of Birmingham, Birmingham, UK
| | - Gilda Porta
- Pediatric Hepatology, Transplant Unit, Hospital Sírio-Libanês, Hospital Municipal Infantil Menino Jesus, San Paulo, Brazil
| | - Mohamed A El-Guindi
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, National Liver Institute, Menoufia University, Menoufia, Egypt
| | - Anna Alisi
- Research Unit of Molecular Genetics and Complex Phenotypes, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Jake P Mann
- Metabolic Research Laboratories, Institute of Metabolic Science, and Department of Paediatrics, University of Cambridge, Cambridge, UK
| | - Nezha Mouane
- Department of Pediatric Hepatology, Gastroenterology and Nutrition, Academic Children's Hospital, Mohammed V University, Rabat, Morocco; Department of Pediatric Hepatology, Gastroenterology and Nutrition, Children's Hospital of Rabat, Rabat, Morocco
| | - Louise A Baur
- Children's Hospital Westmead Clinical School, University of Sydney, Sydney, NSW, Australia
| | - Anil Dhawan
- Paediatric Liver, GI and Nutrition Centre, and MowatLabs, King's College Hospital, London, UK
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
35
|
Vilarinho S, Ajmera V, Zheng M, Loomba R. Emerging Role of Genomic Analysis in Clinical Evaluation of Lean Individuals With NAFLD. Hepatology 2021; 74:2241-2250. [PMID: 34233030 PMCID: PMC8463418 DOI: 10.1002/hep.32047] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/25/2021] [Accepted: 07/01/2021] [Indexed: 12/18/2022]
Abstract
Whereas the rising prevalence of nonalcoholic fatty liver disease (NAFLD) is closely related with the global obesity epidemic, up to 10–20% of individuals with NAFLD are lean as defined by a body mass index of < 25 kg/m2, or < 23 kg/m2 in Asians. This entity designated as “lean NAFLD” is estimated to affect 8 to 10 million individuals in the United States alone. Here, we review the emerging data on the epidemiology, natural history and prognosis of lean NAFLD and put forward a diagnostic approach that combines detailed clinical phenotyping with genomic analysis. We propose two subtypes of lean NAFLD referred to as type 1: individuals with visceral adiposity and insulin resistance but normal BMI; and type 2: lean individuals with hepatic steatosis secondary to a known or unknown monogenic disease. We envision that incorporation of genomic analysis in the diagnostic algorithm of lean patients with NAFLD will elucidate the contribution of common genetic variants through the calculation of NAFLD polygenic risk score and also characterize the diverse array of rare monogenic diseases that can lead to triglyceride accumulation in the cytoplasm of hepatocytes. Collectively, the integration of a molecular diagnosis in the clinical evaluation of patients with lean NAFLD will provide an accurate diagnosis, with possible targeted therapies and may uncover novel molecular mechanisms with potential broader therapeutic implications.
Collapse
Affiliation(s)
- Sílvia Vilarinho
- Departments of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale School of Medicine, New Haven, CT
| | - Veeral Ajmera
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| | - Melanie Zheng
- Departments of Internal Medicine, Section of Digestive Diseases, and of Pathology, Yale School of Medicine, New Haven, CT
| | - Rohit Loomba
- NAFLD Research Center, Division of Gastroenterology. University of California at San Diego, La Jolla, CA, USA
| |
Collapse
|
36
|
Tanaka T, Kusakabe T, Ebihara K, Aizawa-Abe M, Aotani D, Yorifuji T, Satoh M, Ogawa Y, Nakao K. Practice guideline for lipodystrophy syndromes-clinically important diseases of the Japan Endocrine Society (JES). Endocr J 2021; 68:1027-1042. [PMID: 34373417 DOI: 10.1507/endocrj.ej21-0110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Affiliation(s)
- Tomohiro Tanaka
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya 467-8601, Japan
| | - Toru Kusakabe
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
- National Hospital Organization Kyoto Medical Center, Kyoto 612-8555, Japan
| | - Ken Ebihara
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Jichi Medical University, Tochigi 329-0431, Japan
| | - Megumi Aizawa-Abe
- Tazuke Kofukai, Medical Research Institute, Kitano Hospital, Osaka 530-8480, Japan
| | - Daisuke Aotani
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
- Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences and Medical School, Nagoya City University, Nagoya 467-8601, Japan
| | - Tohru Yorifuji
- Pediatric Endocrinology and Metabolism, Osaka City General Hospital, Osaka 534-0021, Japan
| | - Mari Satoh
- Pediatrics Center, Toho University Omori Medical Center, Tokyo 143-8540, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka 821-8582, Japan
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| |
Collapse
|
37
|
Grover A, Quaye E, Brychta RJ, Christensen J, Startzell MS, Meehan CA, Valencia A, Marshall B, Chen KY, Brown RJ. Leptin Decreases Energy Expenditure Despite Increased Thyroid Hormone in Patients With Lipodystrophy. J Clin Endocrinol Metab 2021; 106:e4163-e4178. [PMID: 33890058 PMCID: PMC8475236 DOI: 10.1210/clinem/dgab269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Indexed: 12/22/2022]
Abstract
CONTEXT Leptin is an adipokine that signals energy sufficiency. In rodents, leptin deficiency decreases energy expenditure (EE), which is corrected following leptin replacement. In humans, data are mixed regarding leptin-mediated effects on EE. OBJECTIVE To determine the effects of metreleptin on EE in patients with lipodystrophy. DESIGN, SETTING, AND PATIENTS Nonrandomized crossover study of 25 patients with lipodystrophy (National Institutes of Health, 2013-2018). INTERVENTION The initiation cohort consisted of 17 patients without prior exposure to metreleptin, studied before and after 14 days of metreleptin. The withdrawal cohort consisted of 8 previously metreleptin-treated patients, studied before and after 14 days of metreleptin withdrawal. MAIN OUTCOMES 24-h total energy expenditure (TEE), resting energy expenditure (REE), autonomic nervous system activity [heart rate variability (HrV)], plasma-free triiodothyronine (T3), free thyroxine (T4), epinephrine, norepinephrine, and dopamine. RESULTS In the initiation cohort, TEE and REE decreased by 5.0% (121 ± 152 kcal/day; P = 0.006) and 5.9% (120 ± 175 kcal/day; P = 0.02). Free T3 increased by 19.4% (40 ± 49 pg/dL; P = 0.01). No changes in catecholamines or HrV were observed. In the withdrawal cohort, free T3 decreased by 8.0% (P = 0.04), free T4 decreased by 11.9% (P = 0.002), and norepinephrine decreased by 34.2% (P = 0.03), but no changes in EE, epinephrine, dopamine, or HrV were observed. CONCLUSIONS Metreleptin initiation decreased EE in patients with lipodystrophy, but no changes were observed after metreleptin withdrawal. Thyroid hormone was higher on metreleptin in both initiation and withdrawal cohorts. Decreased EE after metreleptin in lipodystrophy may result from reductions in energy-requiring metabolic processes that counteract increases in EE via adipose tissue-specific neuroendocrine and adrenergic signaling.
Collapse
Affiliation(s)
- Andrew Grover
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Emmanuel Quaye
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert J Brychta
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - John Christensen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Megan S Startzell
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Cristina Adelia Meehan
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Areli Valencia
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon Marshall
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kong Y Chen
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Correspondence: Rebecca J. Brown, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 10-CRC, Room 6-5942, 10 Center Drive, Bethesda, MD 20892, USA.
| |
Collapse
|
38
|
Abstract
Lipodystrophy syndromes (LS) constitute a group of rare diseases of the adipose tissue, characterized by a complete or selective deficiency of the fat mass. These disorders are associated with important insulin resistance, cardiovascular and metabolic comorbidities that impact patient's survival and quality of life. Management is challenging and includes diet, physical activity, and specific pharmacological treatment of LS-associated comorbidities. Because of a common pathophysiology involving decreased concentration of the adipokine leptin, efforts have been made to develop therapeutic strategies with leptin replacement therapy. Metreleptin, a recombinant human leptin analogue, has been proposed in hypoleptinemic patients since the beginning of 2000's. The treatment leads to an improvement in metabolic parameters, more important in generalized than in partial LS forms. In this review, the current knowledge about the development of the drug, its outcomes in the treatment of lipodystrophic patients as well as the peculiarities of its use will be presented.
Collapse
|
39
|
Cook K, Ali O, Akinci B, Foss de Freitas MC, Montenegro RM, Fernandes VO, Gupta D, Lou KJ, Tuttle E, Oral EA, Brown RJ. Effect of Leptin Therapy on Survival in Generalized and Partial Lipodystrophy: A Matched Cohort Analysis. J Clin Endocrinol Metab 2021; 106:e2953-e2967. [PMID: 33822100 PMCID: PMC8277211 DOI: 10.1210/clinem/dgab216] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Indexed: 12/16/2022]
Abstract
CONTEXT Data quantifying the impact of metreleptin therapy on survival in non-human immunodeficiency virus (HIV)-related generalized lipodystrophy (GL) and partial lipodystrophy (PL) are unavailable. OBJECTIVE This study aimed to estimate the treatment effect of metreleptin on survival in patients with GL and PL. DESIGN/SETTING/PATIENTS Demographic and clinical characteristics were used to match metreleptin-treated and metreleptin-naïve patients with GL and PL. Differences in mortality risk were estimated between matched cohorts of metreleptin-treated and metreleptin-naïve patient cohorts using Cox proportional hazard models. Sensitivity analyses assessed the impact of study assumptions and the robustness of results. OUTCOME MEASURES This study assessed time-to-mortality and risk of mortality. RESULTS The analysis evaluated 103 metreleptin-naïve patients with characteristics matched to 103 metreleptin-treated patients at treatment initiation. Even after matching, some metabolic and organ abnormalities were more prevalent in the metreleptin-treated cohort due to bias toward treating more severely affected patients. A Cox proportional hazards model associated metreleptin therapy with an estimated 65% decrease in mortality risk (hazard ratio [HR] 0.348, 95% confidence interval (CI): 0.134-0.900; P = 0.029) even though the actual number of events were relatively small. Results were robust across a broad range of alternate methodological assumptions. Kaplan-Meier estimates of time-to-mortality for the metreleptin-treated and the matched metreleptin-naïve cohorts were comparable. CONCLUSIONS Metreleptin therapy was associated with a reduction in mortality risk in patients with lipodystrophy syndromes despite greater disease severity in treated patients, supporting the view that metreleptin can have a positive disease-modifying impact. Confirmatory studies in additional real-world and clinical datasets are warranted.
Collapse
Affiliation(s)
- Keziah Cook
- Analysis Group Inc., Menlo Park, CA 94025, USA
| | - Omer Ali
- Analysis Group Inc., Menlo Park, CA 94025, USA
| | | | | | | | | | | | - Kai-Jye Lou
- Analysis Group Inc., Menlo Park, CA 94025, USA
| | | | - Elif A Oral
- Metabolism, Endocrine and Diabetes Division, Brehm Center for Diabetes, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rebecca J Brown
- National Institute of Diabetes & Digestive & Kidney Diseases, Bethesda, MD 20814, USA
- Correspondence: Rebecca J. Brown, MD, Lasker Tenure Track Investigator, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20814, USA. E-mail:
| |
Collapse
|
40
|
Akinci B, Subauste A, Ajluni N, Esfandiari NH, Meral R, Neidert AH, Eraslan A, Hench R, Rus D, Mckenna B, Hussain HK, Chenevert TL, Tayeh MK, Rupani AR, Innis JW, Mantzoros CS, Conjeevaram HS, Burant CL, Oral EA. Metreleptin therapy for nonalcoholic steatohepatitis: Open-label therapy interventions in two different clinical settings. MED 2021; 2:814-835. [DOI: 10.1016/j.medj.2021.04.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
41
|
Brown RJ, Reitman ML. Finding a sweet spot for leptin. MED 2021; 2:794-796. [DOI: 10.1016/j.medj.2021.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
42
|
Diagnosis and management of secondary causes of steatohepatitis. J Hepatol 2021; 74:1455-1471. [PMID: 33577920 DOI: 10.1016/j.jhep.2021.01.045] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 01/09/2021] [Accepted: 01/25/2021] [Indexed: 02/06/2023]
Abstract
The term non-alcoholic fatty liver disease (NAFLD) was originally coined to describe hepatic fat deposition as part of the metabolic syndrome. However, a variety of rare hereditary liver and metabolic diseases, intestinal diseases, endocrine disorders and drugs may underlie, mimic, or aggravate NAFLD. In contrast to primary NAFLD, therapeutic interventions are available for many secondary causes of NAFLD. Accordingly, secondary causes of fatty liver disease should be considered during the diagnostic workup of patients with fatty liver disease, and treatment of the underlying disease should be started to halt disease progression. Common genetic variants in several genes involved in lipid handling and metabolism modulate the risk of progression from steatosis to fibrosis, cirrhosis and hepatocellular carcinoma development in NAFLD, alcohol-related liver disease and viral hepatitis. Hence, we speculate that genotyping of common risk variants for liver disease progression may be equally useful to gauge the likelihood of developing advanced liver disease in patients with secondary fatty liver disease.
Collapse
|
43
|
Micu ES, Amzolini AM, Barău Abu-Alhija A, Forţofoiu MC, Vladu IM, Clenciu D, Mitrea A, Mogoantă SŞ, Crişan AE, Predescu OI, Radu M. Systemic and adipose tissue inflammation in NASH: correlations with histopathological aspects. ROMANIAN JOURNAL OF MORPHOLOGY AND EMBRYOLOGY = REVUE ROUMAINE DE MORPHOLOGIE ET EMBRYOLOGIE 2021; 62:509-515. [PMID: 35024739 PMCID: PMC8848222 DOI: 10.47162/rjme.62.2.17] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Non-alcoholic steatohepatitis (NASH) is a progressive form of liver steatosis that involves a risk of progression towards fibrosis, cirrhosis, and end-stage liver disease. Low-grade inflammation is recognized to be involved in non-alcoholic fatty liver disease (NAFLD) pathogeny. Additionally, adipose tissue dysfunction plays an important role in the development of metabolic diseases. PATIENTS, MATERIALS AND METHODS We conducted a study on 68 patients with liver steatosis confirmed through liver biopsy during the surgery. In all the patients, we recorded anthropometric parameters and we performed blood tests for systemic inflammation [high-sensitivity C-reactive protein (hs-CRP), fibrinogen] and serum adipokines related to adipose tissue inflammation (leptin, adiponectin). Additional to histopathological examination, we also performed the immunohistochemical study of inflammatory mononuclear cells. RESULTS The 68 patients had a mean age of 56.57±4.94 years old, had a mean value of hs-CRP of 2.30±0.91 mg∕L, a mean value of leptin of 14.02±17.02 ng∕mL and a mean value of adiponectin of 7.54±0.38 mg∕L. In all the cases studied by liver biopsy, the steatosis exceeded 5% of hepatocytes, but the frequency of NASH was 26.47%. Cluster of differentiation (CD)45-positive, CD4-positive, and CD8-positive T-lymphocytes predominated in the studied cases. We obtained a statistically significant high association between definite NASH and the values of hs-CRP, serum adiponectin and leptin∕adiponectin ratio (p<0.0001). CONCLUSIONS Systemic and adipose tissue inflammation was statistically significant associated with histological lesions of steatosis and NASH, suggesting that the determination of hs-CRP and serum adipokines in dynamics in patients with NAFLD is predictive for the progression of the disease.
Collapse
Affiliation(s)
- Elena Simona Micu
- Department of Internal Medicine, Medical Semiology, University of Medicine and Pharmacy of Craiova, Romania
| | - Anca Maria Amzolini
- Department of Internal Medicine, Medical Semiology, University of Medicine and Pharmacy of Craiova, Romania
| | - Anca Barău Abu-Alhija
- Department of Internal Medicine, Medical Semiology, University of Medicine and Pharmacy of Craiova, Romania
| | - Mircea Cătălin Forţofoiu
- Department of Internal Medicine, Medical Semiology, University of Medicine and Pharmacy of Craiova, Romania
| | - Ionela Mihaela Vladu
- Department of Diabetes, Nutrition and Metabolic Diseases, University of Medicine and Pharmacy of Craiova, Romania
| | - Diana Clenciu
- Department of Diabetes, Nutrition and Metabolic Diseases, University of Medicine and Pharmacy of Craiova, Romania
| | - Adina Mitrea
- Department of Diabetes, Nutrition and Metabolic Diseases, University of Medicine and Pharmacy of Craiova, Romania
| | | | - Anda Elena Crişan
- Department of Oncology, University of Medicine and Pharmacy of Craiova, Romania
| | - Octavian Ion Predescu
- Department of Nursing, Faculty of Nursing, Târgu Jiu Subsidiary, Titu Maiorescu University, Bucharest, Romania
| | - Mirela Radu
- Department of Family Medicine, University of Medicine and Pharmacy of Craiova, Romania
| |
Collapse
|
44
|
Guo T, Gupta A, Yu J, Granados JZ, Gandhi AY, Evers BM, Iyengar P, Infante RE. LIFR-α-dependent adipocyte signaling in obesity limits adipose expansion contributing to fatty liver disease. iScience 2021; 24:102227. [PMID: 33748712 PMCID: PMC7970148 DOI: 10.1016/j.isci.2021.102227] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/02/2021] [Accepted: 02/19/2021] [Indexed: 01/23/2023] Open
Abstract
The role of chronic adipose inflammation in diet-induced obesity (DIO) and its sequelae including fatty liver disease remains unclear. Leukemia inhibitory factor (LIF) induces JAK-dependent adipocyte lipolysis and altered adipo/cytokine expression, suppressing in vivo adipose expansion in normal and obese mouse models. To characterize LIF receptor (LIFR-α)-dependent cytokine signaling in DIO, we created an adipocyte-specific LIFR knockout mouse model (Adipoq-Cre;LIFRfl/fl). Differentiated adipocytes derived from this model blocked LIF-induced triacylglycerol lipolysis. Adipoq-Cre;LIFRfl/fl mice on a high-fat diet (HFD) displayed reduced adipose STAT3 activation, 50% expansion in adipose, 20% body weight increase, and a 75% reduction in total hepatic triacylglycerides compared with controls. To demonstrate that LIFR-α signals adipocytes through STAT3, we also created an Adipoq-Cre;STAT3fl/fl model that showed similar findings when fed a HFD as Adipoq-Cre;LIFRfl/fl mice. These findings establish the importance of obesity-associated LIFR-α/JAK/STAT3 inflammatory signaling in adipocytes, blocking further adipose expansion in DIO contributing to ectopic liver triacylglyceride accumulation. LIFR-α signaling induces adipocyte lipolysis, restricting adipose expansion in DIO LIFR-α signaling requires STAT3 for adipocyte lipolysis LIFR-α/JAK/STAT3 lipolysis signaling in adipocytes promotes hepatic steatosis
Collapse
Affiliation(s)
- Tong Guo
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5300 Harry Hines Boulevard, Dallas, TX, USA.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arun Gupta
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jinhai Yu
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5300 Harry Hines Boulevard, Dallas, TX, USA.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jorge Z Granados
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5300 Harry Hines Boulevard, Dallas, TX, USA
| | - Aakash Y Gandhi
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5300 Harry Hines Boulevard, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bret M Evers
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Puneeth Iyengar
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5300 Harry Hines Boulevard, Dallas, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rodney E Infante
- Center for Human Nutrition, University of Texas Southwestern Medical Center, 5300 Harry Hines Boulevard, Dallas, TX, USA.,Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
45
|
Cook K, Adamski K, Gomes A, Tuttle E, Kalden H, Cochran E, Brown RJ. Effects of Metreleptin on Patient Outcomes and Quality of Life in Generalized and Partial Lipodystrophy. J Endocr Soc 2021; 5:bvab019. [PMID: 33817539 DOI: 10.1210/jendso/bvab019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Indexed: 02/08/2023] Open
Abstract
Generalized and partial lipodystrophy are rare and complex diseases with progressive clinical and humanistic burdens stemming from selective absence of subcutaneous adipose tissue, which causes reduced energy storage capacity and a deficiency of adipokines such as leptin. Treatment options were limited before leptin replacement therapy (metreleptin) became available. This retrospective study evaluates both clinical and humanistic consequences of the disease and treatment. Chart data were abstracted from a cohort of metreleptin-treated patients with generalized and partial lipodystrophy (n = 112) treated at the US National Institutes of Health. To quantify the quality-of-life consequences of the lipodystrophy disease attributes recorded in chart data, a discrete choice experiment was completed in 6 countries (US, n = 250; EU, n = 750). Resulting utility decrements were used to estimate the quality-adjusted life-year consequences of changes in lipodystrophy attribute prevalence before and after metreleptin. In addition to metabolic impairment, patients with generalized and partial lipodystrophy experienced a range of lipodystrophy consequences, including liver abnormality (94%), hyperphagia (79%), impaired physical appearance (77%), kidney abnormality (63%), reproductive dysfunction (80% of females of reproductive age), and pancreatitis (39%). Improvement was observed in these attributes following initiation of metreleptin. Quality-adjusted life-year gains associated with 12 months of treatment with metreleptin were estimated at 0.313 for generalized and 0.117 for partial lipodystrophy, reducing the gap in quality of life between untreated lipodystrophy and perfect health by approximately 59% and 31%, respectively. This study demonstrates that metreleptin is associated with meaningful clinical and quality-of-life improvements.
Collapse
Affiliation(s)
- Keziah Cook
- Analysis Group, Inc., Menlo Park, CA 94025, USA
| | | | | | | | - Henner Kalden
- Amryt Pharmaceuticals DAC, 45 Mespil Road, Dublin 8QM2+6R, Ireland
| | - Elaine Cochran
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
46
|
Abstract
Severe insulin resistance syndromes are a heterogeneous group of rare disorders characterized by profound insulin resistance, substantial metabolic abnormalities, and a variety of clinical manifestations and complications. The etiology of these syndromes may be hereditary or acquired, due to defects in insulin potency and action, cellular responsiveness to insulin, and/or aberrations in adipose tissue function or development. Over the past decades, advances in medical technology, particularly in genomic technologies and genetic analyses, have provided insights into the underlying pathophysiological pathways and facilitated the more precise identification of several of these conditions. However, the exact cellular and molecular mechanisms of insulin resistance have not yet been fully elucidated for all syndromes. Moreover, in clinical practice, many of the syndromes are often misdiagnosed or underdiagnosed. The majority of these disorders associate with an increased risk of severe complications and mortality; thus, early identification and personalized clinical management are of the essence. This Review aims to categorize severe insulin resistance syndromes by disease process, including insulin receptor defects, signaling defects, and lipodystrophies. We also highlight several complex syndromes and emphasize the need to identify patients, investigate underlying disease mechanisms, and develop specific treatment regimens.
Collapse
Affiliation(s)
- Angeliki M. Angelidi
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Andreas Filippaios
- Department of Medicine, Lowell General Hospital, Lowell, Massachusetts, USA
| | - Christos S. Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
- Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Maltais M, Brisson D, Gaudet D. Non-Alcoholic Fatty Liver in Patients with Chylomicronemia. J Clin Med 2021; 10:669. [PMID: 33572376 PMCID: PMC7916177 DOI: 10.3390/jcm10040669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 01/21/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is frequent in patients with features of the metabolic syndrome (MetS), obesity, or type 2 diabetes. Lipoprotein lipase (LPL) is the main driver of triglyceride (TG) hydrolysis in chylomicrons and very-low density lipoproteins (VLDL). In some patients with MetS, dysfunction of this pathway can lead to plasma TG values > 10 mmol/L (multifactorial chylomicronemia or MCS). Chylomicronemia also characterizes LPL deficiency (LPLD), a rare autosomal recessive disease called familial chylomicronemia syndrome (FCS), which is associated with an increased risk of recurrent pancreatitis. This study aims to investigate the expression of NAFLD, as assessed by transient elastography, in MCS and FCS subjects. Data were obtained from 38 subjects with chylomicronemia; 19 genetically confirmed FCS and 19 sex- and age-matched MCS. All participants underwent liver ultrasonography and stiffness measurement after a 4-h fast using transient elastography (FibroScan®, Echosens, Waltham, MA, USA). NAFLD (controlled attenuation parameter (CAP) > 280 dB/m) was observed in 42.1% of FCS and 73.7% of MCS subjects (p = 0.05). FCS subjects had lower body mass index (BMI) than MCS. Only 25% of FCS subjects with NAFLD had a BMI ≥ 30 compared to 64.3% in MCS (p = 0.004). In FCS, NAFLD occurred even in the presence of very low (≤18 kg/m2) BMI. In both FCS and MCS, CAP was negatively associated with acute pancreatitis risk. In this study, NAFLD was commonly observed in both FCS and MCS subjects and occurred independently of the BMI and fasting glucose values in FCS; NAFLD was associated with a lower occurrence of acute pancreatitis episodes.
Collapse
Affiliation(s)
| | | | - Daniel Gaudet
- Lipidology Unit, Community Genomic Medicine Center, Department of Medicine, Université de Montréal, ECOGENE-21 Clinical and Translational Research Center, Chicoutimi, QC G7H 7K9, Canada; (M.M.); (D.B.)
| |
Collapse
|
48
|
Therapeutic potential of mitochondrial uncouplers for the treatment of metabolic associated fatty liver disease and NASH. Mol Metab 2021; 46:101178. [PMID: 33545391 PMCID: PMC8085597 DOI: 10.1016/j.molmet.2021.101178] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 12/13/2022] Open
Abstract
Background Mitochondrial uncouplers shuttle protons across the inner mitochondrial membrane via a pathway that is independent of adenosine triphosphate (ATP) synthase, thereby uncoupling nutrient oxidation from ATP production and dissipating the proton gradient as heat. While initial toxicity concerns hindered their therapeutic development in the early 1930s, there has been increased interest in exploring the therapeutic potential of mitochondrial uncouplers for the treatment of metabolic diseases. Scope of review In this review, we cover recent advances in the mechanisms by which mitochondrial uncouplers regulate biological processes and disease, with a particular focus on metabolic associated fatty liver disease (MAFLD), nonalcoholic hepatosteatosis (NASH), insulin resistance, and type 2 diabetes (T2D). We also discuss the challenges that remain to be addressed before synthetic and natural mitochondrial uncouplers can successfully enter the clinic. Major conclusions Rodent and non-human primate studies suggest that a myriad of small molecule mitochondrial uncouplers can safely reverse MAFLD/NASH with a wide therapeutic index. Despite this, further characterization of the tissue- and cell-specific effects of mitochondrial uncouplers is needed. We propose targeting the dosing of mitochondrial uncouplers to specific tissues such as the liver and/or developing molecules with self-limiting properties to induce a subtle and sustained increase in mitochondrial inefficiency, thereby avoiding systemic toxicity concerns.
Collapse
|
49
|
Sekizkardes H, Chung ST, Chacko S, Haymond MW, Startzell M, Walter M, Walter PJ, Lightbourne M, Brown RJ. Free fatty acid processing diverges in human pathologic insulin resistance conditions. J Clin Invest 2021; 130:3592-3602. [PMID: 32191645 DOI: 10.1172/jci135431] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/17/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUNDPostreceptor insulin resistance (IR) is associated with hyperglycemia and hepatic steatosis. However, receptor-level IR (e.g., insulin receptor pathogenic variants, INSR) causes hyperglycemia without steatosis. We examined 4 pathologic conditions of IR in humans to examine pathways controlling lipid metabolism and gluconeogenesis.METHODSCross-sectional study of severe receptor IR (INSR, n = 7) versus postreceptor IR that was severe (lipodystrophy, n = 14), moderate (type 2 diabetes, n = 9), or mild (obesity, n = 8). Lipolysis (glycerol turnover), hepatic glucose production (HGP), gluconeogenesis (deuterium incorporation from body water into glucose), hepatic triglyceride (magnetic resonance spectroscopy), and hepatic fat oxidation (plasma β-hydroxybutyrate) were measured.RESULTSLipolysis was 2- to 3-fold higher in INSR versus all other groups, and HGP was 2-fold higher in INSR and lipodystrophy versus type 2 diabetes and obesity (P < 0.001), suggesting severe adipose and hepatic IR. INSR subjects had a higher contribution of gluconeogenesis to HGP, approximately 77%, versus 52% to 59% in other groups (P = 0.0001). Despite high lipolysis, INSR subjects had low hepatic triglycerides (0.5% [interquartile range 0.1%-0.5%]), in contrast to lipodystrophy (10.6% [interquartile range 2.8%-17.1%], P < 0.0001). β-hydroxybutyrate was 2- to 7-fold higher in INSR versus all other groups (P < 0.0001), consistent with higher hepatic fat oxidation.CONCLUSIONThese data support a key pathogenic role of adipose tissue IR to increase glycerol and FFA availability to the liver in both receptor and postreceptor IR. However, the fate of FFA diverges in these populations. In receptor-level IR, FFA oxidation drives gluconeogenesis rather than being reesterified to triglyceride. In contrast, in postreceptor IR, FFA contributes to both gluconeogenesis and hepatic steatosis.TRIAL REGISTRATIONClinicalTrials.gov NCT01778556, NCT00001987, and NCT02457897.FUNDINGNational Institute of Diabetes and Digestive and Kidney Diseases, US Department of Agriculture/Agricultural Research Service 58-3092-5-001.
Collapse
Affiliation(s)
| | - Stephanie Therese Chung
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Shaji Chacko
- Children's Nutrition Research Center, Department of Pediatrics, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, Texas, USA
| | - Morey W Haymond
- Children's Nutrition Research Center, Department of Pediatrics, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, Texas, USA
| | - Megan Startzell
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Mary Walter
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Peter J Walter
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | | | - Rebecca J Brown
- National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| |
Collapse
|
50
|
Atalaia A, Ben Yaou R, Wahbi K, De Sandre-Giovannoli A, Vigouroux C, Bonne G. Laminopathies' Treatments Systematic Review: A Contribution Towards a 'Treatabolome'. J Neuromuscul Dis 2021; 8:419-439. [PMID: 33682723 PMCID: PMC8203247 DOI: 10.3233/jnd-200596] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Variants in the LMNA gene, encoding lamins A/C, are responsible for a growing number of diseases, all of which complying with the definition of rare diseases. LMNA-related disorders have a varied phenotypic expression with more than 15 syndromes described, belonging to five phenotypic groups: Muscular Dystrophies, Neuropathies, Cardiomyopathies, Lipodystrophies and Progeroid Syndromes. Overlapping phenotypes are also reported. Linking gene and variants with phenotypic expression, disease mechanisms, and corresponding treatments is particularly challenging in laminopathies. Treatment recommendations are limited, and very few are variant-based. OBJECTIVE The Treatabolome initiative aims to provide a shareable dataset of existing variant-specific treatment for rare diseases within the Solve-RD EU project. As part of this project, we gathered evidence of specific treatments for laminopathies via a systematic literature review adopting the FAIR (Findable, Accessible, Interoperable, and Reusable) guidelines for scientific data production. METHODS Treatments for LMNA-related conditions were systematically collected from MEDLINE and Embase bibliographic databases and clinical trial registries (Cochrane Central Registry of Controlled Trials, clinicaltrial.gov and EudraCT). Two investigators extracted and analyzed the literature data independently. The included papers were assessed using the Oxford Centre for Evidence-Based Medicine 2011 Levels of Evidence. RESULTS From the 4783 selected articles by a systematic approach, we identified 78 papers for our final analysis that corresponded to the profile of data defined in the inclusion and exclusion criteria. These papers include 2 guidelines/consensus papers, 4 meta-analyses, 14 single-arm trials, 15 case series, 13 cohort studies, 21 case reports, 8 expert reviews and 1 expert opinion. The treatments were summarized electronically according to significant phenome-genome associations. The specificity of treatments according to the different laminopathic phenotypical presentations is variable. CONCLUSIONS We have extracted Treatabolome-worthy treatment recommendations for patients with different forms of laminopathies based on significant phenome-genome parings. This dataset will be available on the Treatabolome website and, through interoperability, on genetic diagnosis and treatment support tools like the RD-Connect's Genome Phenome Analysis Platform.
Collapse
Affiliation(s)
- Antonio Atalaia
- Sorbonne Université, Inserm, Center of Research in Myology, G.H. Pitié-Salpêtrière, Paris, France
| | - Rabah Ben Yaou
- Sorbonne Université, Inserm, Center of Research in Myology, G.H. Pitié-Salpêtrière, Paris, France
- AP-HP Sorbonne Université, Neuromyology Department, Centre de référence maladies neuromusculaires Nord/Est/Ile-de-France (FILNEMUS network), Institut de Myologie, G.H. Pitié-Salpêtrière, Paris, France
| | - Karim Wahbi
- APHP, Cochin Hospital, Cardiology Department, FILNEMUS, Centre de Référence de Pathologie Neuromusculaire Nord/Est/Ile de France, Université de Paris, Paris, France
| | - Annachiara De Sandre-Giovannoli
- AP-HM, Department of Medical Genetics, and CRB-TAC (CRB AP-HM), Children’s Hospital La Timone, Marseille, France
- Aix Marseille University, Inserm, Marseille Medical Genetics Marseille, France
| | - Corinne Vigouroux
- AP-HP Saint-Antoine Hospital, Reference Centre of Rare Diseases of Insulin Secretion and Insulin Sensitivity (PRISIS), Departments of Molecular Biology and Genetics and of Endocrinology, 75012 Paris, France
- Sorbonne Université, Inserm, Saint-Antoine Research Center, Paris, France
| | - Gisèle Bonne
- Sorbonne Université, Inserm, Center of Research in Myology, G.H. Pitié-Salpêtrière, Paris, France
| |
Collapse
|