1
|
Tang Z, Li X, Zheng Y, Liu J, Liu C, Li X. The role of competing endogenous RNA network in the development of hepatocellular carcinoma: potential therapeutic targets. Front Cell Dev Biol 2024; 12:1341999. [PMID: 38357004 PMCID: PMC10864455 DOI: 10.3389/fcell.2024.1341999] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/16/2024] [Indexed: 02/16/2024] Open
Abstract
The current situation of hepatocellular carcinoma (HCC) management is challenging due to its high incidence, mortality, recurrence and metastasis. Recent advances in gene genetic and expression regulation have unveiled the significant role of non-coding RNA (ncRNA) in various cancers. This led to the formulation of the competing endogenous RNA (ceRNA) hypothesis, which posits that both coding RNA and ncRNA, containing miRNA response elements (MRE), can share the same miRNA sequence. This results in a competitive network between ncRNAs, such as lncRNA and mRNA, allowing them to regulate each other. Extensive research has highlighted the crucial role of the ceRNA network in HCC development, impacting various cellular processes including proliferation, metastasis, cell death, angiogenesis, tumor microenvironment, organismal immunity, and chemotherapy resistance. Additionally, the ceRNA network, mediated by lncRNA or circRNA, offers potential in early diagnosis and prevention of HCC. Consequently, ceRNAs are emerging as therapeutic targets for HCC. The complexity of these gene networks aligns with the multi-target approach of traditional Chinese medicine (TCM), presenting a novel perspective for TCM in combating HCC. Research is beginning to show that TCM compounds and prescriptions can affect HCC progression through the ceRNA network, inhibiting proliferation and metastasis, and inducing apoptosis. Currently, the lncRNAs TUG1, NEAT1, and CCAT1, along with their associated ceRNA networks, are among the most promising ncRNAs for HCC research. However, this field is still in its infancy, necessitating advanced technology and extensive basic research to fully understand the ceRNA network mechanisms of TCM in HCC treatment.
Collapse
Affiliation(s)
- Ziwei Tang
- The Ninth People’s Hospital of Chongqing, Chongqing, China
| | - Xue Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanfeng Zheng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jin Liu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chao Liu
- Chongqing Chemical Industry Vocational College, Chongqing, China
| | - Xia Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
2
|
Sadeghi A, Niknam M, Momeni-Moghaddam MA, Shabani M, Aria H, Bastin A, Teimouri M, Meshkani R, Akbari H. Crosstalk between autophagy and insulin resistance: evidence from different tissues. Eur J Med Res 2023; 28:456. [PMID: 37876013 PMCID: PMC10599071 DOI: 10.1186/s40001-023-01424-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/03/2023] [Indexed: 10/26/2023] Open
Abstract
Insulin is a critical hormone that promotes energy storage in various tissues, as well as anabolic functions. Insulin resistance significantly reduces these responses, resulting in pathological conditions, such as obesity and type 2 diabetes mellitus (T2DM). The management of insulin resistance requires better knowledge of its pathophysiological mechanisms to prevent secondary complications, such as cardiovascular diseases (CVDs). Recent evidence regarding the etiological mechanisms behind insulin resistance emphasizes the role of energy imbalance and neurohormonal dysregulation, both of which are closely regulated by autophagy. Autophagy is a conserved process that maintains homeostasis in cells. Accordingly, autophagy abnormalities have been linked to a variety of metabolic disorders, including insulin resistance, T2DM, obesity, and CVDs. Thus, there may be a link between autophagy and insulin resistance. Therefore, the interaction between autophagy and insulin function will be examined in this review, particularly in insulin-responsive tissues, such as adipose tissue, liver, and skeletal muscle.
Collapse
Affiliation(s)
- Asie Sadeghi
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Niknam
- Department of Biochemistry, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Maryam Shabani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Aria
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Bastin
- Clinical Research Development Center "The Persian Gulf Martyrs" Hospital, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Maryam Teimouri
- Department of Biochemistry, School of Allied Medical Sciences, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Reza Meshkani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Akbari
- Student Research Committee, Kerman University of Medical Sciences, Kerman, Iran.
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
3
|
Kouroumalis E, Tsomidis I, Voumvouraki A. Pathogenesis of Hepatocellular Carcinoma: The Interplay of Apoptosis and Autophagy. Biomedicines 2023; 11:1166. [PMID: 37189787 PMCID: PMC10135776 DOI: 10.3390/biomedicines11041166] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The pathogenesis of hepatocellular carcinoma (HCC) is a multifactorial process that has not yet been fully investigated. Autophagy and apoptosis are two important cellular pathways that are critical for cell survival or death. The balance between apoptosis and autophagy regulates liver cell turnover and maintains intracellular homeostasis. However, the balance is often dysregulated in many cancers, including HCC. Autophagy and apoptosis pathways may be either independent or parallel or one may influence the other. Autophagy may either inhibit or promote apoptosis, thus regulating the fate of the liver cancer cells. In this review, a concise overview of the pathogenesis of HCC is presented, with emphasis on new developments, including the role of endoplasmic reticulum stress, the implication of microRNAs and the role of gut microbiota. The characteristics of HCC associated with a specific liver disease are also described and a brief description of autophagy and apoptosis is provided. The role of autophagy and apoptosis in the initiation, progress and metastatic potential is reviewed and the experimental evidence indicating an interplay between the two is extensively analyzed. The role of ferroptosis, a recently described specific pathway of regulated cell death, is presented. Finally, the potential therapeutic implications of autophagy and apoptosis in drug resistance are examined.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Department of Gastroenterology, PAGNI University Hospital, University of Crete School of Medicine, 71500 Heraklion, Crete, Greece
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
| | - Ioannis Tsomidis
- Laboratory of Gastroenterology and Hepatology, University of Crete Medical School, 71500 Heraklion, Crete, Greece
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| | - Argyro Voumvouraki
- 1st Department of Internal Medicine, AHEPA University Hospital, 54621 Thessaloniki, Central Macedonia, Greece
| |
Collapse
|
4
|
Ali FE, Abd El-Aziz MK, Sharab EI, Bakr AG. Therapeutic interventions of acute and chronic liver disorders: A comprehensive review. World J Hepatol 2023; 15:19-40. [PMID: 36744165 PMCID: PMC9896501 DOI: 10.4254/wjh.v15.i1.19] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/17/2022] [Accepted: 12/21/2022] [Indexed: 01/16/2023] Open
Abstract
Liver disorders are one of the most common pathological problems worldwide. It affects more than 1.5 billion worldwide. Many types of hepatic cells have been reported to be involved in the initiation and propagation of both acute and chronic liver diseases, including hepatocytes, Kupffer cells, sinusoidal endothelial cells, and hepatic stellate cells (HSCs). In addition, oxidative stress, cytokines, fibrogenic factors, microRNAs, and autophagy are also involved. Understanding the molecular mechanisms of liver diseases leads to discovering new therapeutic interventions that can be used in clinics. Recently, antioxidant, anti-inflammatory, anti-HSCs therapy, gene therapy, cell therapy, gut microbiota, and nanoparticles have great potential for preventing and treating liver diseases. Here, we explored the recent possible molecular mechanisms involved in the pathogenesis of acute and chronic liver diseases. Besides, we overviewed the recent therapeutic interventions that targeted liver diseases and summarized the recent studies concerning liver disorders therapy.
Collapse
Affiliation(s)
- Fares Em Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt.
| | | | - Elham I Sharab
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Adel G Bakr
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| |
Collapse
|
5
|
Ma T, Cheng H, Li T, Chen Y, Cai T, Bai J, Wu Z, Xia X, Liang T, Du Y, Fu W. N-Acetyl-l-tryptophan inhibits CCl4-induced hepatic fibrogenesis via regulating TGF-β1/SMAD and Hippo/YAP1 signal. Bioorg Chem 2022; 126:105899. [DOI: 10.1016/j.bioorg.2022.105899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 11/02/2022]
|
6
|
Cell Autophagy in NASH and NASH-Related Hepatocellular Carcinoma. Int J Mol Sci 2022; 23:ijms23147734. [PMID: 35887082 PMCID: PMC9322157 DOI: 10.3390/ijms23147734] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/10/2022] [Accepted: 07/11/2022] [Indexed: 12/21/2022] Open
Abstract
Autophagy, a cellular self-digestion process, involves the degradation of targeted cell components such as damaged organelles, unfolded proteins, and intracellular pathogens by lysosomes. It is a major quality control system of the cell and plays an important role in cell differentiation, survival, development, and homeostasis. Alterations in the cell autophagic machinery have been implicated in several disease conditions, including neurodegeneration, autoimmunity, cancer, infection, inflammatory diseases, and aging. In non-alcoholic fatty liver disease, including its inflammatory form, non-alcoholic steatohepatitis (NASH), a decrease in cell autophagic activity, has been implicated in the initial development and progression of steatosis to NASH and hepatocellular carcinoma (HCC). We present an overview of autophagy as it occurs in mammalian cells with an insight into the emerging understanding of the role of autophagy in NASH and NASH-related HCC.
Collapse
|
7
|
Mastoridou EM, Goussia AC, Glantzounis GK, Kanavaros P, Charchanti AV. Autophagy and Exosomes: Cross-Regulated Pathways Playing Major Roles in Hepatic Stellate Cells Activation and Liver Fibrosis. Front Physiol 2022; 12:801340. [PMID: 35185602 PMCID: PMC8850693 DOI: 10.3389/fphys.2021.801340] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic liver injury, regardless of the underlying disease, results in gradual alteration of the physiological hepatic architecture and in excessive production of extracellular matrix, eventually leading to cirrhosis Liver cellular architecture consists of different cell populations, among which hepatic stellate cells (HSCs) have been found to play a major role in the fibrotic process. Under normal conditions, HSCs serve as the main storage site for vitamin A, however, pathological stimuli lead to their transdifferentiation into myofibroblast cells, with autophagy being the key regulator of their activation, through lipophagy of their lipid droplets. Nevertheless, the role of autophagy in liver fibrosis is multifaceted, as increased autophagic levels have been associated with alleviation of the fibrotic process. In addition, it has been found that HSCs receive paracrine stimuli from neighboring cells, such as injured hepatocytes, Kupffer cells, sinusoidal endothelial cells, which promote liver fibrosis. These stimuli have been found to be transmitted via exosomes, which are incorporated by HSCs and can either be degraded through lysosomes or be secreted back into the extracellular space via fusion with the plasma membrane. Furthermore, it has been demonstrated that autophagy and exosomes may be concomitantly or reciprocally regulated, depending on the cellular conditions. Given that increased levels of autophagy are required to activate HSCs, it is important to investigate whether autophagy levels decrease at later stages of hepatic stellate cell activation, leading to increased release of exosomes and further propagation of hepatic fibrosis.
Collapse
Affiliation(s)
- Eleftheria M. Mastoridou
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Anna C. Goussia
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Georgios K. Glantzounis
- Hepato-Pancreatico-Biliary Unit, Department of Surgery, University General Hospital of Ioannina and School of Medicine, University of Ioannina, Ioannina, Greece
| | - Panagiotis Kanavaros
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Antonia V. Charchanti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
- *Correspondence: Antonia V. Charchanti,
| |
Collapse
|
8
|
Kouroumalis E, Voumvouraki A, Augoustaki A, Samonakis DN. Autophagy in liver diseases. World J Hepatol 2021; 13:6-65. [PMID: 33584986 PMCID: PMC7856864 DOI: 10.4254/wjh.v13.i1.6] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/10/2020] [Accepted: 12/26/2020] [Indexed: 02/06/2023] Open
Abstract
Autophagy is the liver cell energy recycling system regulating a variety of homeostatic mechanisms. Damaged organelles, lipids and proteins are degraded in the lysosomes and their elements are re-used by the cell. Investigations on autophagy have led to the award of two Nobel Prizes and a health of important reports. In this review we describe the fundamental functions of autophagy in the liver including new data on the regulation of autophagy. Moreover we emphasize the fact that autophagy acts like a two edge sword in many occasions with the most prominent paradigm being its involvement in the initiation and progress of hepatocellular carcinoma. We also focused to the implication of autophagy and its specialized forms of lipophagy and mitophagy in the pathogenesis of various liver diseases. We analyzed autophagy not only in well studied diseases, like alcoholic and nonalcoholic fatty liver and liver fibrosis but also in viral hepatitis, biliary diseases, autoimmune hepatitis and rare diseases including inherited metabolic diseases and also acetaminophene hepatotoxicity. We also stressed the different consequences that activation or impairment of autophagy may have in hepatocytes as opposed to Kupffer cells, sinusoidal endothelial cells or hepatic stellate cells. Finally, we analyzed the limited clinical data compared to the extensive experimental evidence and the possible future therapeutic interventions based on autophagy manipulation.
Collapse
Affiliation(s)
- Elias Kouroumalis
- Liver Research Laboratory, University of Crete Medical School, Heraklion 71110, Greece
| | - Argryro Voumvouraki
- 1 Department of Internal Medicine, AHEPA University Hospital, Thessaloniki 54636, Greece
| | - Aikaterini Augoustaki
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece
| | - Dimitrios N Samonakis
- Department of Gastroenterology and Hepatology, University Hospital of Crete, Heraklion 71110, Greece.
| |
Collapse
|
9
|
Wang Q, Liu W, Liu G, Li P, Guo X, Zhang C. AMPK-mTOR-ULK1-mediated autophagy protects carbon tetrachloride-induced acute hepatic failure by inhibiting p21 in rats. J Toxicol Pathol 2021; 34:73-82. [PMID: 33627946 PMCID: PMC7890163 DOI: 10.1293/tox.2020-0022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 10/26/2020] [Indexed: 12/25/2022] Open
Abstract
Autophagy is a lysosomal-dependent degradation pathway in eukaryotic cells. Recent
studies have reported that autophagy can facilitate the activation of hepatic stellate
cells (HSCs) and fibrogenesis of the liver during long-term carbon tetrachloride
(CCl4) exposure. However, little is known about the role of autophagy in
CCl4-induced acute hepatic failure (AHF). This study aimed to identify
whether modulation of autophagy can affect CCl4-induced AHF and evaluate the
upstream signaling pathways mediated by CCl4-induced autophagy in rats. The
accumulation of specific punctate distribution of endogenous LC3-II, increased expression
of LC3-II, Atg5, and Atg7 genes/proteins, and decreased expression of p62 gene were
observed after acute liver injury was induced by CCl4 in rats, indicating that
CCl4 resulted in a high level of autophagy. Moreover, loss of autophagic
function by using chloroquine (CQ, an autophagic inhibitor) aggravated liver function,
leading to increased expression of p21 (a cyclin-dependent kinase inhibitor) in
CCl4-treated rats. Furthermore, the AMPK-mTORC1-ULK1 axis was found to serve
a function in CCl4-induced autophagy. These results reveal that
AMPK-mTORC1-ULK1 signaling-induced autophagy has a protective role in
CCl4-induced hepatotoxicity by inhibiting the p21 pathway. This study suggests
a useful strategy aimed at ameliorating CCl4-induced acute hepatotoxicity by
autophagy.
Collapse
Affiliation(s)
- Qiwen Wang
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| | - Weixia Liu
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| | - Gaopeng Liu
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| | - Pan Li
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| | - Xueqiang Guo
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| | - Chunyan Zhang
- State Key Laboratory Cell Differentiation and Regulation, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan International Joint Laboratory of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Henan Center for Outstanding Overseas Scientists of Pulmonary Fibrosis, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,College of Life Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Institute of Biomedical Science, Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China.,Overseas Expertise Introduction Center for Discipline Innovation of Pulmonary Fibrosis (111 Project), Henan Normal University, #46 East of Construction Road, Xinxiang, 453007 Henan, China
| |
Collapse
|
10
|
Li H, Pan Y, Wu H, Yu S, Wang J, Zheng J, Wang C, Li J, Jiang J. Inhibition of excessive mitophagy by N-acetyl-L-tryptophan confers hepatoprotection against Ischemia-Reperfusion injury in rats. PeerJ 2020; 8:e8665. [PMID: 32296597 PMCID: PMC7151751 DOI: 10.7717/peerj.8665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
In order to investigate the mechnism of hepatoprotective of N-acetyl-L-tryptophan (L-NAT) against ischemia-reperfusion (I/R) injury, the effects of L-NAT were investigated in hepatic ischemia-reperfusion injury (HIRI) models both in vitro and in vivo, which were made by BRL cells and Sprague-Dawley (SD) rats, respectively. The cell viability of hepatocyte was assessed by cell counting kit-8 (CCK-8) staining. The activation of autophagy was detected by electron microscopy (EM), quantitative real-time PCR (qRT-PCR), Western blotting and immunofluorescence. The activation of mitophagy was determined by the change of autophagy related protein, change of mitochondrial structure and function, co-location of autophagy protein and MitoTracker. Results showed that the morphological structures of hepatocytes were changed significantly after HIRI, and the cell viability of hydrogen peroxide (H2O2)-induced BRL cells was decreased. Autophagy markers Beclin1, microtubule associated protein 1 light chain 3-II (LC3-II) and autophagy related protein-7 (ATG-7) were highly expressed and the expression of SQSTM1 (P62) was decreased after HIRI, which suggested that autophagy of hepatocytes was activated after I/R. The reduction of ATP, mitochondrial DNA (mtDNA) and the mitochondrial transmembrane potential (ΔΨm) after H2O2-induced revealed that function of mitochondrial had also undergone significant changes. The increased expression of autophagy protein, destructure of mitochondria and mitochondrial dysfunction, the increased co-location of Beclin1 and MitoTracker induced by H2O2 implied the excessive mitophagy. The expression of the autophagy protein was increased by 3-Methyladenine (3-MA), providing another piece of evidence. Importantly, all changes were restored by L-NAT pretreament. In conclusion, the present findings demonstrate that excessive mitophagy involved in the process of HIRI and L-NAT may protect hepatocytes against HIRI by inhibiting activation of mitophagy and improving the structure and function of mitochondria.
Collapse
Affiliation(s)
- Huiting Li
- Department of Anatomy, Weifang Medical University, Weifang, China
| | - Yitong Pan
- Department of Anatomy, Weifang Medical University, Weifang, China
| | - Hongjuan Wu
- Morphology Lab, Weifang Medical University, Weifang, China
| | - Shuna Yu
- Department of Anatomy, Weifang Medical University, Weifang, China
| | - Jianxin Wang
- Department of Anatomy, Weifang Medical University, Weifang, China
| | - Jie Zheng
- Department of Pathology, Weifang Medical University, Weifang, China
| | - Can Wang
- Department of Anatomy, Weifang Medical University, Weifang, China
| | - Jianguo Li
- Department of Anatomy, Weifang Medical University, Weifang, China
| | - Jiying Jiang
- Department of Anatomy, Weifang Medical University, Weifang, China
| |
Collapse
|
11
|
Xue Z, Zhang Y, Liu Y, Zhang C, Shen XD, Gao F, Busuttil RW, Zheng S, Kupiec-Weglinski JW, Ji H. PACAP neuropeptide promotes Hepatocellular Protection via CREB-KLF4 dependent autophagy in mouse liver Ischemia Reperfusion Injury. Am J Cancer Res 2020; 10:4453-4465. [PMID: 32292507 PMCID: PMC7150481 DOI: 10.7150/thno.42354] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022] Open
Abstract
Organ ischemia reperfusion injury (IRI), associated with acute hepatocyte death, remains an unresolved problem in clinical orthotopic liver transplantation (OLT). Autophagy, an intracellular self-digesting progress, is responsible for cell reprograming required to regain post-stress homeostasis. Methods: Here, we analyzed the cytoprotective mechanism of pituitary adenylate cyclase-activating polypeptide (PACAP)-promoted hepatocellular autophagy in a clinically relevant mouse model of extended hepatic cold storage (4 °C UW solution for 20 h) followed by syngeneic OLT. Results: In contrast to 41.7% of liver graft failure by day 7 post-transplant in control group, PACAP treatment significantly improved graft survival (91.7% by day 14), and promoted autophagy-associated regeneration programs in OLT. In parallel in vitro studies, PACAP-enhanced autophagy ameliorated cellular damage (LDH/ALT levels), and diminished necrosis in H2O2-stressed primary hepatocytes. Interestingly, PACAP not only induced nuclear cAMP response element-binding protein (CREB), but also triggered reprogramming factor Kruppel-like factor 4 (KLF4) expression in IR-stressed OLT. Indeed, CREB inhibition attenuated hepatic autophagy and recreated hepatocellular injury in otherwise PACAP-protected livers. Furthermore, CREB inhibition suppressed PACAP-induced KLF4 expression, whereas KLF4 blockade abolished PACAP-promoted autophagy and neutralized PACAP-mediated hepatoprotection both in vivo and in vitro. Conclusion: Current study documents the essential neural regulation of PACAP-promoted autophagy in hepatocellular homeostasis in OLT, which provides the emerging therapeutic principle to combat hepatic IRI in OLT.
Collapse
|
12
|
Bork T, Liang W, Yamahara K, Lee P, Tian Z, Liu S, Schell C, Thedieck K, Hartleben B, Patel K, Tharaux PL, Lenoir O, Huber TB. Podocytes maintain high basal levels of autophagy independent of mtor signaling. Autophagy 2019; 16:1932-1948. [PMID: 31865844 PMCID: PMC7595647 DOI: 10.1080/15548627.2019.1705007] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
While constant basal levels of macroautophagy/autophagy are a prerequisite to preserve long-lived podocytes at the filtration barrier, MTOR regulates at the same time podocyte size and compensatory hypertrophy. Since MTOR is known to generally suppress autophagy, the apparently independent regulation of these two key pathways of glomerular maintenance remained puzzling. We now report that long-term genetic manipulation of MTOR activity does in fact not influence high basal levels of autophagy in podocytes either in vitro or in vivo. Instead we present data showing that autophagy in podocytes is mainly controlled by AMP-activated protein kinase (AMPK) and ULK1 (unc-51 like kinase 1). Pharmacological inhibition of MTOR further shows that the uncoupling of MTOR activity and autophagy is time dependent. Together, our data reveal a novel and unexpected cell-specific mechanism, which permits concurrent MTOR activity as well as high basal autophagy rates in podocytes. Thus, these data indicate manipulation of the AMPK-ULK1 axis rather than inhibition of MTOR as a promising therapeutic intervention to enhance autophagy and preserve podocyte homeostasis in glomerular diseases. Abbreviations: AICAR: 5-aminoimidazole-4-carboxamide ribonucleotide; AMPK: AMP-activated protein kinase; ATG: autophagy related; BW: body weight; Cq: chloroquine; ER: endoplasmic reticulum; ESRD: end stage renal disease; FACS: fluorescence activated cell sorting; GFP: green fluorescent protein; i.p.: intra peritoneal; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NPHS1: nephrosis 1, nephrin; NPHS2: nephrosis 2, podocin; PLA: proximity-ligation assay; PRKAA: 5ʹ-AMP-activated protein kinase catalytic subunit alpha; RPTOR/RAPTOR: regulatory associated protein of MTOR, complex 1; RFP: red fluorescent protein; TSC1: tuberous sclerosis 1; ULK1: unc-51 like kinase 1
Collapse
Affiliation(s)
- Tillmann Bork
- Department of Medicine IV, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Wei Liang
- Department of Medicine IV, Faculty of Medicine, University of Freiburg , Freiburg, Germany.,Division of Nephrology, Renmin Hospital of Wuhan University , Wuhan, China
| | - Kosuke Yamahara
- Department of Medicine IV, Faculty of Medicine, University of Freiburg , Freiburg, Germany.,Department of Medicine, Shiga University of Medical Science , Otsu, Japan
| | - Philipp Lee
- Department of Medicine IV, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Zhejia Tian
- Department of Medicine IV, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Shuya Liu
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| | - Christoph Schell
- Department of Medicine IV, Faculty of Medicine, University of Freiburg , Freiburg, Germany.,Institute of Surgical Pathology, Faculty of Medicine, University of Freiburg , Freiburg, Germany.,Berta-Ottenstein Programme, Faculty of Medicine, University of Freiburg , Freiburg, Germany
| | - Kathrin Thedieck
- Institute of Biochemistry and Center for Molecular Biosciences Innsbruck, University of Innsbruck , Innsbruck, Austria.,Department of Pediatrics, Section Systems Medicine of Metabolism and Signaling, University of Groningen, University Medical Center Groningen (UMCG) , Groningen, The Netherlands.,Department of Neuroscience, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg , Oldenburg, Germany
| | - Bjoern Hartleben
- Institute of Pathology, Hannover Medical School , Hannover, Germany
| | - Ketan Patel
- School of Biological Science, University of Reading , Reading, UK.,FFRIAS, Freiburg Institute for Advanced Studies, Albert-Ludwigs-University , Freiburg, Germany
| | - Pierre-Louis Tharaux
- PARCC, INSERM, Université de Paris , Paris, France.,Nephrology Division, Georges Pompidou European Hospital , Paris, France
| | | | - Tobias B Huber
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf , Hamburg, Germany
| |
Collapse
|
13
|
Long non-coding RNA PVT1 promotes autophagy as ceRNA to target ATG3 by sponging microRNA-365 in hepatocellular carcinoma. Gene 2019; 697:94-102. [DOI: 10.1016/j.gene.2019.02.036] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/08/2019] [Accepted: 02/01/2019] [Indexed: 12/13/2022]
|
14
|
Qian Q, Zhang Z, Li M, Savage K, Cheng D, Rauckhorst AJ, Ankrum JA, Taylor EB, Ding WX, Xiao Y, Cao HJ, Yang L. Hepatic Lysosomal iNOS Activity Impairs Autophagy in Obesity. Cell Mol Gastroenterol Hepatol 2019; 8:95-110. [PMID: 30926581 PMCID: PMC6522853 DOI: 10.1016/j.jcmgh.2019.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 03/15/2019] [Accepted: 03/19/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS The lysosome is an acidic organelle that is important for maintaining cellular and metabolic homeostasis in hepatocytes. Lysosomal dysfunction and chronic inflammation coexist, and both contribute to obesity-associated hepatic insulin resistance. However, in the context of obesity, the interplay between inflammatory signals and hepatic lysosomal function remains largely unknown. Inducible nitric oxide synthase (iNOS) is a hallmark for inflammation, and is activated in obesity. The aim of this study is to understand the molecular link between iNOS-mediated lysosomal nitric oxide (NO) production, hepatic lysosomal function, and autophagy in the context of obesity-associated insulin resistance. METHODS The role of iNOS in hepatic autophagy, as related to insulin and glucose homeostasis were studied in mice with diet-induced obesity (DIO). The effects and mechanisms of iNOS-mediated lysosomal NO production on lysosomal function and hepatic autophagy were studied in primary hepatocytes as well as in a mouse model of DIO. RESULTS We demonstrate that obesity promotes iNOS localization to the lysosome and decreases levels of lysosomal arginine, resulting in an accumulation of NO in hepatic lysosomes. This lysosomal NO production is attenuated by treatment with a NO scavenger, while co-overexpression of mTOR and a lysosomal arginine transporter (SLC38A9) enhances lysosomal NO production and suppresses autophagy. In addition, we show that deletion of iNOS ameliorates lysosomal nitrosative stress in the livers of DIO mice, promotes lysosomal biogenesis by activating transcription factor EB (TFEB), and enhances lysosomal function and autophagy. Lastly, deletion of iNOS in mice with DIO improves hepatic insulin sensitivity, which is diminished by suppression of TFEB or autophagy related 7 (Atg7). CONCLUSIONS Our studies suggest that lysosomal iNOS-mediated NO signaling disrupts hepatic lysosomal function, contributing to obesity-associated defective hepatic autophagy and insulin resistance.
Collapse
Affiliation(s)
- Qingwen Qian
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Zeyuan Zhang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Mark Li
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Kalie Savage
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Dechun Cheng
- Department of Parasitology, Harbin Medical School, Harbin, China
| | - Adam J. Rauckhorst
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, Fraternal Order of Eagles Diabetes Research Center Metabolomics Core, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - James A. Ankrum
- Roy J. Carver Department of Biomedical Engineering, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa College of Engineering, Iowa City, Iowa
| | - Eric B. Taylor
- Department of Biochemistry, Fraternal Order of Eagles Diabetes Research Center, Fraternal Order of Eagles Diabetes Research Center Metabolomics Core, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | - Wen-xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas
| | - Yi Xiao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, China
| | - Huo-jun Cao
- Departments of Endodontics, University of Iowa College of Dentistry, Iowa City, Iowa
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa,Correspondence Address requests for reprints to: Ling Yang, PhD, Departments of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa 52242. fax: (319) 335–3865.
| |
Collapse
|
15
|
Su Y, Lu J, Chen X, Liang C, Luo P, Qin C, Zhang J. Rapamycin Alleviates Hormone Imbalance-Induced Chronic Nonbacterial Inflammation in Rat Prostate Through Activating Autophagy via the mTOR/ULK1/ATG13 Signaling Pathway. Inflammation 2018; 41:1384-1395. [PMID: 29675586 DOI: 10.1007/s10753-018-0786-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chronic prostatitis (CP) is a clinically common disease with high morbidity. It affects the patients' quality of life (QoL) as well as physical and mental health seriously due to the recurring symptoms of lower urinary tract and genitalia. As the opinions about the etiology of CP are still not uniform, it is very difficult to be treated or even cured. Autophagy is a highly conserved physiological function which is widely found in eukaryotic cells. In general, cells maintain a certain level of autophagy under physiological conditions, and the basal level of autophagy can be regulated by a variety of autophagy-related genes under stress such as hunger, infection, trauma, and other circumstances. Therefore, the main purpose of this study is to investigate the role of autophagy in chronic nonbacterial prostatitis (CNP, also called CP). In this paper, we established the CNP model via hypodermic injection of 17β-estradiol and subsequently abdominal rapamycin (a common autophagy inducer) treatment based on castrated rats. Then, the expression of nuclear factor-κB (NF-κB), interleukin-1β (IL-1β), and autophagy-related markers as well as autophagosome formation in prostate tissues, peripheral blood mononuclear cells (PBMCs), and serum of rats were evaluated respectively. In addition to some histological changes in the prostate tissues, we found the levels of NF-κB and IL-1β were significantly increased in the model group, along with significantly suppressed autophagy, whereas rapamycin could reverse these effects which involved in the mTOR/ULK1/ATG13 signaling pathway. In conclusion, our results suggested that rapamycin could ameliorate hormone imbalance-induced CNP by activating autophagy.
Collapse
Affiliation(s)
- Yang Su
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jingxiao Lu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xianguo Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Pengcheng Luo
- Huangshi Central Hospital, Hubei Polytechnic University, Huangshi, 435000, China
| | - Cong Qin
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Jie Zhang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, 430060, China. .,Huangshi Central Hospital, Hubei Polytechnic University, Huangshi, 435000, China.
| |
Collapse
|
16
|
Lv C, Wang L, Zhu X, Lin W, Chen X, Huang Z, Huang L, Yang S. Glucosamine promotes osteoblast proliferation by modulating autophagy via the mammalian target of rapamycin pathway. Biomed Pharmacother 2018; 99:271-277. [PMID: 29334671 DOI: 10.1016/j.biopha.2018.01.066] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 12/16/2022] Open
Abstract
Glucosamine is effective in the treatment of osteoarthritis; however, its effect on osteoporosis remains unclear. Decreased activity of osteoblasts is the main cause of osteoporosis. Here, we examined the effects of glucosamine on osteoblasts. The potential underlying mechanisms were explored. The results showed that glucosamine had a biphasic effect on the viability of hFOB1.19 osteoblasts. At low concentrations (<0.6 mM), glucosamine induced hFOB1.19 cell proliferation, whereas at high concentrations (>0.8 mM) it induced apoptosis. The autophagy inhibitor 3-methyladenine (3-MA) was used to verify that glucosamine modulated hFOB1.19 cell viability via autophagy. The induction of apoptosis by high concentrations of glucosamine was significantly exacerbated by 3-MA, whereas the promotion of cell proliferation by low concentrations of glucosamine was significantly suppressed by 3-MA. Autophagy was examined by western blot detection of autophagy-related proteins including LC3, Beclin-1, and SQSTM1/p62 and by immunofluorescence analysis of autophagosomes. Glucosamine activated autophagy in a time- and concentration-dependent manner. Investigation of the underlying mechanism showed that glucosamine inhibited the phosphorylation of m-TOR in a concentration-dependent manner within 48 h, and rapamycin significantly inhibited the phosphorylation of m-TOR. These results demonstrated that glucosamine promoted hFOB1.19 cell proliferation and increased autophagy by inhibiting the m-TOR pathway, suggesting its potential as a therapeutic agent for osteoporosis.
Collapse
Affiliation(s)
- Chen Lv
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lu Wang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiongbai Zhu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Wenjun Lin
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xin Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhengxiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lintuo Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shengwu Yang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
17
|
Autophagy inhibition attenuates the induction of anti-inflammatory effect of catalpol in liver fibrosis. Biomed Pharmacother 2018; 103:1262-1271. [PMID: 29864907 DOI: 10.1016/j.biopha.2018.04.156] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 04/08/2018] [Accepted: 04/23/2018] [Indexed: 12/21/2022] Open
Abstract
Autophagy has been regarded as an inflammation-associated defensive mechanism against chronic liver disease, which has been highlighted as a novel therapeutic target for the treatment of liver fibrosis. We herein aimed to study the effects of catalpol on liver fibrosis in vivo and in vitro, and to elucidate the role of autophagy in catalpol-induced anti-inflammation. Catalpol protected the liver against CCl4-induced injury, as evidenced by mitigated hepatic steatosis, necrosis, and fibrotic septa. Catalpol decreased the serum levels of alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase and bilirubin as well as the liver/body weight ratio. Masson and sirius red staining along with hydroxyproline detection showed that catalpol decreased collagen deposition significantly compared to that of the model group. Catalpol inhibited CCl4-induced liver fibrosis, manifested as decreased expressions of α-SMA, fibronectin and α1(I)-procollagen at both transcriptional and translational levels. Inflammatory factors, such as IL-1β, TNF-α, IL-18, IL-6 and COX-2, were significantly elevated in rats receiving CCl4 and down-regulated by catalpol in a dose-dependent manner in vivo. Western blot and immunofluorescence assay revealed that catalpol activated the autophagy of rats with CCl4-caused liver fibrosis, as indicated by up-regulation of LC3-II and beclin1 and down-regulation of P62. The results of in vitro experiments were consistent. Interestingly, inhibition or depletion of autophagy by LY294002 or Atg5 siRNA significantly attenuated catalpol-induced anti-inflammatory effects on activated hepatic stellate cells in vitro. In conclusion, catalpol relieved liver fibrosis mainly by inhibiting inflammation, and autophagy inhibition attenuated the catalpol-induced anti-inflammatory effect on liver fibrosis.
Collapse
|
18
|
Zhang S, Mao Y, Fan X. Inhibition of ghrelin o-acyltransferase attenuated lipotoxicity by inducing autophagy via AMPK-mTOR pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:873-885. [PMID: 29713145 PMCID: PMC5912383 DOI: 10.2147/dddt.s158985] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Nonalcoholic fatty liver disease (NAFLD) has been considered the most commonly occurring chronic hepatopathy in the world. Ghrelin o-acyltransferase (GOAT) is an acylation enzyme which has an acylated position 3 serine on ghrelin. Recent investigation revealed that activated autophagy could attenuate liver steatosis. The aim of this study was to explore therapeutic roles that inhibit GOAT exerted in NAFLD, and its potential association with autophagy. Materials and methods Human LO2 cells were pretreated with siRNA-GOAT to induce liver steatosis using free fatty acids (FFAs). A chronic NAFLD model was established by feeding male mice C57bl/6 with high-fat diet (HFD) for 56 days with GO-CoA-Tat administrated subcutaneously. Lipid droplets were identified by Oil Red O stains. Body weight (BW) of mice was measured every week. Autophagy, tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), serum biochemical indicators (glucose [Glu], total cholesterol [TC], triglyceride [TG], aspartate aminotransferase [AST], alanine aminotransferase [ALT]) and signaling pathway proteins of phosphorylated AMPK–mTOR were measured. Results The TG contents of the FFA and HFD groups were decreased by the inhibition of GOAT. Among mice treated with GO-CoA-Tat and siRNA-GOAT, IL-6 and TNF-α concentrations were remarkably decreased. Indicators of liver injury such as ALT and AST were also remarkably decreased among mice treated with GO-CoA-Tat. Likewise, GO-CoA-Tat significantly reduced the BW of mice and serum TG, TC and Glu. Autophagy was induced along with reduced lipids in the cells of the FFA and HFD groups. The inhibition of GOAT upregulated autophagy via AMPK–mTOR restoration. Conclusion These results indicate that the inhibition of GOAT attenuates lipotoxicity by autophagy stimulation via AMPK–mTOR restoration and offers innovative evidence for using GO-CoA-Tat or siRNA-GOAT in NAFLD clinically.
Collapse
Affiliation(s)
- Shaoren Zhang
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Yuqing Mao
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, China
| | - Xiaoming Fan
- Department of Gastroenterology and Hepatology, Jinshan Hospital of Fudan University, Shanghai, China
| |
Collapse
|
19
|
Autophagy and LAP in the Fight against Fungal Infections: Regulation and Therapeutics. Mediators Inflamm 2018; 2018:6195958. [PMID: 29692681 PMCID: PMC5859860 DOI: 10.1155/2018/6195958] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/30/2018] [Indexed: 02/08/2023] Open
Abstract
Phagocytes fight fungi using canonical and noncanonical, also called LC3-associated phagocytosis (LAP), autophagy pathways. However, the outcomes of autophagy/LAP in shaping host immune responses appear to greatly vary depending on fungal species and cell types. By allowing efficient pathogen clearance and/or degradation of inflammatory mediators, autophagy proteins play a broad role in cellular and immune homeostasis during fungal infections. Indeed, defects in autophagic machinery have been linked with aberrant host defense and inflammatory states. Thus, understanding the molecular mechanisms underlying the relationship between the different forms of autophagy may offer a way to identify drugable molecular signatures discriminating between selective recognition of cargo and host protection. In this regard, IFN-γ and anakinra are teaching examples of successful antifungal agents that target the autophagy machinery. This article provides an overview of the role of autophagy/LAP in response to fungi and in their infections, regulation, and therapeutic exploitation.
Collapse
|
20
|
Lee AY, Lee JW, Kim JE, Mock HJ, Park S, Kim S, Hong SH, Kim JY, Park EJ, Kang KS, Kim KP, Cho MH. Dihydroceramide is a key metabolite that regulates autophagy and promotes fibrosis in hepatic steatosis model. Biochem Biophys Res Commun 2017; 494:460-469. [PMID: 29066349 DOI: 10.1016/j.bbrc.2017.10.110] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is an increasingly common chronic liver disease worldwide. Sphingolipids are a family of lipids that play essential roles as critical regulators in metabolic disorders. Some sphingolipids are known key factors in metabolic dysfunction. However, the precise effect of dihydroceramide on NAFLD remains unknown. Here, we report how dihydroceramide in autophagosome accumulation activates fibrogenesis in human liver Chang cells treated with free fatty acids (FFA). According to LC/MS lipid profiling, FFA increased the levels of sphingolipids and triacylglycerol (TG). To demonstrate the potential role of dihydroceramide metabolism in autophagy, several sphingolipid synthesis inhibitors were used. Increased dihydroceramide led to impairment of autophagic flux, resulting in increased TG storage in lipid droplets (LD) and upregulated expression of fibrosis markers. Hepatic stellate cells (HSCs, LX-2 cells) were co-cultured with Chang cells to assess the potential fibrogenic response to dihydroceramide, Treatment with rapamycin recovered autophagic flux in Chang cells and fibrogenesis in the co-culture system. Our results identified a critical function of dihydroceramide metabolism in autophagy. It could play an important role in the progression of NAFLD associated with lipid over-accumulation. Therefore, preventing autophagic flux by regulating dihydroceramide could be a potential strategic approach for providing therapy for NAFLD.
Collapse
Affiliation(s)
- Ah Young Lee
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Won Lee
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Ji-Eun Kim
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Hyuck Jun Mock
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Sungjin Park
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Departmentof Pharmacology and Medical Science, Metabolic Diseases and Cell Signaling Laboratory, Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Sanghwa Kim
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Division of Basic Radiation Bioscience, Korea Institute of Radiological & Medical Science, Seoul 01812, Republic of Korea
| | - Seong-Ho Hong
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Bio medicine Lab., CKD Research Institute, Yongin 16995, Republic of Korea
| | - Ji-Young Kim
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Jung Park
- Department of Brain Science, Ajou University School of Medicine, 164, World Cup-ro, Youngtong-gu, Suwon, 16499, Republic of Korea
| | - Kyung-Sun Kang
- Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwang Pyo Kim
- Department of Applied Chemistry, College of Applied Science, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Myung-Haing Cho
- Laboratory of Toxicology, Research Institute for Veterinary Science and College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea; Graduate School of Convergence Science and Technology, Seoul National University, Suwon 16229, Republic of Korea; Graduate Group of Tumor Biology, Seoul National University, Seoul 08826, Republic of Korea; Advanced Institute of Convergence Technology, Seoul National University, Suwon 16229, Republic of Korea; Institute of GreenBio Science Technology, Seoul National University, Pyeongchang 25354, Republic of Korea.
| |
Collapse
|
21
|
Wu L, Zhang Q, Dai W, Li S, Feng J, Li J, Liu T, Xu S, Wang W, Lu X, Yu Q, Chen K, Xia Y, Lu J, Zhou Y, Fan X, Guo C. Quercetin Pretreatment Attenuates Hepatic Ischemia Reperfusion-Induced Apoptosis and Autophagy by Inhibiting ERK/NF- κB Pathway. Gastroenterol Res Pract 2017; 2017:9724217. [PMID: 29123547 PMCID: PMC5662816 DOI: 10.1155/2017/9724217] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 05/20/2017] [Accepted: 06/12/2017] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Hepatic ischemia reperfusion (IR) injury is a common phenomenon in transplantation or trauma. The aim of the present study was to determine the protective effect of quercetin (QE) on hepatic IR injury via the ERK/NF-κB pathway. METHODS Mice were randomized into the sham, IR, QE100 + IR, and QE200 + IR groups. Quercetin was administered intragastrically daily at two doses (100 mg/kg and 200 mg/kg) for 5 days prior to IR injury. The expression levels of liver enzymes, inflammatory cytokines, and other marker proteins were determined at 2, 8, and 24 hours after IR. And they were compared among these groups. RESULTS Compared with the IR group, the treatment of QE reduced the release of cytokines, leading to inhibition of apoptosis and autophagy via downregulation of the ERK/NF-κB pathway in this model of hepatic IR injury. CONCLUSION Apoptosis and autophagy caused by hepatic IR injury were inhibited by QE following a reduction in the release of inflammatory cytokines, and the relationship between the two may be associated with inactivation of the ERK/NF-κB pathway.
Collapse
Affiliation(s)
- Liwei Wu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qinghui Zhang
- Department of Clinical Laboratory, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, China
| | - Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Sainan Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jiao Feng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Tong Liu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Shizan Xu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Wenwen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiya Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Qiang Yu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, School of Clinical Medicine of Nanjing Medical University, Shanghai 200072, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yujing Xia
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Xiaoming Fan
- Department of Gastroenterology, Jinshan Hospital of Fudan University, Jinshan, Shanghai 201508, China
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| |
Collapse
|
22
|
Calcium-dependent O-GlcNAc signaling drives liver autophagy in adaptation to starvation. Genes Dev 2017; 31:1655-1665. [PMID: 28903979 PMCID: PMC5647936 DOI: 10.1101/gad.305441.117] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Abstract
In this study, Ruan et al. demonstrate that O-GlcNAc transferase (OGT) is required for glucagon-stimulated liver autophagy and metabolic adaptation to starvation. Their findings delineate a new signaling pathway in which starvation promotes autophagy through OGT phosphorylation and establish the importance of O-GlcNAc signaling in coupling liver autophagy to nutrient homeostasis. Starvation induces liver autophagy, which is thought to provide nutrients for use by other organs and thereby maintain whole-body homeostasis. Here we demonstrate that O-linked β-N-acetylglucosamine (O-GlcNAc) transferase (OGT) is required for glucagon-stimulated liver autophagy and metabolic adaptation to starvation. Genetic ablation of OGT in mouse livers reduces autophagic flux and the production of glucose and ketone bodies. Upon glucagon-induced calcium signaling, calcium/calmodulin-dependent kinase II (CaMKII) phosphorylates OGT, which in turn promotes O-GlcNAc modification and activation of Ulk proteins by potentiating AMPK-dependent phosphorylation. These findings uncover a signaling cascade by which starvation promotes autophagy through OGT phosphorylation and establish the importance of O-GlcNAc signaling in coupling liver autophagy to nutrient homeostasis.
Collapse
|
23
|
Yang S, Zhang A, Li T, Gao R, Peng C, Liu L, Cheng Q, Mei M, Song Y, Xiang X, Wu C, Xiao X, Li Q. Dysregulated Autophagy in Hepatocytes Promotes Bisphenol A-Induced Hepatic Lipid Accumulation in Male Mice. Endocrinology 2017; 158:2799-2812. [PMID: 28323964 DOI: 10.1210/en.2016-1479] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 02/16/2017] [Indexed: 12/27/2022]
Abstract
Accumulating evidence suggests that bisphenol A (BPA) exposure is associated with nonalcoholic fatty liver disease. Disruption of autophagy causes lipid accumulation in hepatocytes. Whether and how BPA regulates autophagy remains to be explored. We investigated the effect of BPA on autophagy in hepatocytes and examined the influence of BPA-regulated autophagy on hepatic lipid accumulation. Male CD1 mice were treated with BPA for 8 weeks, followed by histological and biochemical evaluation of liver lipids and autophagy. Also, the effects of BPA on autophagy and hepatic lipid accumulation were examined in primary hepatocytes and HepG2 cells. Lipid content in HepG2 cells and/or primary hepatocytes was increased obviously after BPA exposure. In addition, BPA exposure caused accumulation of autophagosomes in HepG2 cells and enhanced colocalization of Bodipy 493/503 with microtubule associated protein light-chain 3. These changes were accompanied with increased expression levels of p-mammalian target of rapamycin, p-p70S6 kinase, p-ULK1 and decreased expression levels of Atg5. BPA exposure also downregulated the expression of cathepsin L and decreased cytoplasmic retention of acridine orange in HepG2 cells. The impaired autophagic degradation was further evidenced by increased levels of p62 in BPA-treated HepG2 cells. At the whole animal level, BPA treatment induced lipid accumulation in livers of male CD1 mice, which was accompanied with changes in hepatic autophagy-related proteins. Moreover, induction of autophagy by Torin1 protected against BPA-induced lipid accumulation whereas suppression of autophagy by chloroquine exacerbated BPA-induced lipid accumulation in HepG2 cells. BPA dysregulates autophagy in hepatocytes, which is linked to BPA-induced hepatic lipid accumulation.
Collapse
Affiliation(s)
- Shumin Yang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Aipin Zhang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ting Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Department of Endocrinology, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, China
| | - Rufei Gao
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, China
| | - Chuan Peng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Lipids and Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lulu Liu
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qingfeng Cheng
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mei Mei
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ying Song
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaojiao Xiang
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Chaodong Wu
- Department of Nutrition and Food Science, Texas A&M University, College Station, Texas 77843
| | - Xiaoqiu Xiao
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
- Laboratory of Lipids and Glucose Metabolism, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Qifu Li
- Department of Endocrinology, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
24
|
Wenzhong W, Tong Z, Hongjin L, Ying C, Jun X. Role of Hydrogen Sulfide on Autophagy in Liver Injuries Induced by Selenium Deficiency in Chickens. Biol Trace Elem Res 2017; 175:194-203. [PMID: 27216022 DOI: 10.1007/s12011-016-0752-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 05/16/2016] [Indexed: 12/28/2022]
Abstract
Selenium (Se) is an indispensable trace mineral that was associated with liver injuries in animal models. Hydrogen sulfide (H2S) is involved in many liver diseases, and autophagy can maintain liver homeostasis with a stress stimulation. However, little is known about the correlation between H2S and autophagy in the liver injury chicken models induced by Se deficiency. In this study, we aimed to investigate the correlation between H2S and autophagy in the liver injury chicken models. We randomly divided 120 1-day-old chickens into two equal groups. The control group was fed with complete food with a Se content of 0.15 mg/kg, and the Se-deficiency group (lab group) was fed with a Se-deficient diet with a Se content of 0.033 mg/kg. When the time comes to 15, 25, and 35 days, the chickens were sacrificed (20 each). The liver tissues were gathered and examined for pathological observations, the mRNA and protein levels of H2S synthases (CSE, CBS, and 3-MST) and the mRNA and protein levels of autophagy-related genes. The results showed that the expression of CSE, CBS, and 3-MST and H2S production were higher in the lab group than in the control group. Swellings, fractures, and vacuolizations were visible in the mitochondria cristae in the livers of the lab group and autophagosomes were found as well. In addition, the expression of autophagy-related genes (ATG5, LC3-I, LC3-II, Beclin1, and Dynein) was higher in the lab group than in the control group (p < 0.05) while TOR decreased significantly in the lab group (p < 0.05). The results showed that H2S and autophagy were involved in the liver injury chicken models, and H2S was correlated with autophagy.
Collapse
Affiliation(s)
- Wang Wenzhong
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Zhang Tong
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Lin Hongjin
- Continuing Education Center, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Chang Ying
- College of Life Science, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| | - Xing Jun
- Harbin Medical University Cancer Hospital, Harbin, 150081, People's Republic of China.
| |
Collapse
|
25
|
Liu TY, Xiong XQ, Ren XS, Zhao MX, Shi CX, Wang JJ, Zhou YB, Zhang F, Han Y, Gao XY, Chen Q, Li YH, Kang YM, Zhu GQ. FNDC5 Alleviates Hepatosteatosis by Restoring AMPK/mTOR-Mediated Autophagy, Fatty Acid Oxidation, and Lipogenesis in Mice. Diabetes 2016; 65:3262-3275. [PMID: 27504012 DOI: 10.2337/db16-0356] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/21/2016] [Indexed: 11/13/2022]
Abstract
Fibronectin type III domain-containing 5 (FNDC5) protein induces browning of subcutaneous fat and mediates the beneficial effects of exercise on metabolism. However, whether FNDC5 is associated with hepatic steatosis, autophagy, fatty acid oxidation (FAO), and lipogenesis remains unknown. Herein, we show the roles and mechanisms of FNDC5 in hepatic steatosis, autophagy, and lipid metabolism. Fasted FNDC5-/- mice exhibited severe steatosis, reduced autophagy, and FAO, and enhanced lipogenesis in the liver compared with wild-type mice. Energy deprivation-induced autophagy, FAO, and AMPK activity were attenuated in FNDC5-/- hepatocytes, which were restored by activating AMPK with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR). Inhibition of mammalian target of rapamycin (mTOR) complex 1 with rapamycin enhanced autophagy and FAO and attenuated lipogenesis and steatosis in FNDC5-/- livers. FNDC5 deficiency exacerbated hyperlipemia, hepatic FAO and autophagy impairment, hepatic lipogenesis, and lipid accumulation in obese mice. Exogenous FNDC5 stimulated autophagy and FAO gene expression in hepatocytes and repaired the attenuated autophagy and palmitate-induced steatosis in FNDC5-/- hepatocytes. FNDC5 overexpression prevented hyperlipemia, hepatic FAO and autophagy impairment, hepatic lipogenesis, and lipid accumulation in obese mice. These results indicate that FNDC5 deficiency impairs autophagy and FAO and enhances lipogenesis via the AMPK/mTOR pathway. FNDC5 deficiency aggravates whereas FNDC5 overexpression prevents the HFD-induced hyperlipemia, hepatic lipid accumulation, and impaired FAO and autophagy in the liver.
Collapse
Affiliation(s)
- Tong-Yan Liu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Qing Xiong
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing-Sheng Ren
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ming-Xia Zhao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chang-Xiang Shi
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jue-Jin Wang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ye-Bo Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Han
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xing-Ya Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Chen
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue-Hua Li
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu-Ming Kang
- Department of Physiology and Pathophysiology, Cardiovascular Research Center, Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, China
| | - Guo-Qing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
26
|
Rines AK, Sharabi K, Tavares CDJ, Puigserver P. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes. Nat Rev Drug Discov 2016; 15:786-804. [PMID: 27516169 DOI: 10.1038/nrd.2016.151] [Citation(s) in RCA: 257] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes mellitus is characterized by the dysregulation of glucose homeostasis, resulting in hyperglycaemia. Although current diabetes treatments have exhibited some success in lowering blood glucose levels, their effect is not always sustained and their use may be associated with undesirable side effects, such as hypoglycaemia. Novel antidiabetic drugs, which may be used in combination with existing therapies, are therefore needed. The potential of specifically targeting the liver to normalize blood glucose levels has not been fully exploited. Here, we review the molecular mechanisms controlling hepatic gluconeogenesis and glycogen storage, and assess the prospect of therapeutically targeting associated pathways to treat type 2 diabetes.
Collapse
Affiliation(s)
- Amy K Rines
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kfir Sharabi
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Clint D J Tavares
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Pere Puigserver
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
27
|
Xu YB, Zhang PJ, Liu Q, Mao XN, Wang CC. Role of autophagy related protein Beclin 1 in model of hepatic ischemia-reperfusion injury. Shijie Huaren Xiaohua Zazhi 2016; 24:209-214. [DOI: 10.11569/wcjd.v24.i2.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Surgical resection is the optimal treatment for primary liver cancer, but surgery is often faced with recession of the liver function reserve, ischemia-reperfusion injury of the residual liver and other disadvantages. Autophagy is a form of programmed cell death after hepatic ischemia-reperfusion, and its role in ischemia-reperfusion injury is a hotspot of research in recent years. In the experimental research of simulated liver ischemia-reperfusion injury, the variation of autophagy related protein Beclin 1 is often detected, which suggests the change of autophagy activity. Many pretreatment methods have been found to be able to reduce the level of Beclin 1 and relieve the hepatic damage in the model of hepatic ischemia-reperfusion injury. Here we discuss the research progress in understanding the role of Beclin 1 in hepatic ischemia-reperfusion injury.
Collapse
|
28
|
Autophagy and liver ischemia-reperfusion injury. BIOMED RESEARCH INTERNATIONAL 2015; 2015:417590. [PMID: 25861623 PMCID: PMC4377441 DOI: 10.1155/2015/417590] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 08/21/2014] [Accepted: 09/07/2014] [Indexed: 12/12/2022]
Abstract
Liver ischemia-reperfusion (I-R) injury occurs during liver resection, liver transplantation, and hemorrhagic shock. The main mode of liver cell death after warm and/or cold liver I-R is necrosis, but other modes of cell death, as apoptosis and autophagy, are also involved. Autophagy is an intracellular self-digesting pathway responsible for removal of long-lived proteins, damaged organelles, and malformed proteins during biosynthesis by lysosomes. Autophagy is found in normal and diseased liver. Although depending on the type of ischemia, warm and/or cold, the dynamic process of liver I-R results mainly in adenosine triphosphate depletion and in production of reactive oxygen species (ROS), leads to both, a local ischemic insult and an acute inflammatory-mediated reperfusion injury, and results finally in cell death. This process can induce liver dysfunction and can increase patient morbidity and mortality after liver surgery and hemorrhagic shock. Whether autophagy protects from or promotes liver injury following warm and/or cold I-R remains to be elucidated. The present review aims to summarize the current knowledge in liver I-R injury focusing on both the beneficial and the detrimental effects of liver autophagy following warm and/or cold liver I-R.
Collapse
|
29
|
Pantazi E, Zaouali MA, Bejaoui M, Folch-Puy E, Ben Abdennebi H, Varela AT, Rolo AP, Palmeira CM, Roselló-Catafau J. Sirtuin 1 in rat orthotopic liver transplantation: an IGL-1 preservation solution approach. World J Gastroenterol 2015; 21:1765-1774. [PMID: 25684941 PMCID: PMC4323452 DOI: 10.3748/wjg.v21.i6.1765] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/25/2014] [Accepted: 11/07/2014] [Indexed: 02/07/2023] Open
Abstract
AIM To investigate the possible involvement of Sirtuin 1 (SIRT1) in rat orthotopic liver transplantation (OLT), when Institute Georges Lopez 1 (IGL-1) preservation solution is enriched with trimetazidine (TMZ). METHODS Male Sprague-Dawley rats were used as donors and recipients. Livers were stored in IGL-1 preservation solution for 8h at 4 °C, and then underwent OLT according to Kamada's cuff technique without arterialization. In another group, livers were stored in IGL-1 preservation solution supplemented with TMZ, at 10(-6) mol/L, for 8 h at 4 °C and then underwent OLT. Rats were sacrificed 24 h after reperfusion, and liver and plasma samples were collected. Liver injury (transaminase levels), mitochondrial damage (glutamate dehydrogenase activity) oxidative stress (malondialdehyde levels), and nicotinamide adenine dinucleotide (NAD(+)), the co-factor necessary for SIRT1 activity, were determined by biochemical methods. SIRT1 and its substrates (ac-FoxO1, ac-p53), the precursor of NAD(+), nicotinamide phosphoribosyltransferase (NAMPT), as well as the phosphorylation of adenosine monophosphate activated protein kinase (AMPK), p-mTOR, p-p70S6K (direct substrate of mTOR), autophagy parameters (beclin-1, LC3B) and MAP kinases (p-p38 and p-ERK) were determined by Western blot. RESULTS Liver grafts preserved in IGL-1 solution enriched with TMZ presented reduced liver injury and mitochondrial damage compared with those preserved in IGL-1 solution alone. In addition, livers preserved in IGL-1 + TMZ presented reduced levels of oxidative stress. This was consistent with enhanced SIRT1 protein expression and elevated SIRT1 activity, as indicated by decreased acetylation of p53 and FoxO1. The elevated SIRT1 activity in presence of TMZ can be attributed to the enhanced NAMPT protein and NAD(+)/NADH levels. Up-regulation of SIRT1 was consistent with activation of AMPK and inhibition of phosphorylation of mTOR and its direct substrate (p-p70S6K). As a consequence, autophagy mediators (beclin-1 and LC3B) were over-expressed. Furthermore, MAP kinases were regulated in livers preserved with IGL-1 + TMZ, as they were characterized by enhanced p-ERK and decreased p-p38 protein expression. CONCLUSION Our study shows that IGL-1 preservation solution enriched with TMZ protects liver grafts from the IRI associated with OLT, through SIRT1 up-regulation.
Collapse
|
30
|
Codogno P, Lotersztajn S. When autophagy chaperones liver metabolism. Cell Metab 2014; 20:392-3. [PMID: 25185945 DOI: 10.1016/j.cmet.2014.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Chaperone-mediated autophagy (CMA) governs degradation of cytosolic proteins damaged by nutritional changes and declines with age. In this issue, Schneider et al. (2014) reveal CMA as a novel player in the regulation of liver lipid and carbohydrate metabolism and suggest that defects in CMA may play a major role in metabolic dysregulation.
Collapse
Affiliation(s)
- Patrice Codogno
- INSERM U1151-CNRS UMR 8253, Institut Necker Enfants-Malades (INEM), 75014 Paris, France; Université Paris Descartes-Sorbonne Paris Cité, 70014 Paris, France.
| | - Sophie Lotersztajn
- INSERM U1149, Center for research on Inflammation, 75018 Paris, France; Université Paris Diderot-Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, 75018 Paris, France.
| |
Collapse
|
31
|
Mallat A, Lodder J, Teixeira-Clerc F, Moreau R, Codogno P, Lotersztajn S. Autophagy: a multifaceted partner in liver fibrosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:869390. [PMID: 25254217 PMCID: PMC4164803 DOI: 10.1155/2014/869390] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 07/01/2014] [Indexed: 02/07/2023]
Abstract
Liver fibrosis is a common wound healing response to chronic liver injury of all causes, and its end-stage cirrhosis is responsible for high morbidity and mortality worldwide. Fibrosis results from prolonged parenchymal cell apoptosis and necrosis associated with an inflammatory reaction that leads to recruitment of immune cells, activation and accumulation of fibrogenic cells, and extracellular matrix accumulation. The fibrogenic process is driven by hepatic myofibroblasts, that mainly derive from hepatic stellate cells undergoing a transdifferentiation from a quiescent, lipid-rich into a fibrogenic myofibroblastic phenotype, in response to paracrine/autocrine signals produced by neighbouring inflammatory and parenchymal cells. Autophagy is an important regulator of liver homeostasis under physiological and pathological conditions. This review focuses on recent findings showing that autophagy is a novel, but complex, regulatory pathway in liver fibrosis, with profibrogenic effects relying on its direct contribution to the process of hepatic stellate cell activation, but with antifibrogenic properties via indirect hepatoprotective and anti-inflammatory properties. Therefore, cell-specific delivery of drugs that exploit autophagic pathways is a prerequisite to further consider autophagy as a potential target for antifibrotic therapy.
Collapse
Affiliation(s)
- Ariane Mallat
- INSERM U955, 94000 Créteil, France
- Université Paris-Est, Faculté de Médecine, UMR-S955, 94000 Créteil, France
| | - Jasper Lodder
- INSERM U1149, Center for Research on Inflammation, 75018 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, 75018 Paris, France
- Laboratoire d'Excellence Inflamex, 75018 Paris, France
| | - Fatima Teixeira-Clerc
- INSERM U955, 94000 Créteil, France
- Université Paris-Est, Faculté de Médecine, UMR-S955, 94000 Créteil, France
| | - Richard Moreau
- INSERM U1149, Center for Research on Inflammation, 75018 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, 75018 Paris, France
- Laboratoire d'Excellence Inflamex, 75018 Paris, France
- Département Hospitalo-Universitaire (DHU) UNITY, Service d'Hépatologie, Hôpital Beaujon, AP-HP, 92000 Clichy, France
| | - Patrice Codogno
- INSERM U1151-CNRS UMR8223, INEM, 75014 Paris, France
- Université Paris-Descartes, Sorbonne Paris Cité, Site Necker Enfants-Malades, 75015 Paris, France
| | - Sophie Lotersztajn
- INSERM U1149, Center for Research on Inflammation, 75018 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Faculté de Médecine, Site Xavier Bichat, 75018 Paris, France
- Laboratoire d'Excellence Inflamex, 75018 Paris, France
- Département Hospitalo-Universitaire (DHU) UNITY, Service d'Hépatologie, Hôpital Beaujon, AP-HP, 92000 Clichy, France
| |
Collapse
|
32
|
Autophagy and microRNA dysregulation in liver diseases. Arch Pharm Res 2014; 37:1097-116. [PMID: 25015129 DOI: 10.1007/s12272-014-0439-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/29/2014] [Indexed: 02/07/2023]
Abstract
Autophagy is a catabolic process through which organelles and cellular components are sequestered into autophagosomes and degraded via fusion with lysosomes. Autophagy plays a role in many physiological processes, including stress responses, energy homeostasis, elimination of cellular organelles, and tissue remodeling. In addition, autophagy capacity changes in various disease states. A series of studies have shown that autophagy is strictly controlled to maintain homeostatic balance of energy metabolism and cellular organelle and protein turnover. These studies have also shown that this process is post-transcriptionally controlled by small noncoding microRNAs that regulate gene expression through complementary base pairing with mRNAs. Conversely, autophagy regulates the expression of microRNAs. Therefore, dysregulation of the link between autophagy and microRNA expression exacerbates the pathogenesis of various diseases. In this review, we summarize the roles of autophagy and microRNA dysregulation in the course of liver diseases, with the aim of understanding how microRNAs modify key autophagic effector molecules, and we discuss how this dysregulation affects both physiological and pathological conditions. This article may advance our understanding of the cellular and molecular bases of liver disease progression and promote the development of strategies for pharmacological intervention.
Collapse
|
33
|
Sinha RA, Farah BL, Singh BK, Siddique MM, Li Y, Wu Y, Ilkayeva OR, Gooding J, Ching J, Zhou J, Martinez L, Xie S, Bay BH, Summers SA, Newgard CB, Yen PM. Caffeine stimulates hepatic lipid metabolism by the autophagy-lysosomal pathway in mice. Hepatology 2014; 59:1366-1380. [PMID: 23929677 DOI: 10.1002/hep.26667] [Citation(s) in RCA: 264] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/30/2013] [Indexed: 12/14/2022]
Abstract
UNLABELLED Caffeine is one of the world's most consumed drugs. Recently, several studies showed that its consumption is associated with lower risk for nonalcoholic fatty liver disease (NAFLD), an obesity-related condition that recently has become the major cause of liver disease worldwide. Although caffeine is known to stimulate hepatic fat oxidation, its mechanism of action on lipid metabolism is still not clear. Here, we show that caffeine surprisingly is a potent stimulator of hepatic autophagic flux. Using genetic, pharmacological, and metabolomic approaches, we demonstrate that caffeine reduces intrahepatic lipid content and stimulates β-oxidation in hepatic cells and liver by an autophagy-lysosomal pathway. Furthermore, caffeine-induced autophagy involved down-regulation of mammalian target of rapamycin signaling and alteration in hepatic amino acids and sphingolipid levels. In mice fed a high-fat diet, caffeine markedly reduces hepatosteatosis and concomitantly increases autophagy and lipid uptake in lysosomes. CONCLUSION These results provide novel insight into caffeine's lipolytic actions through autophagy in mammalian liver and its potential beneficial effects in NAFLD.
Collapse
Affiliation(s)
- Rohit A Sinha
- Program of Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
|