1
|
Sadhu N, Dalan R, Jain PR, Lee CJM, Pakkiri LS, Tay KY, Mina TH, Low D, Min Y, Ackers-Johnson M, Thi TT, Kota VG, Shi Y, Liu Y, Yu H, Lai V, Yang Y, Tay D, Ng HK, Wang X, Wong KE, Lam M, Guan XL, Bertin N, Wong E, Best J, Sarangarajan R, Elliott P, Riboli E, Lee J, Lee ES, Ngeow J, Tan P, Cheung C, Drum CL, Foo RS, Michelotti GA, Yu H, Sheridan PA, Loh M, Chambers JC. Metabolome-wide association identifies ferredoxin-1 (FDX1) as a determinant of cholesterol metabolism and cardiovascular risk in Asian populations. NATURE CARDIOVASCULAR RESEARCH 2025; 4:567-583. [PMID: 40360795 DOI: 10.1038/s44161-025-00638-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 03/19/2025] [Indexed: 05/15/2025]
Abstract
The burden of cardiovascular disease is rising in the Asia-Pacific region, in contrast to falling cardiovascular disease mortality rates in Europe and North America. Here we perform quantification of 883 metabolites by untargeted mass spectroscopy in 8,124 Asian adults and investigate their relationships with carotid intima media thickness, a marker of atherosclerosis. Plasma concentrations of 3beta-hydroxy-5-cholestenoate (3BH5C), a cholesterol metabolite, were inversely associated with carotid intima media thickness, and Mendelian randomization studies supported a causal relationship between 3BH5C and coronary artery disease. The observed effect size was 5- to 6-fold higher in Asians than Europeans. Colocalization analyses indicated the presence of a shared causal variant between 3BH5C plasma levels and messenger RNA and protein expression of ferredoxin-1 (FDX1), a protein that is essential for sterol and bile acid synthesis. We validated FDX1 as a regulator of 3BH5C synthesis in hepatocytes and macrophages and demonstrated its role in cholesterol efflux in macrophages and aortic smooth muscle cells, using knockout and overexpression models.
Collapse
Affiliation(s)
- Nilanjana Sadhu
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| | - Rinkoo Dalan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Endocrinology, Tan Tock Seng Hospital, Singapore, Singapore
| | - Pritesh R Jain
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Chang Jie Mick Lee
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Kai Yi Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Theresia H Mina
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Dorrain Low
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Yilin Min
- Precision Medicine Translational Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Matthew Ackers-Johnson
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Thi Tun Thi
- Precision Medicine Translational Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vishnu Goutham Kota
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Shi
- Precision Medicine Translational Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yan Liu
- Precision Medicine Translational Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hanry Yu
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Vicky Lai
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yang Yang
- Precision Medicine Translational Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Darwin Tay
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Hong Kiat Ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Xiaoyan Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Max Lam
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- North Region, Institute of Mental Health, Singapore, Singapore
| | - Xue Li Guan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Nicolas Bertin
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Eleanor Wong
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - James Best
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | | | - Paul Elliott
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Elio Riboli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
| | - Jimmy Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- North Region, Institute of Mental Health, Singapore, Singapore
| | - Eng Sing Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Clinical Research Unit, National Healthcare Group Polyclinic, Singapore, Singapore
| | - Joanne Ngeow
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Cancer Genetics Service, National Cancer Centre, Singapore, Singapore
| | - Patrick Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
- Precision Health Research, Singapore, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Chester Lee Drum
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger Sy Foo
- Cardiovascular Research Institute, National University Health System, Singapore, Singapore
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Haojie Yu
- Cardiovascular Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Precision Medicine Translational Research Programme, and Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- National Skin Centre, Singapore, Singapore
| | - John C Chambers
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK.
- Precision Health Research, Singapore, Singapore.
| |
Collapse
|
2
|
Wang P, Li J, Ji M, Pan J, Cao Y, Kong Y, Zhu L, Li J, Li B, Chang L, Zhang Z. Vitamin D receptor attenuates carbon tetrachloride-induced liver fibrosis via downregulation of YAP. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135480. [PMID: 39146589 DOI: 10.1016/j.jhazmat.2024.135480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Liver fibrosis is characterized by the excessive accumulation of extracellular matrix proteins, which can lead to cirrhosis and liver cancer. Metabolic dysfunction-associated steatosis liver diseases are common causes of liver fibrosis, sharing a similar pathogenesis with carbon tetrachloride (CCl₄) exposure. This process involves the activation of hepatic stellate cells (HSCs) into myofibroblasts. However, the detailed mechanism and effective treatment strategies require further investigation. In this study, we uncovered a negative correlation between VDR expression and YAP within HSCs. Subsequently, we demonstrated that VDR exerted a downregulatory influence on YAP transcriptional activity in HSCs. Intriguingly, activation VDR effectively inhibited the culture induced activation of primary HSCs by suppressing the transcriptional activity of early YAP. Furthermore, in vivo results manifested that hepatic-specific deletion of YAP/TAZ ameliorates CCl4-induced liver fibrosis, and nullified the antifibrotic efficacy of VDR. Importantly, a YAP inhibitor rescued the exacerbation of liver fibrosis induced by hepatic-specific VDR knockout. Moreover, the combined pharmacological of VDR agonist and YAP inhibitor demonstrated a synergistic effect in diminishing CCl4-induced liver fibrosis, primary HSCs activation and hepatic injury in vivo. These effects were underpinned by their collective ability to inhibit HSC activation through AMPK activation, consequently curbing ATP synthesis and HSCs proliferation. In conclusion, our results not only revealed the inhibition of VDR on YAP-activated liver stellate cells but also identified a synergistic effect of VDR agonist and YAP inhibitor in an AMPKα-dependent manner, providing a practical foundation for integration of multi-targeted drugs in the therapy of CCl4-induced hepatic fibrosis.
Collapse
Affiliation(s)
- Ping Wang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jie Li
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Mintao Ji
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity. The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Jinjing Pan
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Yanmei Cao
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou 215007, China
| | - Yulin Kong
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou 215007, China
| | - Li Zhu
- Department of Infectious Diseases, The Affiliated Infectious Diseases Hospital of Soochow University, Suzhou 215007, China
| | - Jiafu Li
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China
| | - Bingyan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| | - Lei Chang
- State Key Laboratory of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Jiangsu Key Laboratory of Infection and Immunity. The Fourth Affiliated Hospital of Soochow University, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou 215123, China; Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200433, China.
| | - Zengli Zhang
- Department of Occupational and Environmental Health, School of Public Health, Suzhou Medical College of Soochow University, Suzhou 215123, China.
| |
Collapse
|
3
|
Wu HT, Tsai CS, Chao TH, Ou HY, Tsai LM. A Novel Antioxidant, Hydrogen-Rich Coral Calcium Alters Gut Microbiome and Bile Acid Synthesis to Improve Methionine-and-Choline-Deficient Diet-Induced Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2024; 13:746. [PMID: 38929185 PMCID: PMC11201271 DOI: 10.3390/antiox13060746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) has dramatically increased in recent years, and it is highly associated with metabolic diseases, as well as the development of hepatocellular carcinoma. However, effective therapeutic strategies for the treatment of NAFLD are still scarce. Although hydrogen-rich water shows beneficial effects for hepatic steatosis, the inconvenience limits the application of this antioxidant. In light of this, hydrogen-rich coral calcium (HRCC) was developed due to its convenience and quantifiable characteristics. However, the effects of HRCC on NAFLD are still unknown. In the present study, we found that HRCC treatment improved methionine-and-choline-deficient diet (MCD)-induced hepatic steatosis, increased aspartate aminotransferase and alanine aminotransferase levels, and elevated hepatic inflammatory factor expressions in mice. In addition to the increased expressions of antioxidative enzymes, we found that HRCC increased the expressions of bile acid biosynthesis-related genes, including Cyp8b1 and Cyp27a1. Increased hepatic bile acid contents, such as muricholic acids, 23 nor-deoxycholic acid, glycoursodeoxycholic acid, and cholic acids, were also confirmed in MCD mice treated with HRCC. Since the biogenesis of bile acids is associated with the constitution of gut microbiome, the alterations in gut microbiome by HRCC were evaluated. We found that HRCC significantly changed the constitution of gut microbiome in MCD mice and increased the contents of Anaerobacterium, Acutalibacter, Anaerosacchariphilus, and Corynebacterium. Taken together, HRCC improved MCD-induced NAFLD through anti-inflammatory mechanisms and by increasing antioxidative activities. Additionally, HRCC might alter gut microbiome to change hepatic bile acid contents, exerting beneficial effects for the treatment of NAFLD.
Collapse
Affiliation(s)
- Hung-Tsung Wu
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (H.-T.W.); (T.-H.C.); (H.-Y.O.)
- Tong-Yuan Diabetes Center, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Chin-Shiang Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ting-Hsing Chao
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (H.-T.W.); (T.-H.C.); (H.-Y.O.)
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Horng-Yih Ou
- Department of Internal Medicine, School of Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan; (H.-T.W.); (T.-H.C.); (H.-Y.O.)
- Tong-Yuan Diabetes Center, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Liang-Miin Tsai
- Department of Internal Medicine, Tainan Municipal Hospital (Managed by Show-Chwan Medical Care Corporation), Tainan 701, Taiwan
| |
Collapse
|
4
|
Jiang YJ, Cao YM, Cao YB, Yan TH, Jia CL, He P. A Review: Cytochrome P450 in Alcoholic and Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2024; 17:1511-1521. [PMID: 38586542 PMCID: PMC10997053 DOI: 10.2147/dmso.s449494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/16/2024] [Indexed: 04/09/2024] Open
Abstract
Alcoholic fatty liver disease (FALD) and non-alcoholic fatty liver disease (NAFLD) have similar pathological spectra, both of which are associated with a series of symptoms, including steatosis, inflammation, and fibrosis. These clinical manifestations are caused by hepatic lipid synthesis and metabolism dysregulation and affect human health. Despite having been studied extensively, targeted therapies remain elusive. The Cytochrome P450 (CYP450) family is the most important drug-metabolising enzyme in the body, primarily in the liver. It is responsible for the metabolism of endogenous and exogenous compounds, completing biological transformation. This process is relevant to the occurrence and development of AFLD and NAFLD. In this review, the correlation between CYP450 and liver lipid metabolic diseases is summarised, providing new insights for the treatment of AFLD and NAFLD.
Collapse
Affiliation(s)
- Yu-Jie Jiang
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Ye-Ming Cao
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Tian-Hua Yan
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Cheng-Lin Jia
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Ping He
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| |
Collapse
|
5
|
Guo L, Lei J, Li P, Wang Y, Wang J, Song T, Zhu B, Jia J, Miao J, Cui H. Hedan tablet ameliorated non-alcoholic steatohepatitis by moderating NF-κB and lipid metabolism-related pathways via regulating hepatic metabolites. J Cell Mol Med 2024; 28:e18194. [PMID: 38506086 PMCID: PMC11967700 DOI: 10.1111/jcmm.18194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/20/2023] [Accepted: 01/09/2024] [Indexed: 03/21/2024] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a severe form of fatty liver disease. If not treated, it can lead to liver damage, cirrhosis and even liver cancer. However, advances in treatment have remained relatively slow, and there is thus an urgent need to develop appropriate treatments. Hedan tablet (HDP) is used to treat metabolic syndrome. However, scientific understanding of the therapeutic effect of HDP on NASH remains limited. We used HDP to treat a methionine/choline-deficient diet-induced model of NASH in rats to elucidate the therapeutic effects of HDP on liver injury. In addition, we used untargeted metabolomics to investigate the effects of HDP on metabolites in liver of NASH rats, and further validated its effects on inflammation and lipid metabolism following screening for potential target pathways. HDP had considerable therapeutic, anti-oxidant, and anti-inflammatory effects on NASH. HDP could also alter the hepatic metabolites changed by NASH. Moreover, HDP considerable moderated NF-κB and lipid metabolism-related pathways. The present study found that HDP had remarkable therapeutic effects in NASH rats. The therapeutic efficacy of HDP in NASH mainly associated with regulation of NF-κB and lipid metabolism-related pathways via arachidonic acid metabolism, glycine-serine-threonine metabolism, as well as steroid hormone biosynthesis.
Collapse
Affiliation(s)
- Liying Guo
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Jinyan Lei
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Peng Li
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Yuming Wang
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jing Wang
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Taotao Song
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Bo Zhu
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Jianwei Jia
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Jing Miao
- Department of Chinese MedicineTianjin Second People's HospitalTianjinChina
| | - Huantian Cui
- First School of Clinical MedicineYunnan University of Chinese MedicineKunmingChina
| |
Collapse
|
6
|
Axelrod CL, Langohr I, Dantas WS, Heintz EC, Vandanmagsar B, Yang S, Zunica ERM, Leigh Townsend R, Albaugh VL, Berthoud HR, Kirwan JP. Weight-independent effects of Roux-en-Y gastric bypass surgery on remission of nonalcoholic fatty liver disease in mice. Obesity (Silver Spring) 2023; 31:2960-2971. [PMID: 37731222 PMCID: PMC10895705 DOI: 10.1002/oby.23876] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/07/2023] [Accepted: 07/03/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVE Obesity is a driver of non-alcoholic fatty liver disease (NAFLD), and interventions that decrease body weight, such as bariatric surgery and/or calorie restriction (CR), may serve as effective therapies. This study compared the effects of Roux-en-Y gastric bypass surgery (RYGB) and CR on hepatic function in mice with obesity and NAFLD. METHODS C57BL/6J mice were fed a high-fat diet to promote obesity. At 16 weeks of age, mice were randomized to sham surgery (sham), RYGB, or CR weight matched to RYGB (WM). Body weight/composition, food intake, and energy expenditure (EE) were measured throughout treatment. Liver histopathology was evaluated from H&E-stained sections. Hepatic enzymes and glycogen content were determined by ELISA. Transcriptional signatures were revealed via RNA sequencing. RESULTS RYGB reduced hepatic lipid content and adiposity while increasing EE and lean body mass relative to WM. Hepatic glycogen and bile acid content were increased after RYGB relative to sham and WM. RYGB activated enterohepatic signaling and genes regulating hepatic lipid homeostasis. CONCLUSIONS RYGB improved whole-body composition and hepatic lipid homeostasis to a greater extent than CR in mice. RYGB was associated with discrete remodeling of the hepatic transcriptome, suggesting that surgery may be mechanistically additive to CR.
Collapse
Affiliation(s)
- Christopher L. Axelrod
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Ingeborg Langohr
- Department of Pathobiological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Wagner S. Dantas
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth C. Heintz
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Bolormaa Vandanmagsar
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Shengping Yang
- Department of Biostatistics, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Elizabeth R. M. Zunica
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - R. Leigh Townsend
- Neurobiology and Nutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Vance L. Albaugh
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
- Metamor Institute, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Hans-Rudolf Berthoud
- Neurobiology and Nutrition Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - John P. Kirwan
- Integrative Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| |
Collapse
|
7
|
Li Y, Zhang D, Gao Y, Wang P, Wang Z, Zhang B, Liu J, Ye D, Ma W, Lu S. METTL3 exacerbates insulin resistance in hepatocytes by regulating m 6A modification of cytochrome P450 2B6. Nutr Metab (Lond) 2023; 20:40. [PMID: 37710320 PMCID: PMC10502999 DOI: 10.1186/s12986-023-00762-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Insulin resistance (IR) in hepatocytes endangers human health, and frequently results in the development of non-alcoholic fatty liver disease (NAFLD). Research on m6A methylation of RNA molecules has gained popularity in recent years; however, the molecular mechanisms regulating the processes of m6A modification and IR are not known. The cytochrome P450 (CYP450) enzyme system, which is mainly found in the liver, is associated with the pathogenesis of NAFLD. However, few studies have been conducted on CYP450 related m6A methylation. Here, we investigated the role of the methyltransferase METTL3 in exacerbating IR in hepatocytes, mainly focusing on the regulation of m6A modifications in CYP2B6. METHODS AND RESULTS Analysis using dot blot and epitranscriptomic chips revealed that the m6A modification pattern of the transcriptome in high-fat diet (HFD)-induced fatty liver and free fatty acid (FFA)-induced fatty hepatocytes showed significant changes. CYP450 family members, especially Cyp2b10, whose homolog in humans is CYP2B6, led to a noticeable increase in m6A levels in HFD-induced mice livers. Application of the METTL3 methyltransferase inhibitor, STM2457, increased the level of insulin sensitivity in hepatocytes. We then analyzed the role of METTL3 in regulating m6A modification of CYP2B6 in hepatocytes. METTL3 regulated the m6A modification of CYP2B6, and a positive correlation was found between the levels of CYP2B6 translation and m6A modifications. Furthermore, interference with METTL3 expression and exposure to STM2457 inhibited METTL3 activity, which in turn interfered with the phosphorylated insulin receptor substrate (pIRS)-glucose transporter 2 (GLUT2) insulin signaling pathway; overexpression of CYP2B6 hindered IRS phosphorylation and translocation of GLUT2 to membranes, which ultimately exacerbated IR. CONCLUSION These findings offer unique insights into the role that METTL3-mediated m6A modifications of CYP2B6 play in regulating insulin sensitivity in hepatocytes and provide key information for the development of strategies to induce m6A modifications for the clinical treatment of NAFLD.
Collapse
Affiliation(s)
- Yongqing Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China
| | - Dantong Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China
| | - Yinan Gao
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China
| | - Peijun Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Zejun Wang
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Bingyang Zhang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Junjun Liu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China
| | - Diwen Ye
- School of Laboratory Medicine, Weifang Medical University, Weifang, 261000, China
| | - Wanshan Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China.
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China.
| | - Sumei Lu
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan, 250000, China.
- Department of Clinical Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, China.
| |
Collapse
|
8
|
Neves RC. Relationship between calcium dynamics and inflammatory status in the transition period of dairy cows. JDS COMMUNICATIONS 2023; 4:225-229. [PMID: 37360125 PMCID: PMC10285257 DOI: 10.3168/jdsc.2022-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/20/2022] [Indexed: 06/28/2023]
Abstract
Improvements in nutrition, management, and genetics of dairy cows over the last several decades have shifted research focus from clinical diseases to subclinical disorders, to which transition cows are particularly vulnerable. Recent studies on the characterization of subclinical hypocalcemia (SCH) indicate that the combined analysis of the degree, timing of suboptimal blood Ca concentration, and duration are most reflective of the disorder. Therefore, the understanding of blood Ca dynamics in early postpartum cows has emerged as an avenue to investigate the paths leading to a successful metabolic adaptation to lactation or not. The conundrum has been in defining whether SCH is the cause or a reflection of a greater underlying disorder. Immune activation and systemic inflammation have been proposed to be the root cause of SCH. However, there is a paucity of data investigating the mechanisms of how systemic inflammation can lead to reduced blood Ca concentration in dairy cows. The objective of this review is to discuss the links between systemic inflammation and reduced blood Ca concentration, and studies needed to advance knowledge on the interface between systemic inflammation and Ca metabolism for the transition dairy cow.
Collapse
|
9
|
Sun J, Fan J, Li T, Yan X, Jiang Y. Nuciferine Protects Against High-Fat Diet-Induced Hepatic Steatosis via Modulation of Gut Microbiota and Bile Acid Metabolism in Rats. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12014-12028. [PMID: 36106619 DOI: 10.1021/acs.jafc.2c04817] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Our previous study showed that nuciferine (NF) attenuated non-alcoholic fatty liver disease (NAFLD), which is attributed to a high-fat diet (HFD) through reinforcing intestinal barrier functions, regulating lipid metabolism, and improving inflammation. To clarify whether other mechanisms contribute to the anti-NAFLD efficacy of NF, the present study investigated the influence of NF on bile acid (BA) metabolism and gut microbiota in HFD-fed rats. The data demonstrated that NF changed the composition of colonic BA, particularly elevating conjugated BA and non-12OH BA levels. As shown by downregulated protein levels of FXR, FGF15, FGFR4, and ASBT and upregulated protein levels of CYP7A1 and CYP27A1, NF inhibited ileal FXR signaling, promoted BA synthesis, suppressed BA reabsorption, and facilitated fecal BA excretion. NF might affect hepatic FXR signaling, BA conjugation, and enterohepatic circulation by the changed mRNA levels of Fxr, Shp, Baat, Bacs, Bsep, Ntcp, Ibabp, and Ostα/β. Meanwhile, NF regulated the gut microbiota, characterized by decreased BSH-producing genus, 7α-dehydroxylation genus, and increased taurine metabolism-related genus. Spearman rank correlation analysis implied that Colidextribacter, Adlercreutzia, Family_XIII_AD3011_group, Lachnospiraceae_UCG-010, Eisenbergiella, and UCG-005 were robustly associated with particular BA monomers. In conclusion, our experiment results suggested that NF could exert a mitigating effect on NAFLD via regulating BA metabolism and modulating the gut microbiota.
Collapse
Affiliation(s)
- Jingyue Sun
- College of Biosystems Engineering and Food Science, Zhejiang University, No.866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Jiemin Fan
- College of Biosystems Engineering and Food Science, Zhejiang University, No.866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Tingting Li
- College of Biosystems Engineering and Food Science, Zhejiang University, No.866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Xiaoxue Yan
- College of Biosystems Engineering and Food Science, Zhejiang University, No.866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| | - Yihong Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University, No.866 Yuhangtang Road, Xihu District, Hangzhou 310058, China
| |
Collapse
|
10
|
Li D, Cui Y, Wang X, Liu F, Li X. Apple Polyphenol Extract Improves High-Fat Diet-Induced Hepatic Steatosis by Regulating Bile Acid Synthesis and Gut Microbiota in C57BL/6 Male Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6829-6841. [PMID: 34124904 DOI: 10.1021/acs.jafc.1c02532] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Our previous study showed that apple polyphenol extract (APE) ameliorated high-fat diet-induced hepatic steatosis in C57BL/6 mice by targeting the LKB1/AMPK pathway; to investigate whether other mechanisms are involved in APE induction of improved hepatic steatosis, especially the roles of bile acid (BA) metabolism and gut microbiota, we conducted this study. Thirty-three C57BL/6 male mice were fed with high-fat diet for 12 weeks and concomitantly treated with sterilized water (CON) or 125 or 500 mg/(kg·bw·day) APE (low-dose APE, LAP; high-dose APE, HAP) by intragastric administration. APE treatment decreased total fecal BA contents, especially fecal primary BA levels, mainly including cholic acid, chenodeoxycholic acid, and muricholic acid. An upregulated hepatic Farnesoid X receptor (FXR) protein level and downregulated protein levels of cholesterol 7α-hydroxylase (CYP7A1) and cholesterol 7α-hydroxylase (CYP27A1) were observed after APE treatment, which resulted in the suppressed BA synthesis. Meanwhile, APE had no significant effects on mucosal injury and FXR expression in the jejunum. APE regulated the diversity of gut microbiota and microbiota composition, characterized by significantly increased relative abundance of Akkermansia and decreased relative abundance of Lactobacillus. Furthermore, APE might affect the reverse cholesterol transport in the ileum, evidenced by the changed mRNA levels of NPC1-like intracellular cholesterol transporter 1 (Npc1l1), liver X receptor (Lxr), ATP binding cassette subfamily A member 1 (Abca1), and ATP binding cassette subfamily G member 1 (Abcg1). However, APE did not affect the dihydroxylation and taurine metabolism of BA. The correlation analysis deduced no obvious interactions between BA and gut microbiota. In summary, APE, especially a high dose of APE, could alleviate hepatic steatosis, and the mechanisms were associated with inhibiting BA synthesis and modulating gut microbiota.
Collapse
Affiliation(s)
- Deming Li
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Yuan Cui
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Xinjing Wang
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Fang Liu
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
| | - Xinli Li
- School of Public Health, Medical College of Soochow University, 199 Renai Road, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, School of Public Health, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
11
|
Bennett H, Troutman TD, Sakai M, Glass CK. Epigenetic Regulation of Kupffer Cell Function in Health and Disease. Front Immunol 2021; 11:609618. [PMID: 33574817 PMCID: PMC7870864 DOI: 10.3389/fimmu.2020.609618] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/08/2020] [Indexed: 12/13/2022] Open
Abstract
Kupffer cells, the resident macrophages of the liver, comprise the largest pool of tissue macrophages in the body. Within the liver sinusoids Kupffer cells perform functions common across many tissue macrophages including response to tissue damage and antigen presentation. They also engage in specialized activities including iron scavenging and the uptake of opsonized particles from the portal blood. Here, we review recent studies of the epigenetic pathways that establish Kupffer cell identity and function. We describe a model by which liver-environment specific signals induce lineage determining transcription factors necessary for differentiation of Kupffer cells from bone-marrow derived monocytes. We conclude by discussing how these lineage determining transcription factors (LDTFs) drive Kupffer cell behavior during both homeostasis and disease, with particular focus on the relevance of Kupffer cell LDTF pathways in the setting of non-alcoholic fatty liver disease and non-alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Hunter Bennett
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Ty D Troutman
- Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| | - Mashito Sakai
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Biochemistry & Molecular Biology, Nippon Medical School, Tokyo, Japan
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, United States.,Department of Medicine, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
12
|
Choi C, Finlay DK. Diverse Immunoregulatory Roles of Oxysterols-The Oxidized Cholesterol Metabolites. Metabolites 2020; 10:metabo10100384. [PMID: 32998240 PMCID: PMC7601797 DOI: 10.3390/metabo10100384] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/14/2020] [Accepted: 09/24/2020] [Indexed: 12/15/2022] Open
Abstract
Intermediates of both cholesterol synthesis and cholesterol metabolism can have diverse roles in the control of cellular processes that go beyond the control of cholesterol homeostasis. For example, oxidized forms of cholesterol, called oxysterols have functions ranging from the control of gene expression, signal transduction and cell migration. This is of particular interest in the context of immunology and immunometabolism where we now know that metabolic processes are key towards shaping the nature of immune responses. Equally, aberrant metabolic processes including altered cholesterol homeostasis contribute to immune dysregulation and dysfunction in pathological situations. This review article brings together our current understanding of how oxysterols affect the control of immune responses in diverse immunological settings.
Collapse
Affiliation(s)
- Chloe Choi
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- Correspondence: (C.C.); (D.K.F.); Tel.: +353-1-896-3564 (D.K.F.)
| | - David K. Finlay
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- School of Pharmacy and Pharmaceutical Sciences, Trinity Biomedical Sciences Institute, Trinity College Dublin, Pearse Street 152-160, Dublin 2, Ireland
- Correspondence: (C.C.); (D.K.F.); Tel.: +353-1-896-3564 (D.K.F.)
| |
Collapse
|
13
|
Wang X, Su YR, Petersen PS, Bien S, Schmit SL, Drew DA, Albanes D, Berndt SI, Brenner H, Campbell PT, Casey G, Chang-Claude J, Gallinger SJ, Gruber SB, Haile RW, Harrison TA, Hoffmeister M, Jacobs EJ, Jenkins MA, Joshi AD, Li L, Lin Y, Lindor NM, Marchand LL, Martin V, Milne R, Maclnnis R, Moreno V, Nan H, Newcomb PA, Potter JD, Rennert G, Rennert H, Slattery ML, Thibodeau SN, Weinstein SJ, Woods MO, Chan AT, White E, Hsu L, Peters U. Exploratory Genome-Wide Interaction Analysis of Nonsteroidal Anti-inflammatory Drugs and Predicted Gene Expression on Colorectal Cancer Risk. Cancer Epidemiol Biomarkers Prev 2020; 29:1800-1808. [PMID: 32651213 PMCID: PMC7556991 DOI: 10.1158/1055-9965.epi-19-1018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/13/2019] [Accepted: 06/24/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Regular use of nonsteroidal anti-inflammatory drugs (NSAID) is associated with lower risk of colorectal cancer. Genome-wide interaction analysis on single variants (G × E) has identified several SNPs that may interact with NSAIDs to confer colorectal cancer risk, but variations in gene expression levels may also modify the effect of NSAID use. Therefore, we tested interactions between NSAID use and predicted gene expression levels in relation to colorectal cancer risk. METHODS Genetically predicted gene expressions were tested for interaction with NSAID use on colorectal cancer risk among 19,258 colorectal cancer cases and 18,597 controls from 21 observational studies. A Mixed Score Test for Interactions (MiSTi) approach was used to jointly assess G × E effects which are modeled via fixed interaction effects of the weighted burden within each gene set (burden) and residual G × E effects (variance). A false discovery rate (FDR) at 0.2 was applied to correct for multiple testing. RESULTS Among the 4,840 genes tested, genetically predicted expression levels of four genes modified the effect of any NSAID use on colorectal cancer risk, including DPP10 (PG×E = 1.96 × 10-4), KRT16 (PG×E = 2.3 × 10-4), CD14 (PG×E = 9.38 × 10-4), and CYP27A1 (PG×E = 1.44 × 10-3). There was a significant interaction between expression level of RP11-89N17 and regular use of aspirin only on colorectal cancer risk (PG×E = 3.23 × 10-5). No interactions were observed between predicted gene expression and nonaspirin NSAID use at FDR < 0.2. CONCLUSIONS By incorporating functional information, we discovered several novel genes that interacted with NSAID use. IMPACT These findings provide preliminary support that could help understand the chemopreventive mechanisms of NSAIDs on colorectal cancer.
Collapse
Affiliation(s)
- Xiaoliang Wang
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington.
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Yu-Ru Su
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Paneen S Petersen
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Stephanie Bien
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Stephanie L Schmit
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - David A Drew
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Graham Casey
- Public Health Sciences, University of Virginia, Charlottesville, Virginia
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- University Cancer Center Hamburg, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - Steven J Gallinger
- Department of Pathology and Laboratory Medicine, Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Division of General Surgery, Toronto General Hospital, Toronto, Ontario, Canada
| | - Stephen B Gruber
- Department of Preventive Medicine, USC Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Robert W Haile
- Department of Health Research and Policy (Epidemiology), Stanford University School of Medicine, Palo Alto, California
- Department of Medicine (Oncology), Stanford Cancer Institute, Palo Alto, California
| | - Tabitha A Harrison
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eric J Jacobs
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Mark A Jenkins
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, Victoria, Australia
| | - Amit D Joshi
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Li Li
- Department of Family Medicine, University of Virginia, Charlottesville, Virginia
| | - Yi Lin
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Noralane M Lindor
- Department of Health Sciences Research, Mayo Clinic, Scottsdale, Arizona
| | - Loïc Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii
| | - Vicente Martin
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Biomedicine Institute (IBIOMED), University of León, León, Spain
| | - Roger Milne
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Robert Maclnnis
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Victor Moreno
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Cancer Prevention and Control Program, Catalan Institute of Oncology-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Hongmei Nan
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana
| | - Polly A Newcomb
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - John D Potter
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
- Centre for Public Health Research, Massey University, Wellington, New Zealand
| | - Gad Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Hedy Rennert
- Department of Community Medicine and Epidemiology, Lady Davis Carmel Medical Center, Haifa, Israel
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
- Clalit National Cancer Control Center, Haifa, Israel
| | - Martha L Slattery
- Department of Internal Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah
| | - Steve N Thibodeau
- Department of Laboratory Medicine & Pathology, Mayo Clinic, Rochester, Minnesota
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael O Woods
- Discipline of Genetics, Memorial University of Newfoundland, St. John's, Canada
| | - Andrew T Chan
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts
- Clinical and Translational Epidemiology Unit, Massachusetts General Hospital, Boston, Massachusetts
- Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Emily White
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| | - Li Hsu
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Ulrike Peters
- Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington
| |
Collapse
|
14
|
Abe A, Hiraoka M, Matsuzawa F, Aikawa SI, Niimura Y. Esterification of side-chain oxysterols by lysosomal phospholipase A2. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158787. [PMID: 32777483 DOI: 10.1016/j.bbalip.2020.158787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/15/2020] [Accepted: 08/02/2020] [Indexed: 11/30/2022]
Abstract
Side-chain oxysterols produced from cholesterol either enzymatically or non-enzymatically show various bioactivities. Lecithin-cholesterol acyltransferase (LCAT) esterifies the C3-hydroxyl group of these sterols as well as cholesterol. Lysosomal phospholipase A2 (LPLA2) is related to LCAT but does not catalyze esterification of cholesterol. First, esterification of side-chain oxysterols by LPLA2 was investigated using recombinant mouse LPLA2 and dioleoyl-PC/sulfatide/oxysterol liposomes under acidic conditions. TLC and LC-MS/MS showed that the C3 and C27-hydroxyl groups of 27-hydroxycholesterol could be individually esterified by LPLA2 to form a monoester with the C27-hydroxyl preference. Cholesterol did not inhibit this reaction. Also, LPLA2 esterified other side-chain oxysterols. Their esterifications by mouse serum containing LCAT supported the idea that their esterifications by LPLA2 occur at the C3-hydroxyl group. N-acetylsphingosine (NAS) acting as an acyl acceptor in LPLA2 transacylation inhibited the side-chain oxysterol esterification by LPLA2. This suggests a competition between hydroxycholesterol and NAS on the acyl-LPLA2 intermediate formed during the reaction. Raising cationic amphiphilic drug concentration or ionic strength in the reaction mixture evoked a reduction of the side-chain oxysterol esterification by LPLA2. This indicates that the esterification could progress via an interfacial interaction of LPLA2 with the lipid membrane surface through an electrostatic interaction. The docking model of acyl-LPLA2 intermediate and side-chain oxysterol provided new insight to elucidate the transacylation mechanism of sterols by LPLA2. Finally, exogenous 25-hydroxycholesterol esterification within alveolar macrophages prepared from wild-type mice was significantly higher than that from LPLA2 deficient mice. This suggests that there is an esterification pathway of side-chain oxysterols via LPLA2.
Collapse
Affiliation(s)
- Akira Abe
- Department of Molecular Science of Bacteria, Tokyo University of Agriculture, Tokyo, Japan.
| | - Miki Hiraoka
- Department of Ophthalmology, Health Science University of Hokkaido, Sapporo, Japan
| | | | | | - Youichi Niimura
- Department of Molecular Science of Bacteria, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
15
|
Houben T, Bitorina AV, Oligschlaeger Y, Jeurissen ML, Rensen S, Köhler SE, Westerterp M, Lütjohann D, Theys J, Romano A, Plat J, Shiri-Sverdlov R. Sex-opposed inflammatory effects of 27-hydroxycholesterol are mediated via differences in estrogen signaling. J Pathol 2020; 251:429-439. [PMID: 32472585 PMCID: PMC7497011 DOI: 10.1002/path.5477] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/28/2020] [Accepted: 05/19/2020] [Indexed: 02/06/2023]
Abstract
Despite the increased awareness of differences in the inflammatory response between men and women, only limited research has focused on the biological factors underlying these sex differences. The cholesterol derivative 27‐hydroxycholesterol (27HC) has been shown to have opposite inflammatory effects in independent experiments using mouse models of atherosclerosis and non‐alcoholic steatohepatitis (NASH), pathologies characterized by cholesterol‐induced inflammation. As the sex of mice in these in vivo models differed, we hypothesized that 27HC exerts opposite inflammatory effects in males compared to females. To explore whether the sex‐opposed inflammatory effects of 27HC translated to humans, plasma 27HC levels were measured and correlated with hepatic inflammatory parameters in obese individuals. To investigate whether 27HC exerts sex‐opposed effects on inflammation, we injected 27HC into female and male Niemann–Pick disease type C1 mice (Npc1nih) that were used as an extreme model of cholesterol‐induced inflammation. Finally, the involvement of estrogen signaling in this mechanism was studied in bone marrow‐derived macrophages (BMDMs) that were treated with 27HC and 17β‐estradiol (E2). Plasma 27HC levels showed opposite correlations with hepatic inflammatory indicators between female and male obese individuals. Likewise, hepatic 27HC levels oppositely correlated between female and male Npc1nih mice. Twenty‐seven hydroxycholesterol injections reduced hepatic inflammation in female Npc1nih mice in contrast to male Npc1nih mice, which showed increased hepatic inflammation after 27HC injections. Furthermore, 27HC administration also oppositely affected inflammation in female and male BMDMs cultured in E2‐enriched medium. Remarkably, female BMDMs showed higher ERα expression compared to male BMDMs. Our findings identify that the sex‐opposed inflammatory effects of 27HC are E2‐dependent and are potentially related to differences in ERα expression between females and males. Hence, the individual’s sex needs to be taken into account when 27HC is employed as a therapeutic tool as well as in macrophage estrogen research in general. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tom Houben
- Department of Molecular Genetics, School of Nutrition & Translational Research Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Albert V Bitorina
- Department of Molecular Genetics, School of Nutrition & Translational Research Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Yvonne Oligschlaeger
- Department of Molecular Genetics, School of Nutrition & Translational Research Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Mike Lj Jeurissen
- Department of Molecular Genetics, School of Nutrition & Translational Research Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Sander Rensen
- Department of Surgery, School of Nutrition & Translational Research Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - S Eleonore Köhler
- Department of Anatomy & Embryology, School of Nutrition & Translational Research Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Marit Westerterp
- Department of Pediatrics, Section Molecular Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dieter Lütjohann
- Institute of Clinical Chemistry and Clinical Pharmacology, University of Bonn, Bonn, Germany
| | - Jan Theys
- Department of Precision Medicine, GROW School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Andrea Romano
- Department of Obstetrics & Gynaecology, School for Oncology and Developmental Biology, Maastricht University, Maastricht, The Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, School of Nutrition & Translational Research Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition & Translational Research Maastricht (NUTRIM), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
16
|
Abstract
Nonalcoholic fatty liver disease (NAFLD) is considered the hepatic manifestation of the metabolic syndrome (MetS) and comprises one of the largest health threats of the twenty-first century. In this chapter, we review the current state of knowledge of NAFLD and underline the striking similarities with atherosclerosis. We first describe current epidemiological data showing the staggering increase of NAFLD numbers and its related clinical and economic costs. We then provide an overview of pathophysiological hepatic processes in NAFLD and highlight the systemic aspects of NAFLD that point toward metabolic crosstalk between organs as an important cause of metabolic disease. Finally, we end by highlighting the currently investigated therapeutic approaches for NAFLD, which also show strong similarities with a range of treatment options for atherosclerosis.
Collapse
|
17
|
Raselli T, Hearn T, Wyss A, Atrott K, Peter A, Frey-Wagner I, Spalinger MR, Maggio EM, Sailer AW, Schmitt J, Schreiner P, Moncsek A, Mertens J, Scharl M, Griffiths WJ, Bueter M, Geier A, Rogler G, Wang Y, Misselwitz B. Elevated oxysterol levels in human and mouse livers reflect nonalcoholic steatohepatitis. J Lipid Res 2019; 60:1270-1283. [PMID: 31113816 PMCID: PMC6602130 DOI: 10.1194/jlr.m093229] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/19/2019] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH), a primary cause of liver disease, leads to complications such as fibrosis, cirrhosis, and carcinoma, but the pathophysiology of NASH is incompletely understood. Epstein-Barr virus-induced G protein-coupled receptor 2 (EBI2) and its oxysterol ligand 7α,25-dihydroxycholesterol (7α,25-diHC) are recently discovered immune regulators. Several lines of evidence suggest a role of oxysterols in NASH pathogenesis, but rigorous testing has not been performed. We measured oxysterol levels in the livers of NASH patients by LC-MS and tested the role of the EBI2-7α,25-diHC system in a murine feeding model of NASH. Free oxysterol profiling in livers from NASH patients revealed a pronounced increase in 24- and 7-hydroxylated oxysterols in NASH compared with controls. Levels of 24- and 7-hydroxylated oxysterols correlated with histological NASH activity. Histological analysis of murine liver samples demonstrated ballooning and liver inflammation. No significant genotype-related differences were observed in Ebi2−/− mice and mice with defects in the 7α,25-diHC synthesizing enzymes CH25H and CYP7B1 compared with wild-type littermate controls, arguing against an essential role of these genes in NASH pathogenesis. Elevated 24- and 7-hydroxylated oxysterol levels were confirmed in murine NASH liver samples. Our results suggest increased bile acid synthesis in NASH samples, as judged by the enhanced level of 7α-hydroxycholest-4-en-3-one and impaired 24S-hydroxycholesterol metabolism as characteristic biochemical changes in livers affected by NASH.
Collapse
Affiliation(s)
- Tina Raselli
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Tom Hearn
- Swansea University Medical School Singleton Park, Swansea, United Kingdom
| | - Annika Wyss
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Kirstin Atrott
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Alain Peter
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Isabelle Frey-Wagner
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Marianne R Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Ewerton M Maggio
- Institute for Surgical Pathology University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas W Sailer
- Chemical Biology and Therapeutics, Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Johannes Schmitt
- Division of Hepatology Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Philipp Schreiner
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Anja Moncsek
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Joachim Mertens
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | | | - Marco Bueter
- Department of Visceral Surgery University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Andreas Geier
- Division of Hepatology Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Yuqin Wang
- Swansea University Medical School Singleton Park, Swansea, United Kingdom
| | - Benjamin Misselwitz
- Department of Gastroenterology and Hepatology, University Hospital Zurich and University of Zurich, Zurich, Switzerland .,Department of Visceral Surgery and Medicine, Inselspital Bern and Bern University, Bern, Switzerland
| |
Collapse
|
18
|
Caridis AM, Lightbody RJ, Tarlton JMR, Dolan S, Graham A. Genetic obesity increases pancreatic expression of mitochondrial proteins which regulate cholesterol efflux in BRIN-BD11 insulinoma cells. Biosci Rep 2019; 39:BSR20181155. [PMID: 30819824 PMCID: PMC6430727 DOI: 10.1042/bsr20181155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 01/29/2019] [Accepted: 02/26/2019] [Indexed: 11/24/2022] Open
Abstract
Pancreatic β-cells are sensitive to fluctuations in cholesterol content, which can damage the insulin secretion pathway, contributing to the aetiology of type 2 diabetes mellitus. Cholesterol efflux to (apo)lipoproteins, via ATP-binding cassette (ABC) transporter A1 (ABCA1), can prevent intracellular cholesterol accumulation; in some peripheral cells, ABCA1-dependent efflux is enhanced by promotion of cholesterol trafficking to, and generation of Liver X receptor (LXR) ligands by, mitochondrial sterol 27-hydroxylase (Cyp27A1 (cytochrome P450 27 A1/sterol 27-hydroxylase)) and its redox partners, adrenodoxin (ADX) and ADX reductase (ADXR). Despite this, the roles of mitochondrial cholesterol trafficking (steroidogenic acute regulatory protein [StAR] and 18-kDa translocator protein [TSPO]) and metabolising proteins in insulin-secreting cells remain wholly uncharacterised. Here, we demonstrate an increase in pancreatic expression of Cyp27A1, ADXR, TSPO and LXRα, but not ADX or StAR, in obese (fa/fa) rodents compared with lean (Fa/?) controls. Overexpression of Cyp27A1 alone in BRIN-BD11 cells increased INS2 expression, without affecting lipid metabolism; however, after exposure to low-density lipoprotein (LDL), cholesterol efflux to (apo)lipoprotein acceptors was enhanced in Cyp27A1-overexpressing cells. Co-transfection of Cyp27A1, ADX and ADXR, at a ratio approximating that in pancreatic tissue, stimulated cholesterol efflux to apolipoprotein A-I (apoA-I) in both basal and cholesterol-loaded cells; insulin release was stimulated equally by all acceptors in cholesterol-loaded cells. Thus, genetic obesity increases pancreatic expression of Cyp27A1, ADXR, TSPO and LXRα, while modulation of Cyp27A1 and its redox partners promotes cholesterol efflux from insulin-secreting cells to acceptor (apo)lipoproteins; this response may help guard against loss of insulin secretion caused by accumulation of excess intracellular cholesterol.
Collapse
Affiliation(s)
- Anna-Maria Caridis
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Richard J Lightbody
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Jamie M R Tarlton
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Sharron Dolan
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Glasgow, United Kingdom
| |
Collapse
|
19
|
Park HY, Kang HS, Im SS. Recent insight into the correlation of SREBP-mediated lipid metabolism and innate immune response. J Mol Endocrinol 2018; 61:R123-R131. [PMID: 30307160 DOI: 10.1530/jme-17-0289] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fatty acids are essential nutrients that contribute to several intracellular functions. Fatty acid synthesis and oxidation are known to be regulated by sterol regulatory element-binding proteins (SREBPs), which play a pivotal role in the regulation of cellular triglyceride synthesis and cholesterol biogenesis. Recent studies point to a multifunctional role of SREBPs in the pathogenesis of metabolic diseases, such as obesity, type II diabetes and cancer as well as in immune responses. Notably, fatty acid metabolic intermediates are involved in energy homeostasis and pathophysiological conditions. In particular, intracellular fatty acid metabolism affects an inflammatory response, thereby influencing metabolic diseases. The objective of this review is to summarize the recent advances in our understanding of the dual role of SREBPs in both lipid metabolism and inflammation-mediated metabolic diseases.
Collapse
Affiliation(s)
- Hyeon Young Park
- Department of Physiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Hye Suk Kang
- Department of Physiology, Keimyung University School of Medicine, Daegu, South Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, South Korea
| |
Collapse
|
20
|
Oligschlaeger Y, Houben T, Jeurissen MLJ, Bitorina AV, Konings M, Baumgartner S, Plat J, Shiri-Sverdlov R. Exogenously Added Oxyphytosterols Do Not Affect Macrophage-Mediated Inflammatory Responses. Lipids 2018; 53:457-462. [DOI: 10.1002/lipd.12044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/16/2018] [Accepted: 04/20/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Yvonne Oligschlaeger
- Department of Molecular Genetics, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Tom Houben
- Department of Molecular Genetics, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Mike L. J. Jeurissen
- Department of Molecular Genetics, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Albert V. Bitorina
- Department of Molecular Genetics, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Maurice Konings
- Department of Human Biology and Movement Sciences, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Sabine Baumgartner
- Department of Human Biology and Movement Sciences, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Jogchum Plat
- Department of Human Biology and Movement Sciences, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, School of Nutrition & Translational Research Maastricht (NUTRIM); Maastricht University; PO Box 616, 6200 MD, Maastricht The Netherlands
| |
Collapse
|
21
|
Reesink KD, Hendrikx T, van Gorp PJ, Hoeks AP, Shiri-Sverdlov R. Ultrasonic Perfluorohexane-Loaded Monocyte Imaging: Toward a Minimally Invasive Technique for Selective Detection of Liver Inflammation in Fatty Liver Disease. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2018; 37:921-933. [PMID: 28990215 DOI: 10.1002/jum.14432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 06/06/2017] [Accepted: 07/13/2017] [Indexed: 06/07/2023]
Abstract
OBJECTIVES To investigate the utility of ultrasonic (US) perfluorohexane (PFH)-loaded monocyte imaging for detection of liver inflammation in fatty liver disease. METHODS C57Bl6 mice were injected intraperitoneally with tumor necrosis factor α and assessed by US PFH-loaded monocyte imaging 3 hours later. Echogenic monocytes were injected intravenously, leading to a transient increase in liver tissue intensity on a US perfusion scan. The contrast wash-out time constant was hypothesized to reflect the degree of inflammation. Next, we evaluated US PFH-loaded monocyte imaging in Ldlr-/- mice fed a 1-week high-fat/high-cholesterol diet as model for early developing nonalcoholic steatohepatitis. Adjunct analyses included tissue markers of liver inflammation. RESULTS Tumor necrosis factor α-injected mice showed a reduced wash-out time constant (mean ± SEM, 0.013 ± 0.003; n = 8) compared to controls (0.054 ± 0.009; n = 7; P = .0006), indicative of increased inflammatory adhesion molecule expression on the endothelium. The Ldlr-/- mice fed the high-fat/high-cholesterol diet showed liver inflammation, as reflected by increased (3- to 4-fold) infiltration of inflammatory cells and increased (3- to 4-fold) gene expression of tumor necrosis factor α, integrin αM, intracellular adhesion molecule, and vascular cell adhesion molecule. However, in these mice, no difference was detected in the wash-out time constant as assessed by US PFH-loaded monocyte imaging (high-fat/high-cholesterol, 0.050 ± 0.017; n = 5; chow, 0.048 ± 0.006; n = 6; P = .91). CONCLUSIONS Our results indicate that US PFH-loaded monocyte imaging is able to detect vascularly expressed inflammatory adhesion molecules in the mouse liver on direct endothelial stimulation. However, in our mouse model of early developing nonalcoholic steatohepatitis, we did not detect inflammation by this method, which may suggest that the time-dependent relationship between parenchymal and endothelial inflammation remains a fundamental issue to be addressed.
Collapse
Affiliation(s)
- Koen D Reesink
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Tim Hendrikx
- Department of Molecular Genetics, Nutrition and Toxicology Research Institute Maastricht School for Nutritional Toxicology and Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Patrick J van Gorp
- Department of Molecular Genetics, Nutrition and Toxicology Research Institute Maastricht School for Nutritional Toxicology and Metabolism, Maastricht University, Maastricht, the Netherlands
| | - Arnold P Hoeks
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht School for Cardiovascular Diseases, Maastricht, the Netherlands
| | - Ronit Shiri-Sverdlov
- Department of Molecular Genetics, Nutrition and Toxicology Research Institute Maastricht School for Nutritional Toxicology and Metabolism, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
22
|
Mutemberezi V, Guillemot-Legris O, Muccioli GG. Oxysterols: From cholesterol metabolites to key mediators. Prog Lipid Res 2016; 64:152-169. [PMID: 27687912 DOI: 10.1016/j.plipres.2016.09.002] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/13/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
Oxysterols are cholesterol metabolites that can be produced through enzymatic or radical processes. They constitute a large family of lipids (i.e. the oxysterome) involved in a plethora of physiological processes. They can act through GPCR (e.g. EBI2, SMO, CXCR2), nuclear receptors (LXR, ROR, ERα) and through transporters or regulatory proteins. Their physiological effects encompass cholesterol, lipid and glucose homeostasis. Additionally, they were shown to be involved in other processes such as immune regulatory functions and brain homeostasis. First studied as precursors of bile acids, they quickly emerged as interesting lipid mediators. Their levels are greatly altered in several pathologies and some oxysterols (e.g. 4β-hydroxycholesterol or 7α-hydroxycholestenone) are used as biomarkers of specific pathologies. In this review, we discuss the complex metabolism and molecular targets (including binding properties) of these bioactive lipids in human and mice. We also discuss the genetic mouse models currently available to interrogate their effects in pathophysiological settings. We also summarize the levels of oxysterols reported in two key organs in oxysterol metabolism (liver and brain), plasma and cerebrospinal fluid. Finally, we consider future opportunities and directions in the oxysterol field in order to gain a better insight and understanding of the complex oxysterol system.
Collapse
Affiliation(s)
- Valentin Mutemberezi
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Belgium
| | - Owein Guillemot-Legris
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Belgium
| | - Giulio G Muccioli
- Bioanalysis and Pharmacology of Bioactive Lipids Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Belgium.
| |
Collapse
|
23
|
MSP is a negative regulator of inflammation and lipogenesis in ex vivo models of non-alcoholic steatohepatitis. Exp Mol Med 2016; 48:e258. [PMID: 27609031 PMCID: PMC5050298 DOI: 10.1038/emm.2016.79] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/08/2016] [Accepted: 04/15/2016] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH), a metabolic disorder consisting of steatosis and inflammation, is considered the hepatic equivalent of metabolic syndrome and can result in irreversible liver damage. Macrophage-stimulating protein (MSP) is a hepatokine that potentially has a beneficial role in hepatic lipid and glucose metabolism via the activation of AMP-activated protein kinase (AMPK). In the current study, we investigated the regulatory role of MSP in the development of inflammation and lipid metabolism in various NASH models, both in vitro and ex vivo. We observed that MSP treatment activated the AMPK signaling pathway and inhibited lipopolysaccharide (LPS)- and palmitic acid (PA)-induced gene expression of pro-inflammatory cytokines in primary mouse hepatocytes. In addition, MSP treatment resulted in a significant reduction in PA-induced lipid accumulation and inhibited the gene expression of key lipogenic enzymes in HepG2 cells. Upon short hairpin RNA-induced knockdown of RON (the membrane-bound receptor for MSP), the anti-inflammatory and anti-lipogenic effects of MSP were markedly ablated. Finally, to mimic NASH ex vivo, we challenged bone marrow-derived macrophages with oxidized low-density lipoprotein (oxLDL) in combination with LPS. OxLDL+LPS exposure led to a marked inhibition of AMPK activity and a robust increase in inflammation. MSP treatment significantly reversed these effects by restoring AMPK activity and by suppressing pro-inflammatory cytokine gene expression and secretion under this condition. Taken together, these data suggest that MSP is an effective inhibitor of inflammation and lipid accumulation in the stressed liver, thereby indicating that MSP has a key regulatory role in NASH.
Collapse
|
24
|
Houben T, Brandsma E, Walenbergh SMA, Hofker MH, Shiri-Sverdlov R. Oxidized LDL at the crossroads of immunity in non-alcoholic steatohepatitis. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1862:416-429. [PMID: 27472963 DOI: 10.1016/j.bbalip.2016.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 07/01/2016] [Accepted: 07/21/2016] [Indexed: 02/08/2023]
Abstract
Non-alcoholic steatohepatitis (NASH) is viewed as the hepatic manifestation of the metabolic syndrome and is a condition hallmarked by lipid accumulation in the liver (steatosis) along with inflammation (hepatitis). Currently, the etiology and mechanisms leading to obesity-induced hepatic inflammation are not clear and, as a consequence, strategies to diagnose or treat NASH in an accurate manner do not exist. In the current review, we put forward the concept of oxidized lipids as a significant risk factor for NASH. We will focus on the contribution of the different types of oxidized lipids as part of the oxidized low-density lipoprotein (oxLDL) to the hepatic inflammatory response. Furthermore, we will elaborate on the underlying mechanisms linking oxLDL to inflammatory responses in the liver and on how these cascades can be used as therapeutic targets to combat NASH. This article is part of a Special Issue entitled: Lipid modification and lipid peroxidation products in innate immunity and inflammation edited by Christoph J. Binder.
Collapse
Affiliation(s)
- T Houben
- Department of Molecular Genetics, Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, the Netherlands
| | - E Brandsma
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, the Netherlands
| | - S M A Walenbergh
- Department of Molecular Genetics, Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, the Netherlands
| | - M H Hofker
- Molecular Genetics Section, Department of Pediatrics, University Medical Center Groningen, University of Groningen, the Netherlands
| | - R Shiri-Sverdlov
- Department of Molecular Genetics, Maastricht University, School for Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht, the Netherlands.
| |
Collapse
|
25
|
Umetani M. Re-adopting classical nuclear receptors by cholesterol metabolites. J Steroid Biochem Mol Biol 2016; 157:20-6. [PMID: 26563834 PMCID: PMC4724260 DOI: 10.1016/j.jsbmb.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 07/10/2015] [Accepted: 11/04/2015] [Indexed: 12/22/2022]
Abstract
Since the first cloning of the human estrogen receptor (ER) α in 1986 and the subsequent cloning of human ERβ, there has been extensive investigation of the role of estrogen/ER. Estrogens/ER play important roles not only in sexual development and reproduction but also in a variety of other functions in multiple tissues. Selective Estrogen Receptor Modulators (SERMs) are ER lignds that act as agonists or antagonists depending on the target genes and tissues, and until recently, only synthetic SERMs have been recognized. However, the discovery of the first endogenous SERM, 27-hydroxycholesterol (27HC), opened a new dimension of ER action in health and disease. In addition to the identification of 27HC as a SERM, oxysterols have been recently demonstrated as indirect modulators of ER through interaction with the nuclear receptor Liver X Receptor (LXR) β. In this review, the recent progress on these novel roles of oxysterols in ER modulation is summarized.
Collapse
Affiliation(s)
- Michihisa Umetani
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, 3517 Cullen Blvd, SERC 545, Houston, TX 77204-5056, USA.
| |
Collapse
|
26
|
Graham A. Mitochondrial regulation of macrophage cholesterol homeostasis. Free Radic Biol Med 2015; 89:982-92. [PMID: 26416507 DOI: 10.1016/j.freeradbiomed.2015.08.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/28/2015] [Accepted: 08/11/2015] [Indexed: 12/19/2022]
Abstract
This review explores the relationship between mitochondrial structure and function in the regulation of macrophage cholesterol metabolism and proposes that mitochondrial dysfunction contributes to loss of the elegant homeostatic mechanisms which normally maintain cellular sterol levels within defined limits. Mitochondrial sterol 27-hydroxylase (CYP27A1) can generate oxysterol activators of liver X receptors which heterodimerise with retinoid X receptors, enhancing the transcription of ATP binding cassette transporters (ABCA1, ABCG1, and ABCG4), that can remove excess cholesterol via efflux to apolipoproteins A-1, E, and high density lipoprotein, and inhibit inflammation. The activity of CYP27A1 is regulated by the rate of supply of cholesterol substrate to the inner mitochondrial membrane, mediated by a complex of proteins. The precise identity of this dynamic complex remains controversial, even in steroidogenic tissues, but may include steroidogenic acute regulatory protein and the 18 kDa translocator protein, together with voltage-dependent anion channels, ATPase AAA domain containing protein 3A, and optic atrophy type 1 proteins. Certainly, overexpression of StAR and TSPO proteins can enhance macrophage cholesterol efflux to apoA-I and/or HDL, while perturbations in mitochondrial function, or changes in the expression of mitochondrial fusion proteins, alter the efficiency of cholesterol efflux. Molecules which can sustain or improve mitochondrial function or increase the activity of the protein complex involved in cholesterol transfer may have utility in resolving the problem of dysregulated macrophage cholesterol homeostasis, a condition which may contribute to inflammation, atherosclerosis, nonalcoholic steatohepatitis, osteoblastic bone resorption, and some disorders of the central nervous system.
Collapse
Affiliation(s)
- Annette Graham
- Department of Life Sciences, School of Health and Life Sciences, and Institute for Applied Health Research, Glasgow Caledonian University, 70 Cowcaddens Road, Glasgow G4 0BA, United Kingdom.
| |
Collapse
|
27
|
Hubler MJ, Kennedy AJ. Role of lipids in the metabolism and activation of immune cells. J Nutr Biochem 2015; 34:1-7. [PMID: 27424223 DOI: 10.1016/j.jnutbio.2015.11.002] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/28/2015] [Accepted: 11/09/2015] [Indexed: 12/12/2022]
Abstract
Immune cell plasticity has extensive implications in the pathogenesis and resolution of metabolic disorders, cancers, autoimmune diseases and chronic inflammatory disorders. Over the past decade, nutritional status has been discovered to influence the immune response. In metabolic disorders such as obesity, immune cells interact with various classes of lipids, which are capable of controlling the plasticity of macrophages and T lymphocytes. The purpose of this review is to discuss lipids and their impact on innate and adaptive immune responses, focusing on two areas: (1) the impact of altering lipid metabolism on immune cell activation, differentiation and function and (2) the mechanism by which lipids such as cholesterol and fatty acids regulate immune cell plasticity.
Collapse
Affiliation(s)
- Merla J Hubler
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Arion J Kennedy
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| |
Collapse
|