1
|
Jin X, Jian Z, Ma Y, Wen J, Chao N, Chen X, Xiang L, Yuan Y, Liu L, Li Y, Wei J, Liao B, Zhang L, Wang K. Single-Cell RNA Sequencing Analysis Reveals the Role of Macrophage-Mediated CD44-AKT-CCL2 Pathways in Renal Tubule Injury during Calcium Oxalate Crystal Formation. RESEARCH (WASHINGTON, D.C.) 2025; 8:0690. [PMID: 40330661 PMCID: PMC12053376 DOI: 10.34133/research.0690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025]
Abstract
Oxalate-induced crystalline kidney injury is a common form of crystal nephropathy. The accumulation of calcium oxalate (CaOx) crystal could lead to renal epithelium injury and inflammation. The underlying cellular events in kidney after CaOx crystal formation are largely unknown. This study was aimed to gain a better understanding of mouse kidney function in the development of renal CaOx formation. The study utilized a mouse CaOx model to analyze the cellular response at 5 time points using single-cell RNA sequencing and investigate the interaction of different cells during renal CaOx crystal formation. Additionally, the study investigated the communication between these cells and macrophages, as well as the role of chemokines in recruiting infiltrating macrophages. RNA velocity analysis uncovered an alternative differentiation pathway for injured and S1 proximal tubule cells, which mainly communicate with macrophages through the SPP1-CD44 pair, along with the expression of proinflammatory factors and stone matrix genes during renal CaOx crystal formation. Furthermore, resident Fn1 macrophages were found to express chemokines, such as CCL2, which recruited infiltrating macrophages. The CCL2 secretion was mediated by the CD44-AKT pathway. Blocking CCL2 decreased the expression of injury markers in the kidney, including CLU, LCN2, and KIM-1, and inhibited CaOx crystal deposition. The study identified potential cell types and target genes involved in renal tubule injury in oxalate-related crystal nephropathy. The findings shed light on the cellular processes that contribute to the formation and damage caused by CaOx crystals within the kidney, which could lead to the development of potential cell types and target genes for treating this condition.
Collapse
Affiliation(s)
- Xi Jin
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital,
Sichuan University, Chengdu, Sichuan, P.R. China
| | - Zhongyu Jian
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital,
Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yucheng Ma
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital,
Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jun Wen
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital,
Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ningning Chao
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, Sichuan Provincial Engineering Laboratory of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, West China School of Medicine,
Sichuan University, Chengdu 610041, Sichuan Province, P.R. China
| | - Xiaoting Chen
- Animal Experimental Center, West China Hospital,
Sichuan University, Chengdu, Sichuan, P.R. China
| | - Liyuan Xiang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital,
Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yiqiong Yuan
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital,
Sichuan University, Chengdu, Sichuan, P.R. China
| | - Linhu Liu
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital,
Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ya Li
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital,
Sichuan University, Chengdu, Sichuan, P.R. China
| | - Jingwen Wei
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital,
Sichuan University, Chengdu, Sichuan, P.R. China
| | - Banghua Liao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital,
Sichuan University, Chengdu, Sichuan, P.R. China
| | - Li Zhang
- Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health, State Key Laboratory of Respiratory Health and Multimorbidity, Frontiers Science Center for Disease-related Molecular Network, Sichuan Provincial Engineering Laboratory of Precision Medicine, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, West China School of Medicine,
Sichuan University, Chengdu 610041, Sichuan Province, P.R. China
| | - Kunjie Wang
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital,
Sichuan University, Chengdu, Sichuan, P.R. China
| |
Collapse
|
2
|
Xu J, Chen N, Li Z, Liu Y. Gut microbiome and liver diseases. FUNDAMENTAL RESEARCH 2025; 5:890-901. [PMID: 40242515 PMCID: PMC11997574 DOI: 10.1016/j.fmre.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 04/18/2025] Open
Abstract
Symbiotic microbiota plays a crucial role in the education, development, and maintenance of the host immune system, significantly contributing to overall health. Through the gut-liver axis, the gut microbiota and liver have a bidirectional relationship that is becoming increasingly evident as more research highlights the translocation of the gut microbiota and its metabolites. The focus of this narrative review is to examine and discuss the importance of the gut-liver axis and the enterohepatic barrier in maintaining overall health. Additionally, we emphasize the crucial role of the gut microbiome in liver diseases and explore potential therapeutic strategies for liver diseases by manipulating the microbiota.
Collapse
Affiliation(s)
- Jun Xu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Ning Chen
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| | - Zhou Li
- Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences, Beijing 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulan Liu
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
- Clinical Center of Immune-Mediated Digestive Diseases, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
3
|
Cui X, Li H, Li L, Xie C, Gao J, Chen Y, Zhang H, Hao W, Fu J, Guo H. Rodent model of metabolic dysfunction-associated fatty liver disease: a systematic review. J Gastroenterol Hepatol 2025; 40:48-66. [PMID: 39322221 PMCID: PMC11771679 DOI: 10.1111/jgh.16749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Although significant progress has been made in developing preclinical models for metabolic dysfunction-associated steatotic liver disease (MASLD), few have encapsulated the essential biological and clinical outcome elements reflective of the human condition. We conducted a comprehensive literature review of English-language original research articles published from 1990 to 2023, sourced from PubMed, Embase, and Web of Science, aiming to collate studies that provided a comparative analysis of physiological, metabolic, and hepatic histological characteristics between MASLD models and control groups. The establishment of a robust metabolic dysfunction-associated steatotic liver rodent model hinges on various factors, including animal species and strains, sex, induction agents and methodologies, and the duration of induction. Through this review, we aim to guide researchers in selecting suitable induction methods and animal species for constructing preclinical models aligned with their specific research objectives and laboratory conditions. Future studies should strive to develop simple, reliable, and reproducible models, considering the model's sensitivity to factors such as light-dark cycles, housing conditions, and environmental temperature. Additionally, the potential of diverse in vitro models, including 3D models and liver organ technology, warrants further exploration as valuable tools for unraveling the cellular mechanisms underlying fatty liver disease.
Collapse
Affiliation(s)
- Xiao‐Shan Cui
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Hong‐Zheng Li
- Guang'an men HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Liang Li
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Cheng‐Zhi Xie
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Jia‐Ming Gao
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Yuan‐Yuan Chen
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Hui‐Yu Zhang
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Wei Hao
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Jian‐Hua Fu
- Institute of Basic Medical Sciences, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Hao Guo
- Safety Laboratory, Xiyuan HospitalChina Academy of Chinese Medical SciencesBeijingChina
| |
Collapse
|
4
|
Che L, Stevenson CK, Plas DR, Wang J, Du C. BRUCE liver-deficiency potentiates MASLD/MASH in PTEN liver-deficient background by impairment of mitochondrial metabolism in hepatocytes and activation of STAT3 signaling in hepatic stellate cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.611500. [PMID: 39314445 PMCID: PMC11419131 DOI: 10.1101/2024.09.13.611500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is currently the most common liver disease, affecting up to 25% of people worldwide, featuring excessive fat accumulation in hepatocytes. Its advanced form, metabolic dysfunction-associated steatohepatitis (MASH), is a serious disease with hepatic inflammation and fibrosis, increasing the need for liver transplants. However, the pathogenic mechanism of MASLD and MASH is not fully understood. We reported that BRUCE ( BIRC6) is a liver cancer suppressor and is downregulated in MASLD/MASH patient liver specimens, though the functional role of BRUCE in MASLD/MASH remains to be elucidated. To this end, we generated liver-specific double KO (DKO) mice of BRUCE and PTEN, a major tumor suppressor and MASLD/MASH suppressor. By comparing liver histopathology among 2-3-month-old mice, there were no signs of MASLD or MASH in BRUCE liver-KO mice and only onset of steatosis in PTEN liver-KO mice. Interestingly, DKO mice had developed robust hepatic steatosis with inflammation and fibrosis. Further analysis of mitochondrial function with primary hepatocytes found moderate reduction of mitochondrial respiration, ATP production and fatty acid oxidation in BRUCE KO and the greatest reduction in DKO hepatocytes. Moreover, aberrant activation of pro-fibrotic STAT3 signaling was found in hepatic stellate cells (HSCs) in DKO mice which was prevented by administered STAT3-specific inhibitor (TTI-101). Collectively, the data demonstrates by maintaining mitochondrial metabolism BRUCE works in concert with PTEN to suppress the pro-fibrogenic STAT3 activation in HSCs and consequentially prevent MASLD/MASH. The findings highlight BRUCE being a new co-suppressor of MASLD/MASH.
Collapse
|
5
|
Yang Y, Wang X. Nano-drug delivery systems (NDDS) in metabolic dysfunction-associated steatotic liver disease (MASLD): current status, prospects and challenges. Front Pharmacol 2024; 15:1419384. [PMID: 39166109 PMCID: PMC11333238 DOI: 10.3389/fphar.2024.1419384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
About one-third of the global population suffers from metabolic dysfunction-associated steatotic liver disease (MASLD), but specific treatments for MASLD have long been lacking, primarily due to the unclear etiology of the disease. In addition to lifestyle modifications and weight loss surgery, pharmacotherapy is the most common treatment among MASLD patients, and these drugs typically target the pathogenic factors of MASLD. However, bioavailability, efficacy, and side effects all limit the maximum therapeutic potential of the drugs. With the development of nanomedicine, recent years have seen attempts to combine MASLD pharmacotherapy with nanomaterials, such as liposomes, polymer nanoparticles, micelles, and cocrystals, which effectively improves the water solubility and targeting of the drugs, thereby enhancing therapeutic efficacy and reducing toxic side effects, offering new perspectives and futures for the treatment of MASLD.
Collapse
Affiliation(s)
| | - Xiaojing Wang
- Department of Gastroenterology, The Fifth Affiliated Hospital of Wenzhou Medical University and Lishui Municipal Central Hospital, Lishui, China
| |
Collapse
|
6
|
Arteel GE. Hepatic Extracellular Matrix and Its Role in the Regulation of Liver Phenotype. Semin Liver Dis 2024; 44:343-355. [PMID: 39191427 PMCID: PMC12057067 DOI: 10.1055/a-2404-7973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The hepatic extracellular matrix (ECM) is most accurately depicted as a dynamic compartment that comprises a diverse range of players that work bidirectionally with hepatic cells to regulate overall homeostasis. Although the classic meaning of the ECM referred to only proteins directly involved in generating the ECM structure, such as collagens, proteoglycans, and glycoproteins, the definition of the ECM is now broader and includes all components associated with this compartment. The ECM is critical in mediating phenotype at the cellular, organ, and even organismal levels. The purpose of this review is to summarize the prevailing mechanisms by which ECM mediates hepatic phenotype and discuss the potential or established role of this compartment in the response to hepatic injury in the context of steatotic liver disease.
Collapse
Affiliation(s)
- Gavin E. Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
7
|
Deng B, Liu Y, Chen Y, He P, Ma J, Tan Z, Zhang J, Dong W. Exploring the butyrate metabolism-related shared genes in metabolic associated steatohepatitis and ulcerative colitis. Sci Rep 2024; 14:15949. [PMID: 38987612 PMCID: PMC11237055 DOI: 10.1038/s41598-024-66574-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024] Open
Abstract
Metabolic-associated steatohepatitis (MASH) and ulcerative colitis (UC) exhibit a complex interconnection with immune dysfunction, dysbiosis of the gut microbiota, and activation of inflammatory pathways. This study aims to identify and validate critical butyrate metabolism-related shared genes between both UC and MASH. Clinical information and gene expression profiles were sourced from the Gene Expression Omnibus (GEO) database. Shared butyrate metabolism-related differentially expressed genes (sBM-DEGs) between UC and MASH were identified via various bioinformatics methods. Functional enrichment analysis was performed, and UC patients were categorized into subtypes using the consensus clustering algorithm based on sBM-DEGs. Key genes within sBM-DEGs were screened through Random Forest, Support Vector Machines-Recursive Feature Elimination, and Light Gradient Boosting. The diagnostic efficacy of these genes was evaluated using receiver operating characteristic (ROC) analysis on independent datasets. Additionally, the expression levels of characteristic genes were validated across multiple independent datasets and human specimens. Forty-nine shared DEGs between UC and MASH were identified, with enrichment analysis highlighting significant involvement in immune, inflammatory, and metabolic pathways. The intersection of butyrate metabolism-related genes with these DEGs produced 10 sBM-DEGs. These genes facilitated the identification of molecular subtypes of UC patients using an unsupervised clustering approach. ANXA5, CD44, and SLC16A1 were pinpointed as hub genes through machine learning algorithms and feature importance rankings. ROC analysis confirmed their diagnostic efficacy in UC and MASH across various datasets. Additionally, the expression levels of these three hub genes showed significant correlations with immune cells. These findings were validated across independent datasets and human specimens, corroborating the bioinformatics analysis results. Integrated bioinformatics identified three significant biomarkers, ANXA5, CD44, and SLC16A1, as DEGs linked to butyrate metabolism. These findings offer new insights into the role of butyrate metabolism in the pathogenesis of UC and MASH, suggesting its potential as a valuable diagnostic biomarker.
Collapse
Affiliation(s)
- Beiying Deng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yinghui Liu
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengzhan He
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jingjing Ma
- Department of Geriatric, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zongbiao Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
| | - Jixiang Zhang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, No 99 Zhangzhidong Road, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
8
|
Mishra F, Yuan Y, Yang JJ, Li B, Chan P, Liu Z. Depletion of Activated Hepatic Stellate Cells and Capillarized Liver Sinusoidal Endothelial Cells Using a Rationally Designed Protein for Nonalcoholic Steatohepatitis and Alcoholic Hepatitis Treatment. Int J Mol Sci 2024; 25:7447. [PMID: 39000553 PMCID: PMC11242029 DOI: 10.3390/ijms25137447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/16/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH) and alcoholic hepatitis (AH) affect a large part of the general population worldwide. Dysregulation of lipid metabolism and alcohol toxicity drive disease progression by the activation of hepatic stellate cells and the capillarization of liver sinusoidal endothelial cells. Collagen deposition, along with sinusoidal remodeling, alters sinusoid structure, resulting in hepatic inflammation, portal hypertension, liver failure, and other complications. Efforts were made to develop treatments for NASH and AH. However, the success of such treatments is limited and unpredictable. We report a strategy for NASH and AH treatment involving the induction of integrin αvβ3-mediated cell apoptosis using a rationally designed protein (ProAgio). Integrin αvβ3 is highly expressed in activated hepatic stellate cells (αHSCs), the angiogenic endothelium, and capillarized liver sinusoidal endothelial cells (caLSECs). ProAgio induces the apoptosis of these disease-driving cells, therefore decreasing collagen fibril, reversing sinusoid remodeling, and reducing immune cell infiltration. The reversal of sinusoid remodeling reduces the expression of leukocyte adhesion molecules on LSECs, thus decreasing leukocyte infiltration/activation in the diseased liver. Our studies present a novel and effective approach for NASH and AH treatment.
Collapse
Affiliation(s)
- Falguni Mishra
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Yi Yuan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Jenny J Yang
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Bin Li
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Payton Chan
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| | - Zhiren Liu
- Department of Biology, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
9
|
Wang JJ, Zheng Z, Zhang Y. Association of Hematological Biomarkers of Inflammation with 10-Year Major Adverse Cardiovascular Events and All-Cause Mortality in Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease: The ARIC Study. J Inflamm Res 2024; 17:4247-4256. [PMID: 38973998 PMCID: PMC11227334 DOI: 10.2147/jir.s466469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024] Open
Abstract
Background Metabolic dysfunction-associated steatotic liver disease (MASLD) increases the risk of cardiovascular disease and existing evidence indicates that MASLD affects the cardiovascular system through systemic inflammation. Our aim was to assess the association of hematological biomarkers of inflammation with the 10-year risk of major adverse cardiovascular events (MACE) and all-cause mortality in MASLD patients. Methods A total of 1858 MASLD participants from the Atherosclerosis Risk in Communities cohort study at visit 2 (1990-1992) were included. A total of 1338 non-MASLD participants were also included in the comparison. At baseline, hematological biomarkers of inflammation such as leukocytes, neutrophils, lymphocytes, monocytes, and C-reactive protein (CRP) were measured. Participants were followed up for MACE and all-cause mortality for a period of 10 years. Multivariate adjusted Cox models were used to estimate hazard ratios (HR). Results The 10-year MACE was higher in MASLD participants than in non-MASLD participants (20.8% vs 9.3%). Monocytes (HR 1.114, [95% CI, 1.022-1.216] per 1-SD, P=0.015) and CRP (HR 1.109 [95% CI, 1.032-1.190] per 1-SD, P=0.005) were associated with an increased 10-year risk of MACE, independent of other cardiovascular risk factors. This association was specific to the MASLD population. None of these hematological biomarkers demonstrated a significant association with 10-year all-cause mortality. Conclusion Increased levels of monocytes and CRP were associated with an increased 10-year risk of MACE in the MASLD population. Hematological biomarkers of inflammation may help identify MASLD populations at higher risk for cardiovascular events.
Collapse
Affiliation(s)
- Jia-Jie Wang
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Zhichao Zheng
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| | - Ying Zhang
- Department of Cardiology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, People’s Republic of China
| |
Collapse
|
10
|
Han J, Lee C, Jeong H, Jeon S, Lee M, Lee H, Choi YH, Jung Y. Tumor necrosis factor-inducible gene 6 protein and its derived peptide ameliorate liver fibrosis by repressing CD44 activation in mice with alcohol-related liver disease. J Biomed Sci 2024; 31:54. [PMID: 38790021 PMCID: PMC11127441 DOI: 10.1186/s12929-024-01042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Alcohol-related liver disease (ALD) is a major health concern worldwide, but effective therapeutics for ALD are still lacking. Tumor necrosis factor-inducible gene 6 protein (TSG-6), a cytokine released from mesenchymal stem cells, was shown to reduce liver fibrosis and promote successful liver repair in mice with chronically damaged livers. However, the effect of TSG-6 and the mechanism underlying its activity in ALD remain poorly understood. METHODS To investigate its function in ALD mice with fibrosis, male mice chronically fed an ethanol (EtOH)-containing diet for 9 weeks were treated with TSG-6 (EtOH + TSG-6) or PBS (EtOH + Veh) for an additional 3 weeks. RESULTS Severe hepatic injury in EtOH-treated mice was markedly decreased in TSG-6-treated mice fed EtOH. The EtOH + TSG-6 group had less fibrosis than the EtOH + Veh group. Activation of cluster of differentiation 44 (CD44) was reported to promote HSC activation. CD44 and nuclear CD44 intracellular domain (ICD), a CD44 activator which were upregulated in activated HSCs and ALD mice were significantly downregulated in TSG-6-exposed mice fed EtOH. TSG-6 interacted directly with the catalytic site of MMP14, a proteolytic enzyme that cleaves CD44, inhibited CD44 cleavage to CD44ICD, and reduced HSC activation and liver fibrosis in ALD mice. In addition, a novel peptide designed to include a region that binds to the catalytic site of MMP14 suppressed CD44 activation and attenuated alcohol-induced liver injury, including fibrosis, in mice. CONCLUSIONS These results demonstrate that TSG-6 attenuates alcohol-induced liver damage and fibrosis by blocking CD44 cleavage to CD44ICD and suggest that TSG-6 and TSG-6-mimicking peptide could be used as therapeutics for ALD with fibrosis.
Collapse
Affiliation(s)
- Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Chanbin Lee
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
- Institute of Systems Biology, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Hayeong Jeong
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Seunghee Jeon
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea
| | - Myunggyo Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Pusan, 46241, Republic of Korea
| | - Haeseung Lee
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Pusan, 46241, Republic of Korea
| | - Yung Hyun Choi
- Department of Biochemistry, Dong-Eui University College of Korean Medicine, Pusan, 47227, Republic of Korea
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan, 46241, Republic of Korea.
| |
Collapse
|
11
|
Han J, Lee C, Jung Y. Current Evidence and Perspectives of Cluster of Differentiation 44 in the Liver's Physiology and Pathology. Int J Mol Sci 2024; 25:4749. [PMID: 38731968 PMCID: PMC11084344 DOI: 10.3390/ijms25094749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Cluster of differentiation 44 (CD44), a multi-functional cell surface receptor, has several variants and is ubiquitously expressed in various cells and tissues. CD44 is well known for its function in cell adhesion and is also involved in diverse cellular responses, such as proliferation, migration, differentiation, and activation. To date, CD44 has been extensively studied in the field of cancer biology and has been proposed as a marker for cancer stem cells. Recently, growing evidence suggests that CD44 is also relevant in non-cancer diseases. In liver disease, it has been shown that CD44 expression is significantly elevated and associated with pathogenesis by impacting cellular responses, such as metabolism, proliferation, differentiation, and activation, in different cells. However, the mechanisms underlying CD44's function in liver diseases other than liver cancer are still poorly understood. Hence, to help to expand our knowledge of the role of CD44 in liver disease and highlight the need for further research, this review provides evidence of CD44's effects on liver physiology and its involvement in the pathogenesis of liver disease, excluding cancer. In addition, we discuss the potential role of CD44 as a key regulator of cell physiology.
Collapse
Affiliation(s)
- Jinsol Han
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea;
| | - Chanbin Lee
- Institute of Systems Biology, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea;
| | - Youngmi Jung
- Department of Integrated Biological Science, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea;
- Department of Biological Sciences, College of Natural Science, Pusan National University, Pusan 46241, Republic of Korea
| |
Collapse
|
12
|
Pastrovic F, Novak R, Grgurevic I, Hrkac S, Salai G, Zarak M, Grgurevic L. Serum proteomic profiling of patients with compensated advanced chronic liver disease with and without clinically significant portal hypertension. PLoS One 2024; 19:e0301416. [PMID: 38603681 PMCID: PMC11008873 DOI: 10.1371/journal.pone.0301416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/16/2024] [Indexed: 04/13/2024] Open
Abstract
INTRODUCTION Portal hypertension (PH) drives the progression of liver cirrhosis to decompensation and death. Hepatic venous pressure gradient (HVPG) measurement is the standard of PH quantification, and HVPG≥10 mmHg defines clinically significant PH (CSPH). We performed proteomics-based serum profiling to search for a proteomic signature of CSPH in patients with compensated advanced chronic liver disease (cACLD). MATERIALS AND METHODS Consecutive patients with histologically confirmed cACLD and results of HVPG measurements were prospectively included. Serum samples were pooled according to the presence/absence of CSPH and analysed by liquid chromatography-mass spectrometry. Gene set enrichment analysis was performed, followed by comprehensive literature review for proteins identified with the most striking difference between the groups. RESULTS We included 48 patients (30 with, and 18 without CSPH). Protein CD44, involved in the inflammatory response, vascular endothelial growth factor C (VEGF-C) and lymphatic vessel endothelial hyaluronan receptor-1 (LYVE-1), both involved in lymphangiogenesis were found solely in the CSPH group. Although identified in both groups, proteins involved in neutrophil extracellular traps (NET) formation, as well as tenascin C, autotaxin and nephronectin which mediate vascular contractility and lymphangiogenesis were more abundant in CSPH. DISCUSSION AND CONCLUSION We propose that altered inflammatory response, including NET formation, vascular contractility and formation of new lymph vessels are key steps in PH development. Proteins such as CD44, VEGF-C, LYVE-1, tenascin C, Plasminogen activator inhibitor 1, Nephronectin, Bactericidal permeability-increasing protein, Autotaxin, Myeloperoxidase and a disintegrin and metalloproteinase with thrombospondin motifs-like protein 4 might be considered for further validation as potential therapeutic targets and candidate biomarkers of CSPH in cACLD.
Collapse
Affiliation(s)
- Frane Pastrovic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, Laboratory for Liver Diseases and Portal Hypertension, University Hospital Dubrava, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Rudjer Novak
- Department of Proteomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
- Biomedical Research Center Salata, University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, Laboratory for Liver Diseases and Portal Hypertension, University Hospital Dubrava, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- University of Zagreb, School of Medicine, Zagreb, Croatia
| | - Stela Hrkac
- Department of Clinical Immunology, Allergology and Rheumatology, University Hospital Dubrava, Zagreb, Croatia
| | - Grgur Salai
- Department of Pulmonology, University Hospital Dubrava, Zagreb, Croatia
| | - Marko Zarak
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
- Clinical Department of Laboratory Diagnostics, University Hospital Dubrava, Zagreb, Croatia
| | - Lovorka Grgurevic
- Department of Proteomics, Center for Translational and Clinical Research, University of Zagreb School of Medicine, Zagreb, Croatia
- Biomedical Research Center Salata, University of Zagreb, School of Medicine, Zagreb, Croatia
- Department of Anatomy, ˝Drago Perovic˝, School of Medicine, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
13
|
Matsushita K, Toyoda T, Akane H, Morikawa T, Ogawa K. CD44 expression in renal tubular epithelial cells in the kidneys of rats with cyclosporine-induced chronic kidney disease. J Toxicol Pathol 2024; 37:55-67. [PMID: 38584969 PMCID: PMC10995437 DOI: 10.1293/tox.2023-0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/01/2023] [Indexed: 04/09/2024] Open
Abstract
Renal tubular epithelial cell (TEC) injury is the most common cause of drug-induced kidney injury (DIKI). Although TEC regeneration facilitates renal function and structural recovery following DIKI, maladaptive repair of TECs leads to irreversible fibrosis, resulting in chronic kidney disease (CKD). CD44 is specifically expressed in TECs during maladaptive repair in several types of rat CKD models. In this study, we investigated CD44 expression and its role in renal fibrogenesis in a cyclosporine (CyA) rat model of CKD. Seven-week-old male Sprague-Dawley rats fed a low-salt diet were subcutaneously administered CyA (0, 15, or 30 mg/kg) for 28 days. CD44 was expressed in atrophic, dilated, and hypertrophic TECs in the fibrotic lesions of the CyA groups. These TECs were collected by laser microdissection and evaluated by microarray analysis. Gene ontology analysis suggested that these TECs have a mesenchymal phenotype, and pathway analysis identified CD44 as an upstream regulator of fibrosis-related genes, including fibronectin 1 (Fn1). Immunohistochemistry revealed that epithelial and mesenchymal markers of TECs of fibrotic lesions were downregulated and upregulated, respectively, and that these TECs were surrounded by a thickened basement membrane. In situ hybridization revealed an increase in Fn1 mRNA in the cytoplasm of TECs of fibrotic lesions, whereas fibronectin protein was localized in the stroma surrounding these tubules. Enzyme-linked immunosorbent assay revealed increased serum CD44 levels in CyA-treated rats. Collectively, these findings suggest that CD44 contributes to renal fibrosis by inducing fibronectin secretion in TECs exhibiting partial epithelial-mesenchymal transition and highlight the potential of CD44 as a biomarker of renal fibrosis.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Hirotoshi Akane
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health
Sciences, 3-25-26 Tonomachi, Kawasaki-shi, Kanagawa 210-9501, Japan
| |
Collapse
|
14
|
Matsushita K, Toyoda T, Akane H, Morikawa T, Ogawa K. Role of CD44 expressed in renal tubules during maladaptive repair in renal fibrogenesis in an allopurinol-induced rat model of chronic kidney disease. J Appl Toxicol 2024; 44:455-469. [PMID: 37876353 DOI: 10.1002/jat.4554] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/30/2023] [Accepted: 10/01/2023] [Indexed: 10/26/2023]
Abstract
The kidney is a major target organ for the adverse effects of pharmaceuticals; renal tubular epithelial cells (TECs) are particularly vulnerable to drug-induced toxicity. TECs have regenerative capacity; however, maladaptive repair of TECs after injury leads to renal fibrosis, resulting in chronic kidney disease (CKD). We previously reported the specific expression of CD44 in failed-repair TECs of rat CKD model induced by ischemia reperfusion injury. Here, we investigated the pathophysiological role of CD44 in renal fibrogenesis in allopurinol-treated rat CKD model. Dilated or atrophic TECs expressing CD44 in fibrotic areas were collected by laser microdissection and subjected to microarray analysis. Gene ontology showed that extracellular matrix (ECM)-related genes were upregulated and differentiation-related genes were downregulated in dilated/atrophic TECs. Ingenuity Pathway Analysis identified CD44 as an upstream regulator of fibrosis-related genes, including Fn1, which encodes fibronectin. Immunohistochemistry demonstrated that dilated/atrophic TECs expressing CD44 showed decreases in differentiation markers of TECs and clear expression of mesenchymal markers during basement membrane attachment. In situ hybridization revealed an increase in Fn1 mRNA in the cytoplasm of dilated/atrophic TECs, whereas fibronectin was localized in the stroma around these TECs, supporting the production/secretion of ECM by dilated/atrophic TECs. Overall, these data indicated that dilated/atrophic TECs underwent a partial epithelial-mesenchymal transition (pEMT) and that CD44 promoted renal fibrogenesis via induction of ECM production in failed-repair TECs exhibiting pEMT. CD44 was detected in the urine and serum of APL-treated rats, which may reflect the expression of CD44 in the kidney.
Collapse
Affiliation(s)
- Kohei Matsushita
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Takeshi Toyoda
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Hirotoshi Akane
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Tomomi Morikawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| | - Kumiko Ogawa
- Division of Pathology, National Institute of Health Sciences, Kawasaki, Kanagawa, Japan
| |
Collapse
|
15
|
Chen X, Deng SZ, Sun Y, Bai Y, Wang Y, Yang Y. Key genes involved in nonalcoholic steatohepatitis improvement after bariatric surgery. Front Endocrinol (Lausanne) 2024; 15:1338889. [PMID: 38469144 PMCID: PMC10925704 DOI: 10.3389/fendo.2024.1338889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 01/22/2024] [Indexed: 03/13/2024] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) is the advanced stage of nonalcoholic fatty liver disease (NAFLD), one of the most prevalent chronic liver diseases. The effectiveness of bariatric surgery in treating NASH and preventing or even reversing liver fibrosis has been demonstrated in numerous clinical studies, but the underlying mechanisms and crucial variables remain unknown. Methods Using the GSE135251 dataset, we examined the gene expression levels of NASH and healthy livers. Then, the differentially expressed genes (DEGs) of patients with NASH, at baseline and one year after bariatric surgery, were identified in GSE83452. We overlapped the hub genes performed by protein-protein interaction (PPI) networks and DEGs with different expression trends in both datasets to obtain key genes. Genomic enrichment analysis (GSEA) and genomic variation analysis (GSVA) were performed to search for signaling pathways of key genes. Meanwhile, key molecules that regulate the key genes are found through the construction of the ceRNA network. NASH mice were induced by a high-fat diet (HFD) and underwent sleeve gastrectomy (SG). We then cross-linked the DEGs in clinical and animal samples using quantitative polymerase chain reaction (qPCR) and validated the key genes. Results Seven key genes (FASN, SCD, CD68, HMGCS1, SQLE, CXCL10, IGF1) with different expression trends in GSE135251 and GSE83452 were obtained with the top 30 hub genes selected by PPI. The expression of seven key genes in mice after SG was validated by qPCR. Combined with the qPCR results from NASH mice, the four genes FASN, SCD, HMGCS1, and CXCL10 are consistent with the biological analysis. The GSEA results showed that the 'cholesterol homeostasis' pathway was enriched in the FASN, SCD, HMGCS1, and SQLE high-expression groups. The high-expression groups of CD68 and CXCL10 were extremely enriched in inflammation-related pathways. The construction of the ceRNA network obtained microRNAs and ceRNAs that can regulate seven key genes expression. Conclusion In summary, this study contributes to our understanding of the mechanisms by which bariatric surgery improves NASH, and to the development of potential biomarkers for the treatment of NASH.
Collapse
Affiliation(s)
- Xiyu Chen
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Shi-Zhou Deng
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yuze Sun
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Yunhu Bai
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
- Department of General Surgery, 988 Hospital of Joint Logistic Support Force, Zhengzhou, China
| | - Yayun Wang
- Specific Lab for Mitochondrial Plasticity Underlying Nervous System Diseases, National Demonstration Center for Experimental Preclinical Medicine Education, The Fourth Military Medical University, Xi’an, China
| | - Yanling Yang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, The Fourth Military Medical University, Xi’an, China
| |
Collapse
|
16
|
Pan Y, Zhang Y, Ouyang H, Gong T, Zhang Z, Cao X, Fu Y. Targeted Delivery of Celastrol via Chondroitin Sulfate Derived Hybrid Micelles for Alleviating Symptoms in Nonalcoholic Fatty Liver Disease. ACS APPLIED BIO MATERIALS 2023; 6:4877-4893. [PMID: 37890075 DOI: 10.1021/acsabm.3c00612] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is caused by an accumulation of excess fat in the liver leading to oxidative stress and liver cell injury, as well as overproduction of inflammatory cytokines. CD44 has been identified as a potential therapeutic target in the development of NAFLD to nonalcoholic steatohepatitis. Here, chondroitin sulfate (CS) is selected to construct a CD44-targeted delivery system for the treatment of NAFLD. Specifically, two CS-derived amphiphilic materials including CS conjugated with either 4-aminophenylboronic acid pinacol ester (CS-PBE) or phenformin (CS-PFM) were synthesized, respectively. The presence of PBE moieties on CS-PBE rendered the vehicle with enhanced loading capacity and scavenging potential against reactive oxygen species, while the presence of guanidine moieties on CS-PFM enhanced the internalization of vehicles in the differentiated hepatocytes. Next, celastrol (CLT) was encapsulated in the hybrid micelle to afford CS-Hybrid/CLT, which demonstrates sufficient stability, enhanced cellular uptake efficiencies in differentiated HepG2 cells, and therapeutic potential to alleviate lipid accumulation in differentiated HepG2 cells. In a high-fat-diet-induced NAFLD rat model, CS-Hybrid/CLT micelles demonstrated the capacity to dramatically decrease hepatic lipid accumulation and free fatty acid levels with greatly improved pathologic liver histology and downregulated hepatic inflammation levels. These results suggest that CS-based amphiphilic micelles may offer a promising strategy to effectively deliver therapeutic cargos to the liver for the treatment of NAFLD.
Collapse
Affiliation(s)
- Yi Pan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yunxiao Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Hongling Ouyang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xi Cao
- Department of Pharmacy, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Grade 3 Pharmaceutical Chemistry Laboratory of State Administrate of Traditional Chinese Medicine, Hefei 230022, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
17
|
Soysouvanh F, Rousseau D, Bonnafous S, Bourinet M, Strazzulla A, Patouraux S, Machowiak J, Farrugia MA, Iannelli A, Tran A, Anty R, Luci C, Gual P. Osteopontin-driven T-cell accumulation and function in adipose tissue and liver promoted insulin resistance and MAFLD. Obesity (Silver Spring) 2023; 31:2568-2582. [PMID: 37724058 DOI: 10.1002/oby.23868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 09/20/2023]
Abstract
OBJECTIVE This study investigated the contribution of osteopontin/secreted phosphoprotein 1 (SPP1) to T-cell regulation in initiation of obesity-driven adipose tissue (AT) inflammation and macrophage infiltration and the subsequent impact on insulin resistance (IR) and metabolic-associated fatty liver disease (MAFLD) development. METHODS SPP1 and T-cell marker expression was evaluated in AT and liver according to type 2 diabetes and MAFLD in human individuals with obesity. The role of SPP1 on T cells was evaluated in Spp1-knockout mice challenged with a high-fat diet. RESULTS In humans with obesity, elevated SPP1 expression in AT was parallel to T-cell marker expression (CD4, CD8A) and IR. Weight loss reversed AT inflammation with decreased SPP1 and CD8A expression. In liver, elevated SPP1 expression correlated with MAFLD severity and hepatic T-cell markers. In mice, although Spp1 deficiency did not impact obesity, it did improve AT IR associated with prevention of proinflammatory T-cell accumulation at the expense of regulatory T cells. Spp1 deficiency also decreased ex vivo helper T cell, subtype 1 (Th1) polarization of AT CD4+ and CD8+ T cells. In addition, Spp1 deficiency significantly reduced obesity-associated liver steatosis and inflammation. CONCLUSIONS Current findings highlight a critical role of SPP1 in the initiation of obesity-driven chronic inflammation by regulating accumulation and/or polarization of T cells. Early targeting of SPP1 could be beneficial for IR and MAFLD treatment.
Collapse
Affiliation(s)
| | | | | | - Manon Bourinet
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France
| | | | | | - Jean Machowiak
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France
| | | | | | - Albert Tran
- Université Côte d'Azur, CHU, INSERM, U1065, C3M, Nice, France
| | - Rodolphe Anty
- Université Côte d'Azur, CHU, INSERM, U1065, C3M, Nice, France
| | - Carmelo Luci
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France
| | - Philippe Gual
- Université Côte d'Azur, INSERM, U1065, C3M, Nice, France
| |
Collapse
|
18
|
Takeuchi F, Liang YQ, Shimizu-Furusawa H, Isono M, Ang MY, Mori K, Mori T, Kakazu E, Yoshio S, Kato N. Gene-regulation modules in nonalcoholic fatty liver disease revealed by single-nucleus ATAC-seq. Life Sci Alliance 2023; 6:e202301988. [PMID: 37491046 PMCID: PMC10368228 DOI: 10.26508/lsa.202301988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/27/2023] Open
Abstract
We investigated the progression of nonalcoholic fatty liver disease from fatty liver to steatohepatitis using single-nucleus and bulk ATAC-seq on the livers of rats fed a high-fat diet (HFD). Rats fed HFD for 4 wk developed fatty liver, and those fed HFD for 8 wk further progressed to steatohepatitis. We observed an increase in the proportion of inflammatory macrophages, consistent with the pathological progression. Utilizing machine learning, we divided global gene regulation into modules, wherein transcription factors within a module could regulate genes within the same module, reaffirming known regulatory relationships between transcription factors and biological processes. We identified core genes-central to co-expression and protein-protein interaction-for the biological processes discovered. Notably, a large part of the core genes overlapped with genes previously implicated in nonalcoholic fatty liver disease. Single-nucleus ATAC-seq, combined with data-driven statistical analysis, offers insight into in vivo global gene regulation as a combination of modules and assists in identifying core genes of relevant biological processes.
Collapse
Affiliation(s)
- Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Systems Genomics Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Yi-Qiang Liang
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hana Shimizu-Furusawa
- Department of Hygiene and Public Health, School of Medicine, Teikyo University, Tokyo, Japan
| | - Masato Isono
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Mia Yang Ang
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Clinical Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kotaro Mori
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Taizo Mori
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Eiji Kakazu
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Sachiyo Yoshio
- Department of Liver Diseases, The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Chiba, Japan
| | - Norihiro Kato
- Department of Gene Diagnostics and Therapeutics, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Medical Genomics Center, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Clinical Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
19
|
Ni J, Guo T, Zhou Y, Jiang S, Zhang L, Zhu Z. STING signaling activation modulates macrophage polarization via CCL2 in radiation-induced lung injury. J Transl Med 2023; 21:590. [PMID: 37667317 PMCID: PMC10476398 DOI: 10.1186/s12967-023-04446-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/16/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Radiation-induced lung injury (RILI) is a prevalent complication of thoracic radiotherapy in cancer patients. A comprehensive understanding of the underlying mechanisms of RILI is essential for the development of effective prevention and treatment strategies. METHODS To investigate RILI, we utilized a mouse model that received 12.5 Gy whole-thoracic irradiation. The evaluation of RILI was performed using a combination of quantitative real-time polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), histology, western blot, immunohistochemistry, RNA sequencing, and flow cytometry. Additionally, we established a co-culture system consisting of macrophages, lung epithelial cells, and fibroblasts for in vitro studies. In this system, lung epithelial cells were irradiated with a dose of 4 Gy, and we employed STING knockout macrophages. Translational examinations were conducted to explore the relationship between STING expression in pre-radiotherapy lung tissues, dynamic changes in circulating CCL2, and the development of RILI. RESULTS Our findings revealed significant activation of the cGAS-STING pathway and M1 polarization of macrophages in the lungs of irradiated mice. In vitro studies demonstrated that the deficiency of cGAS-STING signaling led to impaired macrophage polarization and RILI. Through RNA sequencing, cytokine profiling, and rescue experiments using a CCL2 inhibitor called Bindarit, we identified the involvement of CCL2 in the regulation of macrophage polarization and the development of RILI. Moreover, translational investigations using patient samples collected before and after thoracic radiotherapy provided additional evidence supporting the association between cGAS-STING signaling activity, CCL2 upregulation, and the development of radiation pneumonitis. CONCLUSIONS The cGAS-STING signaling pathway plays a crucial role in regulating the recruitment and polarization of macrophages, partly through CCL2, during the pathogenesis of RILI.
Collapse
Affiliation(s)
- Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Tiantian Guo
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Yue Zhou
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Shanshan Jiang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China
| | - Long Zhang
- University of Shanghai for Science and Technology and Shanghai Changzheng Hospital Joint Research Center for Orthopedic Oncology, Institute of Biomedical Sciences and Clinical Technology Transformation, School of Health Science and Engineering, University of Shanghai for Science and Technology, 580 Jungong Road, Shanghai, 200093, China.
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 270 Dong An Road, Shanghai, 200032, China.
- Institute of Thoracic Oncology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
Sarkar K, Bank S, Chatterjee A, Dutta K, Das A, Chakraborty S, Paul N, Sarkar J, De S, Ghosh S, Acharyya K, Chattopadhyay D, Das M. Hyaluronic acid-graphene oxide quantum dots nanoconjugate as dual purpose drug delivery and therapeutic agent in meta-inflammation. J Nanobiotechnology 2023; 21:246. [PMID: 37528408 PMCID: PMC10394801 DOI: 10.1186/s12951-023-02015-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/21/2023] [Indexed: 08/03/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM) predominantly considered a metabolic disease is now being considered an inflammatory disease as well due to the involvement of meta-inflammation. Obesity-induced adipose tissue inflammation (ATI) is one of the earliest phenomena in the case of meta-inflammation, leading to the advent of insulin resistance (IR) and T2DM. The key events of ATI are orchestrated by macrophages, which aggravate the inflammatory state in the tissue upon activation, ultimately leading to systemic chronic low-grade inflammation and Non-Alcoholic Steatohepatitis (NASH) through the involvement of proinflammatory cytokines. The CD44 receptor on macrophages is overexpressed in ATI, NASH, and IR. Therefore, we developed a CD44 targeted Hyaluronic Acid functionalized Graphene Oxide Quantum Dots (GOQD-HA) nanocomposite for tissue-specific delivery of metformin. Metformin-loaded GOQD-HA (GOQD-HA-Met) successfully downregulated the expression of proinflammatory cytokines and restored antioxidant status at lower doses than free metformin in both palmitic acid-induced RAW264.7 cells and diet induced obese mice. Our study revealed that the GOQD-HA nanocarrier enhanced the efficacy of Metformin primarily by acting as a therapeutic agent apart from being a drug delivery platform. The therapeutic properties of GOQD-HA stem from both HA and GOQD having anti-inflammatory and antioxidant properties respectively. This study unravels the function of GOQD-HA as a targeted drug delivery option for metformin in meta-inflammation where the nanocarrier itself acts as a therapeutic agent.
Collapse
Affiliation(s)
- Kunal Sarkar
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Sarbashri Bank
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Arindam Chatterjee
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Koushik Dutta
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Anwesha Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Santanu Chakraborty
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Nirvika Paul
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India
| | - Jit Sarkar
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Sriparna De
- Department of Allied Health Sciences, Brainware University, Kolkata, 700129, India
| | - Sudakshina Ghosh
- Department of Zoology, Vidyasagar College for Women, Kolkata, 700006, India
| | - Krishnendu Acharyya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, 700019, India
| | - Dipankar Chattopadhyay
- Department of Polymer Science and Technology, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Madhusudan Das
- Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
21
|
Chang H, Ma J, Feng K, Feng N, Wang X, Sun J, Guo T, Wei Y, Xu Y, Wang H, Yin L, Zhang X. Elevated blood and cerebrospinal fluid biomarkers of microglial activation and blood‒brain barrier disruption in anti-NMDA receptor encephalitis. J Neuroinflammation 2023; 20:172. [PMID: 37481571 PMCID: PMC10363307 DOI: 10.1186/s12974-023-02841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 06/23/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Anti-NMDA receptor (NMDAR) encephalitis is an autoimmune disease characterized by complex neuropsychiatric syndrome and cerebrospinal fluid (CSF) NMDAR antibodies. Triggering receptor expressed on myeloid cells 2 (TREM2) has been reported to be associated with inflammation of the central nervous system (CNS). Matrix metalloproteinase-9 (MMP9) and cluster of differentiation (CD44) were measured to evaluate blood‒brain barrier (BBB) permeability in anti-NMDAR encephalitis. The roles of microglial activation and BBB disruption in anti-NMDAR encephalitis are not well known. FINDINGS In this work, we detected increased expression levels of CSF sTREM2, CSF and serum CD44, and serum MMP9 in anti-NMDAR encephalitis patients compared with controls. CSF sTREM2 levels were positively related to both CSF CD44 levels (r = 0.702, p < 0.0001) and serum MMP9 levels (r = 0.428, p = 0.021). In addition, CSF sTREM2 levels were related to clinical parameters (modified Rankin Scale scores, r = 0.422, p = 0.023, and Glasgow Coma Scale scores, r = - 0.401, p = 0.031). CONCLUSION Increased sTREM2 levels in CSF as well as increased CD44 and MMP9 in serum and CSF reflected activation of microglia and disruption of the BBB in anti-NMDAR encephalitis, expanding the understanding of neuroinflammation in this disease. The factors mentioned above may have potential as novel targets for intervention or novel diagnostic biomarkers.
Collapse
Affiliation(s)
- Haoxiao Chang
- Department of Neurology, Neuroinfection and Neuroimmunology Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Jia Ma
- Department of Neurology, Beijing Shunyi Hospital, Beijing, 101300, China
| | - Kai Feng
- Department of Neurology, Beijing Shunyi Hospital, Beijing, 101300, China
| | - Ning Feng
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Department of Clinical Laboratory, Liaocheng Third People's Hospital, Liaocheng, 252000, China
| | - Xinxin Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
- Department of Critical Care Medicine, The First Affiliated Hospital of Henan University, Henan, 475001, China
| | - Jiali Sun
- Department of Neurology, Neuroinfection and Neuroimmunology Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Tianshu Guo
- Department of Neurology, Neuroinfection and Neuroimmunology Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yuzhen Wei
- Department of Neurology, Neuroinfection and Neuroimmunology Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Yun Xu
- Department of Neurology, Neuroinfection and Neuroimmunology Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Huabing Wang
- Department of Neurology, Neuroinfection and Neuroimmunology Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China
| | - Linlin Yin
- Department of Neurology, Neuroinfection and Neuroimmunology Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| | - Xinghu Zhang
- Department of Neurology, Neuroinfection and Neuroimmunology Center, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
22
|
Deng F, Qin G, Chen Y, Zhang X, Zhu M, Hou M, Yao Q, Gu W, Wang C, Yang H, Jia X, Wu C, Peng H, Du H, Tang S. Multi-omics reveals 2-bromo-4,6-dinitroaniline (BDNA)-induced hepatotoxicity and the role of the gut-liver axis in rats. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131760. [PMID: 37285786 DOI: 10.1016/j.jhazmat.2023.131760] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/26/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023]
Abstract
2-Bromo-4, 6-dinitroaniline (BDNA) is a widespread azo-dye-related hazardous pollutant. However, its reported adverse effects are limited to mutagenicity, genotoxicity, endocrine disruption, and reproductive toxicity. We systematically assessed the hepatotoxicity of BDNA exposure via pathological and biochemical examinations and explored the underlying mechanisms via integrative multi-omics analyses of the transcriptome, metabolome, and microbiome in rats. After 28 days of oral administration, compared with the control group, 100 mg/kg BDNA significantly triggered hepatotoxicity, upregulated toxicity indicators (e.g., HSI, ALT, and ARG1), and induced systemic inflammation (e.g., G-CSF, MIP-2, RANTES, and VEGF), dyslipidemia (e.g., TC and TG), and bile acid (BA) synthesis (e.g., CA, GCA, and GDCA). Transcriptomic and metabolomic analyses revealed broad perturbations in gene transcripts and metabolites involved in the representative pathways of liver inflammation (e.g., Hmox1, Spi1, L-methionine, valproic acid, and choline), steatosis (e.g., Nr0b2, Cyp1a1, Cyp1a2, Dusp1, Plin3, arachidonic acid, linoleic acid, and palmitic acid), and cholestasis (e.g., FXR/Nr1h4, Cdkn1a, Cyp7a1, and bilirubin). Microbiome analysis revealed reduced relative abundances of beneficial gut microbial taxa (e.g., Ruminococcaceae and Akkermansia muciniphila), which further contributed to the inflammatory response, lipid accumulation, and BA synthesis in the enterohepatic circulation. The observed effect concentrations here were comparable to the highly contaminated wastewaters, showcasing BDNA's hepatotoxic effects at environmentally relevant concentrations. These results shed light on the biomolecular mechanism and important role of the gut-liver axis underpinning BDNA-induced cholestatic liver disorders in vivo.
Collapse
Affiliation(s)
- Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Guangqiu Qin
- Department of Preventive Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xu Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Mu Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Min Hou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Qiao Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Wen Gu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Chao Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Hui Yang
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Xudong Jia
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Chongming Wu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S3H6, Canada
| | - Huamao Du
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
23
|
Kim J, Seki E. Hyaluronan in liver fibrosis: basic mechanisms, clinical implications, and therapeutic targets. Hepatol Commun 2023; 7:e0083. [PMID: 36930869 PMCID: PMC10027054 DOI: 10.1097/hc9.0000000000000083] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/01/2022] [Indexed: 03/19/2023] Open
Abstract
Hyaluronan (HA), also known as hyaluronic acid, is a glycosaminoglycan that is a critical component of the extracellular matrix (ECM). Production and deposition of ECM is a wound-healing response that occurs during chronic liver disease, such as cirrhosis. ECM production is a sign of the disease progression of fibrosis. Indeed, the accumulation of HA in the liver and elevated serum HA levels are used as biomarkers of cirrhosis. However, recent studies also suggest that the ECM, and HA in particular, as a functional signaling molecule, facilitates disease progression and regulation. The systemic and local levels of HA are regulated by de novo synthesis, cleavage, endocytosis, and degradation of HA, and the molecular mass of HA influences its pathophysiological effects. However, the regulatory mechanisms of HA synthesis and catabolism and the functional role of HA are still poorly understood in liver fibrosis. This review summarizes the role of HA in liver fibrosis at molecular levels as well as its clinical implications and discusses the potential therapeutic uses of targeting HA in liver fibrosis.
Collapse
Affiliation(s)
- Jieun Kim
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ekihiro Seki
- Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
24
|
Yao M, Zhou P, Qin YY, Wang L, Yao DF. Mitochondrial carnitine palmitoyltransferase-II dysfunction: A possible novel mechanism for nonalcoholic fatty liver disease in hepatocarcinogenesis. World J Gastroenterol 2023; 29:1765-1778. [PMID: 37032731 PMCID: PMC10080702 DOI: 10.3748/wjg.v29.i12.1765] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/04/2022] [Accepted: 03/09/2023] [Indexed: 03/28/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) or metabolic-associated fatty liver disease has been characterized by the lipid accumulation with injury of hepatocytes and has become one of the most common chronic liver diseases in the world. The complex mechanisms of NAFLD formation are still under identification. Carnitine palmitoyltransferase-II (CPT-II) on inner mitochondrial membrane (IMM) regulates long chain fatty acid β-oxidation, and its abnormality has had more and more attention paid to it by basic and clinical research in NAFLD. The sequences of its peptide chain and DNA nucleotides have been identified, and the catalytic activity of CPT-II is affected on its gene mutations, deficiency, enzymatic thermal instability, circulating carnitine level and so on. Recently, the CPT-II dysfunction has been discovered in models of liver lipid accumulation. Meanwhile, the malignant transformation of hepatocyte-related CD44+ stem T cell activation, high levels of tumor-related biomarkers (AFP, GPC3) and abnormal activation of Wnt3a expression as a key signal molecule of the Wnt/β-catenin pathway run parallel to the alterations of hepatocyte pathology. This review focuses on some of the progress of CPT-II inactivity on IMM with liver fatty accumulation as a possible novel pathogenesis for NAFLD in hepatocarcinogenesis.
Collapse
Affiliation(s)
- Min Yao
- Department of Medical Immunology, Medical School of Nantong University & Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Ping Zhou
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Yan-Yan Qin
- Department of Medical Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Research Center for Intelligent Information Technology, Nantong University, Nantong 226019, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
25
|
Wu C, Tao Y, Li N, Fei J, Wang Y, Wu J, Gu HF. Prediction of cellular targets in diabetic kidney diseases with single-cell transcriptomic analysis of db/db mouse kidneys. J Cell Commun Signal 2023; 17:169-188. [PMID: 35809207 PMCID: PMC10030752 DOI: 10.1007/s12079-022-00685-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 06/21/2022] [Indexed: 01/07/2023] Open
Abstract
Diabetic kidney disease is the leading cause of impaired kidney function, albuminuria, and renal replacement therapy (dialysis or transplantation), thus placing a large burden on health-care systems. This urgent event requires us to reveal the molecular mechanism of this disease to develop more efficacious treatment. Herein, we reported single-cell RNA sequencing analyses in kidneys of db/db mouse, an animal model for type 2 diabetes and diabetic kidney disease. We first analyzed the hub genes expressed differentially in the single cell resolution transcriptome map of the kidneys. Then we figured out the communication among the renal and immune cells in the kidneys. Data from this report may provide novel information for better understanding the cell-specific targets involved in the aetiologia of type 2 diabetic kidney disease and for cell communication and signaling between renal cells and immune cells of this complex disease.
Collapse
Affiliation(s)
- Chenhua Wu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yingjun Tao
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Nan Li
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
- Department of Endocrinology, Jiangsu Province Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
| | - Jingjin Fei
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China
| | - Yurong Wang
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jie Wu
- Laboratory of Minigene Pharmacy, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 211198, China.
| | - Harvest F Gu
- Laboratory of Molecular Medicine, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
26
|
Vyas K, Patel MM. Insights on drug and gene delivery systems in liver fibrosis. Asian J Pharm Sci 2023; 18:100779. [PMID: 36845840 PMCID: PMC9950450 DOI: 10.1016/j.ajps.2023.100779] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/30/2023] Open
Abstract
Complications of the liver are amongst the world's worst diseases. Liver fibrosis is the first stage of liver problems, while cirrhosis is the last stage, which can lead to death. The creation of effective anti-fibrotic drug delivery methods appears critical due to the liver's metabolic capacity for drugs and the presence of insurmountable physiological impediments in the way of targeting. Recent breakthroughs in anti-fibrotic agents have substantially assisted in fibrosis; nevertheless, the working mechanism of anti-fibrotic medications is not fully understood, and there is a need to design delivery systems that are well-understood and can aid in cirrhosis. Nanotechnology-based delivery systems are regarded to be effective but they have not been adequately researched for liver delivery. As a result, the capability of nanoparticles in hepatic delivery was explored. Another approach is targeted drug delivery, which can considerably improve efficacy if delivery systems are designed to target hepatic stellate cells (HSCs). We have addressed numerous delivery strategies that target HSCs, which can eventually aid in fibrosis. Recently genetics have proved to be useful, and methods for delivering genetic material to the target place have also been investigated where different techniques are depicted. To summarize, this review paper sheds light on the most recent breakthroughs in drug and gene-based nano and targeted delivery systems that have lately shown useful for the treatment of liver fibrosis and cirrhosis.
Collapse
Affiliation(s)
- Kunj Vyas
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University SG Highway, Gujarat 382481, India
| | - Mayur M Patel
- Department of Pharmaceutics, Institute of Pharmacy, Nirma University SG Highway, Gujarat 382481, India
| |
Collapse
|
27
|
Wikan N, Tocharus J, Oka C, Sivasinprasasn S, Chaichompoo W, Suksamrarn A, Tocharus C. The capsaicinoid nonivamide suppresses the inflammatory response and attenuates the progression of steatosis in a NAFLD-rat model. J Biochem Mol Toxicol 2023; 37:e23279. [PMID: 36541345 DOI: 10.1002/jbt.23279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/28/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is relatively associated with comorbidities in obesity and metabolic inflammation. Low-grade inflammation following the high-fat diet (HFD)-induced NAFLD can promote the development of nonalcoholic steatohepatitis (NASH) through particularly liver-resident immune cell recruitment and hepatic nuclear factor kappa B (NF-κB) pathway. Therefore, inflammatory intervention may contribute to NASH reduction. Pelargonic acid vanillylamide (PAVA) or nonivamide is one of the pungent capsaicinoids of Capsicum species and has been found in chili peppers. Our previous study demonstrated that PAVA improved hepatic function, decreased oxidative stress and reduced apoptotic cell death but the insight role of PAVA on NAFLD is still unclear. Thus, this study aimed to investigate the underlying anti-inflammatory mechanism of PAVA in an NAFLD-rat model. Male Sprague Dawley rats were fed with normal diet or HFD for 16 weeks. Then high-fat rats were given vehicle or PAVA (1 mg/kg/day) for another 4 weeks. We found that PAVA alleviated hepatic inflammation associated with the reducing toll-like receptor 4/NF-κB pathway, showing significantly lower recruitment of cluster of differentiation 44. PAVA also maintained activity of insulin signaling pathway, and attenuated NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome formation. NAFLD progresses to NASH through transforming growth factor (TGF-β1), and also recovery to simple stage followed by PAVA suppresses pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, interleukin-6, and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. Therefore, our findings suggest that PAVA provides a novel therapeutic approach for NAFLD and slows the progression to NASH.
Collapse
Affiliation(s)
- Naruemon Wikan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chio Oka
- Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
28
|
Kohlhepp MS, Liu H, Tacke F, Guillot A. The contradictory roles of macrophages in non-alcoholic fatty liver disease and primary liver cancer-Challenges and opportunities. Front Mol Biosci 2023; 10:1129831. [PMID: 36845555 PMCID: PMC9950415 DOI: 10.3389/fmolb.2023.1129831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 01/31/2023] [Indexed: 02/12/2023] Open
Abstract
Chronic liver diseases from varying etiologies generally lead to liver fibrosis and cirrhosis. Among them, non-alcoholic fatty liver disease (NAFLD) affects roughly one-quarter of the world population, thus representing a major and increasing public health burden. Chronic hepatocyte injury, inflammation (non-alcoholic steatohepatitis, NASH) and liver fibrosis are recognized soils for primary liver cancer, particularly hepatocellular carcinoma (HCC), being the third most common cause for cancer-related deaths worldwide. Despite recent advances in liver disease understanding, therapeutic options on pre-malignant and malignant stages remain limited. Thus, there is an urgent need to identify targetable liver disease-driving mechanisms for the development of novel therapeutics. Monocytes and macrophages comprise a central, yet versatile component of the inflammatory response, fueling chronic liver disease initiation and progression. Recent proteomic and transcriptomic studies performed at singular cell levels revealed a previously overlooked diversity of macrophage subpopulations and functions. Indeed, liver macrophages that encompass liver resident macrophages (also named Kupffer cells) and monocyte-derived macrophages, can acquire a variety of phenotypes depending on microenvironmental cues, and thus exert manifold and sometimes contradictory functions. Those functions range from modulating and exacerbating tissue inflammation to promoting and exaggerating tissue repair mechanisms (i.e., parenchymal regeneration, cancer cell proliferation, angiogenesis, fibrosis). Due to these central functions, liver macrophages represent an attractive target for the treatment of liver diseases. In this review, we discuss the multifaceted and contrary roles of macrophages in chronic liver diseases, with a particular focus on NAFLD/NASH and HCC. Moreover, we discuss potential therapeutic approaches targeting liver macrophages.
Collapse
|
29
|
Overview of Cellular and Soluble Mediators in Systemic Inflammation Associated with Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24032313. [PMID: 36768637 PMCID: PMC9916753 DOI: 10.3390/ijms24032313] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent chronic liver disease in Western countries, affecting approximately 25% of the adult population. This condition encompasses a spectrum of liver diseases characterized by abnormal accumulation of fat in liver tissue (non-alcoholic fatty liver, NAFL) that can progress to non-alcoholic steatohepatitis (NASH), characterized by the presence of liver inflammation and damage. The latter form often coexists with liver fibrosis which, in turn, may progress to a state of cirrhosis and, potentially, hepatocarcinoma, both irreversible processes that often lead to the patient's death and/or the need for liver transplantation. Along with the high associated economic burden, the high mortality rate among NAFLD patients raises interest, not only in the search for novel therapeutic approaches, but also in early diagnosis and prevention to reduce the incidence of NAFLD-related complications. In this line, an exhaustive characterization of the immune status of patients with NAFLD is mandatory. Herein, we attempted to gather and compare the current and relevant scientific evidence on this matter, mainly on human reports. We addressed the current knowledge related to circulating cellular and soluble mediators, particularly platelets, different leukocyte subsets and relevant inflammatory soluble mediators.
Collapse
|
30
|
Uno K, Miyajima K, Ogawa S, Suzuki-Kemuriyama N, Nakae D. Effects of Siraitia grosvenorii extract on nonalcoholic steatohepatitis-like lesions in Sprague Dawley rats fed a choline-deficient, methionine-lowered, l-amino acid-defined diet. J Toxicol Pathol 2023; 36:1-10. [PMID: 36683724 PMCID: PMC9837469 DOI: 10.1293/tox.2022-0043] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/16/2022] [Indexed: 01/25/2023] Open
Abstract
Siraitia grosvenorii is the fruit of a cucurbitaceous vine endemic to China. Its extract has been used as a sweetener and exhibits various anti-inflammatory and anticarcinogenic effects mediated via its antioxidant properties. In the present study, we aimed to clarify the preventive or ameliorative effects of S. grosvenorii extract (SGE) on nonalcoholic steatohepatitis-like lesions induced in male Hsd: Sprague Dawley rats fed a choline-deficient, methionine-lowered, l-amino acid-defined diet for 13 weeks. This diet increased hepatotoxicity parameters and upregulated the expression of inflammation- and fibrosis-related genes in the liver, resulting in the progression of hepatic lesions, oxidative stress, hepatocellular apoptosis, and fibrosis. Furthermore, this diet upregulated the expression of phosphorylated nuclear factor-κB (NF-κB) and CD44. SGE administration inhibited these lesions, similar to CD44, a factor that controls hepatic inflammation and fibrosis. These results revealed that SGE impacts the disease stage via antioxidative effects and regulation of CD44 expression. SGE was found to be useful for preventing and treating steatohepatitis.
Collapse
Affiliation(s)
- Kinuko Uno
- Department of Food and Nutritional Science, Graduate School
of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya, Tokyo
156-8502, Japan
| | - Katsuhiro Miyajima
- Department of Nutritional Science and Food Safety, Faculty
of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya,
Tokyo 156-8502, Japan,*Corresponding authors: K Miyajima (e-mail: ); D Nakae (e-mail: ; )
| | - Shuji Ogawa
- Department of Food and Nutritional Science, Graduate School
of Agriculture, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya, Tokyo
156-8502, Japan
| | - Noriko Suzuki-Kemuriyama
- Department of Nutritional Science and Food Safety, Faculty
of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya,
Tokyo 156-8502, Japan
| | - Dai Nakae
- Department of Nutritional Science and Food Safety, Faculty
of Applied Biosciences, Tokyo University of Agriculture, 1-1-1 Sakura-ga-Oka, Setagaya,
Tokyo 156-8502, Japan,Department of Medical Sports, Faculty of Health Care and
Medical Sports, Teikyo Heisei University, 4-1 Uruido-Minami, Ichihara, Chiba 290-0193,
Japan
| |
Collapse
|
31
|
Luo S, Zhang H, Jiang X, Xia Y, Tang S, Duan X, Sun W, Gao M, Chen C, Zou Z, Zhou L, Qiu J. Antibiotics administration alleviates the high fat diet-induced obesity through altering the lipid metabolism in young mice. Lipids 2023; 58:19-32. [PMID: 36253942 DOI: 10.1002/lipd.12361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/24/2022] [Accepted: 09/19/2022] [Indexed: 02/04/2023]
Abstract
Currently, there is a global trend of rapid increase in obesity, especially among adolescents. The antibiotics cocktails (ABX) therapy is commonly used as an adjunctive treatment for gut microbiota related diseases, including obesity. However, the effects of broad-spectrum antibiotics alone on young obese hosts have rarely been reported. In the present study, the 3-week-old C57BL/6J male mice fed a high-fat diet (HFD) were intragastric administration with ampicillin, vancomycin, metronidazole or neomycin for 30 days. The lipid metabolites in plasma were assessed by biochemical assay kits, and genes related to lipid metabolite in the white adipose were assessed by qPCR. To further analyze the underlying mechanisms, the expression of genes related to lipid metabolism, inflammatory reactions and oxidative stress in the liver were determined by qPCR assay. In addition, the expression of oxidative damage-associated proteins in the liver were detected by western blot. The results showed that oral antibiotics exposure could reduce body weight and fat index in HFD-fed mice, concurrent with the increase of white adipose lipolysis genes and the decrease of hepatic lipogenic genes. Furthermore, antibiotics treatment could clearly reverse the HFD-induced elevation of oxidative damage-related proteins in the liver. Together, these findings will provide valuable clues into the effects of antibiotics on obesity.
Collapse
Affiliation(s)
- Shiyue Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Hongyang Zhang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yinyin Xia
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shixin Tang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xinhao Duan
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Wei Sun
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Min Gao
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chengzhi Chen
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Lixiao Zhou
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China.,Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
32
|
Wiering L, Tacke F. Treating inflammation to combat non-alcoholic fatty liver disease. J Endocrinol 2023; 256:JOE-22-0194. [PMID: 36259984 DOI: 10.1530/joe-22-0194] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) with its more progressive form non-alcoholic steatohepatitis (NASH) has become the most common chronic liver disease, thereby representing a great burden for patients and healthcare systems. Specific pharmacological therapies for NAFLD are still missing. Inflammation is an important driver in the pathogenesis of NASH, and the mechanisms underlying inflammation in NAFLD represent possible therapeutic targets. In NASH, various intra- and extrahepatic triggers involved in the metabolic injury typically lead to the activation of different immune cells. This includes hepatic Kupffer cells, i.e. liver-resident macrophages, which can adopt an inflammatory phenotype and activate other immune cells by releasing inflammatory cytokines. As inflammation progresses, Kupffer cells are increasingly replaced by monocyte-derived macrophages with a distinct lipid-associated and scar-associated phenotype. Many other immune cells, including neutrophils, T lymphocytes - such as auto-aggressive cytotoxic as well as regulatory T cells - and innate lymphoid cells balance the progression and regression of inflammation and subsequent fibrosis. The detailed understanding of inflammatory cell subsets and their activation pathways prompted preclinical and clinical exploration of potential targets in NAFLD/NASH. These approaches to target inflammation in NASH include inhibition of immune cell recruitment via chemokine receptors (e.g. cenicriviroc), neutralization of CD44 or galectin-3 as well as agonism to nuclear factors like peroxisome proliferator-activated receptors and farnesoid X receptor that interfere with the activation of immune cells. As some of these approaches did not demonstrate convincing efficacy as monotherapies, a rational and personalized combination of therapeutic interventions may be needed for the near future.
Collapse
Affiliation(s)
- Leke Wiering
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Junior Clinician Scientist Program, Berlin, Germany
| | - Frank Tacke
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum and Campus Charité Mitte, Berlin, Germany
| |
Collapse
|
33
|
Wang X, Rao B, Wang H, Liu C, Ren Z, Yu Z. Serum metabolome alterations in patients with early nonalcoholic fatty liver disease. Biosci Rep 2022; 42:BSR20220319. [PMID: 36124945 PMCID: PMC9583763 DOI: 10.1042/bsr20220319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 08/04/2022] [Accepted: 09/05/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Although metabolomic analysis for patients with nonalcoholic fatty liver disease (NAFLD) was a promising approach to identify novel biomarkers as targets for the diagnosis of NAFLD, the serum metabolomics profile of early-stage NAFLD patients from central China remain unknown. OBJECTIVE The aim of the present study was to explore the metabolic characteristics of patients with early-stage NAFLD based on the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology, to identify differential metabolites and perform functional analysis, and especially, to establish a novel early NAFLD clinical diagnostic tool. RESULTS Compared with healthy controls, serum metabolite species increased significantly in early stage NAFLD patients. Expression of 88 metabolites including 1-naphthylmethanol, rosavin, and theophylline were up-regulated in early NAFLD, while 68 metabolites including 2-hydroxyphenylacetic acid and lysophosphatidylcholine (24:1(15Z)) were down-regulated. The early NAFLD classifier achieved a strong diagnostic efficiency in the discovery phases (80.99%) and was successfully verified in the validation phases (75.23%). CONCLUSIONS These results advance our understanding about the composition and biological functions of serum metabolites of early NAFLD. In addition, serum metabolic markers can serve as an efficient diagnostic tool for the early-stage NAFLD.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Benchen Rao
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Haiyu Wang
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Chao Liu
- Shanghai Mobio Biomedical Technology Co., Ltd., Shanghai 201111, China
| | - Zhigang Ren
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zujiang Yu
- Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
- Gene Hospital of Henan Province; Precision Medicine Center, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
34
|
Small fragments of hyaluronan are increased in individuals with obesity and contribute to low-grade inflammation through TLR-mediated activation of innate immune cells. Int J Obes (Lond) 2022; 46:1960-1969. [PMID: 35896710 PMCID: PMC9584819 DOI: 10.1038/s41366-022-01187-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 06/18/2022] [Accepted: 07/04/2022] [Indexed: 12/12/2022]
Abstract
Background and aim Extracellular matrix (ECM) components released during excessive fat mass expansion are considered potential endogenous danger/alarm signals contributing to innate immune system activation. The aim of the current study was to specifically measure plasma levels of low molecular weight (LMW) hyaluronan (HA) and to evaluate its role as pro-inflammatory damage-associated molecular pattern (DAMP) on leukocyte response in the context of human obesity. Subjects and methods Participants were selected according to their body mass index (BMI, kg/m2) as non-obese (BMI < 29.9, n = 18) and obese (BMI > 29.9, n = 33). Plasma samples were size-dependent fractionated using ion-exchange chromatography to specifically obtain LMW HA fractions that were subsequently quantified by ELISA. Cell incubation experiments with synthetic HA molecules were performed on freshly Ficoll-isolated neutrophils (PMN) and peripheral blood monocytes (PBMC). Leukocyte and adipose tissue gene expression was assessed by real-time PCR and NF-κB activation by western blot. Plasma cytokine levels were measured by fluorescent bead-based (Luminex) immunoassay. Results We observed a statistically significant increase in the circulating levels of HA fragments of LMW in individuals with obesity which were consistent with significant up-regulated expression of the LMW HA synthesizing enzyme hyaluronan synthase-1 (HAS-1) in obese adipose tissue. Gene expression assessment of HA receptors revealed up-regulated levels for TLR2 in both obese PMN and PBMC. Synthetic HA molecules of different sizes were tested on leukocytes from healthy donors. LMW HA fragments (15–40 kDa) and not those from intermediate molecular sizes (75–350 kDa) induced a significant up-regulation of the expression of major pro-inflammatory cytokines such as IL-1β, MCP-1 and IL-8 in PBMC. Importantly, LMW HA was able to induce the phosphorylation of IKK α/β complex supporting its pro-inflammatory role through NF-κB activation. Conclusion Circulating LMW HA molecules are elevated in obesity and may play an important role in triggering low-grade inflammation and the development of metabolic complications.
Collapse
|
35
|
Donne R, Saroul-Ainama M, Cordier P, Hammoutene A, Kabore C, Stadler M, Nemazanyy I, Galy-Fauroux I, Herrag M, Riedl T, Chansel-Da Cruz M, Caruso S, Bonnafous S, Öllinger R, Rad R, Unger K, Tran A, Couty JP, Gual P, Paradis V, Celton-Morizur S, Heikenwalder M, Revy P, Desdouets C. Replication stress triggered by nucleotide pool imbalance drives DNA damage and cGAS-STING pathway activation in NAFLD. Dev Cell 2022; 57:1728-1741.e6. [PMID: 35768000 DOI: 10.1016/j.devcel.2022.06.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/22/2022] [Accepted: 06/07/2022] [Indexed: 12/25/2022]
Abstract
Non-alcoholic steatotic liver disease (NAFLD) is the most common cause of chronic liver disease worldwide. NAFLD has a major effect on the intrinsic proliferative properties of hepatocytes. Here, we investigated the mechanisms underlying the activation of DNA damage response during NAFLD. Proliferating mouse NAFLD hepatocytes harbor replication stress (RS) with an alteration of the replication fork's speed and activation of ATR pathway, which is sufficient to cause DNA breaks. Nucleotide pool imbalance occurring during NAFLD is the key driver of RS. Remarkably, DNA lesions drive cGAS/STING pathway activation, a major component of cells' intrinsic immune response. The translational significance of this study was reiterated by showing that lipid overload in proliferating HepaRG was sufficient to induce RS and nucleotide pool imbalance. Moreover, livers from NAFLD patients displayed nucleotide pathway deregulation and cGAS/STING gene alteration. Altogether, our findings shed light on the mechanisms by which damaged NAFLD hepatocytes might promote disease progression.
Collapse
Affiliation(s)
- Romain Donne
- Team Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, 75006 Paris, France
| | - Maëva Saroul-Ainama
- Team Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, 75006 Paris, France
| | - Pierre Cordier
- Team Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, 75006 Paris, France
| | - Adel Hammoutene
- Université Paris-Cité, Centre de recherche sur l'inflammation, INSERM U1149, CNRS, ERL8252, 75018 Paris, France
| | - Christelle Kabore
- Team Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, 75006 Paris, France
| | - Mira Stadler
- Division of Chronic Inflammation and Cancer (F180), German Cancer Research Center, Heidelberg, Germany
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS 3633, Paris, France
| | - Isabelle Galy-Fauroux
- Team Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, 75006 Paris, France
| | - Mounia Herrag
- Laboratory of Genome Dynamics in the Immune System, Labellisé Ligue, INSERM UMR 1163, Université Paris-Cité, Institut Imagine, Paris, France
| | - Tobias Riedl
- Division of Chronic Inflammation and Cancer (F180), German Cancer Research Center, Heidelberg, Germany
| | - Marie Chansel-Da Cruz
- Laboratory of Genome Dynamics in the Immune System, Labellisé Ligue, INSERM UMR 1163, Université Paris-Cité, Institut Imagine, Paris, France
| | - Stefano Caruso
- Functional Genomics of Solid Tumors Team, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, Université Paris 13, Labex Immuno-Oncology, Équipe Labellisée Ligue Contre le Cancer, Paris, France
| | | | - Rupert Öllinger
- Institute of Molecular Oncology and Functional Genomics, Rechts der Isar University Hospital, Munich, Germany
| | - Roland Rad
- Institute of Molecular Oncology and Functional Genomics, Rechts der Isar University Hospital, Munich, Germany
| | - Kristian Unger
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Albert Tran
- Université Côte d'Azur, INSERM, U1065, C3M, CHU, Nice, France
| | - Jean-Pierre Couty
- Team Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, 75006 Paris, France
| | - Philippe Gual
- Université Côte d'Azur, INSERM, U1065, C3M, CHU, Nice, France
| | - Valérie Paradis
- Université Paris-Cité, Centre de recherche sur l'inflammation, INSERM U1149, CNRS, ERL8252, 75018 Paris, France; Service d'Anatomie Pathologique, Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Clichy, France
| | - Séverine Celton-Morizur
- Team Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, 75006 Paris, France
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer (F180), German Cancer Research Center, Heidelberg, Germany
| | - Patrick Revy
- Laboratory of Genome Dynamics in the Immune System, Labellisé Ligue, INSERM UMR 1163, Université Paris-Cité, Institut Imagine, Paris, France
| | - Chantal Desdouets
- Team Proliferation, Stress and Liver Physiopathology, Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université Paris-Cité, 75006 Paris, France.
| |
Collapse
|
36
|
Laurain A, Rubera I, Razzouk-Cadet M, Bonnafous S, Albuquerque M, Paradis V, Patouraux S, Duranton C, Lesaux O, Lefthériotis G, Tran A, Anty R, Gual P, Iannelli A, Favre G. Arterial Calcifications in Patients with Liver Cirrhosis Are Linked to Hepatic Deficiency of Pyrophosphate Production Restored by Liver Transplantation. Biomedicines 2022; 10:1496. [PMID: 35884801 PMCID: PMC9312703 DOI: 10.3390/biomedicines10071496] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 11/24/2022] Open
Abstract
Liver fibrosis is associated with arterial calcification (AC). Since the liver is a source of inorganic pyrophosphate (PPi), an anti-calcifying compound, we investigated the relationship between plasma PPi ([PPi]pl), liver fibrosis, liver function, AC, and the hepatic expression of genes regulating PPi homeostasis. To that aim, we compared [PPi]pl before liver transplantation (LT) and 3 months after LT. We also assessed the expression of four key regulators of PPi in liver tissues and established correlations between AC, and scores of liver fibrosis and liver failure in these patients. LT candidates with various liver diseases were included. AC scores were assessed in coronary arteries, abdominal aorta, and aortic valves. Liver fibrosis was evaluated on liver biopsies and from non-invasive tests (FIB-4 and APRI scores). Liver functions were assessed by measuring serum albumin, ALBI, MELD, and Pugh−Child scores. An enzymatic assay was used to dose [PPi]pl. A group of patients without liver alterations from a previous cohort provided a control group. Gene expression assays were performed with mRNA extracted from liver biopsies and compared between LT recipients and the control individuals. [PPi]pl negatively correlated with APRI (r = −0.57, p = 0.001, n = 29) and FIB-4 (r = −0.47, p = 0.006, n = 29) but not with interstitial fibrosis index from liver biopsies (r = 0.07, p = 0.40, n = 16). Serum albumin positively correlated with [PPi]pl (r = 0.71; p < 0.0001, n = 20). ALBI, MELD, and Pugh−Child scores correlated negatively with [PPi]pl (r = −0.60, p = 0.0005; r = −0.56, p = 0.002; r = −0.41, p = 0.02, respectively, with n = 20). Liver fibrosis assessed on liver biopsies by FIB-4 and by APRI positively correlated with coronary AC (r = 0.51, p = 0.02, n = 16; r = 0.58, p = 0.009, n = 20; r = 0.41, p = 0.04, n = 20, respectively) and with abdominal aorta AC (r = 0.50, p = 0.02, n = 16; r = 0.67, p = 0.002, n = 20; r = 0.61, p = 0.04, n = 20, respectively). FIB-4 also positively correlated with aortic valve calcification (r = 0.40, p = 0.046, n = 20). The key regulator genes of PPi production in liver were lower in patients undergoing liver transplantation as compared to controls. Three months after surgery, serum albumin levels were restored to physiological levels (40 [37−44] vs. 35 [30−40], p = 0.009) and [PPi]pl was normalized (1.40 [1.07−1.86] vs. 0.68 [0.53−0.80] µmol/L, p = 0.0005, n = 12). Liver failure and/or fibrosis correlated with AC in several arterial beds and were associated with low plasma PPi and dysregulation of key proteins involved in PPi homeostasis. Liver transplantation normalized these parameters.
Collapse
Affiliation(s)
- Audrey Laurain
- Department of Nephrology, Pasteur 1 University Hospital, 06001 Nice, France;
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- LP2M CNRS UMR 7370, Tour Pasteur, 28 Avenue de Valombrose, 06000 Nice, France
| | - Isabelle Rubera
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- LP2M CNRS UMR 7370, Tour Pasteur, 28 Avenue de Valombrose, 06000 Nice, France
| | | | - Stéphanie Bonnafous
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- Team 8 “Chronic Liver Diseases Associated with Obesity and Alcohol” Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M) Bâtiment Universitaire ARCHIMED? 151 Route Saint Antoine de Ginestière BP 2 3194, 06204 Nice, France
- Digestive Unit, Archet 2 University Hospital, 06200 Nice, France
| | - Miguel Albuquerque
- Pathology Department, Beaujon University Hospital, AP-HP, 92110 Clichy, France; (M.A.); (V.P.)
- Inserm U1149, Beaujon University Hospital, 92110 Clichy, France
| | - Valérie Paradis
- Pathology Department, Beaujon University Hospital, AP-HP, 92110 Clichy, France; (M.A.); (V.P.)
- Inserm U1149, Beaujon University Hospital, 92110 Clichy, France
| | - Stéphanie Patouraux
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- Pathology Department, Pasteur 1 University Hospital, 06000 Nice, France
| | - Christophe Duranton
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- LP2M CNRS UMR 7370, Tour Pasteur, 28 Avenue de Valombrose, 06000 Nice, France
| | - Olivier Lesaux
- Department Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813-5534, USA;
| | - Georges Lefthériotis
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- LP2M CNRS UMR 7370, Tour Pasteur, 28 Avenue de Valombrose, 06000 Nice, France
- Department of Vascular Medicine and Surgery, Pasteur 1 University Hospital, 06000 Nice, France
| | - Albert Tran
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- Team 8 “Chronic Liver Diseases Associated with Obesity and Alcohol” Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M) Bâtiment Universitaire ARCHIMED? 151 Route Saint Antoine de Ginestière BP 2 3194, 06204 Nice, France
- Digestive Unit, Archet 2 University Hospital, 06200 Nice, France
| | - Rodolphe Anty
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- Team 8 “Chronic Liver Diseases Associated with Obesity and Alcohol” Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M) Bâtiment Universitaire ARCHIMED? 151 Route Saint Antoine de Ginestière BP 2 3194, 06204 Nice, France
- Digestive Unit, Archet 2 University Hospital, 06200 Nice, France
| | - Philippe Gual
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- Team 8 “Chronic Liver Diseases Associated with Obesity and Alcohol” Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M) Bâtiment Universitaire ARCHIMED? 151 Route Saint Antoine de Ginestière BP 2 3194, 06204 Nice, France
| | - Antonio Iannelli
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- Team 8 “Chronic Liver Diseases Associated with Obesity and Alcohol” Inserm, U1065, Centre Méditerranéen de Médecine Moléculaire (C3M) Bâtiment Universitaire ARCHIMED? 151 Route Saint Antoine de Ginestière BP 2 3194, 06204 Nice, France
- Digestive Unit, Archet 2 University Hospital, 06200 Nice, France
| | - Guillaume Favre
- Department of Nephrology, Pasteur 1 University Hospital, 06001 Nice, France;
- Faculty of Medicine, Tour Pasteur, 28 Avenue de Valombrose, University of Côte d’Azur, 06000 Nice, France; (I.R.); (S.B.); (S.P.); (C.D.); (G.L.); (A.T.); (R.A.); (P.G.); (A.I.)
- LP2M CNRS UMR 7370, Tour Pasteur, 28 Avenue de Valombrose, 06000 Nice, France
| |
Collapse
|
37
|
Kim HY, Baek GH, Lee W, Lee YJ, Shim WS, Choi YJ, Lee BH, Kim SK, Kang KW. CD44 is involved in liver regeneration through enhanced uptake of extracellular cystine. Clin Transl Med 2022; 12:e873. [PMID: 35538920 PMCID: PMC9091989 DOI: 10.1002/ctm2.873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Hyun Young Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ga Hee Baek
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Wonseok Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Joo Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Wan Seob Shim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Jae Choi
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Byung-Hoon Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Kyum Kim
- College of Pharmacy, Chungnam National University, Daejeon, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
38
|
Govaere O, Petersen SK, Martinez-Lopez N, Wouters J, Van Haele M, Mancina RM, Jamialahmadi O, Bilkei-Gorzo O, Lassen PB, Darlay R, Peltier J, Palmer JM, Younes R, Tiniakos D, Aithal GP, Allison M, Vacca M, Göransson M, Berlinguer-Palmini R, Clark JE, Drinnan MJ, Yki-Järvinen H, Dufour JF, Ekstedt M, Francque S, Petta S, Bugianesi E, Schattenberg JM, Day CP, Cordell HJ, Topal B, Clément K, Romeo S, Ratziu V, Roskams T, Daly AK, Anstee QM, Trost M, Härtlova A. Macrophage scavenger receptor 1 mediates lipid-induced inflammation in non-alcoholic fatty liver disease. J Hepatol 2022; 76:1001-1012. [PMID: 34942286 DOI: 10.1016/j.jhep.2021.12.012] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/05/2021] [Accepted: 12/07/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND & AIMS Obesity-associated inflammation is a key player in the pathogenesis of non-alcoholic fatty liver disease (NAFLD). However, the role of macrophage scavenger receptor 1 (MSR1, CD204) remains incompletely understood. METHODS A total of 170 NAFLD liver biopsies were processed for transcriptomic analysis and correlated with clinicopathological features. Msr1-/- and wild-type mice were subjected to a 16-week high-fat and high-cholesterol diet. Mice and ex vivo human liver slices were treated with a monoclonal antibody against MSR1. Genetic susceptibility was assessed using genome-wide association study data from 1,483 patients with NAFLD and 430,101 participants of the UK Biobank. RESULTS MSR1 expression was associated with the occurrence of hepatic lipid-laden foamy macrophages and correlated with the degree of steatosis and steatohepatitis in patients with NAFLD. Mice lacking Msr1 were protected against diet-induced metabolic disorder, showing fewer hepatic foamy macrophages, less hepatic inflammation, improved dyslipidaemia and glucose tolerance, and altered hepatic lipid metabolism. Upon induction by saturated fatty acids, MSR1 induced a pro-inflammatory response via the JNK signalling pathway. In vitro blockade of the receptor prevented the accumulation of lipids in primary macrophages which inhibited the switch towards a pro-inflammatory phenotype and the release of cytokines such as TNF-ɑ. Targeting MSR1 using monoclonal antibody therapy in an obesity-associated NAFLD mouse model and human liver slices resulted in the prevention of foamy macrophage formation and inflammation. Moreover, we identified that rs41505344, a polymorphism in the upstream transcriptional region of MSR1, was associated with altered serum triglycerides and aspartate aminotransferase levels in a cohort of over 400,000 patients. CONCLUSIONS Taken together, our data suggest that MSR1 plays a critical role in lipid-induced inflammation and could thus be a potential therapeutic target for the treatment of NAFLD. LAY SUMMARY Non-alcoholic fatty liver disease (NAFLD) is a chronic disease primarily caused by excessive consumption of fat and sugar combined with a lack of exercise or a sedentary lifestyle. Herein, we show that the macrophage scavenger receptor MSR1, an innate immune receptor, mediates lipid uptake and accumulation in Kupffer cells, resulting in liver inflammation and thereby promoting the progression of NAFLD in humans and mice.
Collapse
Affiliation(s)
- Olivier Govaere
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Sine Kragh Petersen
- Wallenberg Centre for Molecular and Translational Medicine, Department of Microbiology and Immunology at Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nuria Martinez-Lopez
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Radiation Oncology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Jasper Wouters
- Center for Brain & Disease Research, VIB-KU Leuven, Leuven, Belgium; Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Matthias Van Haele
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Rosellina M Mancina
- The Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Oveis Jamialahmadi
- The Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Orsolya Bilkei-Gorzo
- Wallenberg Centre for Molecular and Translational Medicine, Department of Microbiology and Immunology at Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Pierre Bel Lassen
- Nutrition and obesity: systemic approaches, Inserm, Sorbonne University, Paris, France
| | - Rebecca Darlay
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Julien Peltier
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jeremy M Palmer
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Ramy Younes
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Medical Sciences, Division of Gastro-Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | - Dina Tiniakos
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Department of Pathology, Aretaieio Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Guruprasad P Aithal
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Nottingham, United Kingdom
| | - Michael Allison
- Liver Unit, Department of Medicine, Cambridge NIHR Biomedical Research Centre, Cambridge University NHS Foundation Trust, United Kingdom
| | - Michele Vacca
- University of Cambridge Metabolic Research Laboratories, Wellcome-MRC Institute of Metabolic Science, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Melker Göransson
- Bioscience COPD/IPF, Research and Early Development, Respiratory and Immunology (R&I), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - James E Clark
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Michael J Drinnan
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Hannele Yki-Järvinen
- Minerva Foundation Institute for Medical Research and Department of Medicine, University of Helsinki, Helsinki, Finland
| | - Jean-Francois Dufour
- University Clinic for Visceral Surgery and Medicine, University of Bern, Bern, Switzerland; Hepatology, Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Mattias Ekstedt
- Division of Gastroenterology and Hepatology, Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden
| | - Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital & University of Antwerp, Antwerp, Belgium
| | - Salvatore Petta
- Sezione di Gastroenterologia, Dipartimento Biomedico di Medicina Interna e Specialistica, Università di Palermo, Palermo, Italy
| | - Elisabetta Bugianesi
- Department of Medical Sciences, Division of Gastro-Hepatology, A.O. Città della Salute e della Scienza di Torino, University of Turin, Turin, Italy
| | | | - Christopher P Day
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Heather J Cordell
- Population Health Sciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Baki Topal
- Department of Abdominal Surgery, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Karine Clément
- Nutrition and obesity: systemic approaches, Inserm, Sorbonne University, Paris, France
| | - Stefano Romeo
- The Wallenberg Laboratory for Cardiovascular and Metabolic Research, Department of Molecular and Clinical Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Vlad Ratziu
- Assistance Publique-Hôpitaux de Paris, hôpital Beaujon, University Paris-Diderot, Paris, France
| | - Tania Roskams
- Department of Imaging and Pathology, Translational Cell and Tissue Research, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Ann K Daly
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Quentin M Anstee
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, United Kingdom.
| | - Matthias Trost
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Anetta Härtlova
- Wallenberg Centre for Molecular and Translational Medicine, Department of Microbiology and Immunology at Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| |
Collapse
|
39
|
VerHague M, Albright J, Barron K, Kim M, Bennett BJ. Obesogenic and diabetic effects of CD44 in mice are sexually dimorphic and dependent on genetic background. Biol Sex Differ 2022; 13:14. [PMID: 35410390 PMCID: PMC8996418 DOI: 10.1186/s13293-022-00426-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction CD44 is a candidate gene for obesity and diabetes development and may be a critical mediator of a systemic inflammation associated with obesity and diabetes. Methods We investigated the relationship of CD44 with obesity in CD44-deficient mice challenged with a high-fat diet. Results In mice fed a diet high in fat, cholesterol, and sucrose for 12 weeks fat mass accumulation was reduced in CD44-deficient mice bred onto both a C57BL/6J and the naturally TLR deficient C3H/HeJ background. Reduced fat mass could not be attributed to lower food intake or an increase in energy expenditure as measured by indirect calorimetry. However, we observed a 40–60% lower mRNA expression of the inflammation markers, F4/80, CD11b, TNF-α, and CD14, in adipose tissue of CD44-deficient mice on the C57BL/6J background but not the C3H/HeJ background, perhaps indicating that alternative factors may be affecting adiposity in this model. Measures of hepatic steatosis and insulin sensitivity were improved in CD44-deficient mice on a C57BL/6J but not in the C3H/HeJ mice. These results were highly sexually dimorphic as there were no detectable effects of CD44 inactivation in female mice on a C57BL/6 J or C3H/HeJ background. Conclusion CD44 was associated with adiposity, liver fat, and glucose in male mice. However, the effects of CD44 on obesity may be independent of TLR4 signaling. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-022-00426-2.
Collapse
Affiliation(s)
- Melissa VerHague
- Nutrition Research Institute, University of North Carolina Kannapolis, Kannapolis, NC, 28081, USA
| | - Jody Albright
- Nutrition Research Institute, University of North Carolina Kannapolis, Kannapolis, NC, 28081, USA
| | - Keri Barron
- Nutrition Research Institute, University of North Carolina Kannapolis, Kannapolis, NC, 28081, USA
| | - Myungsuk Kim
- Department of Nutrition, University of California, Davis, 95616, USA.,Korea Institute of Science and Technology (KIST), Gangneung, Gangwon-do, Republic of Korea
| | - Brian J Bennett
- Obesity and Metabolism Research Unit USDA, ARS Western Human Nutrition Research Center, 430 W Health Sciences Drive, Davis, CA, 95616, USA. .,Department of Nutrition, University of California, Davis, 95616, USA.
| |
Collapse
|
40
|
Chung KW, Cho YE, Kim SJ, Hwang S. Immune-related pathogenesis and therapeutic strategies of nonalcoholic steatohepatitis. Arch Pharm Res 2022; 45:229-244. [PMID: 35391713 DOI: 10.1007/s12272-022-01379-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/25/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the hepatic manifestation of metabolic syndrome and has become prevalent in the adult population worldwide, given the ongoing obesity pandemic. NAFLD comprises several hepatic disorders, ranging from fatty liver to nonalcoholic steatohepatitis (NASH), cirrhosis, and carcinoma. Excessive fat accumulation in the liver can induce the development of fatty liver, whereas the progression of fatty liver to NASH involves various complex factors. The crucial difference between fatty liver and NASH is the presence of inflammation and fibrosis, the emergence of which is closely associated with the action of immune cells and immunological factors, such as chemokines and cytokines. Thus, expanding our understanding of immunological mechanisms contributing to NASH pathogenesis will lead to the identification of therapeutic targets and the development of viable therapeutics against NASH.
Collapse
Affiliation(s)
- Ki Wung Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Ye Eun Cho
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea
| | - Seung-Jin Kim
- Department of Biochemistry, College of Natural Sciences, Kangwon Institute of Inclusive Technology, Kangwon National University, Chuncheon, 24341, Republic of Korea.,Global/Gangwon Innovative Biologics-Regional Leading Research Center (GIB-RLRC), Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Seonghwan Hwang
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
41
|
Yang X, Zheng M, Zhou M, Zhou L, Ge X, Pang N, Li H, Li X, Li M, Zhang J, Huang XF, Zheng K, Yu Y. Lentinan Supplementation Protects the Gut–Liver Axis and Prevents Steatohepatitis: The Role of Gut Microbiota Involved. Front Nutr 2022; 8:803691. [PMID: 35127789 PMCID: PMC8810540 DOI: 10.3389/fnut.2021.803691] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
The microbiota–gut–liver axis has emerged as an important player in developing nonalcoholic steatohepatitis (NASH), a type of nonalcoholic fatty liver disease (NAFLD). Higher mushroom intake is negatively associated with the prevalence of NAFLD. This study examined whether lentinan, an active ingredient in mushrooms, could improve NAFLD and gut microbiota dysbiosis in NAFLD mice induced by a high-fat (HF) diet. Dietary lentinan supplementation for 15 weeks significantly improved gut microbiota dysbiosis in HF mice, evidenced by increased the abundance of phylum Actinobacteria and decreased phylum Proteobacteria and Epsilonbacteraeota. Moreover, lentinan improved intestinal barrier integrity and characterized by enhancing intestinal tight junction proteins, restoring intestinal redox balance, and reducing serum lipopolysaccharide (LPS). In the liver, lentinan attenuated HF diet-induced steatohepatitis, alteration of inflammation–insulin (NFκB-PTP1B-Akt-GSK3β) signaling molecules, and dysregulation of metabolism and immune response genes. Importantly, the antihepatic inflammation effects of lentinan were associated with improved gut microbiota dysbiosis in the treated animals, since the Spearman's correlation analysis showed that hepatic LPS-binding protein and receptor (Lbp and Tlr4) and pro- and antiinflammatory cytokine expression were significantly correlated with the abundance of gut microbiota of phylum Proteobacteria, Epsilonbacteraeota and Actinobacteria. Therefore, lentinan supplementation may be used to mitigate NAFLD by modulating the microbiota–gut–liver axis.
Collapse
Affiliation(s)
- Xiaoying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Mingxuan Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Menglu Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Limian Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Xing Ge
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Ning Pang
- Tianjin Third Central Hospital, Tianjin, China
| | - Hongchun Li
- Medical Technology Institute, Xuzhou Medical University, Xuzhou, China
- Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Mengdi Li
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Jun Zhang
- Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xu-Feng Huang
- School of Medicine, Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism, Department of Pathogen Biology and Immunology, Xuzhou Medical University, Xuzhou, China
- School of Medicine, Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, NSW, Australia
- *Correspondence: Yinghua Yu
| |
Collapse
|
42
|
Gu L, Zhang F, Wu J, Zhuge Y. Nanotechnology in Drug Delivery for Liver Fibrosis. Front Mol Biosci 2022; 8:804396. [PMID: 35087870 PMCID: PMC8787125 DOI: 10.3389/fmolb.2021.804396] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022] Open
Abstract
Liver fibrosis is a reversible disease course caused by various liver injury etiologies, and it can lead to severe complications, such as liver cirrhosis, liver failure, and even liver cancer. Traditional pharmacotherapy has several limitations, such as inadequate therapeutic effect and side effects. Nanotechnology in drug delivery for liver fibrosis has exhibited great potential. Nanomedicine improves the internalization and penetration, which facilitates targeted drug delivery, combination therapy, and theranostics. Here, we focus on new targets and new mechanisms in liver fibrosis, as well as recent designs and development work of nanotechnology in delivery systems for liver fibrosis treatment.
Collapse
Affiliation(s)
- Lihong Gu
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Feng Zhang
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Chemistry and Biomedicine Innovation Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Yuzheng Zhuge
- Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
43
|
Wang C, Ma C, Gong L, Guo Y, Fu K, Zhang Y, Zhou H, Li Y. Macrophage Polarization and Its Role in Liver Disease. Front Immunol 2022; 12:803037. [PMID: 34970275 PMCID: PMC8712501 DOI: 10.3389/fimmu.2021.803037] [Citation(s) in RCA: 305] [Impact Index Per Article: 101.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Macrophages are important immune cells in innate immunity, and have remarkable heterogeneity and polarization. Under pathological conditions, in addition to the resident macrophages, other macrophages are also recruited to the diseased tissues, and polarize to various phenotypes (mainly M1 and M2) under the stimulation of various factors in the microenvironment, thus playing different roles and functions. Liver diseases are hepatic pathological changes caused by a variety of pathogenic factors (viruses, alcohol, drugs, etc.), including acute liver injury, viral hepatitis, alcoholic liver disease, metabolic-associated fatty liver disease, liver fibrosis, and hepatocellular carcinoma. Recent studies have shown that macrophage polarization plays an important role in the initiation and development of liver diseases. However, because both macrophage polarization and the pathogenesis of liver diseases are complex, the role and mechanism of macrophage polarization in liver diseases need to be further clarified. Therefore, the origin of hepatic macrophages, and the phenotypes and mechanisms of macrophage polarization are reviewed first in this paper. It is found that macrophage polarization involves several molecular mechanisms, mainly including TLR4/NF-κB, JAK/STATs, TGF-β/Smads, PPARγ, Notch, and miRNA signaling pathways. In addition, this paper also expounds the role and mechanism of macrophage polarization in various liver diseases, which aims to provide references for further research of macrophage polarization in liver diseases, contributing to the therapeutic strategy of ameliorating liver diseases by modulating macrophage polarization.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lihong Gong
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuqin Guo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ke Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yafang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Honglin Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yunxia Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Key Laboratory of Standardization for Chinese Herbal Medicine, Ministry of Education, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
44
|
Kocurkova A, Nesporova K, Sandanusova M, Kerberova M, Lehka K, Velebny V, Kubala L, Ambrozova G. Endogenously-Produced Hyaluronan and Its Potential to Regulate the Development of Peritoneal Adhesions. Biomolecules 2021; 12:biom12010045. [PMID: 35053193 PMCID: PMC8773905 DOI: 10.3390/biom12010045] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Accepted: 12/24/2021] [Indexed: 12/23/2022] Open
Abstract
Formation of peritoneal adhesions (PA) is one of the major complications following intra-abdominal surgery. It is primarily caused by activation of the mesothelial layer and underlying tissues in the peritoneal membrane resulting in the transition of mesothelial cells (MCs) and fibroblasts to a pro-fibrotic phenotype. Pro-fibrotic transition of MCs—mesothelial-to-mesenchymal transition (MMT), and fibroblasts activation to myofibroblasts are interconnected to changes in cellular metabolism and culminate in the deposition of extracellular matrix (ECM) in the form of fibrotic tissue between injured sides in the abdominal cavity. However, ECM is not only a mechanical scaffold of the newly synthetized tissue but reciprocally affects fibrosis development. Hyaluronan (HA), an important component of ECM, is a non-sulfated glycosaminoglycan consisting of N-acetyl-D-glucosamine (GlcNAc) and D-glucuronic acid (GlcUA) that can affect the majority of processes involved in PA formation. This review considers the role of endogenously produced HA in the context of different fibrosis-related pathologies and its overlap in the development of PA.
Collapse
Affiliation(s)
- Anna Kocurkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Kristina Nesporova
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Miriam Sandanusova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Michaela Kerberova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
| | - Katerina Lehka
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Vladimir Velebny
- Contipro a.s., Dolní Dobrouč 401, 561 02 Dolní Dobrouč, Czech Republic; (K.N.); (K.L.); (V.V.)
| | - Lukas Kubala
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Institute of Experimental Biology, Faculty of Science, Masaryk University, 611 37 Brno, Czech Republic
- International Clinical Research Center, St. Anne’s University Hospital, 656 91 Brno, Czech Republic
| | - Gabriela Ambrozova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, 612 65 Brno, Czech Republic; (A.K.); (M.S.); (M.K.); (L.K.)
- Correspondence:
| |
Collapse
|
45
|
Gallego-Durán R, Montero-Vallejo R, Maya-Miles D, Lucena A, Martin F, Ampuero J, Romero-Gómez M. Analysis of Common Pathways and Markers From Non-Alcoholic Fatty Liver Disease to Immune-Mediated Diseases. Front Immunol 2021; 12:667354. [PMID: 34899679 PMCID: PMC8652219 DOI: 10.3389/fimmu.2021.667354] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic associated fatty liver disease (MAFLD) is the most prevalent form of liver disease worldwide, accounting for a high liver-related mortality and morbidity with extensive multi-organ involvement. This entity has displaced viral hepatitis as the main cause of severe forms of hepatic diseases, although the onset and transition of MAFLD stages still remains unclear. Nevertheless, innate and adaptive immune responses seem to play an essential role in the establishment and further progression of this disease. The immune system is responsible of safeguard and preserves organs and systems function, and might be altered under different stimuli. Thus, the liver suffers from metabolic and immune changes leading to different injuries and loss of function. It has been stablished that cell-cell crosstalk is a key process in the hepatic homeostasis maintenance. There is mounting evidence suggesting that MAFLD pathogenesis is determined by a complex interaction of environmental, genetic and host factors that leads to a full plethora of outcomes. Therefore, herein we will revisit and discuss the interplay between immune mechanisms and MAFLD, highlighting the potential role of immunological markers in an attempt to clarify its relationship.
Collapse
Affiliation(s)
- Rocío Gallego-Durán
- SeLiver Group, Instituto de Biomedicina de Sevilla/Consejo Superior de Investigaciones Científicas (CSIC)/Hospital Virgen del Rocío, Sevilla, Spain.,Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Montero-Vallejo
- SeLiver Group, Instituto de Biomedicina de Sevilla/Consejo Superior de Investigaciones Científicas (CSIC)/Hospital Virgen del Rocío, Sevilla, Spain.,Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Douglas Maya-Miles
- SeLiver Group, Instituto de Biomedicina de Sevilla/Consejo Superior de Investigaciones Científicas (CSIC)/Hospital Virgen del Rocío, Sevilla, Spain.,Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Lucena
- SeLiver Group, Instituto de Biomedicina de Sevilla/Consejo Superior de Investigaciones Científicas (CSIC)/Hospital Virgen del Rocío, Sevilla, Spain.,Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Franz Martin
- Andalusian Center for Molecular Biology and Regenerative Medicine (CABIMER), University of Pablo de Olavide-University of Sevilla-Consejo Superior de Investigaciones Científicas, Sevilla, Spain.,Biomedical Research Network on Diabetes and Related Metabolic Diseases (CIBERDEM), Madrid, Spain
| | - Javier Ampuero
- SeLiver Group, Instituto de Biomedicina de Sevilla/Consejo Superior de Investigaciones Científicas (CSIC)/Hospital Virgen del Rocío, Sevilla, Spain.,Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| | - Manuel Romero-Gómez
- SeLiver Group, Instituto de Biomedicina de Sevilla/Consejo Superior de Investigaciones Científicas (CSIC)/Hospital Virgen del Rocío, Sevilla, Spain.,Biomedical Research Network on Hepatic and Digestive Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain.,Digestive Diseases Unit, Hospital Universitario Virgen del Rocío, Sevilla, Spain
| |
Collapse
|
46
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 505] [Impact Index Per Article: 126.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
47
|
Veiga RN, de Oliveira JC, Gradia DF. PBX1: a key character of the hallmarks of cancer. J Mol Med (Berl) 2021; 99:1667-1680. [PMID: 34529123 DOI: 10.1007/s00109-021-02139-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/17/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Pre-B-cell leukemia homeobox transcription factor 1 (PBX1) was first identified as part of a fusion protein resulting from the chromosomal translocation t(1;19) in pre-B cell acute lymphoblastic leukemias. Since then, PBX1 has been associated with important developmental programs, and its expression dysregulation has been related to multifactorial disorders, including cancer. As PBX1 overexpression in many cancers is correlated to poor prognosis, we sought to understand how this transcription factor contributes to carcinogenesis, and to organize PBX1's roles in the hallmarks of cancer. There is enough evidence to associate PBX1 with at least five hallmarks: sustaining proliferative signaling, activating invasion and metastasis, inducing angiogenesis, resisting cell death, and deregulating cellular energetics. The lack of studies investigating a possible role for PBX1 on the remaining hallmarks made it impossible to defend or refute its contribution on them. However, the functions of some of the PBX1's transcription targets indicate a potential engagement of PBX1 in the avoidance of immune destruction and in the tumor-promoting inflammation hallmarks. Interestingly, PBX1 might be a player in tumor suppression by activating the transcription of some DNA damage response genes. This is the first review organizing PBX1 roles into the hallmarks of cancer. Thus, we encourage future studies to uncover the PBX1's underlying mechanisms to promote carcinogenesis, for it is a promising diagnostic and prognostic biomarker, as well as a potential target in cancer treatment.
Collapse
Affiliation(s)
- Rafaela Nasser Veiga
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Jaqueline Carvalho de Oliveira
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil
| | - Daniela Fiori Gradia
- Laboratory of Human Cytogenetics and Oncogenetics, Department of Genetics, Postgraduate Program in Genetics, Universidade Federal Do Paraná, Rua Coronel Francisco Heráclito Dos Santos, 100, Jardim das AméricasCuritiba, CEP, 81531-980, Brazil.
| |
Collapse
|
48
|
Hong W, Zhang T, Yan J, Yu J, He B, Wu L, Yao K, Mao W, Chen Z. Bioinformatics analysis of an animal model of diet-induced nonalcoholic fatty liver disease with rapid progression. Exp Biol Med (Maywood) 2021; 247:263-275. [PMID: 34775841 DOI: 10.1177/15353702211055099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) develops rapidly in high-fat diet (HFD) fed Mongolian gerbil (Meriones unguiculatus). Here, we aim to explore the gene expression characteristics of Mongolian gerbil to better understand the underlying mechanism in this animal model. Mongolian gerbils were fed with normal diet or HFD for different periods. High-throughput sequencing was carried out on the hepatic mRNA and bioinformatics analysis was further performed. Eight hub genes Cd44, App, Cdc42, Cd68, Cxcr4, Csf1r, Adgre1, and Fermt3, which were involved in inflammation, fibrosis, and HCC were obtained. Four significant independent poor prognostic factors for HCC (GPC1, ARPC1B, DAB2, and CFL1) were screened out. qRT-PCR result showed that the above genes expressed high levels in different periods of modeling process. The findings of this study provide useful information for further studies on Mongolian gerbil NAFLD model.
Collapse
Affiliation(s)
- Wei Hong
- The Second Central Laboratory, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310016, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou 310016, China
| | - Tingting Zhang
- The Second Central Laboratory, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310016, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou 310016, China
| | - Junbin Yan
- The Second Central Laboratory, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310016, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou 310016, China
| | - Jianshun Yu
- The Second Central Laboratory, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310016, China
| | - Beihui He
- The Second Central Laboratory, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310016, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou 310016, China
| | - Liyan Wu
- The Second Central Laboratory, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310016, China
| | - Kannan Yao
- The Second Central Laboratory, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310016, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou 310016, China
| | - Wei Mao
- Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou 310016, China.,Department of Cardiology, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310016, China
| | - Zhiyun Chen
- The Second Central Laboratory, the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310016, China.,Key Laboratory of Integrative Chinese and Western Medicine for the Diagnosis and Treatment of Circulatory Diseases of Zhejiang Province, Hangzhou 310016, China
| |
Collapse
|
49
|
Schyman P, Printz RL, Pannala VR, AbdulHameed MDM, Estes SK, Shiota C, Boyd KL, Shiota M, Wallqvist A. Genomics and metabolomics of early-stage thioacetamide-induced liver injury: An interspecies study between guinea pig and rat. Toxicol Appl Pharmacol 2021; 430:115713. [PMID: 34492290 PMCID: PMC8511347 DOI: 10.1016/j.taap.2021.115713] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022]
Abstract
To study the complex processes involved in liver injuries, researchers rely on animal investigations, using chemically or surgically induced liver injuries, to extrapolate findings and infer human health risks. However, this presents obvious challenges in performing a detailed comparison and validation between the highly controlled animal models and development of liver injuries in humans. Furthermore, it is not clear whether there are species-dependent and -independent molecular initiating events or processes that cause liver injury before they eventually lead to end-stage liver disease. Here, we present a side-by-side study of rats and guinea pigs using thioacetamide to examine the similarities between early molecular initiating events during an acute-phase liver injury. We exposed Sprague Dawley rats and Hartley guinea pigs to a single dose of 25 or 100 mg/kg thioacetamide and collected blood plasma for metabolomic analysis and liver tissue for RNA-sequencing. The subsequent toxicogenomic analysis identified consistent liver injury trends in both genomic and metabolomic data within 24 and 33 h after thioacetamide exposure in rats and guinea pigs, respectively. In particular, we found species similarities in the key injury phenotypes of inflammation and fibrogenesis in our gene module analysis for liver injury phenotypes. We identified expression of several common genes (e.g., SPP1, TNSF18, SERPINE1, CLDN4, TIMP1, CD44, and LGALS3), activation of injury-specific KEGG pathways, and alteration of plasma metabolites involved in amino acid and bile acid metabolism as some of the key molecular processes that changed early upon thioacetamide exposure and could play a major role in the initiation of acute liver injury.
Collapse
Affiliation(s)
- Patric Schyman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Venkat R Pannala
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA.
| | - Mohamed Diwan M AbdulHameed
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, USA
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Chiyo Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kelli Lynn Boyd
- Department of Pathology, Microbiology and Immunology, Division of Comparative Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA.
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Fort Detrick, MD, USA.
| |
Collapse
|
50
|
Skat-Rørdam J, Ipsen DH, Seemann SE, Latta M, Lykkesfeldt J, Tveden-Nyborg P. Modelling Nonalcoholic Steatohepatitis In Vivo-A Close Transcriptomic Similarity Supports the Guinea Pig Disease Model. Biomedicines 2021; 9:biomedicines9091198. [PMID: 34572384 PMCID: PMC8471870 DOI: 10.3390/biomedicines9091198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/29/2022] Open
Abstract
The successful development of effective treatments against nonalcoholic steatohepatitis (NASH) is significantly set back by the limited availability of predictive preclinical models, thereby delaying and reducing patient recovery. Uniquely, the guinea pig NASH model develops hepatic histopathology and fibrosis resembling that of human patients, supported by similarities in selected cellular pathways. The high-throughput sequencing of guinea pig livers with fibrotic NASH (n = 6) and matched controls (n = 6) showed a clear separation of the transcriptomic profile between NASH and control animals. A comparison to NASH patients with mild disease (GSE126848) revealed a 45.2% overlap in differentially expressed genes, while pathway analysis showed a 34% match between the top 50 enriched pathways in patients with advanced NASH (GSE49541) and guinea pigs. Gene set enrichment analysis highlighted the similarity to human patients (GSE49541), also when compared to three murine models (GSE52748, GSE38141, GSE67680), and leading edge genes THRSP, CCL20 and CD44 were highly expressed in both guinea pigs and NASH patients. Nine candidate genes were identified as highly correlated with hepatic fibrosis (correlation coefficient > 0.8), and showed a similar expression pattern in NASH patients. Of these, two candidate genes (VWF and SERPINB9) encode secreted factors, warranting further investigations as potential biomarkers of human NASH progression. This study demonstrates key similarities in guinea pig and human NASH, supporting increased predictability when translating research findings to human patients.
Collapse
Affiliation(s)
- Josephine Skat-Rørdam
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederikberg, Denmark; (J.S.-R.); (D.H.I.); (J.L.)
| | - David H. Ipsen
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederikberg, Denmark; (J.S.-R.); (D.H.I.); (J.L.)
| | - Stefan E. Seemann
- Center for non-coding RNA in Technology and Health, Department of Veterinary and Animal Sciences, Section for Animal Genetics, Bioinformatics and Breeding, University of Copenhagen, DK-1871 Frederiksberg, Denmark;
| | - Markus Latta
- Liver Disease Research, Global Drug Discovery, Novo Nordisk A/S, DK-2760 Måløv, Denmark;
| | - Jens Lykkesfeldt
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederikberg, Denmark; (J.S.-R.); (D.H.I.); (J.L.)
| | - Pernille Tveden-Nyborg
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, DK-1870 Frederikberg, Denmark; (J.S.-R.); (D.H.I.); (J.L.)
- Correspondence: ; Tel.: +45-35-33-31-67
| |
Collapse
|