1
|
Butt FA, De Simone A, Di Talia S, Poss KD. In toto live imaging of Erk signaling dynamics in developing zebrafish hepatocytes. Dev Biol 2025; 523:43-50. [PMID: 40228782 PMCID: PMC12068954 DOI: 10.1016/j.ydbio.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/16/2025]
Abstract
Regional and tissue-wide regulation of signaling pathways orchestrates cellular proliferation and differentiation during organ development. In this study, we established an imaging platform for longitudinal analysis of liver development in live developing zebrafish. We generated hepatocyte-specific transgenic lines for kinase translocation reporters of extracellular signal-regulated kinase (Erk) and c-Jun N-terminal kinase (Jnk) signaling, and with these we captured signaling dynamics that govern rapid expansion of hepatocytes toward creation of the functioning liver at single-cell resolution. Our findings reveal Erk signaling fluctuations as the liver develops and introduce methodology for investigating cell-type specific signaling dynamics during organ morphogenesis.
Collapse
Affiliation(s)
- Faraz Ahmed Butt
- Duke Regeneration Center and Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Alessandro De Simone
- Department of Genetics and Evolution, University of Geneva, 1211, Geneva, Switzerland
| | - Stefano Di Talia
- Duke Regeneration Center and Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA; Duke Center for Quantitative Living Systems, Duke University Medical Center, Durham, NC, 27710, USA
| | - Kenneth D Poss
- Duke Regeneration Center and Department of Cell Biology, Duke University Medical Center, Durham, NC, 27710, USA; Morgridge Institute for Research, Madison, WI, 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, 53705, USA.
| |
Collapse
|
2
|
Wu JS, He YQ, Wei YY, Ma XY, Zhang XY, He J, Wang LL, He JX, Han Y, Lin ZN, Lin YC. Evaluation of the efficacy of cell-penetrating monoclonal antibodies targeting intracellular p-NLRP3 S295 in alleviating hepatotoxicant-induced NAFLD. Int J Biol Macromol 2025; 308:142696. [PMID: 40169050 DOI: 10.1016/j.ijbiomac.2025.142696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 03/27/2025] [Accepted: 03/29/2025] [Indexed: 04/03/2025]
Abstract
NOD-like receptor protein 3 (NLRP3) is a key driver of hepatotoxicant-induced nonalcoholic fatty liver disease (NAFLD). Phosphorylation of NLRP3 at serine 295 (p-NLRP3S295) is crucial for pyroptosis. Monoclonal antibodies (mAbs) have been designed to target extracellular molecules or cell membrane surface receptors and have achieved progress in NAFLD treatment. However, research on mAbs targeting intracellular biomarkers for NAFLD treatment remains limited. In this study, aflatoxin B1 (AFB1), lipopolysaccharide (LPS) combined with ATP, or palmitic acid (PA) were used to induce p-NLRP3S295-dependent pyroptosis and inflammation mediated by lipotoxicity in hepatocytes in vitro. We generated a specific anti-p-NLRP3S295 mAb (14C7) and internalized it into hepatocytes via an enhanced TAT-based intracellular delivery system (eTAT), which inhibited p-NLRP3S295-dependent pyroptosis and inflammation in hepatocytes subjected to simulated lipotoxic injury and in the livers of NAFLD mice. The recombinant mAb@p-NLRP3S295 expression system was constructed with 14C7. The intracellularly expressed recombinant monoclonal antibody (R-mAb) efficiently blocked p-NLRP3S295-dependent pyroptosis and inflammation in hepatocytes exposed to hepatotoxicant through the proteasome degradation pathway mediated by tripartite motif-containing 40 (TRIM40). In conclusion, this study presents a novel approach for the targeted inhibition of p-NLRP3S295 through intracellular recombinant mAbs, offering new insights into the treatment of hepatotoxicant-related NAFLD via specific intracellular targeting.
Collapse
Affiliation(s)
- Jia-Shen Wu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu-Qiao He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yue-Yue Wei
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xin-Yu Ma
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xin-Yu Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jie He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Lei-Lei Wang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jia-Xin He
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Yu Han
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhong-Ning Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Yu-Chun Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Liu X, Sun H, Han Q, Wang Z, Zeng J, Liu J, Ou S, Jin K, Shao Y, Li D, Gao Z, Wang F. Gut microbiota-derived UDCA enhanced by metformin inhibits FXR to activate autophagy against MCD diet-induced NAFLD in mice. Int Immunopharmacol 2025; 153:114471. [PMID: 40121741 DOI: 10.1016/j.intimp.2025.114471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 02/19/2025] [Accepted: 03/09/2025] [Indexed: 03/25/2025]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a prevalent chronic liver disease, poses a substantial global health burden. Metformin is known for its protective effects in NAFLD, but the role of gut microbiota in the underlying mechanisms remains unclear. In this study, metformin was found to mitigate methionine-choline deficient (MCD) -diet induced NAFLD through reshaping the gut microbiota to increase ursodeoxycholic acid (UDCA) level, thereby inhibiting farnesoid X receptor (FXR) accompanied with activated autophagy. Specifically, using dirty cage experiments and 16S rRNA sequencing, it identified that metformin could reshape microbiota to release liver injury as confirmed by the results of histopathology and biochemical index detection. Furthermore, the bile acids were found to be altered by metformin, in which, the UDCA, a FXR natural inhibitor, was observed a significantly increase. Meanwhile, the inhibited FXR and activated autophagy in metformin-treated mice were captured using western blot, qRT-PCR and immunofluorescence analysis. In addition, the benefit of UDCA against NAFLD was demonstrated in UDCA treated mice. Further investigation with FXR siRNA introduced to HepG2 cells revealed that inhibiting FXR can reduce oleic acids induced cell injury with the autophagy activation. In conclusion, this study highlights metformin's potential to ameliorate NAFLD by reshaping gut microbiota, thereby upregulating UDCA in the liver and restoring cholesterol synthesis capacity, possibly via inhibiting FXR to activate autophagy.
Collapse
Affiliation(s)
- Xiujie Liu
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China; Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, Zhejiang, China
| | - Hongxia Sun
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Qiannian Han
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Zekai Wang
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jingjing Zeng
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Jianwei Liu
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Shining Ou
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China
| | - Keke Jin
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yuanyuan Shao
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, Zhejiang, China
| | - Dongbing Li
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo 315048, Zhejiang, China
| | - Zhuowei Gao
- Oncology Department, Shunde Hospital of Guangzhou University of Chinese Medicine, Guangdong 528300, China; Research Center of Translational Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Guangdong 528300, China.
| | - Fangyan Wang
- Institute of microbiota and host inflammation-related diseases; School of Basic Medical Science, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
4
|
Robertson TF, Schrope J, Zwick Z, Rindy J, Horn A, Hou Y, Huttenlocher A. Live imaging in zebrafish reveals tissue-specific strategies for amoeboid migration. Development 2025; 152:dev204351. [PMID: 40114648 PMCID: PMC12070063 DOI: 10.1242/dev.204351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025]
Abstract
Amoeboid cells such as leukocytes can enter and migrate in diverse tissues, even though tissues vary widely in their chemical and mechanical composition. Here, we imaged motile T cells as they colonized peripheral tissues during zebrafish development to determine whether cells tailor their migration strategy to their local tissue environment. We found that T cells in most sites migrated with F-actin-rich, leading-edge pseudopods, matching how they migrate in vitro. T cells notably deviated from this strategy in the epidermis, where they instead migrated using a rearward concentration of F-actin and stable leading-edge blebs. This mode of migration occurs under planar confinement in vitro, and we found that the stratified keratinocyte layers of the epidermis also impose planar-like confinement on leukocytes in vivo. Collectively, our data indicate that immune cells adapt their migration strategy to navigate different tissue geometries in vivo.
Collapse
Affiliation(s)
- Tanner F. Robertson
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Jon Schrope
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI 53726, USA
| | - Zoe Zwick
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Julie Rindy
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Adam Horn
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Yiran Hou
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology & Immunology, University of Wisconsin–Madison, Madison, WI 53706, USA
- Department of Pediatrics, University of Wisconsin–Madison, Madison, WI 53792, USA
| |
Collapse
|
5
|
Xiong Y, Sun M, Yang Q, Zhang W, Song A, Tan Y, Mao J, Liu G, Xue P. Nanoparticle-based drug delivery systems to modulate tumor immune response for glioblastoma treatment. Acta Biomater 2025; 194:38-57. [PMID: 39884522 DOI: 10.1016/j.actbio.2025.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/28/2024] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Glioblastoma (GBM) is a primary central nervous system neoplasm, characterized by a grim prognosis and low survival rates. This unfavorable therapeutic outcome is partially attributed to the inadequate immune infiltration and an immunosuppressive microenvironment, which compromises the effectiveness of conventional radiotherapy and chemotherapy. To this end, precise modulation of cellular dynamics in the immune system has emerged as a promising approach for therapeutic intervention. The advent of nanoparticle-based therapies has revolutionized cancer treatment and provided highly effective options. Consequently, various strategically designed nano-delivery platforms have been established to promote the efficacy of immune therapy against GBM. This review delves into the recent advancements in nano-based delivery systems that are designed to modulate immune cells in GBM microenvironment, and explores their multifaceted mechanisms, including the blockade of immune checkpoints, the restraint of immunosuppressive cells, the coordination of tumor-associated macrophages, the activation of innate immune cells, and the stimulation of adaptive immunity. Collectively, this summary not only advances the comprehension involved in modulating antitumor immune responses in GBM, but also paves the way for the development of innovative therapeutic strategies to conquer GBM. STATEMENT OF SIGNIFICANCE: Glioblastoma (GBM) is the most lethal brain tumor, with a median survival rate of merely 12-16 months after diagnosis. Despite surgical, radiation and chemotherapy treatments, the two-year survival rate for GBM patients is less than 10 %. The treatment of GBM is challenging mainly because several issues associated with the GBM microenvironment have not yet been resolved. Most recently, novel drug delivery approaches, based on the clear understanding of the intrinsic properties of GBM, have shown promise in overcoming some of the obstacles. In particular, taking account of the highly immunosuppressive tumor microenvironment in GBM, recent advancements in nano-based delivery systems are put forward to stimulate immune cells in GBM and unravel their multifaceted mechanisms. This review summarizes the latest nanoparticle-based drug delivery systems to modulate tumor immune response for glioblastoma treatment. Moreover, the development trends and challenges of nanoparticle-based drug delivery systems in modulating the immunity of GBM are predicted, which may facilitate widespread regimens springing up for successfully treating GBM.
Collapse
Affiliation(s)
- Yongqi Xiong
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Maoyuan Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Qinhao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenli Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Anchao Song
- College of Public Health, Chongqing Medical University, Chongqing 400016, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang 550000, China
| | - Jinning Mao
- Health Medical Center, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Guodong Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xue
- School of Materials and Energy, Southwest University, Chongqing 400715, China; Yibin Academy of Southwest University, Yibin 644005, China.
| |
Collapse
|
6
|
Li X, Zhao S, Xie J, Li M, Tong S, Ma J, Yang R, Zhao Q, Zhang J, Xu A. Targeting the NF-κB p65-MMP28 axis: Wogonoside as a novel therapeutic agent for attenuating podocyte injury in diabetic nephropathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 138:156406. [PMID: 39862792 DOI: 10.1016/j.phymed.2025.156406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
BACKGROUND Although recent progress provides mechanistic insights into diabetic nephropathy (DN), effective treatments remain scarce. DN, characterized by proteinuria and a progressive decline in renal function, primarily arises from podocyte injury, which impairs the glomerular filtration barrier. Wogonoside, a bioactive compound from the traditional Chinese herb Scutellaria baicalensis, has not been explored for its role in DN. PURPOSE This study aimed to investigate the therapeutic effects of wogonoside on podocyte injury in DN and its molecular mechanisms. METHODS The effects of wogonoside were examined using HFD/STZ-induced DN mouse models and high glucose (HG)-induced MPC-5 cells. Oxidative stress and inflammation markers were analyzed via Western blot and RT-qPCR. Wogonoside targets were identified through DARTS-MS and validated by SPR, molecular docking, alanine scanning, and CETSA. RNA-Seq analysis was employed to identify downstream targets, and the p65-MMP28 axis was explored through p65 knockdown and overexpression studies. The regulatory effect of p65 on Mmp28 was confirmed through dual-luciferase reporter assays and ChIP-qPCR. RESULTS Wogonoside treatment significantly reduced oxidative stress and inflammation in vivo and in vitro. Mechanistic studies identified p65 as a direct target of wogonoside, with SPR confirming a strong binding affinity (KD = 25.05 μM). Molecular docking and alanine scanning identified LYS221 as a critical binding site, which was further supported by CETSA using the p65 K221A mutant. RNA-Seq analysis revealed Mmp28 as a downstream effector of p65 involved in HG-induced podocyte injury. Functional studies demonstrated that wogonoside's protective effects on antioxidant and inflammatory pathways are mediated via the p65-MMP28 axis. Dual-luciferase reporter assays revealed that p65 regulates Mmp28 transcription, and ChIP-qPCR confirmed its direct promoter binding. CONCLUSIONS This study highlights wogonoside as a promising candidate for the treatment of podocyte injury in DN by targeting the NF-κB p65-MMP28 signaling axis. These findings provide novel insights into wogonoside's therapeutic potential and its molecular mechanisms, paving the way for its further development as a DN intervention.
Collapse
Affiliation(s)
- Xiandeng Li
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China; College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Shuyan Zhao
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Xie
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Mi Li
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Shuangmei Tong
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Jing Ma
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Rui Yang
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jian Zhang
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Ajing Xu
- Department of Clinical Pharmacy, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
7
|
Zhang L, Liu ZX, Liu YH, Chen Y, Chen J, Lu CH. Auricularia auriculaPolysaccharides Exert Anti-inflammatory Effects in Hepatic Fibrosis by the Gut-Liver Axis and Enhancing SCFA Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4617-4629. [PMID: 39945558 PMCID: PMC11869285 DOI: 10.1021/acs.jafc.4c07952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Auricularia auricula, esteemed in Chinese culture for their culinary and medicinal properties, exhibits notable metabolic and immunomodulatory effects. The principal active constituents are indigestible fermentable polysaccharides, which not only exhibit anti-inflammatory activities but also facilitate the proliferation of beneficial gut microbiota. However, the influence of gut-derived components on liver-regulated metabolic products remains insufficiently understood. This item offers insights into the therapeutic potential of wood ear mushrooms for treating hepatic fibrosis and the associated mechanisms. Following 8 weeks of treatment, a substantial reduction in ECM deposition was recorded, linked to modulation of the NLRP3 inflammasome activation. This study aims to reveal the potential microbiome-mediated mechanisms behind its therapeutic effects. Insights from antibiotic combination treatments indicate that the protective effects against ECM deposition rely on the presence of specific gut microbiota. This fecal microbiota intervention enhances key physiological mechanisms, underscoring the contributions of Lactobacillales, Rikenellaceae, and Bacteroidaceae in potentially mitigating fibrosis. Collectively, these findings suggest that interventions utilizing wood ear mushrooms may reduce inflammation and ECM deposition, mediated by the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Lu Zhang
- Department
Gastroenterology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Zhao-Xiu Liu
- Department
Gastroenterology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yi-Heng Liu
- Department
Gastroenterology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Yuyan Chen
- Division
of Hepatobiliary and Transplantation Surgery, Department of General
Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical
School, Nanjing University, Nanjing 210008, China
| | - Jing Chen
- Department
Gastroenterology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, China
| | - Cui-Hua Lu
- Department
Gastroenterology, Medical School of Nantong University, Affiliated Hospital of Nantong University, Nantong 226001, China
| |
Collapse
|
8
|
Chen Y, Wang H, Yang M, Shen Z, Gao Y. Exploring the Effects of Metformin on the Body via the Urine Proteome. Biomolecules 2025; 15:241. [PMID: 40001544 PMCID: PMC11853151 DOI: 10.3390/biom15020241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 01/29/2025] [Accepted: 01/30/2025] [Indexed: 02/27/2025] Open
Abstract
Metformin is the first-line medication for treating type 2 diabetes mellitus, with more than 200 million patients taking it daily. Its effects are extensive and play a positive role in multiple areas. Can its effects and potential mechanisms be explored through the urine proteome? In this study, 166 differential proteins were identified following the administration of 150 mg/(kg·d) of metformin to rats for five consecutive days. These included complement component C6, pyruvate kinase, coagulation factor X, growth differentiation factor 15, carboxypeptidase A4, chymotrypsin-like elastase family member 1, and L-lactate dehydrogenase C chain. Several of these proteins have been reported to be directly affected by metformin or associated with its effects. Multiple biological pathways enriched by these differential proteins, or proteins containing differentially modified peptides, have been reported to be associated with metformin, such as the glutathione metabolic process, negative regulation of gluconeogenesis, and the renin-angiotensin system. Additionally, some significantly changed proteins and enriched biological pathways, not yet reported to be associated with metformin's effects, may provide clues for exploring its potential mechanisms. In conclusion, the application of the urine proteome offers a comprehensive and systematic approach to exploring the effects of drugs, providing a new perspective on the study of metformin's mechanisms.
Collapse
Affiliation(s)
| | | | | | | | - Youhe Gao
- Gene Engineering Drug and Biotechnology Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing 100875, China; (Y.C.); (H.W.); (M.Y.); (Z.S.)
| |
Collapse
|
9
|
Sun B, Kang Y, Zhou J, Feng Y, Wang W, Wu X, Zhang X, Li M. Association Between Different Types of Physical Activity and Hepatic Steatosis and Liver Fibrosis: A Cross-Sectional Study Based on NHANES. J Clin Gastroenterol 2025; 59:168-176. [PMID: 38457411 PMCID: PMC11702900 DOI: 10.1097/mcg.0000000000001985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/25/2024] [Indexed: 03/10/2024]
Abstract
BACKGROUND AND AIMS Many studies have shown a link between physical activity (PA) and nonalcoholic fatty liver disease (NAFLD). However, more research is needed to investigate the relationship between different types of PA and NAFLD. This study aimed to explore the potential link between different types of PA, hepatic steatosis, and liver fibrosis. STUDY A cross-sectional study was conducted using the data set from the National Health and Nutrition Examination Survey (NHANES) from 2017 to 2020. A multiple linear regression model was used to examine the linear relationship between different types of PA, the controlled attenuation parameter (CAP), and liver stiffness measurement (LSM). In addition, smoothing curve fitting and threshold effect analysis were used to depict their nonlinear relationship. RESULTS This study involved 5933 adults. Multiple linear regression analysis revealed a significantly negative correlation between leisure-time PA and CAP, while the relationship between occupation-related PA, transportation-related PA, and CAP was not significant. Subgroup analysis further revealed that leisure-time PA was significantly negatively correlated with CAP in women and younger age groups (under 60 y old), while the relationship was not significant in men and older age groups. In addition, there was a significant negative correlation between leisure-time PA and liver fibrosis in men. CONCLUSIONS Leisure-time PA can prevent hepatic steatosis, and women and young people benefit more. Occupation-related PA is not associated with hepatic steatosis and cannot replace leisure-time PA. In men, increasing leisure-time PA is more effective in preventing liver fibrosis.
Collapse
Affiliation(s)
- Bo Sun
- Department of Cadre Gastroenterology
| | | | | | - Ying Feng
- Department of Cadre Gastroenterology
| | - Wutao Wang
- Department of Intensive Care Unit, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | | | | | - Minli Li
- Department of Cadre Gastroenterology
| |
Collapse
|
10
|
Lin Q, Jin L, Peng R. New Progress in Zebrafish Liver Tumor Models: Techniques and Applications in Hepatocellular Carcinoma Research. Int J Mol Sci 2025; 26:780. [PMID: 39859497 PMCID: PMC11765702 DOI: 10.3390/ijms26020780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Liver tumors represent a serious clinical health problem that threatens human life. Previous studies have demonstrated that the pathogenesis of liver tumors is complex and influenced by various factors, highlighting limitations in both basic pathological research and clinical treatment. Traditional research methods often begin with the discovery of phenomena and gradually progress to the development of animal models and human trials. Among these, liver tumor animal models play a critical role in advancing related research. The zebrafish liver closely resembles the human liver in structure, function, and regenerative capacity. Additionally, the high transparency and rapid development of zebrafish embryos and larvae make them ideal model organisms for studying liver tumors. This review systematically summarizes recent methods for constructing zebrafish liver tumor models, including transplantation, transgenesis, induction, and gene knockout. Furthermore, the present paper explores the applications of these models in the study of liver cancer pathogenesis, metastasis, the tumor microenvironment, drug screening, and other related areas. By comparing the advantages and limitations of various models and integrating their distinct characteristics, this review provides insights for developing a novel liver tumor model that better aligns with clinical needs. This approach will offer valuable reference information for further in-depth studies of the pathological mechanisms of liver tumors and the development of new therapeutic drugs or strategies.
Collapse
Affiliation(s)
| | | | - Renyi Peng
- Institute of Life Sciences, Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Q.L.); (L.J.)
| |
Collapse
|
11
|
Maurya SK, Chaudhri S, Kumar S, Gupta S. Repurposing of Metabolic Drugs Metformin and Simvastatin as an Emerging Class of Cancer Therapeutics. Pharm Res 2025; 42:49-67. [PMID: 39775614 DOI: 10.1007/s11095-024-03811-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025]
Abstract
Metabolic alterations are commonly associated with various cancers and are recognized as contributing factors to cancer progression, invasion, and metastasis. Drug repurposing, a strategy in drug discovery, utilizes existing knowledge to recommend established drugs for new indications based on clinical data or biological evidence. This approach is considered a less risky alternative to traditional drug development. Metformin, a biguanide, is a product of Galega officinalis (French lilac) primarily prescribed for managing type 2 diabetes, is recognized for its ability to reduce hepatic glucose production and enhance insulin sensitivity, particularly in peripheral tissues such as muscle. It also improves glucose uptake and utilization while decreasing intestinal glucose absorption. Statins, first isolated from the fungus Penicillium citrinum is another class of medication mainly used to lower cholesterol levels in individuals at risk for cardiovascular diseases, work by inhibiting the enzyme 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, which is essential for cholesterol biosynthesis in the liver. Metformin is frequently used in conjunction with statins to investigate their potential synergistic effects. Combination of metformin and simvastatin has gathered much attention in cancer research because of its potential advantages for cancer prevention and treatment. In this review, we analyze the effects of metformin and simvastatin, both individually and in combination, on key cancer hallmarks, and how this combination affects the expression of biomolecules and associated signaling pathways. We also summarize preclinical research, including clinical trials, on the efficacy, safety, and potential applications of repurposing metformin and simvastatin for cancer therapy.
Collapse
Affiliation(s)
- Santosh Kumar Maurya
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Smriti Chaudhri
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | - Sanjay Gupta
- Department of Urology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44106, USA.
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, 44106, USA.
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Department of Nutrition, Case Western Reserve University, Cleveland, OH, 44106, USA.
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH, 44106, USA.
| |
Collapse
|
12
|
Liao P, Tong S, Du L, Mei J, Wang B, Lu Y, Yao M, Zhang C, Liu D, Zhong Z, Ye F, Gao J. Single-cell transcriptomics identifies the common perturbations of monocyte/macrophage lineage cells in inflammaging of bone marrow. J Orthop Translat 2025; 50:85-96. [PMID: 39868348 PMCID: PMC11762928 DOI: 10.1016/j.jot.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 01/28/2025] Open
Abstract
Background Bone marrow inflammaging is a low-grade chronic inflammation that induces bone marrow aging. Multiple age-related and inflammatory diseases involve bone marrow inflammaging. Whether common pathological pathways exist in bone marrow inflammaging remains unclear. Methods We collected bone marrow from telomerase-deficient mice (telomerase RNA component, TERCko/ko), 5 × FAD mice and Dmp1 Cre -DTA ki/wt mice and High-fat diet-fed mice (HFD), and lumbar 5 nerve compression mice. We performed scRNA-Seq analysis on bone marrow obtained from these mouse models to investigate the potential shared pathway of bone marrow inflammation. Results We identified the monocyte/macrophage lineage was activated via the App-Cd74 axis in multiple aging and inflammatory mouse models. Increased expression of CD38 and Ly6a, and decreased expression of Col1a and Lif in macrophages serve as shared changes in different mouse models. The activated macrophages, interacting with other cells, control the expansion of B cells via the CD52-Siglec-G axis. The Ccl6-Ccr2 and Ccl9-Ccr1 ligand-receptor pairs, along with Fn1 and C3-related pathways in macrophages, were associated with immune cell activation and the recruitment of lymphocytes. Interactions with mesenchymal cells were enriched for integrins (Itga4), Fn1, and adhesion molecules (Vcam1). Conclusion Our study demonstrates that monocyte/macrophage lineage stimulation is a key event in bone marrow inflammaging. We identified common differentially expressed genes and activated pathways in this lineage, suggesting potential targets for future interventions. The translational potential of this article Our study revealed shared genes and ligand-receptor pairs in the activated monocyte/macrophage lineage within inflammaging bone marrow. These findings offer potential therapeutic targets for cell-specific anti-inflammatory treatments.
Collapse
Affiliation(s)
- Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Sihan Tong
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Lin Du
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Jiong Mei
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Bingqi Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yafei Lu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Meng Yao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhigang Zhong
- Sports Medicine Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515000, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310000, China
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
13
|
Tang C, Peng D, Zong K, Wu Z, Gong M, Li H, Huang Z, Li S. Association between the lymphocyte-to-high-density lipoprotein ratio and metabolic dysfunction-associated steatotic liver disease among US adults: a cross-sectional study from NHANES 2017 to 2020. BMC Gastroenterol 2024; 24:470. [PMID: 39716074 DOI: 10.1186/s12876-024-03565-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND Metabolic dysfunction-associated steatotic liver disease (MASLD) is a liver disease that is strongly associated with chronic low-grade inflammation. Stage 3 of MASLD is characterized by excessive formation of connective tissues, commonly referred to as liver fibrosis. Although numerous inflammatory markers have been identified and extensively studied, including the tumor necrosis factor-α and interleukin-6 have been studied [Byrne CD, Targher G. NAFLD: a multisystem disease. J Hepatol. 2015;62(1 Suppl):S47-64], the lymphocyte-to-high-density lipoprotein ratio (LHR) as a new biomarker that has not been sufficiently studied. This study aims to investigate the relationship between LHR levels and MASLD, determine its potential as a predictive marker for steatosis and fibrosis stages. METHODS This was a population-based study using data from 15,560 participants in the 2017-2020 National Health and Nutrition Examination Survey (NHANES) database. The study aimed to explore the relationship between LHR and MASLD. The disease progression was tracked by continuously measuring CAP and liver stiffness measurements. Participants who exhibited a median Controlled Attenuation Parameter (CAP) of 248 dB/m or higher were deemed to have hepatic steatosis. The LHR was calculated by dividing the lymphocyte count by the high-density lipoprotein cholesterol (HDL-C) level. Multivariate linear regression models were employed to explore the linear association between LHR and MASLD. Fitted smoothing curves and threshold effect analysis were employed to display nonlinear relationships. A two-part linear regression model was employed to estimate threshold effects. Subgroup analyses were conducted to determine the consistency of this association across various demographic groups. RESULTS A total of 6,950 adults aged 18 years and older were enrolled in the study, with an average age of 48.15 ± 17.10 years (49.14% male, 50.86% female). The adjusted multiple logistic regression analysis revealed a significant positive correlation between LHR and MASLD (OR: 1.64, 95% CI: 1.40-1.92). Using the complex two-piece linear regression model, we observed an inverted L-shaped association between LHR and CAP, suggesting a critical inflection point at -2.58. Subgroup analyses indicated a pronounced association of the LHR index with obese individuals (OR: 1.96, 95% CI: 1.66-2.32) and females (OR: 1.76, 95% CI: 1.25-2.46). There was no significant association between LHR and clinically significant fibrosis. CONCLUSION The LHR index is positively correlated with MASLD among US adults. Therefore, LHR may be a robust marker for early screening, diagnosis, and monitoring of treatment efficacy in clinical practice.
Collapse
Affiliation(s)
- Chuanzhi Tang
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400000, China
| | - Dadi Peng
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400000, China
| | - Kezhen Zong
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400000, China
| | - Zhongjun Wu
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400000, China
| | - Miao Gong
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400000, China
| | - Hui Li
- Chongqing University Cancer Hospital, Chongqing, 400000, China
| | - Zuotian Huang
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400000, China.
- Chongqing University Cancer Hospital, Chongqing, 400000, China.
| | - Shanshan Li
- Division of Hepatobiliary Pancreatic Surgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, 400000, China.
| |
Collapse
|
14
|
Halabitska I, Petakh P, Lushchak O, Kamyshna I, Oksenych V, Kamyshnyi O. Metformin in Antiviral Therapy: Evidence and Perspectives. Viruses 2024; 16:1938. [PMID: 39772244 PMCID: PMC11680154 DOI: 10.3390/v16121938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/03/2025] Open
Abstract
Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV. Furthermore, metformin reduces oxidative stress and reactive oxygen species (ROS), which are critical for replicating arboviruses such as Zika and dengue. The drug also regulates immune responses, cellular differentiation, and inflammation, disrupting the life cycle of HPV and potentially other viruses. These diverse mechanisms suppress viral replication, enhance immune system functionality, and contribute to better clinical outcomes. This multifaceted approach highlights metformin's potential as an adjunctive therapy in treating a wide range of viral infections.
Collapse
Affiliation(s)
- Iryna Halabitska
- Department of Therapy and Family Medicine, I. Horbachevsky Ternopil National Medical University, Voli Square, 1, 46001 Ternopil, Ukraine
| | - Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88017 Uzhhorod, Ukraine
| | - Oleh Lushchak
- MRC Laboratory of Medical Sciences, London W12 0HS, UK
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Valentyn Oksenych
- Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| | - Oleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
15
|
Kounatidis D, Vallianou NG, Karampela I, Rebelos E, Kouveletsou M, Dalopoulos V, Koufopoulos P, Diakoumopoulou E, Tentolouris N, Dalamaga M. Anti-Diabetic Therapies and Cancer: From Bench to Bedside. Biomolecules 2024; 14:1479. [PMID: 39595655 PMCID: PMC11591849 DOI: 10.3390/biom14111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetes mellitus (DM) is a significant risk factor for various cancers, with the impact of anti-diabetic therapies on cancer progression differing across malignancies. Among these therapies, metformin has gained attention for its potential anti-cancer effects, primarily through modulation of the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway and the induction of autophagy. Beyond metformin, other conventional anti-diabetic treatments, such as insulin, sulfonylureas (SUs), pioglitazone, and dipeptidyl peptidase-4 (DPP-4) inhibitors, have also been examined for their roles in cancer biology, though findings are often inconclusive. More recently, novel medications, like glucagon-like peptide-1 (GLP-1) receptor agonists, dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) agonists, and sodium-glucose co-transporter-2 (SGLT-2) inhibitors, have revolutionized DM management by not only improving glycemic control but also delivering substantial cardiovascular and renal benefits. Given their diverse metabolic effects, including anti-obesogenic properties, these novel agents are now under meticulous investigation for their potential influence on tumorigenesis and cancer advancement. This review aims to offer a comprehensive exploration of the evolving landscape of glucose-lowering treatments and their implications in cancer biology. It critically evaluates experimental evidence surrounding the molecular mechanisms by which these medications may modulate oncogenic signaling pathways and reshape the tumor microenvironment (TME). Furthermore, it assesses translational research and clinical trials to gauge the practical relevance of these findings in real-world settings. Finally, it explores the potential of anti-diabetic medications as adjuncts in cancer treatment, particularly in enhancing the efficacy of chemotherapy, minimizing toxicity, and addressing resistance within the framework of immunotherapy.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, Attikon General University Hospital, University of Athens, 1 Rimini str., 12461 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Vasileios Dalopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Petros Koufopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Evanthia Diakoumopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527 Athens, Greece
| |
Collapse
|
16
|
Song J, Lu M, He Z, Zhang W. Models of fibrolamellar carcinomas, tools for evaluation of a new era of treatments. Front Immunol 2024; 15:1459942. [PMID: 39582856 PMCID: PMC11582006 DOI: 10.3389/fimmu.2024.1459942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/22/2024] [Indexed: 11/26/2024] Open
Abstract
Fibrolamellar carcinoma (FLC) is a rare but fatal cancer that occurs primarily in young people. There are currently no known effective treatments, although several promising treatments appear to be in development. Genetic studies have confirmed that almost all FLC tumors have a fusion protein marker (DNAJB1-PRKACA) encoded by a fusion gene (DNAJB1-PRKACA); It is currently accepted as a diagnostic criterion for FLCs. Several research teams have established patient-derived xenograft (PDX) FLC models using immunocompromised animals as hosts and patient tissue samples (tumors or ascites) as primary sources for PDX-derived organoids. These FLC organoids are composed of FLC epithelia, endothelial progenitor cells, and stellate cells. CRISPR/Cas9 was used as a gene editing technique to modify mature hepatocytes to obtain ex vivo FLC-like cells expressing the fusion gene and/or other mutated genes associated with FLCs. Although these models simulate some but not all FLC features. Drug screening using these models has not proven effective in identifying clinically useful treatments. Genetic studies comparing FLCs to normal maturing endodermal cell lineages have shown that FLCs share genetic signatures not with hepatocytes, but with subpopulations of biliary tree stem cells (BTSCs), hepato/pancreatic stem/progenitor cells that consistently reside in peribiliary glands (PBGs) located in the biliary tree and are sources of stem cells for the formation and postnatal regeneration of the liver and pancreas. Therefore, it is expected that models of BTSCs, instead of hepatocytes may prove more useful. In this review, we summarize the status of the various FLC models and their features, applications, and limitations. They provide opportunities to understand the cause and characteristics of this deadly disease and are models from which effective treatments can be identified.
Collapse
Affiliation(s)
- Jinjia Song
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| | - Mengqi Lu
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhiying He
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
- Postgraduate Training Base of Shanghai East Hospital, Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Wencheng Zhang
- Institute for Regenerative Medicine, Medical Innovation Center and State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Stem Cells Translational Medicine, Shanghai, China
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, China
| |
Collapse
|
17
|
Xiao Q, Tang L, Chen S, Mei Y, Wang C, Yang J, Shang J, Li S, Wang W. Two-Pronged Attack: Dual Activation of Fat Reduction Using Near-Infrared-Responsive Nanosandwich for Targeted Anti-Obesity Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406985. [PMID: 39324577 DOI: 10.1002/advs.202406985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/06/2024] [Indexed: 09/27/2024]
Abstract
Excessive fat accumulation and chronic inflammation are two typical characteristics of obesity. AMP-activated protein kinase (AMPK), a master regulator of energy metabolism, is involved in adipogenesis, lipogenesis, and inflammation modulation in adipose tissue (AT). Thus, effective lipid reduction and anti-inflammation through AMPK regulation play vital roles in treating obesity. Herein, an anti-obesity nanosandwich is fabricated through attaching polymetformin (PolyMet) onto photothermal agent black phosphorus nanosheets (BP). PolyMet activates AMPK to inhibit adipogenesis, promote browning, and mitigate AT inflammation by decreasing macrophage infiltration, repolarizing macrophage phenotype, and downregulating pro-inflammatory cytokines. Additionally, BP induces lipolysis and apoptosis of adipocytes and macrophages through a photothermal effect. By further functionalization using hyaluronic acid (HA) and MMP2 substrate-linking P3 peptide-modified HA (P3-HA), an enhanced anti-obesity effect is obtained by dual-targeting of P3 and HA, and HA-mediated CD44 poly-clustering after MMP2 cleavage. Upon laser irradiation, the designed nanosandwich (P3-HA/PM@BP) effectively inhibits obesity development in obese mice, increases M2/M1 ratio in AT, reduces the serum levels of cholesterol/triglyceride and improves insulin sensitivity, exhibiting promising research potential to facilitate the clinical development of modern anti-obesity therapies.
Collapse
Affiliation(s)
- Qiaqia Xiao
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Lu Tang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Siying Chen
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Yijun Mei
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Chuying Wang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jing Yang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Jing Shang
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing, 211198, P. R. China
| |
Collapse
|
18
|
Taranto D, Kloosterman DJ, Akkari L. Macrophages and T cells in metabolic disorder-associated cancers. Nat Rev Cancer 2024; 24:744-767. [PMID: 39354070 DOI: 10.1038/s41568-024-00743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/16/2024] [Indexed: 10/03/2024]
Abstract
Cancer and metabolic disorders have emerged as major global health challenges, reaching epidemic levels in recent decades. Often viewed as separate issues, metabolic disorders are shown by mounting evidence to heighten cancer risk and incidence. The intricacies underlying this connection are still being unraveled and encompass a complex interplay between metabolites, cancer cells and immune cells within the tumour microenvironment (TME). Here, we outline the interplay between metabolic and immune cell dysfunction in the context of three highly prevalent metabolic disorders, namely obesity; two associated liver diseases, metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH); and type 2 diabetes. We focus primarily on macrophages and T cells, the critical roles of which in dictating inflammatory response and immune surveillance in metabolic disorder-associated cancers are widely reported. Moreover, considering the ever-increasing number of patients prescribed with metabolism disorder-altering drugs and diets in recent years, we discuss how these therapies modulate systemic and local immune phenotypes, consequently impacting cancer malignancy. Collectively, unraveling the determinants of metabolic disorder-associated immune landscape and their role in fuelling cancer malignancy will provide a framework essential to therapeutically address these highly prevalent diseases.
Collapse
Affiliation(s)
- Daniel Taranto
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daan J Kloosterman
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Oncode Institute, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| |
Collapse
|
19
|
Chu X, Wu Q, Kong L, Peng Q, Shen J. Multiomics Analysis Identifies Prognostic Signatures for Sepsis-Associated Hepatocellular Carcinoma in Emergency Medicine. Emerg Med Int 2024; 2024:1999820. [PMID: 39421149 PMCID: PMC11486536 DOI: 10.1155/2024/1999820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/06/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Objectives Sepsis, caused by the body's response to infection, poses a life-threatening condition and represents a significant global health challenge. Characterized by dysregulated immune response to infection, sepsis may lead to organ dysfunction and failure, ultimately resulting in high mortality rates. The liver plays a crucial role in sepsis, yet the role of differentially expressed genes in septic patients remains unclear in hepatocellular carcinoma (HCC). In this study, we aim to investigate the significance of differentially expressed genes related to sepsis in the occurrence and prognosis of tumors in HCC. Methods We conducted analyses by obtaining gene transcriptome data and clinical data of HCC cases from The Cancer Genome Atlas (TCGA). Furthermore, we obtained transcriptomic sequencing results of septic patients from the Gene Expression Omnibus (GEO) database, identified intersecting differentially expressed genes between the two, and performed survival analysis on the samples using LASSO and Cox regression analysis. Combining analyses of tumor mutation burden (TMB) and immune function, we further elucidated the mechanisms of sepsis-related genes in the prognosis and treatment of HCC. Results We established a prognostic model consisting of four sepsis-related genes: KRT20, PAEP, CCR3, and ANLN. Both the training and validation sets showed excellent outcomes in the prognosis of tumor patients, with significantly longer survival times observed in the low-risk group based on this model compared to the high-risk group. Furthermore, analyses, such as differential analysis of tumor mutation burden, immune function analysis, GO/KEGG pathway enrichment analysis, and drug sensitivity analysis, also demonstrated the potential mechanisms of action of sepsis-related genes. Conclusions Models constructed based on sepsis-related genes have shown excellent predictive ability in prognosis and differential analysis of drug sensitivity among tumor patients. These predictive models can enhance patient prognosis and inform the creation of early treatment protocols for sepsis, consequently aiding in the prevention of sepsis-induced HCC development through the modulation of the overall immune status. This may play a crucial role in patient management and immunotherapy, providing valuable reference for subsequent research.
Collapse
Affiliation(s)
- Xin Chu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Qi Wu
- Department of Emergency, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Linglin Kong
- Department of Infectious Disease, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Qiang Peng
- Department of Emergency, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Junhua Shen
- Department of Emergency, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| |
Collapse
|
20
|
Argenziano ME, Kim MN, Montori M, Di Bucchianico A, Balducci D, Ahn SH, Svegliati Baroni G. Epidemiology, pathophysiology and clinical aspects of Hepatocellular Carcinoma in MAFLD patients. Hepatol Int 2024; 18:922-940. [PMID: 39012579 DOI: 10.1007/s12072-024-10692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/24/2024] [Indexed: 07/17/2024]
Abstract
Hepatocellular carcinoma (HCC) is undergoing a transformative shift, with metabolic-associated fatty liver disease (MAFLD) emerging as a dominant etiology. Diagnostic criteria for MAFLD involve hepatic steatosis and metabolic dysregulation. Globally, MAFLD prevalence stands at 38.77%, significantly linked to the escalating rates of obesity. Epidemiological data indicate a dynamic shift in the major etiologies of hepatocellular carcinoma (HCC), transitioning from viral to metabolic liver diseases. Besides the degree of liver fibrosis, several modifiable lifestyle risk factors, such as type 2 diabetes, obesity, alcohol use, smoking, and HBV, HCV infection contribute to the pathogenesis of HCC. Moreover gut microbiota and genetic variants may contribute to HCC development.The pathophysiological link between MAFLD and HCC involves metabolic dysregulation, impairing glucose and lipid metabolism, inflammation and oxidative stress. Silent presentation poses challenges in early MAFLD-HCC diagnosis. Imaging, biopsy, and AI-assisted techniques aid diagnosis, while HCC surveillance in non-cirrhotic MAFLD patients remains debated.ITA.LI.CA. group proposes a survival-based algorithm for treatment based on Barcelona clinic liver cancer (BCLC) algorithm. Liver resection, transplantation, ablation, and locoregional therapies are applied based on the disease stage. Systemic treatments is promising, with initial immunotherapy results indicating a less favorable response in MAFLD-related HCC.Adopting lifestyle interventions and chemopreventive measures with medications, including aspirin, metformin, and statins, constitute promising approaches for the primary prevention of HCC.Prognosis is influenced by multiple factors, with MAFLD-HCC associated with prolonged survival. Emerging diagnostic biomarkers and epigenomic markers, show promising results for early HCC detection in the MAFLD population.
Collapse
Affiliation(s)
- Maria Eva Argenziano
- Clinic of Gastroenterology, Hepatology, and Emergency Digestive Endoscopy, Università Politecnica Delle Marche, 60126,, Ancona, Italy
- Faculty of Medicine and Health Sciences, University of Ghent, Ghent, Belgium
| | - Mi Na Kim
- Department of Internal Medicine, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea
| | - Michele Montori
- Clinic of Gastroenterology, Hepatology, and Emergency Digestive Endoscopy, Università Politecnica Delle Marche, 60126,, Ancona, Italy
| | - Alessandro Di Bucchianico
- Clinic of Gastroenterology, Hepatology, and Emergency Digestive Endoscopy, Università Politecnica Delle Marche, 60126,, Ancona, Italy
| | - Daniele Balducci
- Clinic of Gastroenterology, Hepatology, and Emergency Digestive Endoscopy, Università Politecnica Delle Marche, 60126,, Ancona, Italy
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Yonsei Liver Center, Severance Hospital, Seoul, Republic of Korea.
| | - Gianluca Svegliati Baroni
- Liver Disease and Transplant Unit, Obesity Center, Azienda Ospedaliero-Universitaria Delle Marche, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
21
|
Hu Y, Sun C, Chen Y, Liu YD, Fan JG. Pipeline of New Drug Treatment for Non-alcoholic Fatty Liver Disease/Metabolic Dysfunction-associated Steatotic Liver Disease. J Clin Transl Hepatol 2024; 12:802-814. [PMID: 39280073 PMCID: PMC11393841 DOI: 10.14218/jcth.2024.00123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/27/2024] [Accepted: 07/09/2024] [Indexed: 09/18/2024] Open
Abstract
Given the global prevalence and rising incidence of metabolic dysfunction-associated steatotic liver disease (MASLD), the absence of licensed medications is striking. A deeper understanding of the heterogeneous nature of MASLD has recently contributed to the discovery of novel groups of agents and the potential repurposing of currently available medications. MASLD therapies center on four major pathways. Considering the close relationship between MASLD and type 2 diabetes, the first approach involves antidiabetic medications, including incretins, thiazolidinedione insulin sensitizers, and sodium-glucose cotransporter 2 inhibitors. The second approach targets hepatic lipid accumulation and the resultant metabolic stress. Agents in this group include peroxisome proliferator-activated receptor agonists (e.g., pioglitazone, elafibranor, saroglitazar), bile acid-farnesoid X receptor axis regulators (obeticholic acid), de novo lipogenesis inhibitors (aramchol, NDI-010976), and fibroblast growth factor 21/19 analogs. The third approach focuses on targeting oxidative stress, inflammation, and fibrosis. Agents in this group include antioxidants (vitamin E), tumor necrosis factor α pathway regulators (emricasan, pentoxifylline, ZSP1601), and immune modulators (cenicriviroc, belapectin). The final group targets the gut (IMM-124e, solithromycin). Combination therapies targeting different pathogenetic pathways may provide an alternative to MASLD treatment with higher efficacy and fewer side effects. This review aimed to provide an update on these medications.
Collapse
Affiliation(s)
- Ye Hu
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao Sun
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Chen
- Department of Geriatrics, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu-Dong Liu
- Department of Gastroenterology, Changxing branch of Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Zhang X, Wang LQ, Liu ZY. Senegenin suppresses hepatocellular carcinoma by regulating O-GlcNAcylation. World J Gastrointest Oncol 2024; 16:3994-4005. [PMID: 39350979 PMCID: PMC11438784 DOI: 10.4251/wjgo.v16.i9.3994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/04/2024] [Accepted: 08/01/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Based on current knowledge, hepatocellular carcinoma (HCC) is a condition with numerous etiologies and risk factors. However, the pathogenesis of HCC remains unclear. AIM To investigate the roles of senegenin and O-GlcNAcylation in the growth and metastasis of HCC. METHODS The levels of O-linked N-acetylglucosamine transferase (OGT) and O-GlcNAcylation in HCC cells and tissues were detected using western blot analysis. The effects of senegenin and O-GlcNAcylation on the proliferation of HCC cells were investigated in vitro using cell counting kit-8 and clonogenic assays. The potential effects of senegenin and O-GlcNAcylation on HCC metastasis were examined using the transwell migration assay. O-GlcNAcylation levels were altered via drug treatment and lentiviral infection, and western blot analysis was used to detect proteins involved in various pathways. RESULTS Western blot analysis revealed that OGT and O-GlcNAcylation levels were significantly elevated in HCC tissues and cells. O-GlcNAcylation levels in HCC cells were significantly altered by drug treatment and lentiviral infection. An increase in the glycosylation level was linked to enhanced proliferation, invasiveness, clonogenicity, and metastatic potential of cancer cells. O-GlcNAcylation induced by senegenin was found to slow the proliferation and migration of HCC cells. The levels of proteins involved in nuclear factor-kappa B (NF-κB) and c-Jun N-terminal kinase (JNK) pathways, which are associated with endoplasmic reticulum stress, were altered. CONCLUSION Senegenin lowers O-GlcNAcylation levels, decreases OGT expression, and inhibits cancer cell growth and metastasis by regulating proteins involved in NF-κB and JNK pathways.
Collapse
Affiliation(s)
- Xiang Zhang
- Department of Traditional Chinese Medicine, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| | - Li-Qiong Wang
- Department of Hepatology, Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhi-Yong Liu
- Department of Traditional Chinese Medicine, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai 201700, China
| |
Collapse
|
23
|
Robertson TF, Schrope J, Zwick Z, Rindy JK, Horn A, Huttenlocher A. Live imaging in zebrafish reveals tissue-specific strategies for amoeboid migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.14.607647. [PMID: 39211200 PMCID: PMC11360923 DOI: 10.1101/2024.08.14.607647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Amoeboid cells like leukocytes can enter and migrate within virtually every tissue of the body, even though tissues vary widely in their chemical and mechanical composition. Here, we imaged motile T cells as they colonized peripheral tissues during zebrafish development to ask if cells tailor their migration strategy to their local tissue environment. We found that T cells in most sites migrated with f-actin-rich leading-edge pseudopods, matching how they migrate in vitro . T cells notably deviated from this strategy in the epidermis, where they instead migrated using a rearward concentration of f-actin and stable leading-edge blebs. This mode of migration occurs under planar confinement in vitro , and we correspondingly found the stratified keratinocyte layers of the epidermis impose planar-like confinement on leukocytes in vivo . By imaging the same cell type across the body, our data collectively indicates that cells adapt their migration strategy to navigate different tissue geometries in vivo .
Collapse
|
24
|
Tan Y, Zhou Y, Zhang W, Wu Z, Xu Q, Wu Q, Yang J, Lv T, Yan L, Luo H, Shi Y, Yang J. Repaglinide restrains HCC development and progression by targeting FOXO3/lumican/p53 axis. Cell Oncol (Dordr) 2024; 47:1167-1181. [PMID: 38326640 DOI: 10.1007/s13402-024-00919-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2024] [Indexed: 02/09/2024] Open
Abstract
PURPOSE The recent focus on the roles of N-linked glycoproteins in carcinogenesis across various malignancies has prompted our exploration of aberrantly expressed glycoproteins responsible for HCC progression and potential therapeutic strategy. METHODS Mass spectrometry was applied to initially identify abnormally expressed glycoproteins in HCC, which was further assessed by immunohistochemistry (IHC) staining. The role of selected glycoprotein on HCC development and underlying mechanism was systematically investigated by colony formation, mouse xenograft, RNA-sequencing and western blot assays, etc. Chromatin immunoprecipitation (ChIP) and luciferase assays were performed to explore potential transcription factors (TFs) of selected glycoprotein. The regulation of repaglinide (RPG) on expression of lumican and downstream effectors was assessed by western blot and IHC, while its impact on malignant phenotypes of HCC was explored through in vitro and in vivo analyses, including a murine NASH-HCC model established using western diet and carbon tetrachloride (CCl4). RESULTS Lumican exhibited upregulation in both serum and tumor tissue, with elevated expression associated with an inferior prognosis in HCC patients. Knockdown of lumican resulted in significantly reduced growth of HCC in vitro and in vivo. Mechanically, lumican promoted HCC malignant phenotypes by inhibiting the p53/p21 signaling pathway. Forkhead Box O3 (FOXO3) was identified as the TF of lumican that transcriptionally enhanced its expression. Without silencing FOXO3, RPG blocked the binding of FOXO3 to the promoter region of lumican, thereby inhibiting the activation of lumican/p53/p21 axis. Mice treated with RPG developed fewer and smaller HCCs than those in the control group at 24 weeks after establishment. CONCLUSION Our results indicate that RPG prevented the development and progression of HCC via alteration of FOXO3/lumican/p53 axis.
Collapse
Affiliation(s)
- Yifei Tan
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
- Department of Ultrasonography, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yongjie Zhou
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Zhang
- Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhenru Wu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qing Xu
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China
| | - Qiong Wu
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Jian Yang
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Tao Lv
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Lvnan Yan
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China
| | - Hong Luo
- Department of Ultrasonography, West China Second University Hospital, Sichuan University, Chengdu, China.
| | - Yujun Shi
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China.
| | - Jiayin Yang
- Department of Liver Transplantation Center and Laboratory of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, China.
- Laboratory of Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Jiang R, Hua Y, Hu X, Hong Z. The pan immune inflammatory value in relation to non-alcoholic fatty liver disease and hepatic fibrosis. Clin Res Hepatol Gastroenterol 2024; 48:102393. [PMID: 38866239 DOI: 10.1016/j.clinre.2024.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Inflammation played a critical role in non-alcoholic fatty liver disease (NAFLD). Here, we aimed to explore the relationship between inflammatory biomarkers and the prevalence of NAFLD and hepatic fibrosis in US participants. METHODS Individuals with complete data from National Health and Nutrition Examination Survey (NHANES), 2017-2020 pre-pandemic cycle dataset were referred to this study. We identified NAFLD by vibration-controlled transient elastography (VCTE) on the basis of controlling attenuation parameter (CAP) ≥274dB/m. Liver fibrosis was confirmed by liver stiffness measurement (LSM) ≥8.2kPa. Multivariate logistic regression models were applied to estimate the correlations between inflammatory biomarkers and the prevalence of NAFLD and hepatic fibrosis based on sample weights. RESULTS All together 5026 subjects were incorporated into the study cohort. Among these subjects, 2209 were classified as having NAFLD, and 8.35 % were diagnosed with hepatic fibrosis. Pan immune inflammatory value (PIV), instead of systemic immune inflammatory index (SII), was positively correlated with the rate of NAFLD or hepatic fibrosis. Subgroup analysis for NAFLD revealed that the positive relationships of the PIV existed in males (OR=1.52, 95 % CI: 1.01-2.28, p = 0.046) and participants below 60 years of age (OR=1.49, 95 % CI: 1.05-2.1, p = 0.028). Moreover, subgroup analysis for hepatic fibrosis revealed that the positive relationships of the PIV existed in females (OR=2.09, 95 % CI: 1.2-3.63, p = 0.014) and participants below 60 years of age (OR=1.74, 95 % CI: 1.09-2.77, p = 0.023). CONCLUSIONS A higher PIV, but not SII, is associated with a higher likelihood of NAFLD and liver fibrosis, suggesting that the PIV is a more valuable inflammatory marker for assessing NAFLD and liver fibrosis in participants, especially for those who are below 60 years of age.
Collapse
Affiliation(s)
- Rong Jiang
- School of Clinical Medicine, Jiangsu Health Vocational College, No. 69, Huangshan Ling Road, Pukou Distric, Nanjing, Jiangsu 210029, China; Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Yunfeng Hua
- School of Clinical Medicine, Jiangsu Health Vocational College, No. 69, Huangshan Ling Road, Pukou Distric, Nanjing, Jiangsu 210029, China
| | - Xiang Hu
- School of Clinical Medicine, Jiangsu Health Vocational College, No. 69, Huangshan Ling Road, Pukou Distric, Nanjing, Jiangsu 210029, China
| | - Zhen Hong
- School of Clinical Medicine, Jiangsu Health Vocational College, No. 69, Huangshan Ling Road, Pukou Distric, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
26
|
de Sena-Tomás C, Rebola Lameira L, Rebocho da Costa M, Naique Taborda P, Laborde A, Orger M, de Oliveira S, Saúde L. Neutrophil immune profile guides spinal cord regeneration in zebrafish. Brain Behav Immun 2024; 120:514-531. [PMID: 38925414 DOI: 10.1016/j.bbi.2024.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/15/2024] [Accepted: 06/23/2024] [Indexed: 06/28/2024] Open
Abstract
Spinal cord injury triggers a strong innate inflammatory response in both non-regenerative mammals and regenerative zebrafish. Neutrophils are the first immune population to be recruited to the injury site. Yet, their role in the repair process, particularly in a regenerative context, remains largely unknown. Here, we show that, following rapid recruitment to the injured spinal cord, neutrophils mostly reverse migrate throughout the zebrafish body. In addition, promoting neutrophil inflammation resolution by inhibiting Cxcr4 boosts cellular and functional regeneration. Neutrophil-specific RNA-seq analysis reveals an enhanced activation state that correlates with a transient increase in tnf-α expression in macrophage/microglia populations. Conversely, blocking neutrophil recruitment through Cxcr1/2 inhibition diminishes the presence of macrophage/microglia at the injury site and impairs spinal cord regeneration. Altogether, these findings provide new insights into the role of neutrophils in spinal cord regeneration, emphasizing the significant impact of their immune profile on the outcome of the repair process.
Collapse
Affiliation(s)
- Carmen de Sena-Tomás
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| | - Leonor Rebola Lameira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Mariana Rebocho da Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Patrícia Naique Taborda
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Alexandre Laborde
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal
| | - Michael Orger
- Champalimaud Research, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY 10461, USA; Harold and Muriel Block Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY 10461, USA; Montefiore-Einstein Comprehensive Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Leonor Saúde
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Histologia e Biologia de Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
27
|
Wang J, Lu Y, Zhang R, Cai Z, Fan Z, Xu Y, Liu Z, Zhang Z. Modulating and Imaging Macrophage Reprogramming for Cancer Immunotherapy. PHENOMICS (CHAM, SWITZERLAND) 2024; 4:401-414. [PMID: 39583310 PMCID: PMC11584841 DOI: 10.1007/s43657-023-00154-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 12/18/2023] [Accepted: 12/22/2023] [Indexed: 11/26/2024]
Abstract
Cancer immunotherapy has made great progress in effectively attacking or eliminating cancer. However, the challenges posed by the low reactivity of some solid tumors still remain. Macrophages, as a key component of the tumor microenvironment (TME), play an important role in determining the progression of solid tumors due to their plasticity and heterogeneity. Targeting and reprogramming macrophages in TME to desired phenotypes offers an innovative and promising approach for cancer immunotherapy. Meanwhile, the rapid development of in vivo molecular imaging techniques provides us with powerful tools to study macrophages. In this review, we summarize the current progress in macrophage reprogramming from conceptual roadmaps to therapeutic approaches, including monoclonal antibody drugs, small molecule drugs, gene therapy, and chimeric antigen receptor-engineered macrophages (CAR-M). More importantly, we highlight the significance of molecular imaging in observing and understanding the process of macrophage reprogramming during cancer immunotherapy. Finally, we introduce the therapeutic applications of imaging and reprogramming macrophages in three solid tumors. In the future, the integration of molecular imaging into the development of novel macrophage reprogramming strategies holds great promise for precise clinical cancer immunotherapy.
Collapse
Affiliation(s)
- Jialu Wang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Yafang Lu
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Ren Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Zhenzhen Cai
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| | - Zhan Fan
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
| | - Yilun Xu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| | - Zheng Liu
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| | - Zhihong Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074 Hubei China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228 Hainan China
| |
Collapse
|
28
|
Zhang XF, Qin YY. Association between SII and markers of liver injury: A cross-sectional study from the NHANES (2017-2020). PLoS One 2024; 19:e0303398. [PMID: 39052624 PMCID: PMC11271860 DOI: 10.1371/journal.pone.0303398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 04/23/2024] [Indexed: 07/27/2024] Open
Abstract
INTRODUCTION A novel indicator of inflammation is the systemic immune-inflammation index (SII), and liver dysfunction is linked to the advancement of inflammation. In light of this, this study aims to look into any potential connections between SII and markers of liver injury. METHODS A cross-sectional study was conducted using the National Health and Nutrition Examination (NHANES) dataset for 2017-2020. The linear relationship between SII and markers of liver injury was examined using multiple linear regression models. Examining threshold effects and fitted smoothed curves were utilized to describe nonlinear connections. RESULTS A total of 8213 adults aged 18-80 years participated in this population-based study. In the fully adjusted model, SII maintained a negative association with ALT(β = -0.003, 95%CI:-0.005, -0.002, P<0.00001), AST(β = -0.004, 95% CI:-0.005, -0.002, P<0.00001), and GGT(β = -0.004, 95% CI:-0.007, -0.000, P = 0.03791) and a positive association with ALP (β = 0.005, 95% CI:0.003, 0.007, P<0.00001). In subgroup analyses, it was found that SII remained negatively correlated with ALT, AST and GGT in gender, age and body mass index. SII was positively correlated with ALP at BMI≥25(kg/m2)(β = 0.005, 95% CI:0.003, 0.008, P = 0.00001), and was negatively correlated with ALT(β = -0.004, 95% CI:-0.005, -0.002, P<0.00001), AST(β = -0.004, 95% CI:-0.005, -0.003, P<0.00001) and GGT(β = -0.004, 95% CI:-0.008, -0.000, P = 0.02703) at BMI≥25, whereas no significant correlation was observed at BMI<25 (all P-values>0.05). Furthermore, the association between SII and markers of liver injury was nonlinear. By using a two-stage linear regression model for analysis, a U-shaped relationship was found to exist between SII and ALT with a turning point of 818.40(1,000 cells/μl). The inflection points of SII with AST and GGT were 451.20 (1,000 cells/μl) and 443.33 (1,000 cells/μl), respectively, and no significant inflection point with ALP was observed. Interaction tests demonstrated that SII correlation with ALT, AST, ALP, and GGT was not significantly different between strata (all p for interaction>0.05). CONCLUSIONS The research findings suggested that there was a negative correlation between SII and ALT, AST and GGT, and a positive correlation with ALP. However, larger prospective investigations are still greatly needed to confirm the findings.
Collapse
Affiliation(s)
- Xu-Feng Zhang
- Department of Hepatobiliary Surgery, People’s Hospital of Longhua, Shenzhen, China
| | - Yu-Yan Qin
- Department of General Medicine, People’s Hospital of Longhua, Shenzhen, China
| |
Collapse
|
29
|
Michael C, Mendonça-Gomes JM, DePaolo CW, Di Cristofano A, de Oliveira S. A zebrafish xenotransplant model of anaplastic thyroid cancer to study tumor microenvironment and innate immune cell interactions in vivo. Endocr Relat Cancer 2024; 31:e230195. [PMID: 38657656 PMCID: PMC11160356 DOI: 10.1530/erc-23-0195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Anaplastic thyroid cancer (ATC) is of the most aggressive thyroid cancer. While ATC is rare, it accounts for a disproportionately high number of thyroid cancer-related deaths. Here, we developed an ATC xenotransplant model in zebrafish larvae, where we can study tumorigenesis and therapeutic response in vivo. Using both mouse (T4888M) and human (C643)-derived fluorescently labeled ATC cell lines, we show these cell lines display different engraftment rates, mass volume, proliferation, cell death, angiogenic potential, and neutrophil and macrophage recruitment and infiltration. Next, using a PIP-FUCCI reporter to track proliferation in vivo, we observed cells in each phase of the cell cycle. Additionally, we performed long-term non-invasive intravital microscopy over 48 h to understand cellular dynamics in the tumor microenvironment at the single-cell level. Lastly, we tested two drug treatments, AZD2014 and a combination therapy of dabrafenib and trametinib, to show our model could be used as an effective screening platform for new therapeutic compounds for ATC. Altogether, we show that zebrafish xenotransplants make a great model to study thyroid carcinogenesis and the tumor microenvironment, while also being a suitable model to test new therapeutics in vivo.
Collapse
Affiliation(s)
- Cassia Michael
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Clinton Walton DePaolo
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Antonio Di Cristofano
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Oncology), Albert Einstein College of Medicine, Bronx, NY, USA
- Montefiore-Einstein Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Sofia de Oliveira
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine (Hepatology), Albert Einstein College of Medicine, Bronx, NY, USA
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
- Montefiore-Einstein Cancer Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
- Cancer Dormancy Tumor Microenvironment Institute, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
30
|
Li H, Wang S, Yang Z, Meng X, Niu M. Nanomaterials modulate tumor-associated macrophages for the treatment of digestive system tumors. Bioact Mater 2024; 36:376-412. [PMID: 38544737 PMCID: PMC10965438 DOI: 10.1016/j.bioactmat.2024.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/25/2024] [Accepted: 03/03/2024] [Indexed: 11/25/2024] Open
Abstract
The treatment of digestive system tumors presents challenges, particularly in immunotherapy, owing to the advanced immune tolerance of the digestive system. Nanomaterials have emerged as a promising approach for addressing these challenges. They provide targeted drug delivery, enhanced permeability, high bioavailability, and low toxicity. Additionally, nanomaterials target immunosuppressive cells and reshape the tumor immune microenvironment (TIME). Among the various cells in the TIME, tumor-associated macrophages (TAMs) are the most abundant and play a crucial role in tumor progression. Therefore, investigating the modulation of TAMs by nanomaterials for the treatment of digestive system tumors is of great significance. Here, we present a comprehensive review of the utilization of nanomaterials to modulate TAMs for the treatment of gastric cancer, colorectal cancer, hepatocellular carcinoma, and pancreatic cancer. We also investigated the underlying mechanisms by which nanomaterials modulate TAMs to treat tumors in the digestive system. Furthermore, this review summarizes the role of macrophage-derived nanomaterials in the treatment of digestive system tumors. Overall, this research offers valuable insights into the development of nanomaterials tailored for the treatment of digestive system tumors.
Collapse
Affiliation(s)
- Hao Li
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Shuai Wang
- Department of Interventional Radiology, First Hospital of China Medical University, Shenyang, China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xianwei Meng
- Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
| | - Meng Niu
- China Medical University, Shenyang, China
| |
Collapse
|
31
|
Wang L, Li W, Li Y, Chen G, Zhao L, Li W, Wang S, Wang C, Feng Y, Zhang Y. Dried tangerine peel polysaccharide (DTPP) alleviates hepatic steatosis by suppressing TLR4/MD-2-mediated inflammation and endoplasmic reticulum stress. Bioorg Chem 2024; 147:107369. [PMID: 38640721 DOI: 10.1016/j.bioorg.2024.107369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/17/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a complex pathogenic metabolic syndrome characterized by increased inflammation and endoplasmic reticulum stress. In recent years, natural polysaccharides derived from traditional Chinese medicine have shown significant anti-inflammatory effects, making them an attractive therapeutic option. However, little research has been conducted on the therapeutic potential of dried tangerine peel polysaccharide (DTPP) - one of the most important medicinal resources in China. The results of the present study showed that DTPP substantially reduced macrophage infiltration in vivo and suppressed the expression of pro-inflammatory factors and endoplasmic reticulum stress-related genes. Additionally, surface plasmon resonance analysis revealed that DTPP had a specific affinity to myeloid differentiation factor 2, which consequently suppressed lipopolysaccharide-induced inflammation via interaction with the toll-like receptor 4 signaling pathway. This study provides a potential molecular mechanism underlying the anti-inflammatory effects of DTPP on NAFLD and suggests DTPP as a promising therapeutic strategy for NAFLD treatment.
Collapse
Affiliation(s)
- Lingzhi Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China; Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China
| | - Wenxi Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Yinggang Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Gengrui Chen
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Lijuan Zhao
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Wu Li
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Shengwei Wang
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China
| | - Chunming Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yanxian Feng
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, China.
| | - Yibo Zhang
- Department of Cell Biology & Institute of Biomedicine, College of Life Science and Technology, Jinan University, State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangdong Province Key Laboratory of Bioengineering Medicine, Jinan University, Guangdong Provincial Biotechnology Drug & Engineering Technology Research Center, National Engineering Research Center of Genetic Medicine, Guangzhou, China.
| |
Collapse
|
32
|
Wang P, Liu Y, Wei L, Wang J, Wang J, Du B. Development of a Novel Prognostic Model for Esophageal Squamous Cell Carcinoma: Insights into Immune Cell Interactions and Drug Sensitivity. Cancer Invest 2024:1-17. [PMID: 38616306 DOI: 10.1080/07357907.2024.2340576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/04/2024] [Indexed: 04/16/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) presents a five-year survival rate below 20%, underscoring the need for improved prognostic markers. Our study analyzed ESCC-specific datasets to identify consistently differentially expressed genes. A Venn analysis followed by gene network interactions revealed 23 key genes, from which we built a prognostic model using the COX algorithm (p = 0.000245, 3-year AUC = 0.967). This model stratifies patients into risk groups, with high-risk individuals showing worse outcomes and lower chemotherapy sensitivity. Moreover, a link between risk scores and M2 macrophage infiltration, as well as significant correlations with immune checkpoint genes (e.g., SIGLEC15, PDCD1LG2, and HVCR2), was discovered. High-risk patients had lower Tumor Immune Dysfunction and Exclusion (TIDE) values, suggesting potential responsiveness to immune checkpoint blockade (ICB) therapy. Our efficient 23-gene prognostic model for ESCC indicates a dual utility in assessing prognosis and guiding therapeutic decisions, particularly in the context of ICB therapy for high-risk patients.
Collapse
Affiliation(s)
- Pu Wang
- Center of Healthy Aging, Changzhi Medical College, Changzhi, PR China
| | - Yu Liu
- Center of Healthy Aging, Changzhi Medical College, Changzhi, PR China
| | - Lingyu Wei
- Central Laboratory of Clinical Research, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, PR China
| | - Jia Wang
- Center of Healthy Aging, Changzhi Medical College, Changzhi, PR China
| | - Jinsheng Wang
- First Clinical College of Changzhi Medical College, Changzhi, PR China
| | - Bin Du
- Center of Healthy Aging, Changzhi Medical College, Changzhi, PR China
| |
Collapse
|
33
|
Yin X, Dong L, Wang X, Qin Z, Ma Y, Ke X, Li Y, Wang Q, Mi Y, Lyu Q, Xu X, Zheng P, Tang Y. Perilipin 5 regulates hepatic stellate cell activation and high-fat diet-induced non-alcoholic fatty liver disease. Animal Model Exp Med 2024; 7:166-178. [PMID: 37202925 PMCID: PMC11079159 DOI: 10.1002/ame2.12327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/21/2023] [Indexed: 05/20/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases globally. Hepatic stellate cells (HSCs) are the major effector cells of liver fibrosis. HSCs contain abundant lipid droplets (LDs) in their cytoplasm during quiescence. Perilipin 5 (PLIN 5) is a LD surface-associated protein that plays a crucial role in lipid homeostasis. However, little is known about the role of PLIN 5 in HSC activation. METHODS PLIN 5 was overexpressed in HSCs of Sprague-Dawley rats by lentivirus transfection. At the same time, PLIN 5 gene knockout mice were constructed and fed with a high-fat diet (HFD) for 20 weeks to study the role of PLIN 5 in NAFLD. The corresponding reagent kits were used to measure TG, GSH, Caspase 3 activity, ATP level, and mitochondrial DNA copy number. Metabolomic analysis of mice liver tissue metabolism was performed based on UPLC-MS/MS. AMPK, mitochondrial function, cell proliferation, and apoptosis-related genes and proteins were detected by western blotting and qPCR. RESULTS Overexpression of PLIN 5 in activated HSCs led to a decrease in ATP levels in mitochondria, inhibition of cell proliferation, and a significant increase in cell apoptosis through AMPK activation. In addition, compared with the HFD-fed C57BL/6J mice, PLIN 5 knockout mice fed with HFD showed reduced liver fat deposition, decreased LD abundance and size, and reduced liver fibrosis. CONCLUSION These findings highlight the unique regulatory role of PLIN 5 in HSCs and the role of PLIN 5 in the fibrosis process of NAFLD.
Collapse
Affiliation(s)
- Xuecui Yin
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Lin Dong
- Department of Pediatricsthe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaohan Wang
- Department of Pediatricsthe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhenzhen Qin
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuying Ma
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xiaofei Ke
- Department of Pediatricsthe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Ya Li
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Qingde Wang
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yang Mi
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Quanjun Lyu
- Department of Clinical Nutritionthe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Xia Xu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education of China, Co‐innovation Center of Henan Province for New drug R & D and Preclinical Safety, School of Pharmaceutical SciencesZhengzhou UniversityZhengzhouChina
| | - Pengyuan Zheng
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Youcai Tang
- Department of Internal Medicinethe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Department of Pediatrics, Gastroenterology, Henan Key Laboratory of Rehabilitation Medicine, Henan Joint International Research Laboratory of Chronic Liver Injury and Henan Provincial Outstanding Overseas Scientists Chronic Liver Injury Studiothe Fifth Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
34
|
Roy D, Subramaniam B, Chong WC, Bornhorst M, Packer RJ, Nazarian J. Zebrafish-A Suitable Model for Rapid Translation of Effective Therapies for Pediatric Cancers. Cancers (Basel) 2024; 16:1361. [PMID: 38611039 PMCID: PMC11010887 DOI: 10.3390/cancers16071361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/27/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Pediatric cancers are the leading cause of disease-related deaths in children and adolescents. Most of these tumors are difficult to treat and have poor overall survival. Concerns have also been raised about drug toxicity and long-term detrimental side effects of therapies. In this review, we discuss the advantages and unique attributes of zebrafish as pediatric cancer models and their importance in targeted drug discovery and toxicity assays. We have also placed a special focus on zebrafish models of pediatric brain cancers-the most common and difficult solid tumor to treat.
Collapse
Affiliation(s)
- Debasish Roy
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Bavani Subramaniam
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Wai Chin Chong
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Miriam Bornhorst
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Roger J. Packer
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
| | - Javad Nazarian
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, DC 20012, USA; (D.R.)
- DIPG/DMG Research Center Zurich, Children’s Research Center, Department of Pediatrics, University Children’s Hospital Zürich, 8032 Zurich, Switzerland
| |
Collapse
|
35
|
Perazza F, Leoni L, Colosimo S, Musio A, Bocedi G, D’Avino M, Agnelli G, Nicastri A, Rossetti C, Sacilotto F, Marchesini G, Petroni ML, Ravaioli F. Metformin and the Liver: Unlocking the Full Therapeutic Potential. Metabolites 2024; 14:186. [PMID: 38668314 PMCID: PMC11052067 DOI: 10.3390/metabo14040186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Metformin is a highly effective medication for managing type 2 diabetes mellitus. Recent studies have shown that it has significant therapeutic benefits in various organ systems, particularly the liver. Although the effects of metformin on metabolic dysfunction-associated steatotic liver disease and metabolic dysfunction-associated steatohepatitis are still being debated, it has positive effects on cirrhosis and anti-tumoral properties, which can help prevent the development of hepatocellular carcinoma. Furthermore, it has been proven to improve insulin resistance and dyslipidaemia, commonly associated with liver diseases. While more studies are needed to fully determine the safety and effectiveness of metformin use in liver diseases, the results are highly promising. Indeed, metformin has a terrific potential for extending its full therapeutic properties beyond its traditional use in managing diabetes.
Collapse
Affiliation(s)
- Federica Perazza
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Laura Leoni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Santo Colosimo
- Doctorate School of Nutrition Science, University of Milan, 20122 Milan, Italy;
| | | | - Giulia Bocedi
- U.O. Diabetologia, Ospedale C. Magati, Scandiano, 42019 Reggio Emilia, Italy;
| | - Michela D’Avino
- S.C. Endocrinologia Arcispedale Santa Maria Nuova, 42123 Reggio Emilia, Italy;
| | - Giulio Agnelli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Alba Nicastri
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Chiara Rossetti
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federica Sacilotto
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Giulio Marchesini
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Maria Letizia Petroni
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
| | - Federico Ravaioli
- Department of Medical and Surgical Sciences, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy; (F.P.); (L.L.); (G.A.); (A.N.); (C.R.); (F.S.); (G.M.); (M.L.P.)
- Division of Hepatobiliary and Immunoallergic Diseases, Department of Internal Medicine, IRCCS Azienda Ospedaliero, Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
36
|
Zhang BL, Liu J, Diao G, Chang J, Xue J, Huang Z, Zhao H, Yu L, Cai J. Construction and Validation of a Novel Nomogram Predicting Recurrence in Alpha-Fetoprotein-Negative Hepatocellular Carcinoma Post-Surgery Using an Innovative Liver Function-Nutrition-Inflammation-Immune (LFNII) Score: A Bicentric Investigation. J Hepatocell Carcinoma 2024; 11:489-508. [PMID: 38463544 PMCID: PMC10924898 DOI: 10.2147/jhc.s451357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/29/2024] [Indexed: 03/12/2024] Open
Abstract
Purpose We developed a nomogram based on the liver function, nutrition, inflammation, and immunity (LFNII) score to predict recurrence-free survival (RFS) post-resection in patients with hepatocellular carcinoma (HCC) exhibiting alpha-fetoprotein (AFP) negativity (AFP ≤20 ng/mL). Patients and Methods Clinical data of 661 patients diagnosed with alpha-fetoprotein-negative hepatocellular carcinoma (AFP-NHCC) who underwent surgical resection at two medical centers between 2012 and 2021 were collected. A total of 462 and 199 patients served as the training and validation sets, respectively. Pre-operative blood markers were collected and analyzed for LFNII. The LFNII score was formulated using the least absolute shrinkage and selection operator Cox regression model. A nomogram model was developed using the training set to incorporate other relevant clinicopathological indicators and predict postoperative recurrence. Model discrimination was assessed using the receiver operating characteristic curve, calibration was evaluated using a calibration curve, and clinical applicability was assessed using clinical decision curve analysis. A comparison with liver cancer staging was performed using the nomogram model. Finally, a cohort study was conducted to validate our findings. Results We derived the LFNII scores from nine indicators. Elevated LFNII scores correlated with unfavorable clinicopathological features. The LFNII score area under the curve revealed superior predictive efficacy at 1-, 2-, and 5-year RFS intervals, with values of 0.675, 0.658, and 0.633, respectively. Multivariate Cox analysis revealed that a high LFNII score independently increased RFS risk in patients with AFP-NHCC. The C-index of the LFNII-nomogram model was 0.686 (95% confidence interval [CI], 0.651-0.721). The nomogram model's clinical application value surpassed that of standard HCC staging systems. Conclusion The LFNII score-derived nomogram effectively predicted the RFS of patients with AFP-NHCC after curative resection.
Collapse
Affiliation(s)
- Bo-Lun Zhang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jia Liu
- Department of Hepatobiliary Surgery, the Fifth Medical Center of the PLA General Hospital, Beijing, People’s Republic of China
| | - Guanghao Diao
- Department of Hepatobiliary Surgery, the Fifth Medical Center of the PLA General Hospital, Beijing, People’s Republic of China
| | - Jianping Chang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Junshuai Xue
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Zhen Huang
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Hong Zhao
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Lingxiang Yu
- Department of Hepatobiliary Surgery, the Fifth Medical Center of the PLA General Hospital, Beijing, People’s Republic of China
| | - Jianqiang Cai
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
37
|
Xu Q, Zhang J, Lu Y, Wu L. Association of metabolic-dysfunction associated steatotic liver disease with polycystic ovary syndrome. iScience 2024; 27:108783. [PMID: 38292434 PMCID: PMC10825666 DOI: 10.1016/j.isci.2024.108783] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), which has a prevalence of over 25% in adults, encompasses a wide spectrum of liver diseases. Metabolic-dysfunction associated steatotic liver disease (MASLD), the new term for NAFLD, is characterized by steatotic liver disease accompanied by cardiometabolic criteria, showing a strong correlation with metabolic diseases. Polycystic ovary syndrome (PCOS) is a common reproductive endocrine disease affecting 4-21% of women of reproductive age. Numerous studies have indicated that NAFLD and PCOS often occur together. However, as MASLD is a new term, there is still a lack of reports describing the effects of MASLD on the development of PCOS. In this review article, we have summarized the complex and multifaceted connections between MASLD and PCOS. Understanding the pathogenesis and treatment methods could not only guide the clinical prevention, diagnosis, and treatment of PCOS in patients with MASLD, but also increase the clinical attention of reproductive doctors to MASLD.
Collapse
Affiliation(s)
- Qiuyu Xu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Zhang
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan Lu
- Institute of Metabolism and Regenerative Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ling Wu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Wang Q, Wei X. Research Progress on the Use of Metformin in Leukemia Treatment. Curr Treat Options Oncol 2024; 25:220-236. [PMID: 38286894 PMCID: PMC10873432 DOI: 10.1007/s11864-024-01179-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 01/31/2024]
Abstract
OPINION STATEMENT Metformin is a first-line drug in the clinical treatment of type 2 diabetes. Its main molecular mechanism involves the activation of adenosine 5'-monophosphate-activated protein kinase (AMPK), which regulates cell energy metabolism. Many clinical studies have shown that metformin can reduce the incidence and mortality of cancer in patients with or without diabetes. In vitro studies also confirmed that metformin can inhibit proliferation, promote apoptosis, and enhance the response of cells to chemical drugs and other anticancer effects on a variety of leukemia cells. In recent years, leukemia has become one of the most common malignant diseases. Although great progress has been made in therapeutic approaches for leukemia, novel drugs and better treatments are still needed to improve the therapeutic efficacy of these treatments. This article reviews the application status and possible mechanism of metformin in the treatment of leukemia to further understand the anticancer mechanism of metformin and expand its clinical application.
Collapse
Affiliation(s)
- Qian Wang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China
| | - Xudong Wei
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, 450008, China.
| |
Collapse
|
39
|
Sui Q, Hu Z, Liang J, Lu T, Bian Y, Jin X, Li M, Huang Y, Yang H, Wang Q, Lin Z, Chen Z, Zhan C. Targeting TAM-secreted S100A9 effectively enhances the tumor-suppressive effect of metformin in treating lung adenocarcinoma. Cancer Lett 2024; 581:216497. [PMID: 38008395 DOI: 10.1016/j.canlet.2023.216497] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 11/13/2023] [Indexed: 11/28/2023]
Abstract
Metformin's effect on tumor treatment was complex, because it significantly reduced cancer cell proliferation in vitro, but made no difference in prognosis in several clinical cohorts. Our transcriptome sequencing results revealed that tumor-associated macrophage (TAM) infiltration significantly increased in active lung adenocarcinoma (LUAD) patients with long-term metformin use. We further identified that the tumor suppressive effect of metformin was more significant in mice after the depletion of macrophages, suggesting that TAMs might play an important role in metformin's effects in LUAD. Combining 10X Genomics single-cell sequencing of tumor samples, transcriptome sequencing of metformin-treated TAMs, and the ChIP-Seq data of the Encode database, we identified and validated that metformin significantly increased the expression and secretion of S100A9 of TAMs through AMPK-CEBP/β pathway. For the downstream, S100A9 binds to RAGE receptors on the surface of LUAD cells, and then activates the NF-κB pathway to promote EMT and progression of LUAD, counteracting the inhibitory effect of metformin on LUAD cells. In cell-derived xenograft models (CDX) and patient-derived xenograft models (PDX) models, our results showed that neutralizing antibodies targeting TAM-secreted S100A9 effectively enhanced the tumor suppressive effect of metformin in treating LUAD. Our results will enable us to better comprehend the complex role of metformin in LUAD, and advance its clinical application in cancer treatment.
Collapse
Affiliation(s)
- Qihai Sui
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Tao Lu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xing Jin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ming Li
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Yiwei Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Huiqiang Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qun Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zongwu Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Zhencong Chen
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
40
|
Mai Y, Meng L, Deng G, Qin Y. The Role of Type 2 Diabetes Mellitus-Related Risk Factors and Drugs in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:159-171. [PMID: 38268569 PMCID: PMC10806369 DOI: 10.2147/jhc.s441672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/04/2024] [Indexed: 01/26/2024] Open
Abstract
With changes in modern lifestyles, type 2 diabetes mellitus (T2DM) has become a global epidemic metabolic disease, and hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths worldwide. T2DM is a complex metabolic disorder and has been considered an independent risk factor for HCC. Growing evidence supports that T2DM-related risk factors facilitate hepatocarcinogenesis via abundant mechanisms. With the wide implementation of microbiomics, transcriptomics, and immunotherapy, the understanding of the complex mechanisms of intestinal flora and immune cell subsets have advanced tremendously in T2DM-related HCC, uncovering new findings in T2DM-related HCC patients. In addition, reports have indicated the different effects of anti-DM drugs on the progression of HCC. In this review, we summarize the effects of major T2DM-related risk factors (including hyperglycemia, hyperinsulinemia, insulin, chronic inflammation, obesity, nonalcoholic fatty liver disease, gut microbiota and immunomodulation), and anti-DM drugs on the carcinogensis and progression of HCC, as well as their potential molecular mechanisms. In addition, other factors (miRNAs, genes, and lifestyle) related to T2DM-related HCC are discussed. We propose a refined concept by which T2DM-related risk factors and anti-DM drugs contribute to HCC and discuss research directions prompted by such evidence worth pursuing in the coming years. Finally, we put forward novel therapeutic approaches to improve the prognosis of T2DM-related HCC, including exploiting novel diagnostic biomarkers, combination therapy with immunocheckpoint inhibitors, and enhancement of the standardized management of T2DM patients.
Collapse
Affiliation(s)
- Yuhua Mai
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
| | - Liheng Meng
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Ganlu Deng
- Guangxi Key Laboratory of Enhanced Recovery after Surgery for Gastrointestinal Cancer (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Yingfen Qin
- Department of Endocrinology, The First Affiliated Hospital of GuangXi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
41
|
Wang Y, Fleishman JS, Li T, Li Y, Ren Z, Chen J, Ding M. Pharmacological therapy of metabolic dysfunction-associated steatotic liver disease-driven hepatocellular carcinoma. Front Pharmacol 2024; 14:1336216. [PMID: 38313077 PMCID: PMC10834746 DOI: 10.3389/fphar.2023.1336216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 12/31/2023] [Indexed: 02/06/2024] Open
Abstract
In light of a global rise in the number of patients with type 2 diabetes mellitus (T2DM) and obesity, non-alcoholic fatty liver disease (NAFLD), now known as metabolic dysfunction-associated fatty liver disease (MAFLD) or metabolic dysfunction-associated steatotic liver disease (MASLD), has become the leading cause of hepatocellular carcinoma (HCC), with the annual occurrence of MASLD-driven HCC expected to increase by 45%-130% by 2030. Although MASLD has become a serious major public health threat globally, the exact molecular mechanisms mediating MASLD-driven HCC remain an open problem, necessitating future investigation. Meanwhile, emerging studies are focusing on the utility of bioactive compounds to halt the progression of MASLD to MASLD-driven HCC. In this review, we first briefly review the recent progress of the possible mechanisms of pathogenesis and progression for MASLD-driven HCC. We then discuss the application of bioactive compounds to mitigate MASLD-driven HCC through different modulatory mechanisms encompassing anti-inflammatory, lipid metabolic, and gut microbial pathways, providing valuable information for future treatment and prevention of MASLD-driven HCC. Nonetheless, clinical research exploring the effectiveness of herbal medicines in the treatment of MASLD-driven HCC is still warranted.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Joshua S. Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Tongda Li
- Department of Traditional Chinese Medicine, Beijing Geriatric Hospital, Beijing, China
| | - Yulin Li
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Zhao Ren
- Department of Pharmacy, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Mingchao Ding
- Department of Peripheral Vascular Intervention, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| |
Collapse
|
42
|
Kwiatkowska I, Hermanowicz JM, Czarnomysy R, Surażyński A, Kowalczuk K, Kałafut J, Przybyszewska-Podstawka A, Bielawski K, Rivero-Müller A, Mojzych M, Pawlak D. Assessment of an Anticancer Effect of the Simultaneous Administration of MM-129 and Indoximod in the Colorectal Cancer Model. Cancers (Basel) 2023; 16:122. [PMID: 38201550 PMCID: PMC10778160 DOI: 10.3390/cancers16010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
(1) Background: The purpose of the given study was to examine the antitumor activity of the simultaneous administration of MM-129, a 1,2,4-triazine derivative, and indoximod (IND), the kynurenine pathway inhibitor, toward colon cancer. (2) Methods: The efficiency of the co-administration of the studied compounds was assessed in xenografted zebrafish embryos. Then, the effects of the combined administration of compounds on cellular processes such as cell viability, apoptosis, and intracellular signaling pathways were evaluated. In vitro studies were performed using two colorectal cancer cell lines, namely, DLD-1 and HT-29. (3) Results: The results indicated that the simultaneous application of MM-129 and indoximod induced a stronger inhibition of tumor growth in zebrafish xenografts. The combination of these compounds intensified the process of apoptosis by lowering the mitochondrial potential, enhancing the externalization of phosphatidylserine (PS) and activation of caspases. Additionally, the expression of protein kinase B (AKT) and indoleamine 2,3-dioxygenase-(1IDO1) was disrupted under the applied compound combination. (4) Conclusions: Simultaneous targeting of ongoing cell signaling that promotes tumor progression, along with inhibition of the kynurenine pathway enzyme IDO1, results in the enhancement of the antitumor effect of the tested compounds against the colon cancer cells.
Collapse
Affiliation(s)
- Iwona Kwiatkowska
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
- Department of Clinical Pharmacy, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Arkadiusz Surażyński
- Department of Medicinal Chemistry, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland;
| | - Krystyna Kowalczuk
- Department of Integrated Medical Care, Medical University of Bialystok, ul. M Skłodowskiej-Curie 7A, 15-096 Bialystok, Poland;
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Alicja Przybyszewska-Podstawka
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (R.C.); (K.B.)
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, Chodźki 1, 20-093 Lublin, Poland; (J.K.); (A.P.-P.); (A.R.-M.)
| | - Mariusz Mojzych
- Faculty of Health Science, Collegium Medicum, The Mazovian Academy in Plock, Plac Dabrowskiego 2, 09-402 Plock, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (J.M.H.); (D.P.)
| |
Collapse
|
43
|
Yue F, Shi Y, Wu S, Xing L, He D, Wei L, Qiu A, Russell R, Zhang D. Metformin alleviates hepatic iron overload and ferroptosis through AMPK-ferroportin pathway in HFD-induced NAFLD. iScience 2023; 26:108560. [PMID: 38089577 PMCID: PMC10711470 DOI: 10.1016/j.isci.2023.108560] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 10/21/2023] [Accepted: 11/20/2023] [Indexed: 01/04/2025] Open
Abstract
Metformin prevents progression of non-alcoholic fatty liver disease (NAFLD). However, the potential mechanism is not entirely understood. Ferroptosis, a recently recognized nonapoptotic form of regulated cell death, has been reported to be involved in the pathogenesis of NAFLD. Here, we investigated the effects of metformin on ferroptosis and its potential mechanism in NAFLD. We found that metformin prevented the progression of NAFLD, and alleviated hepatic iron overload (HIO), ferroptosis and upregulated ferroportin (FPN) expression in vivo and in vitro. Mechanically, metformin reduced the lysosomal degradation pathway of FPN through activation AMPK, thus upregulated the expression of FPN protein, alleviated HIO and ferroptosis, and prevented progression of NAFLD. These findings discover a mechanism of metformin, suggesting that targeting FPN may have the therapeutic potential for treating NAFLD and related disorders.
Collapse
Affiliation(s)
- Fangzhi Yue
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, Central South University, Changsha 410011, Hunan, China
| | - Ying Shi
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Shanyu Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Lin Xing
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Dan He
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Lin Wei
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Anqi Qiu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ryan Russell
- Department of Health and Human Performance, College of Health Professions, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - Dongmei Zhang
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Hunan Engineering Research Center for Obesity and its Metabolic Complications, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
44
|
Ruan G, Wu F, Shi D, Sun H, Wang F, Xu C. Metformin: update on mechanisms of action on liver diseases. Front Nutr 2023; 10:1327814. [PMID: 38192642 PMCID: PMC10773879 DOI: 10.3389/fnut.2023.1327814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/27/2023] [Indexed: 01/10/2024] Open
Abstract
Substantial attention has been paid to the various effects of metformin on liver diseases; the liver is the targeted organ where metformin exerts its antihyperglycemic properties. In non-alcoholic fatty liver disease (NAFLD), studies have shown that metformin affects the ATP/AMP ratio to activate AMPK, subsequently governing lipid metabolism. The latest research showed that low-dose metformin targets the lysosomal AMPK pathway to decrease hepatic triglyceride levels through the PEN2-ATP6AP1 axis in an AMP-independent manner. Metformin regulates caspase-3, eukaryotic initiation factor-2a (eIF2a), and insulin receptor substrate-1 (IRS-1) in palmitate-exposed HepG2 cells, alleviating endoplasmic reticulum (ER) stress. Recent observations highlighted the critical association with intestinal flora, as confirmed by the finding that metformin decreased the relative abundance of Bacteroides fragilis while increasing Akkermansia muciniphila and Bifidobacterium bifidum. The suppression of intestinal farnesoid X receptor (FXR) and the elevation of short-chain fatty acids resulted in the upregulation of tight junction protein and the alleviation of hepatic inflammation induced by lipopolysaccharide (LPS). Additionally, metformin delayed the progression of cirrhosis by regulating the activation and proliferation of hepatic stellate cells (HSCs) via the TGF-β1/Smad3 and succinate-GPR91 pathways. In hepatocellular carcinoma (HCC), metformin impeded the cell cycle and enhanced the curative effect of antitumor medications. Moreover, metformin protects against chemical-induced and drug-induced liver injury (DILI) against hepatotoxic drugs. These findings suggest that metformin may have pharmacological efficacy against liver diseases.
Collapse
Affiliation(s)
- Gaoyi Ruan
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Fangquan Wu
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Dibang Shi
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hongxia Sun
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Fangyan Wang
- Department of Pathophysiology, School of Basic Medicine Science, Wenzhou Medical University, Wenzhou, China
| | - Changlong Xu
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
45
|
Lin H, Ao H, Guo G, Liu M. The Role and Mechanism of Metformin in Inflammatory Diseases. J Inflamm Res 2023; 16:5545-5564. [PMID: 38026260 PMCID: PMC10680465 DOI: 10.2147/jir.s436147] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/17/2023] [Indexed: 12/01/2023] Open
Abstract
Metformin is a classical drug used to treat type 2 diabetes. With the development of research on metformin, it has been found that metformin also has several advantages aside from its hypoglycemic effect, such as anti-inflammatory, anti-aging, anti-cancer, improving intestinal flora, and other effects. The prevention of inflammation is critical because chronic inflammation is associated with numerous diseases of considerable public health. Therefore, there has been growing interest in the role of metformin in treating various inflammatory conditions. However, the precise anti-inflammatory mechanisms of metformin were inconsistent in the reported studies. Thus, this review aims to summarize various currently known possible mechanisms of metformin involved in inflammatory diseases and provide references for the clinical application of metformin.
Collapse
Affiliation(s)
- Huan Lin
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials & School of Materials Science and Engineering, East China Jiaotong University, Nanchang, Jiangxi, People’s Republic of China
| | - Guanghua Guo
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Mingzhuo Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| |
Collapse
|
46
|
He W, Wang X, Chen M, Li C, Chen W, Pan L, Cui Y, Yu Z, Wu G, Yang Y, Xu M, Dong Z, Ma K, Wang J, He Z. Metformin reduces hepatocarcinogenesis by inducing downregulation of Cyp26a1 and CD8 + T cells. Clin Transl Med 2023; 13:e1465. [PMID: 37997519 PMCID: PMC10668005 DOI: 10.1002/ctm2.1465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/12/2023] [Accepted: 10/19/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer with major challenges in both prevention and therapy. Metformin, adenosine monophosphate-activated protein kinase (AMPK) activator, has been suggested to reduce the incidence of HCC when used for patients with diabetes in preclinical and clinical studies. However, the possible effects of metformin and their mechanisms of action in non-diabetic HCC have not been adequately investigated. METHODS Fah-/- mice were used to construct a liver-injury-induced non-diabetic HCC model for exploring hepatocarcinogenesis and therapeutic potential of metformin. Changes in relevant tumour and biochemical indicators were measured. Bulk and single-cell RNA-sequencing analyses were performed to validate the crucial role of proinflammatory/pro-tumour CD8+ T cells. In vitro and in vivo experiments were performed to confirm Cyp26a1-related antitumour mechanisms of metformin. RESULTS RNA-sequencing analysis showed that chronic liver injury led to significant changes in AMPK-, glucose- and retinol metabolism-related pathways in Fah-/- mice. Metformin prevented the formation of non-diabetic HCC in Fah-/- mice with chronic liver injury. Cyp26a1 ddexpression in hepatocytes was significantly suppressed after metformin treatment. Moreover, downregulation of Cyp26a1 occurred in conjunction with increased levels of all-trans-retinoic acid (atRA), which is involved in the activation of metformin-suppressed hepatocarcinogenesis in Fah-/- mice. In contrast, both CD8+ T-cell infiltration and proinflammatory/pro-tumour cytokines in the liver were significantly upregulated in Fah-/- mice during chronic liver injury, which was notably reversed by either metformin or atRA treatment. Regarding mechanisms, metformin regulated the decrease in Cyp26a1 enzyme expression and increased atRA expression via the AMPK/STAT3/Gadd45β/JNK/c-Jun pathway. CONCLUSIONS Metformin inhibits non-diabetic HCC by upregulating atRA levels and downregulating CD8+ T cells. This is the first reporting that the traditional drug metformin regulates the metabolite atRA via the Cyp26a1-involved pathway. The present study provides a potential application of metformin and atRA in non-diabetic HCC.
Collapse
Affiliation(s)
- Weizhi He
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
- Fudan University Shanghai Cancer Center, International Co‐Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Shanghai Medical College of Fudan University, Institutes of Biomedical SciencesShanghai Key Laboratory of Medical EpigeneticsShanghaiChina
| | - Xicheng Wang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Miaomiao Chen
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Chong Li
- Zhoupu Community Health Service Center of Pudong New AreaShanghaiChina
| | - Wenjian Chen
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Lili Pan
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Yangyang Cui
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Postgraduate Training Base of Shanghai East HospitalJinzhou Medical UniversityJinzhouLiaoningChina
| | - Zhao Yu
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Guoxiu Wu
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Yang Yang
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Mingyang Xu
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Zhaoxuan Dong
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Keming Ma
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| | - Jinghan Wang
- Department of Hepatobiliary and Pancreatic SurgeryShanghai East Hospital, Tongji UniversityShanghaiChina
| | - Zhiying He
- Institute for Regenerative Medicine, Ji'an Hospital, Shanghai East HospitalSchool of Life Sciences and TechnologyTongji University School of MedicineShanghaiChina
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghaiChina
| |
Collapse
|
47
|
Shimizu N, Shiraishi H, Hanada T. Zebrafish as a Useful Model System for Human Liver Disease. Cells 2023; 12:2246. [PMID: 37759472 PMCID: PMC10526867 DOI: 10.3390/cells12182246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Liver diseases represent a significant global health challenge, thereby necessitating extensive research to understand their intricate complexities and to develop effective treatments. In this context, zebrafish (Danio rerio) have emerged as a valuable model organism for studying various aspects of liver disease. The zebrafish liver has striking similarities to the human liver in terms of structure, function, and regenerative capacity. Researchers have successfully induced liver damage in zebrafish using chemical toxins, genetic manipulation, and other methods, thereby allowing the study of disease mechanisms and the progression of liver disease. Zebrafish embryos or larvae, with their transparency and rapid development, provide a unique opportunity for high-throughput drug screening and the identification of potential therapeutics. This review highlights how research on zebrafish has provided valuable insights into the pathological mechanisms of human liver disease.
Collapse
Affiliation(s)
- Nobuyuki Shimizu
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| | | | - Toshikatsu Hanada
- Department of Cell Biology, Oita University Faculty of Medicine, Yufu 879-5593, Oita, Japan;
| |
Collapse
|
48
|
Luo Z, Wang B, Luo F, Guo Y, Jiang N, Wei J, Wang X, Tseng Y, Chen J, Zhao B, Liu J. Establishment of a large-scale patient-derived high-risk colorectal adenoma organoid biobank for high-throughput and high-content drug screening. BMC Med 2023; 21:336. [PMID: 37667332 PMCID: PMC10478412 DOI: 10.1186/s12916-023-03034-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Colorectal adenoma (CA), especially high-risk CA (HRCA), is a precancerous lesion with high prevalence and recurrence rate and accounts for about 90% incidence of sporadic colorectal cancer cases worldwide. Currently, recurrent CA can only be treated with repeated invasive polypectomies, while safe and promising pharmaceutical invention strategies are still missing due to the lack of reliable in vitro model for CA-related drug screening. METHODS We have established a large-scale patient-derived high-risk colorectal adenoma organoid (HRCA-PDO) biobank containing 37 PDO lines derived from 33 patients and then conducted a series of high-throughput and high-content HRCA drug screening. RESULTS We established the primary culture system with the non-WNT3a medium which highly improved the purity while maintained the viability of HRCA-PDOs. We also proved that the HRCA-PDOs replicated the histological features, cellular diversity, genetic mutations, and molecular characteristics of the primary adenomas. Especially, we identified the dysregulated stem genes including LGR5, c-Myc, and OLFM4 as the markers of adenoma, which are well preserved in HRCA-PDOs. Based on the HRCA-PDO biobank, a customized 139 compound library was applied for drug screening. Four drugs including metformin, BMS754807, panobinostat and AT9283 were screened out as potential hits with generally consistent inhibitory efficacy on HRCA-PDOs. As a representative, metformin was discovered to hinder HRCA-PDO growth in vitro and in vivo by restricting the stemness maintenance. CONCLUSIONS This study established a promising HRCA-PDO biobank and conducted the first high-throughput and high-content HRCA drug screening in order to shed light on the prevention of colorectal cancer.
Collapse
Affiliation(s)
- Zhongguang Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Bangting Wang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Feifei Luo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yumeng Guo
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Ning Jiang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Jinsong Wei
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Xin Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China
| | - Yujen Tseng
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jian Chen
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Bing Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, 200438, China.
- Institute of Organoid Technology, Kunming Medical University, Kunming, 650500, China.
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, 200040, China.
- Institute of Biomedical Sciences and Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
49
|
Convertini P, Santarsiero A, Todisco S, Gilio M, Palazzo D, Pappalardo I, Iacobazzi D, Frontuto M, Infantino V. ACLY as a modulator of liver cell functions and its role in Metabolic Dysfunction-Associated Steatohepatitis. J Transl Med 2023; 21:568. [PMID: 37620891 PMCID: PMC10463545 DOI: 10.1186/s12967-023-04431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023] Open
Abstract
BACKGROUND Non-alcoholic Fatty Liver Disease (NAFLD), now better known as Metabolic (Dysfunction)-Associated Fatty Liver Disease (MAFLD) and its progression to Nonalcoholic Steatohepatitis (NASH), more recently referred to as Metabolic (Dysfunction)-Associated Steatohepatitis (MASH) are the most common causes of liver failure and chronic liver damage. The new names emphasize the metabolic involvement both in relation to liver function and pathological features with extrahepatic manifestations. This study aims to explore the role of the immunometabolic enzyme ATP citrate lyase (ACLY), with a critical function in lipogenesis, carbohydrate metabolism, gene expression and inflammation. METHODS ACLY function was investigated in TNFα-triggered human hepatocytes and in PBMC-derived macrophages from MASH patients. Evaluation of expression levels was carried out by western blotting and/or RT-qPCR. In the presence or absence of ACLY inhibitors, ROS, lipid peroxidation and GSSG oxidative stress biomarkers were quantified. Chromatin immunoprecipitation (ChIP), transient transfections, immunocytochemistry, histone acetylation quantitation were used to investigate ACLY function in gene expression reprogramming. IL-6 and IL-1β were quantified by Lumit immunoassays. RESULTS Mechanistically, ACLY inhibition reverted lipid accumulation and oxidative damage while reduced secretion of inflammatory cytokines in TNFα-triggered human hepatocytes. These effects impacted not only on lipid metabolism but also on other crucial features of liver function such as redox status and production of inflammatory mediators. Moreover, ACLY mRNA levels together with those of malic enzyme 1 (ME1) increased in human PBMC-derived macrophages from MASH patients when compared to age-matched healthy controls. Remarkably, a combination of hydroxycitrate (HCA), the natural ACLY inhibitor, with red wine powder (RWP) significantly lowered ACLY and ME1 mRNA amount as well as IL-6 and IL-1β production in macrophages from subjects with MASH. CONCLUSION Collectively, our findings for the first time highlight a broad spectrum of ACLY functions in liver as well as in the pathogenesis of MASH and its diagnostic and therapeutic potential value.
Collapse
Affiliation(s)
- Paolo Convertini
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Anna Santarsiero
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Simona Todisco
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Michele Gilio
- Infectious Diseases Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Donatella Palazzo
- Infectious Diseases Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Ilaria Pappalardo
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy
| | - Dominga Iacobazzi
- Bristol Medical School, Translational Health Sciences, University of Bristol, Bristol, BS2 8HW, UK
| | - Maria Frontuto
- Infectious Diseases Unit, San Carlo Hospital, Via Potito Petrone, 85100, Potenza, Italy
| | - Vittoria Infantino
- Department of Science, University of Basilicata, Viale dell'Ateneo Lucano 10, 85100, Potenza, Italy.
| |
Collapse
|
50
|
Yuan Y, Wu D, Li J, Huang D, Zhao Y, Gao T, Zhuang Z, Cui Y, Zheng DY, Tang Y. Mechanisms of tumor-associated macrophages affecting the progression of hepatocellular carcinoma. Front Pharmacol 2023; 14:1217400. [PMID: 37663266 PMCID: PMC10470150 DOI: 10.3389/fphar.2023.1217400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/23/2023] [Indexed: 09/05/2023] Open
Abstract
Tumor-associated macrophages (TAMs) are essential components of the immune cell stroma of hepatocellular carcinoma. TAMs originate from monocytic myeloid-derived suppressor cells, peripheral blood monocytes, and kupffer cells. The recruitment of monocytes to the HCC tumor microenvironment is facilitated by various factors, leading to their differentiation into TAMs with unique phenotypes. TAMs can directly activate or inhibit the nuclear factor-κB, interleukin-6/signal transducer and signal transducer and activator of transcription 3, Wnt/β-catenin, transforming growth factor-β1/bone morphogenetic protein, and extracellular signal-regulated kinase 1/2 signaling pathways in tumor cells and interact with other immune cells via producing cytokines and extracellular vesicles, thus affecting carcinoma cell proliferation, invasive and migratory, angiogenesis, liver fibrosis progression, and other processes to participate in different stages of tumor progression. In recent years, TAMs have received much attention as a prospective treatment target for HCC. This review describes the origin and characteristics of TAMs and their mechanism of action in the occurrence and development of HCC to offer a theoretical foundation for further clinical research of TAMs.
Collapse
Affiliation(s)
- Yi Yuan
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dailin Wu
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jing Li
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dan Huang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan Zhao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Tianqi Gao
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhenjie Zhuang
- Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ying Cui
- Department of Psychiatry, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Da-Yong Zheng
- Department of Oncology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- Department of Hepatology, TCM-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, China
- Department of Hepatopancreatobiliary, Cancer Center, Southern Medical University, Guangzhou, Guangdong, China
| | - Ying Tang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|