1
|
Zhan M, Zhong S, Niu J, Gao X. Activation of immune checkpoint OX40 inhibits HBV replication in a mouse model. Int Immunopharmacol 2025; 149:114120. [PMID: 39923582 DOI: 10.1016/j.intimp.2025.114120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 02/11/2025]
Abstract
BACKGROUND & AIMS The costimulatory molecules OX40 and OX40L, members of the tumor necrosis factor (receptor) superfamily, play an important role in viral control through the activation of T cells. We speculate that activating the immune checkpoint OX40 may promote the inhibition of hepatitis B virus (HBV) replication. METHODS To test this hypothesis, we investigated the expression dynamics of OX40/OX40L and studied the effects of activation of OX40 on HBV replication, and further explored the possible mechanism. RESULTS We found that the percentage of T cells expressing OX40 was lower in adult patients with chronic hepatitis B (CHB) than in healthy adults and was negatively correlated with serum viral load. In contrast, the percentage of B cells and monocytes expressing OX40L was increased in adult patients with CHB and positively correlated with liver inflammatory indicators. The expression of OX40 in T cells and OX40L in monocytes was positively correlated with age in healthy donors. In addition, the levels of serum HBsAg and intrahepatic HBV DNA decreased in an HBV mouse model with an agonistic antibody that activates OX40. This viral inhibition process coincides with changes in liver inflammation, the ratio of T cell subsets, and T cell-related cytokines. Finally, we found that the OX40 activation-mediated inhibition of HBV replication was more dependent on CD8+ T cells than on CD4+ T cells. CONCLUSIONS The expression levels of the immune checkpoints OX40/OX40L in adult patients with CHB are closely related to virus clearance. The activation of OX40 can suppress HBV replication through a mechanism that is more dependent on CD8+ T cells than on CD4+ T cells. Thus, OX40 is a promising therapeutic target for the treatment of CHB.
Collapse
Affiliation(s)
- Mengru Zhan
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China; Department of Infectious Diseases, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoling Zhong
- Ultrasound Medical, Hangzhou Lin'an District Third People's Hospital, Hangzhou, China
| | - Junqi Niu
- Department of Hepatology, Center of Infectious Diseases and Pathogen Biology, The First Hospital of Jilin University, Changchun, China
| | - Xiuzhu Gao
- Department of Public Laboratory Platform, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Wang T, Fan Y, Tan S, Wang Z, Li M, Guo X, Yu X, Lin Q, Song X, Xu L, Li L, Li S, Gao L, Liang X, Li C, Ma C. Probiotics and their metabolite spermidine enhance IFN-γ +CD4 + T cell immunity to inhibit hepatitis B virus. Cell Rep Med 2024; 5:101822. [PMID: 39536754 PMCID: PMC11604485 DOI: 10.1016/j.xcrm.2024.101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 07/30/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
The therapeutic potential of commensal microbes and their metabolites is promising in the functional cure of chronic hepatitis B virus (HBV) infection, which is defined as hepatitis B surface antigen (HBsAg) loss. Here, using both specific-pathogen-free and germ-free mice, we report that probiotics significantly promote the decline of HBsAg and inhibit HBV replication by enhancing intestinal homeostasis and provoking intrahepatic interferon (IFN)-γ+CD4+ T cell immune response. Depletion of CD4+ T cells or blockage of IFN-γ abolishes probiotics-mediated HBV inhibition. Specifically, probiotics-derived spermidine accumulates in the gut and transports to the liver, where it exhibits a similar anti-HBV effect. Mechanistically, spermidine enhances IFN-γ+CD4+ T cell immunity by autophagy. Strikingly, administration of probiotics in HBV patients reveals a preliminary trend to accelerate the decline of serum HBsAg. In conclusion, probiotics and their derived spermidine promote HBV clearance via autophagy-enhanced IFN-γ+CD4+ T cell immunity, highlighting the therapeutic potential of probiotics and spermidine for the functional cure of HBV patients.
Collapse
Affiliation(s)
- Tixiao Wang
- Department of Endocrinology and Metabolism and Department of Immunology, Qilu Hospital, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuchen Fan
- Department of Hepatology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Siyu Tan
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zehua Wang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Mengzhen Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaowei Guo
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiangguo Yu
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Qinghai Lin
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaojia Song
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Leiqi Xu
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, China
| | - Shiyang Li
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Chunyang Li
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Immunology, School of Basic Medical Sciences, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China; School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
3
|
Li X, Liu Y, Gui J, Gan L, Xue J. Cell Identity and Spatial Distribution of PD-1/PD-L1 Blockade Responders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400702. [PMID: 39248327 PMCID: PMC11538707 DOI: 10.1002/advs.202400702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) axis inhibits T cell activity, impairing anti-tumor immunity. Blocking this axis with therapeutic antibodies is one of the most promising anti-tumor immunotherapies. It has long been recognized that PD-1/PD-L1 blockade reinvigorates exhausted T (TEX) cells already present in the tumor microenvironment (TME). However, recent advancements in high-throughput gene sequencing and bioinformatic tools have provided researchers with a more granular and dynamic insight into PD-1/PD-L1 blockade-responding cells, extending beyond the TME and TEX populations. This review provides an update on the cell identity, spatial distribution, and treatment-induced spatiotemporal dynamics of PD-1/PD-L1 blockade responders. It also provides a synopsis of preliminary reports of potential PD-1/PD-L1 blockade responders other than T cells to depict a panoramic picture. Important questions to answer in further studies and the translational and clinical potential of the evolving understandings are also discussed.
Collapse
Affiliation(s)
- Xintong Li
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Lu Gan
- Research Laboratory of Emergency MedicineDepartment of Emergency MedicineNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsLaboratory of Clinical Cell TherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
4
|
Mak LY, Boettler T, Gill US. HBV Biomarkers and Their Role in Guiding Treatment Decisions. Semin Liver Dis 2024; 44:474-491. [PMID: 39442530 DOI: 10.1055/a-2448-4157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Over 300 million individuals worldwide are chronically infected with hepatitis B virus and at risk for progressive liver disease. Due to the lack of a therapy that reliably achieves viral elimination and the variability of liver disease progression, treatment decisions are guided by the degree of liver disease and viral biomarkers as the viral life-cycle is well characterized and largely conserved between individuals. In contrast, the immunological landscape is much more heterogeneous and diverse and the measurement of its components is less well standardized. Due to the lack of a universal and easily measurable set of biomarkers, clinical practice guidelines remain controversial, aiming for a balance between simplifying treatment decisions by reducing biomarker requirements and using all available biomarkers to avoid overtreatment of patients with low risk for disease progression. While approved therapies such as nucleos(t)ide analogs improve patient outcomes, the inability to achieve a complete cure highlights the need for novel therapies. Since no treatment candidate has demonstrated universal efficacy, biomarkers will remain important for treatment stratification. Here, we summarize the current knowledge on virological and immunological biomarkers with a specific focus on how they might be beneficial in guiding treatment decisions in chronic hepatitis B.
Collapse
Affiliation(s)
- Lung-Yi Mak
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
- Department of Medicine, Queen Mary Hospital, School of Clinical Medicine, The Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tobias Boettler
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Upkar S Gill
- Barts Liver Centre, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
5
|
Chen X, Zhang B, Song X, Qian T, Zheng X, Zhang Y, Xu W, Gao Z, Peng L, Xie C. Serum sPD-1 and sPD-L1 as predictive biomarkers for HBsAg clearance in HBeAg-negative CHB patients undergoing IFN-based therapy. Aliment Pharmacol Ther 2024; 60:593-603. [PMID: 38923559 DOI: 10.1111/apt.18131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/20/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND AIMS For chronic hepatitis B (CHB) patients, there is still a need to improve hepatitis B surface antigen (HBsAg) clearance rates. This study aimed to assess the predictive effectiveness of soluble programmed cell death-1 (sPD-1) and soluble programmed cell death ligand-1 (sPD-L1) for HBsAg clearance in HBeAg-negative CHB patients undergoing peginterferon (Peg-IFN)-based antiviral treatment. METHODS This study encompassed 280 patients undergoing treatment with Peg-IFNα. Serum levels of sPD-1 and sPD-L1 were measured using ELISA kits at baseline, as well as at 12, 24 and 48 weeks. The primary endpoint of the study was the determination of HBsAg clearance at 48 weeks. Logistic regression analysis was employed to identify predictors of HBsAg clearance. RESULTS The clearance group demonstrated significantly lower serum sPD-L1 levels compared to the non-clearance group. While both groups exhibited an increase in sPD-1 levels, only the clearance group showed a rise in sPD-L1 levels. Multivariate analysis identified sPD-L1 increase at 24 weeks, and HBsAg decline at 24 weeks as predictors for HBsAg clearance at 48 weeks. The combined use of these indicators showed a predictive performance for HBsAg clearance with an AUROC of 0.907 (95% CI: 0.861-0.953, p < 0.001). CONCLUSIONS The study revealed an inverse relationship between the trends of sPD-1/sPD-L1 and HBsAg clearance during combined IFN and NAs treatment. Moreover, the magnitude of HBsAg reduction and sPD-L1 increase emerged as significant predictors for HBsAg clearance.
Collapse
Affiliation(s)
- Xiyao Chen
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Boxiang Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xin Song
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Tinglin Qian
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Xingrong Zheng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yeqiong Zhang
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenxiong Xu
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhiliang Gao
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Liang Peng
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chan Xie
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
6
|
Costa JP, de Carvalho A, Paiva A, Borges O. Insights into Immune Exhaustion in Chronic Hepatitis B: A Review of Checkpoint Receptor Expression. Pharmaceuticals (Basel) 2024; 17:964. [PMID: 39065812 PMCID: PMC11279883 DOI: 10.3390/ph17070964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Hepatitis B, caused by the hepatitis B virus (HBV), often progresses to chronic infection, leading to severe complications, such as cirrhosis, liver failure, and hepatocellular carcinoma. Chronic HBV infection is characterized by a complex interplay between the virus and the host immune system, resulting in immune cell exhaustion, a phenomenon commonly observed in chronic viral infections and cancer. This state of exhaustion involves elevated levels of inhibitory molecules, cells, and cell surface receptors, as opposed to stimulatory counterparts. This review aims to elucidate the expression patterns of various co-inhibitory and co-stimulatory receptors on immune cells isolated from chronic hepatitis B (CHB) patients. By analyzing existing data, the review conducts comparisons between CHB patients and healthy adults, explores the differences between HBV-specific and total T cells in CHB patients, and examines variations between intrahepatic and peripheral immune cells in CHB patients. Understanding the mechanisms underlying immune exhaustion in CHB is crucial for developing novel immunotherapeutic approaches. This detailed analysis sheds light on the immune exhaustion observed in CHB and lays the groundwork for future combined immunotherapy strategies aimed at leveraging checkpoint receptors to restore immune function and improve clinical outcomes.
Collapse
Affiliation(s)
- João Panão Costa
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Armando de Carvalho
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
- Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Artur Paiva
- Centro Hospitalar e Universitário de Coimbra, 3004-561 Coimbra, Portugal; (A.d.C.); (A.P.)
| | - Olga Borges
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal;
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
7
|
Csernalabics B, Marinescu MS, Maurer L, Kelsch L, Werner J, Baumann K, Zoldan K, Panning M, Reuken P, Bruns T, Bengsch B, Neumann-Haefelin C, Hofmann M, Thimme R, Dao Thi VL, Boettler T. Efficient formation and maintenance of humoral and CD4 T-cell immunity targeting the viral capsid in acute-resolving hepatitis E infection. J Hepatol 2024; 80:564-575. [PMID: 38154741 DOI: 10.1016/j.jhep.2023.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND & AIMS CD4 T cells shape the neutralizing antibody (nAb) response and facilitate viral clearance in various infections. Knowledge of their phenotype, specificity and dynamics in hepatitis E virus (HEV) infection is limited. HEV is enterically transmitted as a naked virus (nHEV) but acquires a host-derived quasi-envelope (eHEV) when budding from cells. While nHEV is composed of the open reading frame (ORF)-2-derived capsid, eHEV particles also contain ORF3-derived proteins. We aimed to longitudinally characterize the HEV-specific CD4 T cells targeting ORF1, 2 and 3 and antibodies against nHEV or eHEV in immunocompetent individuals with acute and resolved HEV infection. METHODS HEV-specific CD4 T cells were analyzed by intracellular cytokine staining after stimulation with in silico-predicted ORF1- and ORF2-derived epitopes and overlapping peptides spanning the ORF3 region. Ex vivo multiparametric characterization of capsid-specific CD4 T cells was performed using customized MHC class II tetramers. Total and neutralizing antibodies targeting nHEV or eHEV particles were determined. RESULTS HEV-specific CD4 T-cell frequencies and antibody titers are highest in individuals with acute infection and decline in a time-dependent process with an antigen hierarchy. HEV-specific CD4 T cells strongly target the ORF2-derived capsid and ORF3-specific CD4 T cells are hardly detectable. NAbs targeting nHEV are found in high titers while eHEV particles are less efficiently neutralized. Capsid-specific CD4 T cells undergo memory formation and stepwise contraction, accompanied by dynamic phenotypical and transcriptional changes over time. CONCLUSION The viral capsid is the main target of HEV-specific CD4 T cells and antibodies in acute-resolving infection, correlating with efficient neutralization of nHEV. Capsid-specific immunity rapidly emerges followed by a stepwise contraction several years after infection. IMPACT AND IMPLICATIONS The interplay of CD4 T cells and neutralizing antibody responses is critical in the host defense against viral infections, yet little is known about their characteristics in hepatitis E virus (HEV) infection. We conducted a longitudinal study of immunocompetent individuals with acute and resolved HEV infection to understand the characteristics of HEV-specific CD4 T cells and neutralizing antibodies targeting different viral proteins and particles. We found that HEV-specific CD4 T cells mainly target capsid-derived epitopes. This correlates with efficient neutralization of naked virions while quasi-enveloped particles are less susceptible to neutralization. As individuals with pre-existing liver disease and immunocompromised individuals are at risk for fulminant or chronic courses of HEV infection, these individuals might benefit from the development of vaccination strategies which require a detailed knowledge of the composition and longevity of HEV-specific CD4 T-cell and antibody immunity.
Collapse
Affiliation(s)
- Benedikt Csernalabics
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Mircea Stefan Marinescu
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Lars Maurer
- Schaller Research Group, Department of Infectious Diseases and Virology, Heidelberg University Hospital, Germany
| | - Lara Kelsch
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Jill Werner
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Katharina Baumann
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Katharina Zoldan
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Marcus Panning
- Institute of Virology, University Hospital Freiburg, Germany
| | - Philipp Reuken
- Department of Internal Medicine IV, University Hospital Jena, Germany
| | - Tony Bruns
- Department of Internal Medicine IV, University Hospital Jena, Germany; Department of Internal Medicine III, University Hospital RWTH Aachen, Germany
| | - Bertram Bengsch
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christoph Neumann-Haefelin
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - Viet Loan Dao Thi
- Schaller Research Group, Department of Infectious Diseases and Virology, Heidelberg University Hospital, Germany; German Centre for Infection Research (DZIF), Partner Site Heidelberg, Heidelberg, Germany
| | - Tobias Boettler
- Department of Medicine II, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|
8
|
Wu Y, Liu X, Mao Y, Ji R, Xia L, Zhou Z, Ding Y, Li P, Zhao Y, Peng M, Qiu J, Shen C. Routine evaluation of HBV-specific T cell reactivity in chronic hepatitis B using a broad-spectrum T-cell epitope peptide library and ELISpot assay. J Transl Med 2024; 22:266. [PMID: 38468254 PMCID: PMC10929206 DOI: 10.1186/s12967-024-05062-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/05/2024] [Indexed: 03/13/2024] Open
Abstract
BACKGROUND The clinical routine test of HBV-specific T cell reactivity is still limited due to the high polymorphisms of human leukocyte antigens (HLA) in patient cohort and the lack of universal detection kit, thus the clinical implication remains disputed. METHODS A broad-spectrum peptide library, which consists of 103 functionally validated CD8+ T-cell epitopes spanning overall HBsAg, HBeAg, HBx and HBpol proteins and fits to the HLA polymorphisms of Chinese and Northeast Asian populations, was grouped into eight peptide pools and was used to establish an ELISpot assay for enumerating the reactive HBV-specific T cells in PBMCs. Totally 294 HBV-infected patients including 203 ones with chronic hepatitis B (CHB), 13 ones in acute resolved stage (R), 52 ones with liver cirrhosis (LC) and 26 ones with hepatocellular carcinoma (HCC) were detected, and 33 CHB patients were longitudinally monitored for 3 times with an interval of 3-5 months. RESULTS The numbers of reactive HBV-specific T cells were significantly correlated with ALT level, HBsAg level, and disease stage (R, CHB, LC and HCC), and R patients displayed the strongest HBV-specific T cell reactivity while CHB patients showed the weakest one. For 203 CHB patients, the numbers of reactive HBV-specific T cells presented a significantly declined trend when the serum viral DNA load, HBsAg, HBeAg or ALT level gradually increased, but only a very low negative correlation coefficient was defined (r = - 0.21, - 0.21, - 0.27, - 0.079, respectively). Different Nucleotide Analogs (NUCs) did not bring difference on HBV-specific T cell reactivity in the same duration of treatment. NUCs/pegIFN-α combination led to much more reactive HBV-specific T cells than NUCs monotherapy. The dynamic numbers of reactive HBV-specific T cells were obviously increasing in most CHB patients undergoing routine treatment, and the longitudinal trend possess a high predictive power for the hepatitis progression 6 or 12 months later. CONCLUSION The presented method could be developed into an efficient reference method for the clinical evaluation of cellular immunity. The CHB patients presenting low reactivity of HBV-specific T cells have a worse prognosis for hepatitis progression and should be treated using pegIFN-α to improve host T-cell immunity.
Collapse
Affiliation(s)
- Yandan Wu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Xiaotao Liu
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yuan Mao
- Nanjing KingMed Clinical Laboratory, Nanjing, 211899, Jiangsu, China
| | - Ruixue Ji
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Lingzhi Xia
- Nanjing KingMed Clinical Laboratory, Nanjing, 211899, Jiangsu, China
| | - Zining Zhou
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Yan Ding
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Pinqing Li
- Division of Hepatitis, Nanjing Second Hospital, Nanjing Hospital affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, Jiangsu, China
| | - Yu Zhao
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Min Peng
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China
| | - Jie Qiu
- Division of Hepatitis, Nanjing Second Hospital, Nanjing Hospital affiliated to Nanjing University of Chinese Medicine, Nanjing, 210003, Jiangsu, China.
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School of Southeast University, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
9
|
Li J, Zhang Y, Luo B. The programed death-1/programed death ligand-1 axis and its potential as a therapeutic target for virus-associated tumours. Rev Med Virol 2024; 34:e2486. [PMID: 37905387 DOI: 10.1002/rmv.2486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 10/07/2023] [Accepted: 10/22/2023] [Indexed: 11/02/2023]
Abstract
As an important and serious condition impacting human health, the diagnosis, and treatment of tumours is clinically vital because tumour cell immune escape sustains tumour development. Programed death ligand-1 (PD-L1) on tumour cell surfaces binds to the programed death-1 (PD-1), inhibits T cell activation, and induces apoptosis, and incapacitates cells. This allows tumour cells to evade recognition and clearance by the immune system, thereby permitting tumour occurrence, and development and poor prognosis outcomes in patients with tumours. Currently, anti-PD-1/PD-L1 immunotherapy has become pivotal in tumour treatment. Pathogens, especially viruses, are important factors which induce many tumours. In this article, we examine associations between Epstein-Barr virus, human papilloma virus, hepatitis B virus, hepatitis C virus, and human immunodeficiency virus type 1-related tumours and PD-1/PD-L1 axis.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yan Zhang
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
- Department of Clinical Laboratory, Zibo Central Hospital, Zibo, China
| | - Bing Luo
- Department of Pathogenic Biology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
10
|
Yu J, Cui J, Zhang X, Xu H, Chen Z, Li Y, Niu Y, Wang S, Ran S, Zou Y, Ye W, Zhang D, Zhou C, Xia J, Wu J. The OX40-TRAF6 axis promotes CTLA-4 degradation to augment antitumor CD8 + T-cell immunity. Cell Mol Immunol 2023; 20:1445-1456. [PMID: 37932534 PMCID: PMC10687085 DOI: 10.1038/s41423-023-01093-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 10/08/2023] [Indexed: 11/08/2023] Open
Abstract
Immune checkpoint blockade (ICB), including anti-cytotoxic T-lymphocyte associated protein 4 (CTLA-4), benefits only a limited number of patients with cancer. Understanding the in-depth regulatory mechanism of CTLA-4 protein stability and its functional significance may help identify ICB resistance mechanisms and assist in the development of novel immunotherapeutic modalities to improve ICB efficacy. Here, we identified that TNF receptor-associated factor 6 (TRAF6) mediates Lys63-linked ubiquitination and subsequent lysosomal degradation of CTLA-4. Moreover, by using TRAF6-deficient mice and retroviral overexpression experiments, we demonstrated that TRAF6 promotes CTLA-4 degradation in a T-cell-intrinsic manner, which is dependent on the RING domain of TRAF6. This intrinsic regulatory mechanism contributes to CD8+ T-cell-mediated antitumor immunity in vivo. Additionally, by using an OX40 agonist, we demonstrated that the OX40-TRAF6 axis is responsible for CTLA-4 degradation, thereby controlling antitumor immunity in both tumor-bearing mice and patients with cancer. Overall, our findings demonstrate that the OX40-TRAF6 axis promotes CTLA-4 degradation and is a potential therapeutic target for the improvement of T-cell-based immunotherapies.
Collapse
Affiliation(s)
- Jizhang Yu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Translational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jikai Cui
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng Xu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhang Chen
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuan Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuqing Niu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Wang
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuan Ran
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqiang Zou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weicong Ye
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Zhang
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cheng Zhou
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China
| | - Jiahong Xia
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Translational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jie Wu
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Key Laboratory of Organ Transplantation, Ministry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, China.
- Center for Translational Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Institute of Translational Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
11
|
Meng CY, Sun S, Liang Y, Xu H, Zhang C, Zhang M, Wang FS, Fu YX, Peng H. Engineered anti-PDL1 with IFNα targets both immunoinhibitory and activating signals in the liver to break HBV immune tolerance. Gut 2023; 72:1544-1554. [PMID: 36316098 PMCID: PMC10359590 DOI: 10.1136/gutjnl-2022-327059] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 10/12/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The purpose of this study is to develop an anti-PDL1-based interferon (IFN) fusion protein to overcome the chronic hepatitis B virus (HBV)-induced immune tolerance, and combine this immunotherapy with a HBV vaccine to achieve the functional cure of chronic hepatitis B (CHB) infection. DESIGN We designed an anti-PDL1-IFNα heterodimeric fusion protein, in which one arm was derived from anti-PDL1 antibody and the other arm was IFNα, to allow targeted delivery of IFNα into the liver by anti-PDL1 antibody. The effect of the anti-PDL1-IFNα heterodimer on overcoming hepatitis B surface antigen (HBsAg) vaccine resistance was evaluated in chronic HBV carrier mice. RESULTS The anti-PDL1-IFNα heterodimer preferentially targeted the liver and resulted in viral suppression, the PD1/PDL1 immune checkpoint blockade and dendritic cell activation/antigen presentation to activate HBsAg-specific T cells, thus breaking immune tolerance in chronic HBV carrier mice. When an HBsAg vaccine was administered soon after anti-PDL1-IFNα heterodimer treatment, we observed strong anti-HBsAg antibody and HBsAg-specific T cell responses for efficient HBsAg clearance in chronic HBV carrier mice that received the combination treatment but not in those that received either single treatment. CONCLUSIONS Targeting the liver with an engineered anti-PDL1-IFNα heterodimer can break HBV-induced immune tolerance to an HBsAg vaccine, offering a promising translatable therapeutic strategy for the functional cure of CHB.
Collapse
Affiliation(s)
- Chao-Yang Meng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shiyu Sun
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yong Liang
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hairong Xu
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Chao Zhang
- Senior Department of Infectious Diseases, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Min Zhang
- Senior Department of Liver Disease, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, 5th Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yang-Xin Fu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
| | - Hua Peng
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Yin S, Wang J, Chen L, Mao M, Rahma I, Geng Y, Huang R, Tong X, Liu Y, Wu C, Chen Y, Li J. Circulating Th2-biased T follicular helper cells impede antiviral humoral responses during chronic hepatitis B infection through upregulating CTLA4. Antiviral Res 2023:105665. [PMID: 37421985 DOI: 10.1016/j.antiviral.2023.105665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/22/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Failure in curing chronic hepatitis B (CHB) caused by hepatitis B virus (HBV) can lead to functional impairment of B cells. Cytotoxic T-lymphocyte associated antigen 4 (CTLA4) regulates B cell and T follicular helper (Tfh) cell differentiation. In addition, Tfh cells play a critical role in helping B cells generate antibodies upon pathogen exposure. Here, we analyzed the global and HBsAg-specific B cells and circulating Tfh (cTfh) cells using samples from treatment-naïve and Peg-IFN-α-treated CHB patients and healthy subjects. Compared to healthy subjects, CTLA4 expression was significantly increased in cTfh cells, from CHB patients. The frequency of CTLA4+cTfh2 cells was negatively correlated with that of HBsAg-specific resting memory B cells. Importantly, inhibition of CTLA4 restored HBsAb secretion and promoted plasma cell differentiation. In addition, CTLA4+cTfh2 cells from CHB patients were ineffective in providing B cell help. Both expression of CTLA4 in cTfh and cTfh2 cells and ratios of CLTA4+cTfh and CTLA4+cTfh2 cells were significantly decreased in Peg-IFN-α-treated CHB patients who showed complete responses. Thus, our results highlighted that cTh2-biased T follicular helper cells could impede antiviral humoral responses during chronic HBV infection by upregulating CTLA4, suggesting that further optimizing potent Tfh cell responses may promote functional cure of CHB.
Collapse
Affiliation(s)
- Shengxia Yin
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China
| | - Jian Wang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China
| | - Lin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Minxin Mao
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Issa Rahma
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yu Geng
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Rui Huang
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China
| | - Xin Tong
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China
| | - Yong Liu
- Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China; Department of Experimental Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chao Wu
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China.
| | - Yuxin Chen
- Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China; Department of Laboratory Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jie Li
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China; Institute of Viruses and Infectious Diseases, Nanjing University, Jiangsu, China.
| |
Collapse
|
13
|
Salama II, Sami SM, Salama SI, Abdel-Latif GA, Shaaban FA, Fouad WA, Abdelmohsen AM, Raslan HM. Current and novel modalities for management of chronic hepatitis B infection. World J Hepatol 2023; 15:585-608. [PMID: 37305370 PMCID: PMC10251278 DOI: 10.4254/wjh.v15.i5.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 03/13/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Over 296 million people are estimated to have chronic hepatitis B viral infection (CHB), and it poses unique challenges for elimination. CHB is the result of hepatitis B virus (HBV)-specific immune tolerance and the presence of covalently closed circular DNA as mini chromosome inside the nucleus and the integrated HBV. Serum hepatitis B core-related antigen is the best surrogate marker for intrahepatic covalently closed circular DNA. Functional HBV "cure" is the durable loss of hepatitis B surface antigen (HBsAg), with or without HBsAg seroconversion and undetectable serum HBV DNA after completing a course of treatment. The currently approved therapies are nucleos(t)ide analogues, interferon-alpha, and pegylated-interferon. With these therapies, functional cure can be achieved in < 10% of CHB patients. Any variation to HBV or the host immune system that disrupts the interaction between them can lead to reactivation of HBV. Novel therapies may allow efficient control of CHB. They include direct acting antivirals and immunomodulators. Reduction of the viral antigen load is a crucial factor for success of immune-based therapies. Immunomodulatory therapy may lead to modulation of the host immune system. It may enhance/restore innate immunity against HBV (as toll-like-receptors and cytosolic retinoic acid inducible gene I agonist). Others may induce adaptive immunity as checkpoint inhibitors, therapeutic HBV vaccines including protein (HBsAg/preS and hepatitis B core antigen), monoclonal or bispecific antibodies and genetically engineered T cells to generate chimeric antigen receptor-T or T-cell receptor-T cells and HBV-specific T cells to restore T cell function to efficiently clear HBV. Combined therapy may successfully overcome immune tolerance and lead to HBV control and cure. Immunotherapeutic approaches carry the risk of overshooting immune responses causing uncontrolled liver damage. The safety of any new curative therapies should be measured in relation to the excellent safety of currently approved nucleos(t)ide analogues. Development of novel antiviral and immune modulatory therapies should be associated with new diagnostic assays used to evaluate the effectiveness or to predict response.
Collapse
Affiliation(s)
- Iman Ibrahim Salama
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt.
| | - Samia M Sami
- Department of Child Health, National Research Centre, Giza 12411, Dokki, Egypt
| | - Somaia I Salama
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Ghada A Abdel-Latif
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Fatma A Shaaban
- Department of Child Health, National Research Centre, Giza 12411, Dokki, Egypt
| | - Walaa A Fouad
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Aida M Abdelmohsen
- Department of Community Medicine Research, National Research Centre, Giza 12411, Dokki, Egypt
| | - Hala M Raslan
- Department of Internal Medicine, National Research Centre, Giza 12411, Dokki, Egypt
| |
Collapse
|
14
|
Peng Y, Yang Y, Li Y, Shi T, Luan Y, Yin C. Exosome and virus infection. Front Immunol 2023; 14:1154217. [PMID: 37063897 PMCID: PMC10098074 DOI: 10.3389/fimmu.2023.1154217] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Exosomes are messengers of intercellular communication in monolayer vesicles derived from cells. It affects the pathophysiological process of the body in various diseases, such as tumors, inflammation, and infection. It has been confirmed that exosomes are similar to viruses in biogenesis, and exosome cargo is widely involved in many viruses’ replication, transmission, and infection. Simultaneously, virus-associated exosomes can promote immune escape and activate the antiviral immune response of the body, which bidirectionally modulates the immune response. This review focuses on the role of exosomes in HIV, HBV, HCV, and SARS-CoV-2 infection and explores the prospects of exosome development. These insights may be translated into therapeutic measures for viral infections and reduce the disease burden.
Collapse
Affiliation(s)
| | | | | | | | - Yingyi Luan
- *Correspondence: Yingyi Luan, ; Chenghong Yin,
| | | |
Collapse
|
15
|
Dumolard L, Aspord C, Marche PN, Macek Jilkova Z. Immune checkpoints on T and NK cells in the context of HBV infection: Landscape, pathophysiology and therapeutic exploitation. Front Immunol 2023; 14:1148111. [PMID: 37056774 PMCID: PMC10086248 DOI: 10.3389/fimmu.2023.1148111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
In hepatitis B virus (HBV) infection, the interplay between the virus and the host immune system is crucial in determining the pathogenesis of the disease. Patients who fail to mount a sufficient and sustained anti-viral immune response develop chronic hepatitis B (CHB). T cells and natural killer (NK) cells play decisive role in viral clearance, but they are defective in chronic HBV infection. The activation of immune cells is tightly controlled by a combination of activating and inhibitory receptors, called immune checkpoints (ICs), allowing the maintenance of immune homeostasis. Chronic exposure to viral antigens and the subsequent dysregulation of ICs actively contribute to the exhaustion of effector cells and viral persistence. The present review aims to summarize the function of various ICs and their expression in T lymphocytes and NK cells in the course of HBV infection as well as the use of immunotherapeutic strategies targeting ICs in chronic HBV infection.
Collapse
Affiliation(s)
- Lucile Dumolard
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Caroline Aspord
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- R&D Laboratory, Etablissement Français du Sang Auvergne-Rhone-Alpes, Grenoble, France
| | - Patrice N. Marche
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
| | - Zuzana Macek Jilkova
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team Epigenetics, Immunity, Metabolism, Cell Signaling & Cancer, Institute for Advanced Biosciences, Grenoble, France
- Hepato-Gastroenterology and Digestive Oncology Department, CHU Grenoble Alpes, Grenoble, France
- *Correspondence: Zuzana Macek Jilkova,
| |
Collapse
|
16
|
Wen C, Zhou Y, Zhou Y, Wang Y, Dong Z, Gu S, Wang W, Guo L, Jin Z, Zhong S, Tang L, Li Y. HBV Core-specific CD4 + T cells correlate with sustained viral control upon off-treatment in HBeAg-positive chronic hepatitis B patients. Antiviral Res 2023; 213:105585. [PMID: 36963665 DOI: 10.1016/j.antiviral.2023.105585] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 03/26/2023]
Abstract
BACKGROUND & AIMS Treatment with nucleos(t)ide analogue (NA) efficiently suppresses viral replication in patients with chronic HBV infection, yet HBV relapse frequently upon NA withdrawal; the detailed immunomodulatory compounds for sustained viral control of HBV upon NA interruption have yet to be fully clarified. This study aimed to elucidate the role of T cells specific for distinct HBV peptides in sustained response upon discontinuation of antiviral treatment. METHODS A total of 48 patients with HBeAg-positive chronic hepatitis B receiving NA treatment and withdrawal were included longitudinally in a retrospective and prospective cohort. Enzyme-linked immunosorbent spot (ELISpot) and intracellular cytokine staining (ICS) assays were performed to detect IFN-γ producing HBV-specific T cells following stimulation with overlapping peptides covering the whole HBV genome after 10 days of in vitro expansion. RESULTS ICS assays revealed that T cells specific for HBV Core and Polymerase induced more robust IFN-γ responses compared to envelope and HBx. Notably, at the time of NA discontinuation, the intensity and breadth of HBV Core peptides-induced responses, predominately targeted by CD4+ T cells but not CD8+ T cells, were associated with sustained viral control upon off-treatment. Further exploration of longitudinal features in patients with sustained viral control revealed that the breadth of HBV-specific T cell responses does not increase following treatment cessation. CONCLUSION This report emphasizes the essential role of HBV Core-specific CD4+ T cells in sustained response after therapy withdrawal, indicating it is a potential candidate for immunotherapeutic approaches in chronic HBV patients.
Collapse
Affiliation(s)
- Chunhua Wen
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yongjun Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China; Comprehensive Medical Treatment Ward, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiyue Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Zheyu Dong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shuqin Gu
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weibin Wang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ling Guo
- Department of Infectious Diseases, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zihan Jin
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shihong Zhong
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Libo Tang
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yongyin Li
- State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Fu Y, Huang Y, Li P, Wang L, Tang Z, Liu X, Bian X, Wu S, Wang X, Zhu B, Yu Y, Jiang J, Li C. Physical- and Chemical-Dually ROS-Responsive Nano-in-Gel Platforms with Sequential Release of OX40 Agonist and PD-1 Inhibitor for Augmented Combination Immunotherapy. NANO LETTERS 2023; 23:1424-1434. [PMID: 36779813 DOI: 10.1021/acs.nanolett.2c04767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Combination immunotherapy synergizing the PD-1 blockade with OX40 agonism has become a research hotspot, due to its enormous potential to overcome the restricted clinical objective response suffered by monotherapy. Questions of timing and sequence have been important aspects of immunotherapies when considering immunologic mechanisms; however, most of the time the straightforward additive approach was taken. Herein, our work is the first to investigate an alternative timing of aOX40 and aPD-1 treatment in melanoma-bearing mice, and it demonstrates that sequential administration (aOX40 first, then aPD-1 following) provided superior antitumor benefits than concurrent treatment. Based on that, to further avoid the limits suffered by solution forms, we adopted pharmaceutical technologies to construct an in situ-formed physical- and chemical-dually ROS-responsive nano-in-gel platform to implement sequential and prolonged release of aPD-1 and aOX40. Equipped with these advantages, the as-prepared (aPD-1NCs&aOX40)@Gels elicited augmented combination immunity and achieved great eradication of both primary and distant melanoma tumors in vivo.
Collapse
Affiliation(s)
- Yu Fu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Yulan Huang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Pingrong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Luyao Wang
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford OX1 2JD, U.K
| | - Zhongjie Tang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xinlong Liu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xufei Bian
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Shuang Wu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoyou Wang
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Biyue Zhu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard University, Charlestown, Massachusetts 02138, United States
| | - Yang Yu
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | - Jiayun Jiang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University/Army Medical University, Chongqing 400038, P.R. China
| | - Chong Li
- Medical Research Institute, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
18
|
Wang P, Mo Z, Zhang Y, Guo C, Chikede TK, Chen D, Lei Z, Gao Z, Zhang Q, Tong Q. Serum IL-5 levels predict HBsAg seroclearance in patients treated with Nucleos(t)ide analogues combined with pegylated interferon. Front Immunol 2023; 13:1104329. [PMID: 36685563 PMCID: PMC9849374 DOI: 10.3389/fimmu.2022.1104329] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 01/06/2023] Open
Abstract
Background Knowing about cytokine profile contributes to clarify the underling immune mechanism of HBsAg seroclearance rate increase. This study aims to investigate cytokine changes during nucleos(t)ide analogues (NAs) and peginterferon-α (Peg-IFNα) therapy and their impact on the HBsAg serologic response. Methods A total of 78 HBV DNA-negative chronic Hepatitis B (CHB) patients were studied after a lead-in phase of NAs with complete serum cytokines. Serum cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12, IL-17 and TNF-α) were quantified by flow cytometry (FCM) every 24 weeks, before, during and at the end of NAs and Peg-IFNα treatment. Clinical and laboratory data were also taken at the same time. Analysis was performed between cured and uncured groups characterized by HBsAg seroclearance. PBMCs samples from five patients (two in cured group and three in uncured group) were analyzed by FCM. Results HBsAg seroclearance was achieved in 30 (38,5%) patients defined as the cured group. In comparison to uncured individuals, cured patients showed similar expressions of serum IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12, IL-17 and TNF-α during the treatment of NAs and Peg-IFNα. Compared with the uncured groups, IL-5 was remarkably increased in cured patients. IL-5 at weeks 24 and 48 were associated with HBsAg seroconversion (p=0.033 and 0.027, respectively). PBMCs sample analysis confirmed the predicted value of IL-5 in response to NAs and Peg-IFNα treatment. Conclusions IL-5 at weeks 24 and 48 might be used as a biomarker for HBsAg seroclearance in NAs-experienced CHB patients treated with NAs combined with Peg-IFNα. More importantly, exploiting the expression of this cytokine may help to develop a better understanding of the immune pathogenesis of chronic HBV infection.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Zhishuo Mo
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Ying Zhang
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Chunxia Guo
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Trevor Kudzai Chikede
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dabiao Chen
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Ziying Lei
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China
| | - Zhiliang Gao
- Department of Infectious Diseases, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China,Guangdong Key Laboratory of Liver Disease Research, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China,Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong, China,*Correspondence: Zhiliang Gao, ; Qian Zhang, ; Qiaoxia Tong,
| | - Qian Zhang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Zhiliang Gao, ; Qian Zhang, ; Qiaoxia Tong,
| | - Qiaoxia Tong
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,*Correspondence: Zhiliang Gao, ; Qian Zhang, ; Qiaoxia Tong,
| |
Collapse
|
19
|
Sausen DG, Shechter O, Bietsch W, Shi Z, Miller SM, Gallo ES, Dahari H, Borenstein R. Hepatitis B and Hepatitis D Viruses: A Comprehensive Update with an Immunological Focus. Int J Mol Sci 2022; 23:15973. [PMID: 36555623 PMCID: PMC9781095 DOI: 10.3390/ijms232415973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Hepatitis B virus (HBV) and hepatitis delta virus (HDV) are highly prevalent viruses estimated to infect approximately 300 million people and 12-72 million people worldwide, respectively. HDV requires the HBV envelope to establish a successful infection. Concurrent infection with HBV and HDV can result in more severe disease outcomes than infection with HBV alone. These viruses can cause significant hepatic disease, including cirrhosis, fulminant hepatitis, and hepatocellular carcinoma, and represent a significant cause of global mortality. Therefore, a thorough understanding of these viruses and the immune response they generate is essential to enhance disease management. This review includes an overview of the HBV and HDV viruses, including life cycle, structure, natural course of infection, and histopathology. A discussion of the interplay between HDV RNA and HBV DNA during chronic infection is also included. It then discusses characteristics of the immune response with a focus on reactions to the antigenic hepatitis B surface antigen, including small, middle, and large surface antigens. This paper also reviews characteristics of the immune response to the hepatitis D antigen (including small and large antigens), the only protein expressed by hepatitis D. Lastly, we conclude with a discussion of recent therapeutic advances pertaining to these viruses.
Collapse
Affiliation(s)
- Daniel G. Sausen
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Oren Shechter
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - William Bietsch
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Zhenzhen Shi
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | | | - Elisa S. Gallo
- Division of Dermatology, Tel Aviv Sourasky Medical Center, Tel Aviv 64239, Israel
| | - Harel Dahari
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine, Stritch School of Medicine, Loyola University Chicago, Maywood, IL 60153, USA
| |
Collapse
|
20
|
Hoogeveen RC, Dijkstra S, Bartsch LM, Drescher HK, Aneja J, Robidoux MP, Cheney JA, Timm J, Gehring A, de Sousa PSF, Ximenez L, Peliganga LB, Pitts A, Evans FB, Boonstra A, Kim AY, Lewis-Ximenez LL, Lauer GM. Hepatitis B virus-specific CD4 T cell responses differentiate functional cure from chronic surface antigen + infection. J Hepatol 2022; 77:1276-1286. [PMID: 35716846 DOI: 10.1016/j.jhep.2022.05.041] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/12/2022] [Accepted: 05/25/2022] [Indexed: 12/04/2022]
Abstract
BACKGROUND & AIMS With or without antiviral treatment, few individuals achieve sustained functional cure of chronic hepatitis B virus (HBV) infection. A better definition of what mediates functional cure is essential for improving immunotherapeutic strategies. We aimed to compare HBV-specific T cell responses in patients with different degrees of viral control. METHODS We obtained blood from 124 HBV-infected individuals, including those with acute self-limiting HBV infection, chronic infection, and chronic infection with functional cure. We screened for HBV-specific T cell specificities by ELISpot, assessed the function of HBV-specific T cells using intracellular cytokine staining, and characterized HBV-specific CD4 T cells using human leukocyte antigen (HLA) class II tetramer staining, all directly ex vivo. RESULTS ELISpot screening readily identified HBV-specific CD4 and CD8 T cell responses in acute resolving infection compared with more limited reactivity in chronic infection. Applying more sensitive assays revealed higher frequencies of functional HBV-specific CD4 T cells, but not CD8 T cells, in functional cure compared to chronic infection. Function independent analysis using HLA multimers also identified more HBV-specific CD4 T cell responses in functional cure compared to chronic infection, with the emergence of CD4 T cell memory both after acute and chronic infection. CONCLUSIONS Functional cure is associated with higher frequencies of functional HBV-specific CD4 memory T cell responses. Thus, immunotherapeutic approaches designed to induce HBV functional cure should also aim to improve CD4 T cell responses. LAY SUMMARY Immunotherapy is a form of treatment that relies on harnessing the power of an individual's immune system to target a specific disease or pathogen. Such approaches are being developed for patients with chronic HBV infection, in an attempt to mimic the immune response in patients who control HBV infection spontaneously, achieving a so-called functional cure. However, what exactly defines protective immune responses remains unclear. Herein, we show that functional cure is associated with robust responses by HBV-specific CD4 T cells (a type of immune cell).
Collapse
Affiliation(s)
- Ruben C Hoogeveen
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Suzan Dijkstra
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Lea M Bartsch
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Hannah K Drescher
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Jasneet Aneja
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Maxwell P Robidoux
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - James A Cheney
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Joerg Timm
- Institute of Virology, Heinrich Heine University, University Hospital, Düsseldorf, Germany
| | - Adam Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | | | - Lya Ximenez
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luis Baiao Peliganga
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil; Faculdade de Medicina da Universidade Agostinho Neto, Luanda, Angola; Ministério da Saúde de Angola, Luanda, Angola
| | - Anita Pitts
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - Fiona B Evans
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | - André Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center, Rotterdam, the Netherlands
| | - Arthur Y Kim
- Division of Infectious Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, USA
| | | | - Georg M Lauer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
| |
Collapse
|
21
|
Gehring AJ, Mendez P, Richter K, Ertl H, Donaldson EF, Mishra P, Maini M, Boonstra A, Lauer G, de Creus A, Whitaker K, Martinez SF, Weber J, Gainor E, Miller V. Immunological biomarker discovery in cure regimens for chronic hepatitis B virus infection. J Hepatol 2022; 77:525-538. [PMID: 35259469 DOI: 10.1016/j.jhep.2022.02.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/26/2022] [Accepted: 02/16/2022] [Indexed: 12/16/2022]
Abstract
There have been unprecedented advances in the identification of new treatment targets for chronic hepatitis B that are being developed with the goal of achieving functional cure in patients who would otherwise require lifelong nucleoside analogue treatment. Many of the new investigational therapies either directly target the immune system or are anticipated to impact immunity indirectly through modulation of the viral lifecycle and antigen production. While new viral biomarkers (HBV RNA, HBcAg, small, middle, large HBs isoforms) are proceeding through validation steps in clinical studies, immunological biomarkers are non-existent outside of clinical assays for antibodies to HBs, HBc and HBe. To develop clinically applicable immunological biomarkers to measure mechanisms of action, inform logical combination strategies, and guide clinical management for use and discontinuation of immune-targeting drugs, immune assays must be incorporated into phase I/II clinical trials. This paper will discuss the importance of sample collection, the assays available for immunological analyses, their advantages/disadvantages and suggestions for their implementation in clinical trials. Careful consideration must be given to ensure appropriate immunological studies are included as a primary component of the trial with deeper immunological analysis provided by ancillary studies. Standardising immunological assays and data obtained from clinical trials will identify biomarkers that can be deployed in the clinic, independently of specialised immunology laboratories.
Collapse
Affiliation(s)
- Adam J Gehring
- Toronto Centre for Liver Disease, Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada.
| | - Patricia Mendez
- Gilead Sciences, 333 Lakeside Drive, Foster City, CA 94404, USA
| | - Kirsten Richter
- F. Hoffmann-La Roche, Roche Innovation Center Basel, Grenzacher Strasse 124, CH-4070 Basel, Switzerland
| | | | - Eric F Donaldson
- Division of Antivirals, Center for Drug Evaluation and Research, US Food and Drug Administration, USA
| | - Poonam Mishra
- Division of Antivirals, Center for Drug Evaluation and Research, US Food and Drug Administration, USA
| | - Mala Maini
- Division of Infection and Immunity, University College London, London, UK
| | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus MC, University Medical Center Rotterdam, The Netherlands
| | - Georg Lauer
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Kathleen Whitaker
- Division of Microbiology Devices Office of In Vitro Diagnostics and Radiological Health Center for Devices and Radiological Health, US Food and Drug Administration, USA
| | - Sara Ferrando Martinez
- Microbial Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, US; NeoImmuneTech, LLC 2400 Research Blvd, Suite 250 Rockville, MD 20850, USA
| | - Jessica Weber
- Forum for Collaborative Research, University of California, Berkeley, USA
| | - Emily Gainor
- Forum for Collaborative Research, University of California, Berkeley, USA
| | - Veronica Miller
- Forum for Collaborative Research, University of California, Berkeley, USA
| |
Collapse
|
22
|
Liang Y, Xu Q, Liu S, Li J, Wang F, Li Z, Liao L, Lu Y, Li Y, Mu F, Sun HX, Zhu L. Single-Cell Transcriptomics Reveals Killing Mechanisms of Antitumor Cytotoxic CD4+ TCR-T Cells. Front Immunol 2022; 13:939940. [PMID: 35928827 PMCID: PMC9343810 DOI: 10.3389/fimmu.2022.939940] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/21/2022] [Indexed: 11/19/2022] Open
Abstract
T cell receptor-engineered T cells (TCR-Ts) have emerged as potent cancer immunotherapies. While most research focused on classical cytotoxic CD8+ T cells, the application of CD4+ T cells in adoptive T cell therapy has gained much interest recently. However, the cytotoxic mechanisms of CD4+ TCR-Ts have not been fully revealed. In this study, we obtained an MHC class I-restricted MART-127-35-specific TCR sequence based on the single-cell V(D)J sequencing technology, and constructed MART-127-35-specific CD4+ TCR-Ts and CD8+ TCR-Ts. The antitumor effects of CD4+ TCR-Ts were comparable to those of CD8+ TCR-Ts in vitro and in vivo. To delineate the killing mechanisms of cytotoxic CD4+ TCR-Ts, we performed single-cell RNA sequencing and found that classical granule-dependent and independent cytolytic pathways were commonly used in CD4+ and CD8+ TCR-Ts, while high expression of LTA and various costimulatory receptors were unique features for cytotoxic CD4+ TCR-Ts. Further signaling pathway analysis revealed that transcription factors Runx3 and Blimp1/Tbx21 were crucial for the development and killing function of cytotoxic CD4+ T cells. Taken together, we report the antitumor effects and multifaceted killing mechanisms of CD4+ TCR-Ts, and also indicate that MHC class I-restricted CD4+ TCR-Ts could serve as potential adoptive T cell therapies.
Collapse
Affiliation(s)
- Yanling Liang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Qumiao Xu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- *Correspondence: Qumiao Xu, ; Feng Mu, ; Hai-Xi Sun, ; Linnan Zhu,
| | - Songming Liu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Jie Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Fei Wang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Ziyi Li
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Lijuan Liao
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Yuting Lu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Yijian Li
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
| | - Feng Mu
- Beijing Genomics Institute (BGI), Shenzhen, China
- *Correspondence: Qumiao Xu, ; Feng Mu, ; Hai-Xi Sun, ; Linnan Zhu,
| | - Hai-Xi Sun
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Beijing Genomics Institute (BGI)-Beijing, Beijing, China
- *Correspondence: Qumiao Xu, ; Feng Mu, ; Hai-Xi Sun, ; Linnan Zhu,
| | - Linnan Zhu
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, China
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
- *Correspondence: Qumiao Xu, ; Feng Mu, ; Hai-Xi Sun, ; Linnan Zhu,
| |
Collapse
|
23
|
Lao J, Cao C, Niu X, Deng S, Ming S, Liang S, Shang Y, Yuan Y, Shi X, Liang Z, Wu M, Wu Y. OX40 enhances T cell immune response to PD-1 blockade therapy in non-small cell lung cancer. Int Immunopharmacol 2022; 108:108813. [DOI: 10.1016/j.intimp.2022.108813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 04/14/2022] [Accepted: 04/26/2022] [Indexed: 11/28/2022]
|
24
|
Ding Y, Zhou Z, Li X, Zhao C, Jin X, Liu X, Wu Y, Mei X, Li J, Qiu J, Shen C. Screening and Identification of HBV Epitopes Restricted by Multiple Prevalent HLA-A Allotypes. Front Immunol 2022; 13:847105. [PMID: 35464415 PMCID: PMC9021956 DOI: 10.3389/fimmu.2022.847105] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022] Open
Abstract
Although host T cell immune responses to hepatitis B virus (HBV) have been demonstrated to have important influences on the outcome of HBV infection, the development of T cell epitope-based vaccine and T cell therapy and the clinical evaluation of specific T cell function are currently hampered markedly by the lack of validated HBV T cell epitopes covering broad patients. This study aimed to screen T cell epitopes spanning overall HBsAg, HBeAg, HBx and HBpol proteins and presenting by thirteen prevalent human leukocyte antigen (HLA)-A allotypes which gather a total gene frequency of around 95% in China and Northeast Asia populations. 187 epitopes were in silico predicted. Of which, 62 epitopes were then functionally validated as real-world HBV T cell epitopes by ex vivo IFN-γ ELISPOT assay and in vitro co-cultures using peripheral blood mononuclear cells (PBMCs) from HBV infected patients. Furthermore, the HLA-A cross-restrictions of each epitope were identified by peptide competitive binding assay using transfected HMy2.CIR cell lines, and by HLA-A/peptide docking as well as molecular dynamic simulation. Finally, a peptide library containing 105 validated epitopes which cross-binding by 13 prevalent HLA-A allotypes were used in ELISPOT assay to enumerate HBV-specific T cells for 116 patients with HBV infection. The spot forming units (SFUs) was significantly correlated with serum HBsAg level as confirmed by multivariate linear regression analysis. This study functionally validated 62 T cell epitopes from HBV main proteins and elucidated their HLA-A restrictions and provided an alternative ELISPOT assay using validated epitope peptides rather than conventional overlapping peptides for the clinical evaluation of HBV-specific T cell responses.
Collapse
Affiliation(s)
- Yan Ding
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Zining Zhou
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xingyu Li
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Chen Zhao
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xiaoxiao Jin
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xiaotao Liu
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Yandan Wu
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| | - Xueyin Mei
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jian Li
- Key Laboratory of Developmental Genes and Human Disease, Ministry of Education, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jie Qiu
- Division of Hepatitis, Nanjing Second Hospital, Nanjing Hospital Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Chuanlai Shen
- Department of Microbiology and Immunology, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
25
|
Adaptive Immune Responses, Immune Escape and Immune-Mediated Pathogenesis during HDV Infection. Viruses 2022; 14:v14020198. [PMID: 35215790 PMCID: PMC8880046 DOI: 10.3390/v14020198] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/13/2022] Open
Abstract
The hepatitis delta virus (HDV) is the smallest known human virus, yet it causes great harm to patients co-infected with hepatitis B virus (HBV). As a satellite virus of HBV, HDV requires the surface antigen of HBV (HBsAg) for sufficient viral packaging and spread. The special circumstance of co-infection, albeit only one partner depends on the other, raises many virological, immunological, and pathophysiological questions. In the last years, breakthroughs were made in understanding the adaptive immune response, in particular, virus-specific CD4+ and CD8+ T cells, in self-limited versus persistent HBV/HDV co-infection. Indeed, the mechanisms of CD8+ T cell failure in persistent HBV/HDV co-infection include viral escape and T cell exhaustion, and mimic those in other persistent human viral infections, such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), and HBV mono-infection. However, compared to these larger viruses, the small HDV has perfectly adapted to evade recognition by CD8+ T cells restricted by common human leukocyte antigen (HLA) class I alleles. Furthermore, accelerated progression towards liver cirrhosis in persistent HBV/HDV co-infection was attributed to an increased immune-mediated pathology, either caused by innate pathways initiated by the interferon (IFN) system or triggered by misguided and dysfunctional T cells. These new insights into HDV-specific adaptive immunity will be discussed in this review and put into context with known well-described aspects in HBV, HCV, and HIV infections.
Collapse
|
26
|
Phenotypic Changes of PD-1 and GITR in T Cells Are Associated With Hepatitis B Surface Antigen Seroclearance. J Clin Gastroenterol 2022; 56:e31-e37. [PMID: 33122602 DOI: 10.1097/mcg.0000000000001461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 09/20/2020] [Indexed: 12/10/2022]
Abstract
BACKGROUND Regulatory T cells (Tregs) possess hepatitis B virus (HBV)-specific immunoregulatory effects in chronic HBV infection. The role of Tregs in spontaneous seroclearance of hepatitis B surface antigen (HBsAg) remains to be determined. METHODS We recruited treatment-naive chronic HBV patients achieving spontaneous HBsAg seroclearance (experimental group) and matched HBsAg-positive controls. Peripheral blood mononuclear cells were isolated using the Ficoll-Paque density gradient centrifugation method. The frequency of Tregs and inhibitory phenotypes and immunoregulatory cytokines of Tregs were detected by flow cytometry. RESULTS Twenty-seven patients with HBsAg seroclearance (mean age: 52.40±6.00 y, 55.6% male) and 27 matched controls were recruited. Median HBsAg and HBV DNA levels in the control group were 2.80 (1.24 to 3.43) and 3.16 (1.68 to 3.85) log IU/mL, respectively. Mean frequencies of Tregs and expressions of FoxP3+ Tregs were comparable in both groups (both P>0.05). The mean expression of programmed death 1 (PD-1) and glucocorticoid-induced TNFR family-related gene (GITR) in total CD4+ T cells were significantly downregulated in the experimental group when compared with the control group (10.62% vs. 13.85%, P=0.003; 16.20% vs. 27.02%, P=0.002, respectively). When compared with the control group, PD-1+CD4+ Tregs expression in the experimental group was significantly downregulated (13.85% vs. 10.62%, P=0.003). A similar phenomenon was noted for GITR+CD8+ Tregs (20.16% vs. 14.08%, P=0.049). Intracellular cytokine productions showed no significant differences (all P>0.05). CONCLUSIONS The reduced expression of PD-1 and GITR might attenuate the immunosuppressive capability of Tregs. Decreased expression on CD4+ T cells might represent an enhanced antiviral function, playing a role in initiating the "functional cure" of chronic HBV infection.
Collapse
|
27
|
Schreiber S, Honz M, Mamozai W, Kurktschiev P, Schiemann M, Witter K, Moore E, Zielinski C, Sette A, Protzer U, Wisskirchen K. Characterization of a library of 20 HBV-specific MHC class II-restricted T cell receptors. Mol Ther Methods Clin Dev 2021; 23:476-489. [PMID: 34853796 PMCID: PMC8605085 DOI: 10.1016/j.omtm.2021.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/27/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
CD4+ T cells play an important role in the immune response against cancer and infectious diseases. However, mechanistic details of their helper function in hepatitis B virus (HBV) infection in particular, or their advantage for adoptive T cell therapy remain poorly understood as experimental and therapeutic tools are missing. Therefore, we identified, cloned, and characterized a comprehensive library of 20 MHC class II-restricted HBV-specific T cell receptors (TCRs) from donors with acute or resolved HBV infection. The TCRs were restricted by nine different MHC II molecules and specific for eight different epitopes derived from intracellularly processed HBV envelope, core, and polymerase proteins. Retroviral transduction resulted in a robust expression of all TCRs on primary T cells. A high functional avidity was measured for all TCRs specific for epitopes S17, S21, S36, and P774 (half-maximal effective concentration [EC50] <10 nM), or C61 and preS9 (EC50 <100 nM). Eight TCRs recognized peptide variants of HBV genotypes A to D. Both CD4+ and CD8+ T cells transduced with the MHC II-restricted TCRs were polyfunctional, producing interferon (IFN)-γ, tumor necrosis factor (TNF)-α, interleukin (IL)-2, and granzyme B (GrzB), and killed peptide-loaded target cells. Our set of MHC class II-restricted TCRs represents an important tool for elucidating CD4+ T cell help in viral infection with potential benefit for T cell therapy.
Collapse
|
28
|
Insufficient immunity led to virologic breakthrough in NAs-treated chronic hepatitis B patients switching to Peg-IFN-ɑ. Antiviral Res 2021; 197:105220. [PMID: 34848218 DOI: 10.1016/j.antiviral.2021.105220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/16/2021] [Accepted: 11/25/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Virologic breakthrough (VBT) may occur in chronic hepatitis B (CHB) patients after switching from nucleos(t)ide analogues (NAs) to pegylated interferon alpha (Peg-IFN-ɑ). This study aimed to characterize the clinical and immunological features of VBT. METHODS In NAs-treated patients switching to Peg-IFN-ɑ, innate and adaptive immune cell proportions were examined in peripheral blood and liver biopsy specimens. In vitro effect of IFN-ɑ on the expressions of toll-like receptors 2 (TLR2) and programmed cell death ligand 1 (PDL1) on monocytes, programmed cell death 1 (PD1) on CD8+T cells was examined. Peripheral blood mononuclear cells (PBMCs) were treated with TLR2 agonist and/or PDL1 blockade to evaluate their effect on HBV replication. RESULTS 33 of 166 patients switching to Peg-IFN-ɑ experienced VBT after NA cessation, with majority being hepatitis B e antigen (HBeAg) positive or having higher hepatitis B core-related antigen (HBcrAg) levels. Patients with VBT exhibited lower proportions of TLR2+monocyte and increased PD1+HBV-specific CD8+T cell during the early phase of Peg-IFN-ɑ therapy after NA cessation in peripheral blood, as well as fewer TLR2+CD68+macrophages but more PDL1+CD68+macrophages and PD1+CD8+T cells in liver tissues. Simultaneous use of TLR2 agonist and PDL1 blockage ex vivo suppressed HBV replication by promoting cytokines production and CD8+T cells cytotoxicity. Upon in vitro IFN-ɑ stimulation, PDL1+monocytes and PD1+CD8+T cells were upregulated, whereas TLR2+monocytes were not increased in PBMC isolated from HBeAg-positive patients, or those with high HBcrAg titers. CONCLUSIONS In NAs-treated patients, lower TLR2+monocyte and increased PD1+HBV-specific CD8+T cell proportions potentially contribute to VBT after switching to Peg-IFN-ɑ therapy. This insufficient immunity may be associated with the HBeAg status and HBcrAg levels.
Collapse
|
29
|
Miggelbrink AM, Jackson JD, Lorrey SJ, Srinivasan ES, Waibl-Polania J, Wilkinson DS, Fecci PE. CD4 T-Cell Exhaustion: Does It Exist and What Are Its Roles in Cancer? Clin Cancer Res 2021; 27:5742-5752. [PMID: 34127507 PMCID: PMC8563372 DOI: 10.1158/1078-0432.ccr-21-0206] [Citation(s) in RCA: 150] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/04/2021] [Accepted: 06/02/2021] [Indexed: 01/07/2023]
Abstract
In chronic infections and in cancer, persistent antigen stimulation under suboptimal conditions can lead to the induction of T-cell exhaustion. Exhausted T cells are characterized by an increased expression of inhibitory markers and a progressive and hierarchical loss of function. Although cancer-induced exhaustion in CD8 T cells has been well-characterized and identified as a therapeutic target (i.e., via checkpoint inhibition), in-depth analyses of exhaustion in other immune cell types, including CD4 T cells, is wanting. While perhaps attributable to the contextual discovery of exhaustion amidst chronic viral infection, the lack of thorough inquiry into CD4 T-cell exhaustion is particularly surprising given their important role in orchestrating immune responses through T-helper and direct cytotoxic functions. Current work suggests that CD4 T-cell exhaustion may indeed be prevalent, and as CD4 T cells have been implicated in various disease pathologies, such exhaustion is likely to be clinically relevant. Defining phenotypic exhaustion in the various CD4 T-cell subsets and how it influences immune responses and disease severity will be crucial to understanding collective immune dysfunction in a variety of pathologies. In this review, we will discuss mechanistic and clinical evidence for CD4 T-cell exhaustion in cancer. Further insight into the derivation and manifestation of exhaustive processes in CD4 T cells could reveal novel therapeutic targets to abrogate CD4 T-cell exhaustion in cancer and induce a robust antitumor immune response.
Collapse
Affiliation(s)
- Alexandra M. Miggelbrink
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Joshua D. Jackson
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Selena J. Lorrey
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Immunology, Duke University Medical Center, Durham, North Carolina
| | - Ethan S. Srinivasan
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Duke University School of Medicine, Durham, North Carolina
| | - Jessica Waibl-Polania
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina
| | - Daniel S. Wilkinson
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Peter E. Fecci
- Duke Brain Tumor Immunotherapy Program, Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Pathology, Duke University Medical Center, Durham, North Carolina.,Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina.,Department of Immunology, Duke University Medical Center, Durham, North Carolina.,Corresponding Author: Peter E. Fecci, Department of Neurosurgery, Duke Medical Center, DUMC Box 3050, Durham, NC 27705. Phone: 919–681–1010; E-mail:
| |
Collapse
|
30
|
Zoldan K, Ehrlich S, Killmer S, Wild K, Smits M, Russ M, Globig AM, Hofmann M, Thimme R, Boettler T. Th1-Biased Hepatitis C Virus-Specific Follicular T Helper-Like Cells Effectively Support B Cells After Antiviral Therapy. Front Immunol 2021; 12:742061. [PMID: 34659236 PMCID: PMC8514946 DOI: 10.3389/fimmu.2021.742061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
Circulating Th1-biased follicular T helper (cTfh1) cells have been associated with antibody responses to viral infection and after vaccination but their B cell helper functionality is less understood. After viral elimination, Tfh1 cells are the dominant subset within circulating Hepatitis C Virus (HCV)-specific CD4 T cells, but their functional capacity is currently unknown. To address this important point, we established a clone-based system to evaluate CD4 T cell functionality in vitro to overcome experimental limitations associated with their low frequencies. Specifically, we analyzed the transcription factor expression, cytokine secretion and B cell help in co-culture assays of HCV- (n = 18) and influenza-specific CD4 T cell clones (n = 5) in comparison to Tfh (n = 26) and Th1 clones (n = 15) with unknown antigen-specificity derived from healthy donors (n = 4) or direct-acting antiviral (DAA)-treated patients (n = 5). The transcription factor expression and cytokine secretion patterns of HCV-specific CD4 T cell clones indicated a Tfh1 phenotype, with expression of T-bet and Bcl6 and production of IFN-γ and IL-21. Their B helper capacity was superior compared to influenza-specific or Tfh and Th1 clones. Moreover, since Tfh cells are enriched in the IFN-rich milieu of the HCV-infected liver, we investigated the impact of IFN exposure on Tfh phenotype and function. Type I IFN exposure was able to introduce similar phenotypic and functional characteristics in the Tfh cell population within PBMCs or Tfh clones in vitro in line with our finding that Tfh cells are elevated in HCV-infected patients shortly after initiation of IFN-α therapy. Collectively, we were able to functionally characterize HCV-specific CD4 T cells in vitro and not only confirmed a Tfh1 phenotype but observed superior Tfh functionality despite their Th1 bias. Furthermore, our results suggest that chronic type I IFN exposure supports the enrichment of highly functional HCV-specific Tfh-like cells during HCV infection. Thus, HCV-specific Tfh-like cells after DAA therapy may be a promising target for future vaccination design aiming to introduce a neutralizing antibody response.
Collapse
Affiliation(s)
- Katharina Zoldan
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sabine Ehrlich
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Saskia Killmer
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katharina Wild
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Maike Smits
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Marissa Russ
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Chemistry and Pharmacy, University of Freiburg, Freiburg, Germany
| | - Anna-Maria Globig
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maike Hofmann
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Thimme
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Boettler
- Department of Medicine II, University Hospital Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
31
|
Shoukry NH, Walker CM. T cell responses during HBV and HCV infections: similar but not quite the same? Curr Opin Virol 2021; 51:80-86. [PMID: 34619514 DOI: 10.1016/j.coviro.2021.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/30/2022]
Abstract
The hepatitis B and C viruses persist by evasion of T cell immunity. Persistence depends upon premature failure of CD4+ T cell help and loss of CD8+ T cell control because of epitope mutational escape and/or functional exhaustion. Powerful new immunological and transcriptomic tools provide insight into the mechanisms of T cell silencing by HBV and HCV. Similarities are apparent, including dysregulated expression of common inhibitory/immune checkpoint receptors and transcription factors. There are also differences. T cell exhaustion is uniform in HCV infection, but varies in HBV infection depending on disease stage and/or protein target. Here, we review recent advances defining similarities and differences in T cell evasion by HBV and HCV, and the potential for reversal following antiviral therapy.
Collapse
Affiliation(s)
- Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, Québec, Canada; Département de Médecine, Faculté de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH, USA; Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
32
|
Barili V, Vecchi A, Rossi M, Montali I, Tiezzi C, Penna A, Laccabue D, Missale G, Fisicaro P, Boni C. Unraveling the Multifaceted Nature of CD8 T Cell Exhaustion Provides the Molecular Basis for Therapeutic T Cell Reconstitution in Chronic Hepatitis B and C. Cells 2021; 10:2563. [PMID: 34685543 PMCID: PMC8533840 DOI: 10.3390/cells10102563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/15/2022] Open
Abstract
In chronic hepatitis B and C virus infections persistently elevated antigen levels drive CD8+ T cells toward a peculiar differentiation state known as T cell exhaustion, which poses crucial constraints to antiviral immunity. Available evidence indicates that T cell exhaustion is associated with a series of metabolic and signaling deregulations and with a very peculiar epigenetic status which all together lead to reduced effector functions. A clear mechanistic network explaining how intracellular metabolic derangements, transcriptional and signaling alterations so far described are interconnected in a comprehensive and unified view of the T cell exhaustion differentiation profile is still lacking. Addressing this issue is of key importance for the development of innovative strategies to boost host immunity in order to achieve viral clearance. This review will discuss the current knowledge in HBV and HCV infections, addressing how innate immunity, metabolic derangements, extensive stress responses and altered epigenetic programs may be targeted to restore functionality and responsiveness of virus-specific CD8 T cells in the context of chronic virus infections.
Collapse
Affiliation(s)
- Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Camilla Tiezzi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, 43126 Parma, Italy; (V.B.); (A.V.); (M.R.); (I.M.); (C.T.); (A.P.); (D.L.); (G.M.)
| |
Collapse
|
33
|
Bartoli A, Gabrielli F, Tassi A, Cursaro C, Pinelli A, Andreone P. Treatments for HBV: A Glimpse into the Future. Viruses 2021; 13:1767. [PMID: 34578347 PMCID: PMC8473442 DOI: 10.3390/v13091767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/17/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022] Open
Abstract
The hepatitis B virus is responsible for most of the chronic liver disease and liver cancer worldwide. As actual therapeutic strategies have had little success in eradicating the virus from hepatocytes, and as lifelong treatment is often required, new drugs targeting the various phases of the hepatitis B virus (HBV) lifecycle are currently under investigation. In this review, we provide an overview of potential future treatments for HBV.
Collapse
Affiliation(s)
- Alessandra Bartoli
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
- Postgraduate School of Allergy and Clinical Immunology, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Filippo Gabrielli
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
- Postgraduate School of Internal Medicine, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Andrea Tassi
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
- Postgraduate School of Internal Medicine, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Carmela Cursaro
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
| | - Ambra Pinelli
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
- Postgraduate School of Allergy and Clinical Immunology, University of Modena and Reggio Emilia, 41126 Modena, Italy
| | - Pietro Andreone
- Department of Medical and Surgical Sciences, Division of Internal Medicine, Maternal-Infantile and Adult, University of Modena and Reggio Emilia, 41126 Modena, Italy; (A.B.); (F.G.); (A.T.); (C.C.); (A.P.)
- Postgraduate School of Allergy and Clinical Immunology, University of Modena and Reggio Emilia, 41126 Modena, Italy
| |
Collapse
|
34
|
Baudi I, Kawashima K, Isogawa M. HBV-Specific CD8+ T-Cell Tolerance in the Liver. Front Immunol 2021; 12:721975. [PMID: 34421926 PMCID: PMC8378532 DOI: 10.3389/fimmu.2021.721975] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) remains a leading cause of liver-related morbidity and mortality through chronic hepatitis that may progress to liver cirrhosis and cancer. The central role played by HBV-specific CD8+ T cells in the clearance of acute HBV infection, and HBV-related liver injury is now well established. Vigorous, multifunctional CD8+ T cell responses are usually induced in most adult-onset HBV infections, while chronic hepatitis B (CHB) is characterized by quantitatively and qualitatively weak HBV-specific CD8+ T cell responses. The molecular basis of this dichotomy is poorly understood. Genomic analysis of dysfunctional HBV-specific CD8+ T cells in CHB patients and various mouse models suggest that multifaceted mechanisms including negative signaling and metabolic abnormalities cooperatively establish CD8+ T cell dysfunction. Immunoregulatory cell populations in the liver, including liver resident dendritic cells (DCs), hepatic stellate cells (HSCs), myeloid-derived suppressor cells (MDSCs), may contribute to intrahepatic CD8+ T cell dysfunction through the production of soluble mediators, such as arginase, indoleamine 2,3-dioxygenase (IDO) and suppressive cytokines and the expression of co-inhibitory molecules. A series of recent studies with mouse models of HBV infection suggest that genetic and epigenetic changes in dysfunctional CD8+ T cells are the manifestation of prolonged antigenic stimulation, as well as the absence of co-stimulatory or cytokine signaling. These new findings may provide potential new targets for immunotherapy aiming at invigorating HBV-specific CD8+ T cells, which hopefully cures CHB.
Collapse
Affiliation(s)
- Ian Baudi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keigo Kawashima
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Isogawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
35
|
Buschow SI, Jansen DTSL. CD4 + T Cells in Chronic Hepatitis B and T Cell-Directed Immunotherapy. Cells 2021; 10:cells10051114. [PMID: 34066322 PMCID: PMC8148211 DOI: 10.3390/cells10051114] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/17/2022] Open
Abstract
The impaired T cell responses observed in chronic hepatitis B (HBV) patients are considered to contribute to the chronicity of the infection. Research on this impairment has been focused on CD8+ T cells because of their cytotoxic effector function; however, CD4+ T cells are crucial in the proper development of these long-lasting effector CD8+ T cells. In this review, we summarize what is known about CD4+ T cells in chronic HBV infection and discuss the importance and opportunities of including CD4+ T cells in T cell-directed immunotherapeutic strategies to cure chronic HBV.
Collapse
|
36
|
Farrukh H, El-Sayes N, Mossman K. Mechanisms of PD-L1 Regulation in Malignant and Virus-Infected Cells. Int J Mol Sci 2021; 22:ijms22094893. [PMID: 34063096 PMCID: PMC8124996 DOI: 10.3390/ijms22094893] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 04/22/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023] Open
Abstract
Programmed cell death protein 1 (PD-1), a receptor on T cells, and its ligand, PD-L1, have been a topic of much interest in cancer research. Both tumour and virus-infected cells can upregulate PD-L1 to suppress cytotoxic T-cell killing. Research on the PD-1/PD-L1 axis has led to the development of anti-PD-1/PD-L1 immune checkpoint blockades (ICBs) as promising cancer therapies. Although effective in some cancer patients, for many, this form of treatment is ineffective due to a lack of immunogenicity in the tumour microenvironment (TME). Despite the development of therapies targeting the PD-1/PD-L1 axis, the mechanisms and pathways through which these proteins are regulated are not completely understood. In this review, we discuss the latest research on molecules of inflammation and innate immunity that regulate PD-L1 expression, how its expression is regulated during viral infection, and how it is modulated by different cancer therapies. We also highlight existing research on the development of different combination therapies with anti-PD-1/PD-L1 antibodies. This information can be used to develop better cancer immunotherapies that take into consideration the pathways involved in the PD-1/PD-L1 axis, so these molecules do not reduce their efficacy, which is currently seen with some cancer therapies. This review will also assist in understanding how the TME changes during treatment, which will provide further rationale for combination therapies.
Collapse
Affiliation(s)
- Hadia Farrukh
- School of Interdisciplinary Science, Faculty of Science, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Nader El-Sayes
- Department of Biochemistry and Biomedical Sciences, McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Karen Mossman
- Department of Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence:
| |
Collapse
|
37
|
Jansen DT, Dou Y, de Wilde JW, Woltman AM, Buschow SI. Designing the next-generation therapeutic vaccines to cure chronic hepatitis B: focus on antigen presentation, vaccine properties and effect measures. Clin Transl Immunology 2021; 10:e1232. [PMID: 33489122 PMCID: PMC7809700 DOI: 10.1002/cti2.1232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/14/2022] Open
Abstract
In the mid‐90s, hepatitis B virus (HBV)‐directed immune responses were for the first time investigated in detail and revealed suboptimal T‐cell responses in chronic HBV patients. Based on these studies, therapeutic vaccination exploiting the antigen presentation capacity of dendritic cells to prime and/or boost HBV‐specific T‐cell responses was considered highly promising. Now, 25 years later, it has not yet delivered this promise. In this review, we summarise what has been clinically tested in terms of antigen targets and vaccine forms, how the immunological and therapeutic effects of these vaccines were assessed and what major clinical and immunological findings were reported. We combine the lessons learned from these trials with the most recent insights on HBV antigen presentation, T‐cell responses, vaccine composition, antiviral and immune‐modulatory drugs and disease biomarkers to derive novel opportunities for the next generation of therapeutic vaccines designed to cure chronic HBV either alone or in combination therapy.
Collapse
Affiliation(s)
- Diahann Tsl Jansen
- Department of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Yingying Dou
- Department of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Janet W de Wilde
- Department of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands.,Present address: Department of Viroscience Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Andrea M Woltman
- Department of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands.,Present address: Institute of Medical Research Education Rotterdam Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| | - Sonja I Buschow
- Department of Gastroenterology and Hepatology Erasmus MC University Medical Center Rotterdam Rotterdam The Netherlands
| |
Collapse
|
38
|
Barili V, Boni C, Rossi M, Vecchi A, Zecca A, Penna A, Missale G, Ferrari C, Fisicaro P. Metabolic regulation of the HBV-specific T cell function. Antiviral Res 2020; 185:104989. [PMID: 33248194 DOI: 10.1016/j.antiviral.2020.104989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/15/2022]
Abstract
Chronically HBV infected subjects are more than 260 million worldwide; cirrhosis and liver cancer represent possible outcomes which affect around 700,000 patients per year. Both innate and adaptive immune responses are necessary for viral control and both have been shown to be defective in chronic patients. Metabolic remodeling is an essential process in T cell biology, particularly for T cell activation, differentiation and survival. Cellular metabolism relies on the conversion of nutrients into energy to support intracellular processes, and to generate fundamental intermediate components for cell proliferation and growth. Adaptive immune responses are the central mechanisms for the resolution of primary human infections leading to the activation of pathogen-specific B and T cell functions. In chronic HBV infection the anti-viral immune response fails to contain the virus and leads to persistent hepatic tissue damage which may finally result in liver cirrhosis and cancer. This T cell failure is associated with metabolic alterations suggesting that control of nutrient uptake and intracellular utilization as well as correct regulation of intracellular metabolic pathways are strategic for T cell differentiation during persistent chronic infections. This review will discuss some of the main features of the T cell metabolic processes which are relevant to the generation of an efficient antiviral response, with specific focus on their clinical relevance in chronic HBV infection in the perspective of possible strategies to correct deregulated metabolic pathways underlying T cell dysfunction of chronic HBV patients.
Collapse
Affiliation(s)
- Valeria Barili
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Marzia Rossi
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Carlo Ferrari
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.
| | - Paola Fisicaro
- Department of Medicine and Surgery, University of Parma, Parma, Italy; Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
39
|
Mo S, Gu L, Xu W, Liu J, Ding D, Wang Z, Yang J, Kong L, Zhao Y. Bifunctional macromolecule activating both OX40 and interferon-α signaling displays potent therapeutic effects in mouse HBV and tumor models. Int Immunopharmacol 2020; 89:107099. [PMID: 33091819 DOI: 10.1016/j.intimp.2020.107099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/10/2020] [Accepted: 10/10/2020] [Indexed: 11/16/2022]
Abstract
Combinatory enhancement of innate and adaptive immune responses is a promising strategy in immunotherapeutic drug development. Bifunctional macromolecules that simultaneously target two mechanisms may provide additional advantages over the combination of targeting two single pathways. Interferon alpha (IFNα) has been used clinically against viral infection such as the chronic infection of hepatitis B virus (CHB) as well as some types of cancers. OX40 is a costimulatory immune checkpoint molecule involved in the activation of T lymphocytes. To test whether simultaneously activating IFNα and OX40 signaling pathway could produce a synergistic therapeutic effect on CHB and tumors, we designed a bifunctional fusion protein composed of a mouse OX40 agonistic monoclonal antibody (OX86) and a mouse IFNα4, joined by a flexible (GGGGS)3 linker. This fusion protein, termed OX86-IFN, can activate both IFNα and OX40. We demonstrated that OX86-IFN could effectively activate T lymphocytes in the peripheral blood of mice. Furthermore, we showed that OX86-IFN had superior therapeutic effect to monotherapies in HBV hydrodynamic transfection and syngeneic tumor models. Collectively, our data suggests that simultaneously targeting interferon and OX40 signaling pathways by bifunctional molecule OX86-IFN elicits potent antiviral and antitumor activities, which could provide a new strategy in developing therapeutic agents against viral infection and tumors.
Collapse
Affiliation(s)
- Shifu Mo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, PR China; Nanjing U-Mab Biopharma Co., Ltd, 699-8 Xuanwu Avenue, Nanjing, Jiangsu 210042, PR China
| | - Liyun Gu
- Nanjing U-Mab Biopharma Co., Ltd, 699-8 Xuanwu Avenue, Nanjing, Jiangsu 210042, PR China
| | - Wei Xu
- Nanjing U-Mab Biopharma Co., Ltd, 699-8 Xuanwu Avenue, Nanjing, Jiangsu 210042, PR China
| | - Jia Liu
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Dong Ding
- Nanjing U-Mab Biopharma Co., Ltd, 699-8 Xuanwu Avenue, Nanjing, Jiangsu 210042, PR China
| | - Zhichao Wang
- Nanjing U-Mab Biopharma Co., Ltd, 699-8 Xuanwu Avenue, Nanjing, Jiangsu 210042, PR China
| | - Jie Yang
- Nanjing U-Mab Biopharma Co., Ltd, 699-8 Xuanwu Avenue, Nanjing, Jiangsu 210042, PR China
| | - Lingdong Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, Jiangsu 210023, PR China.
| | - Yong Zhao
- Nanjing U-Mab Biopharma Co., Ltd, 699-8 Xuanwu Avenue, Nanjing, Jiangsu 210042, PR China.
| |
Collapse
|
40
|
Kuang Z, Pu P, Wu M, Wu Z, Wang L, Li Y, Zhang S, Jing H, Wu W, Chen B, Liu J. A Novel Bispecific Antibody with PD-L1-assisted OX40 Activation for Cancer Treatment. Mol Cancer Ther 2020; 19:2564-2574. [PMID: 32999045 DOI: 10.1158/1535-7163.mct-20-0226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 06/19/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
Immunotherapy using OX40 agonist antibodies shows great preclinical efficacy in mouse tumor models. But in a clinical setting, OX40 agonist antibody alone or in combination with checkpoint blockade exhibits only modest efficacy due to lack of sufficient activation. We hypothesized that the limited antitumor activity in patients may due to insufficient clustering of OX40 antibody in the tumor. To test this hypothesis, we generated a tetravalent programmed death ligand-1 (PD-L1)/OX40 BsAb by fusing two PD-L1 VHH fragments to the C-terminus of a nonblocking agonistic anti-OX40 antibody. The resulting BsAb had intact function of each parental antibody, including efficiently blocking PD1/PD-L1 interaction and inducing OX40 activation. In addition, this BsAb showed significantly enhanced potency in activation of OX40-expressing T cells when PD-L1-expressing tumor cells or dendrite cells were present, through PD-L1-mediated cross-linking of OX40. Moreover, the BsAb exhibited superior antitumor activities over the parental monospecific antibodies alone or in combination in multiple in vivo tumor models. These results demonstrated a great potential for further clinical development of the potent immunostimulatory PD-L1/OX40 bispecific antibody.
Collapse
Affiliation(s)
- Zhihui Kuang
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Pu Pu
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Min Wu
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Zhihai Wu
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Li Wang
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Yiming Li
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Shaofei Zhang
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China.,Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Shaanxi, Xi'an, P.R. China
| | - Hua Jing
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Weiwei Wu
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Bingliang Chen
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China
| | - Junjian Liu
- Drug Discovery, Innovent Biologics Co, Suzhou, Jiangsu, P.R. China.
| |
Collapse
|
41
|
Rybicka M, Bielawski KP. Recent Advances in Understanding, Diagnosing, and Treating Hepatitis B Virus Infection. Microorganisms 2020; 8:E1416. [PMID: 32942584 PMCID: PMC7565763 DOI: 10.3390/microorganisms8091416] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 09/11/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic hepatitis B virus (HBV) infection affects 292 million people worldwide and is associated with a broad range of clinical manifestations including cirrhosis, liver failure, and hepatocellular carcinoma (HCC). Despite the availability of an effective vaccine HBV still causes nearly 900,000 deaths every year. Current treatment options keep HBV under control, but they do not offer a cure as they cannot completely clear HBV from infected hepatocytes. The recent development of reliable cell culture systems allowed for a better understanding of the host and viral mechanisms affecting HBV replication and persistence. Recent advances into the understanding of HBV biology, new potential diagnostic markers of hepatitis B infection, as well as novel antivirals targeting different steps in the HBV replication cycle are summarized in this review article.
Collapse
Affiliation(s)
- Magda Rybicka
- Department of Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| | | |
Collapse
|
42
|
Liu L, Hou J, Xu Y, Qin L, Liu W, Zhang H, Li Y, Chen M, Deng M, Zhao B, Hu J, Zheng H, Li C, Meng S. PD-L1 upregulation by IFN-α/γ-mediated Stat1 suppresses anti-HBV T cell response. PLoS One 2020; 15:e0228302. [PMID: 32628668 PMCID: PMC7337294 DOI: 10.1371/journal.pone.0228302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) has been recently shown to be a major obstacle to antiviral immunity by binding to its receptor programmed death 1 (PD-1) on specific IFN-γ producing T cells in chronic hepatitis B. Currently, IFN-α is widely used to treat hepatitis B virus (HBV) infection, but its antiviral effect vary greatly and the mechanism is not totally clear. We found that IFN-α/γ induced a marked increase of PD-L1 expression in hepatocytes. Signal and activators of transcription (Stat1) was then identified as a major transcription factor involved in IFN-α/γ-mediated PD-L1 elevation both in vitro and in mice. Blockage of the PD-L1/PD-1 interaction by a specific mAb greatly enhanced HBV-specific T cell activity by the gp96 adjuvanted therapeutic vaccine, and promoted HBV clearance in HBV transgenic mice. Our results demonstrate the IFN-α/γ-Stat1-PD-L1 axis plays an important role in mediating T cell hyporesponsiveness and inactivating liver-infiltrating T cells in the hepatic microenvironment. These data raise further potential interest in enhancing the anti-HBV efficacy of IFN-α and therapeutic vaccines.
Collapse
Affiliation(s)
- LanLan Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Junwei Hou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxiu Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Qin
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiwei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mi Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huaguo Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (SM); (CL)
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (SM); (CL)
| |
Collapse
|
43
|
Chiale C, Yarovinsky TO, Mason SW, Madina BR, Menon M, Krady MM, Moshkani S, Chattopadhyay Pal A, Almassian B, Rose JK, Robek MD, Nakaar V. Modified Alphavirus-Vesiculovirus Hybrid Vaccine Vectors for Homologous Prime-Boost Immunotherapy of Chronic Hepatitis B. Vaccines (Basel) 2020; 8:vaccines8020279. [PMID: 32517032 PMCID: PMC7349932 DOI: 10.3390/vaccines8020279] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/12/2022] Open
Abstract
Virus-like vesicles (VLV) are hybrid vectors based on an evolved Semliki Forest virus (SFV) RNA replicon and the envelope glycoprotein (G) from vesicular stomatitis virus (VSV). Previously, we showed that VLV can be used to express protein antigens and generate protective antigen-specific CD8+ T cells. This report describes VLV vectors designed for enhanced protein expression and immunogenicity. Expressing hepatitis B virus (HBV) middle S antigen (MHBs) from VLV using a dual subgenomic promoter significantly increased MHBs-specific CD8+ T cell and antibody production in mice. Furthermore, envelope glycoprotein switch from VSV Indiana to the glycoprotein of Chandipura virus enabled prime-boost immunization and further increased responses to MHBs. Therapeutic efficacy was evaluated in a mouse model of chronic HBV infection initiated by HBV delivery with adeno-associated virus. Mice with lower or intermediate HBV antigen levels demonstrated a significant and sustained reduction of HBV replication following VLV prime-boost immunization. However, mice with higher HBV antigen levels showed no changes in HBV replication, emphasizing the importance of HBV antigenemia for implementing immunotherapies. This report highlights the potential of VLV dual promoter vectors to induce effective antigen-specific immune responses and informs the further development and evaluation of hybrid viral vaccine platforms for preventative and therapeutic purposes.
Collapse
Affiliation(s)
- Carolina Chiale
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (C.C.); (S.M.); (M.D.R.)
| | - Timur O. Yarovinsky
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA; (A.C.P.); (J.K.R.)
- CaroGen Corporation, Farmington, CT 06032, USA; (S.W.M.); (B.R.M.); (M.M.); (M.M.K.); (B.A.)
- Correspondence: (T.O.Y.); (V.N.)
| | - Stephen W. Mason
- CaroGen Corporation, Farmington, CT 06032, USA; (S.W.M.); (B.R.M.); (M.M.); (M.M.K.); (B.A.)
| | - Bhaskara R. Madina
- CaroGen Corporation, Farmington, CT 06032, USA; (S.W.M.); (B.R.M.); (M.M.); (M.M.K.); (B.A.)
| | - Manisha Menon
- CaroGen Corporation, Farmington, CT 06032, USA; (S.W.M.); (B.R.M.); (M.M.); (M.M.K.); (B.A.)
| | - Marie M. Krady
- CaroGen Corporation, Farmington, CT 06032, USA; (S.W.M.); (B.R.M.); (M.M.); (M.M.K.); (B.A.)
| | - Safiehkhatoon Moshkani
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (C.C.); (S.M.); (M.D.R.)
| | - Anasuya Chattopadhyay Pal
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA; (A.C.P.); (J.K.R.)
| | - Bijan Almassian
- CaroGen Corporation, Farmington, CT 06032, USA; (S.W.M.); (B.R.M.); (M.M.); (M.M.K.); (B.A.)
| | - John K. Rose
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA; (A.C.P.); (J.K.R.)
| | - Michael D. Robek
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY 12208, USA; (C.C.); (S.M.); (M.D.R.)
| | - Valerian Nakaar
- CaroGen Corporation, Farmington, CT 06032, USA; (S.W.M.); (B.R.M.); (M.M.); (M.M.K.); (B.A.)
- Correspondence: (T.O.Y.); (V.N.)
| |
Collapse
|
44
|
Fisicaro P, Barili V, Rossi M, Montali I, Vecchi A, Acerbi G, Laccabue D, Zecca A, Penna A, Missale G, Ferrari C, Boni C. Pathogenetic Mechanisms of T Cell Dysfunction in Chronic HBV Infection and Related Therapeutic Approaches. Front Immunol 2020; 11:849. [PMID: 32477347 PMCID: PMC7235343 DOI: 10.3389/fimmu.2020.00849] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 04/14/2020] [Indexed: 12/12/2022] Open
Abstract
A great effort of research has been devoted in the last few years to developing new anti-HBV therapies of finite duration that also provide effective sustained control of virus replication and antigen production. Among the potential therapeutic strategies, immune-modulation represents a promising option to cure HBV infection and the adaptive immune response is a rational target for novel therapeutic interventions, in consideration of the key role played by T cells in the control of virus infections. HBV-specific T cells are severely dysfunctional in chronic HBV infection as a result of several inhibitory mechanisms which are simultaneously active within the chronically inflamed liver. Indeed, the liver is a tolerogenic organ harboring different non-parenchymal cell populations which can serve as antigen presenting cells (APC) but are poorly efficient in effector T cell priming, with propensity to induce T cell tolerance rather than T cell activation, because of a poor expression of co-stimulatory molecules, up-regulation of the co-inhibitory ligands PD-L1 and PD-L2 upon IFN stimulation, and production of immune regulatory cytokines, such as IL10 and TGF-β. They include resident dendritic cells (DCs), comprising myeloid and plasmacytoid DCs, liver sinusoidal endothelial cells (LSECs), Kupffer cells (KCs), hepatic stellate cells (HSCs) as well as the hepatocytes themselves. Additional regulatory mechanisms which contribute to T cell attrition in the chronically infected liver are the high levels of soluble mediators, such as arginase, indoleamine 2,3-dioxygenase (IDO) and suppressive cytokines, the up-regulation of inhibitory checkpoint receptor/ligand pairs, the expansion of regulatory cells, such as CD4+FOXp3+ Treg cells, myeloid-derived suppressor cells and NK cells. This review will deal with the interactions between immune cells and liver environment discussing the different mechanisms which contribute to T cell dysfunction in chronic hepatitis B, some of which are specifically activated in HBV infection and others which are instead common to chronic inflammatory liver diseases in general. Therapeutic interventions targeting dysregulated pathways and cellular functions will be also delineated.
Collapse
Affiliation(s)
- Paola Fisicaro
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Valeria Barili
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Marzia Rossi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Ilaria Montali
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Andrea Vecchi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Greta Acerbi
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Diletta Laccabue
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Alessandra Zecca
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Amalia Penna
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Gabriele Missale
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carlo Ferrari
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy.,Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Carolina Boni
- Laboratory of Viral Immunopathology, Unit of Infectious Diseases and Hepatology, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| |
Collapse
|
45
|
Mechanisms of HBV immune evasion. Antiviral Res 2020; 179:104816. [PMID: 32387476 DOI: 10.1016/j.antiviral.2020.104816] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/29/2020] [Accepted: 05/03/2020] [Indexed: 02/07/2023]
Abstract
The concept of immune evasion is a longstanding topic of debate during chronic Hepatitis B Virus infection. The 292 million individuals chronically infected by HBV are clear evidence that the virus avoids elimination by the immune system. The exact mechanisms of immune evasion remain undefined and are distinct, but likely interconnected, between innate and adaptive immunity. There is a significant body of evidence that supports peripheral tolerance and exhaustion of adaptive immunity but our understanding of the role that central tolerance plays is still developing. Innate immunity instructs the adaptive immune response and subversion of its functionality will impact both T and B cell responses. However, literature around the interaction of HBV with innate immunity is inconsistent, with reports suggesting that HBV avoids innate recognition, suppresses innate recognition, or activates innate immunity. This complexity has led to confusion and controversy. This review will discuss the mechanisms of central and peripheral tolerance/exhaustion of adaptive immunity in the context of chronic HBV infection. We also cover the interaction of HBV with cells of the innate immune system and propose concepts for the heterogeneity of responses in chronically infected patients.
Collapse
|
46
|
Hadziyannis E, Hadziyannis S. Current practice and contrasting views on discontinuation of nucleos(t)ide analog therapy in chronic hepatitis B. Expert Rev Gastroenterol Hepatol 2020; 14:243-251. [PMID: 32162562 DOI: 10.1080/17474124.2020.1738219] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Long-term, even indefinite treatment with nucleos(t)ide analogs (NAs) is the current first-line therapy for patients with chronic hepatitis B (CHB), regardless of its histological stage. Guidelines and recommendations on duration and endpoints of NA therapy in CHB are not identical and change over time.Areas covered: The authors review NA discontinuation approaches and views with an emphasis on HBeAg-negative patients based on published studies relevant to the topic, stressing on whether or not the optimal endpoint of HBsAg loss is practically achievable.Expert opinion: Discontinuation of NA therapy in HBeAg-negative noncirrhotic patients has to be considered after long-term effective treatment with controlled liver disease activity, undetectable viremia, and significant decline in serum HBsAg titers. Close post-treatment monitoring is required for early intervention in cases of severe clinical relapse. Immediate retreatment hampers the favorable outcome of HBsAg clearance (functional cure) and should be avoided in transient ALT flares. Predictors of such relapses are still under investigation and include viral and patient factors. For HBeAg-positive noncirrhotic patients, there is wide acceptance of the endpoint of HBeAg seroconversion, after a long consolidation period.
Collapse
Affiliation(s)
- Emilia Hadziyannis
- Second Academic Department of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| | - Stephanos Hadziyannis
- Second Academic Department of Medicine, National and Kapodistrian University of Athens, Hippokration General Hospital, Athens, Greece
| |
Collapse
|
47
|
Cornberg M, Lok ASF, Terrault NA, Zoulim F. Guidance for design and endpoints of clinical trials in chronic hepatitis B - Report from the 2019 EASL-AASLD HBV Treatment Endpoints Conference ‡. J Hepatol 2020; 72:539-557. [PMID: 31730789 DOI: 10.1016/j.jhep.2019.11.003] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/07/2019] [Accepted: 11/03/2019] [Indexed: 12/11/2022]
Abstract
Representatives from academia, industry, regulatory agencies, and patient groups convened in March 2019 with the primary goal of developing agreement on chronic HBV treatment endpoints to guide clinical trials aiming to 'cure' HBV. Agreement among the conference participants was reached on some key points. 'Functional' but not sterilising cure is achievable and should be defined as sustained HBsAg loss in addition to undetectable HBV DNA 6 months post-treatment. The primary endpoint of phase III trials should be functional cure; HBsAg loss in ≥30% of patients was suggested as an acceptable rate of response in these trials. Sustained virologic suppression (undetectable serum HBV DNA) without HBsAg loss 6 months after discontinuation of treatment would be an intermediate goal. Demonstrated validity for the prediction of sustained HBsAg loss was considered the most appropriate criterion for the approval of new HBV assays to determine efficacy endpoints. Clinical trials aimed at HBV functional cure should initially focus on patients with HBeAg-positive or negative chronic hepatitis, who are treatment-naïve or virally suppressed on nucleos(t)ide analogues. A hepatitis flare associated with an increase in bilirubin or international normalised ratio should prompt temporary or permanent cessation of an investigational treatment. New treatments must be as safe as existing nucleos(t)ide analogues. The primary endpoint for phase III trials for HDV coinfection should be undetectable serum HDV RNA 6 months after stopping treatment. On treatment HDV RNA suppression associated with normalisation of alanine aminotransferase is considered an intermediate goal. In conclusion, regarding HBV 'functional cure', the primary goal is sustained HBsAg loss with undetectable HBV DNA after completion of treatment and the intermediate goal is sustained undetectable HBV DNA without HBsAg loss after stopping treatment.
Collapse
Affiliation(s)
- Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany; German Centre for Infection Research (DZIF), partner site Hannover-Braunschweig, Germany; Centre for Individualised Infection Medicine (CiiM), Hannover, Germany.
| | - Anna Suk-Fong Lok
- Division of Gastroenterology and Hepatology, University of Michigan, Ann Arbor, MI, USA
| | - Norah A Terrault
- Division of Gastrointestinal and Liver Diseases, Keck Medicine at University of Southern California, Los Angeles, CA, USA
| | - Fabien Zoulim
- Hepatology Department, Hospices Civils de Lyon, INSERM U1052, University of Lyon, France
| | | |
Collapse
|
48
|
Meng Z, Chen Y, Lu M. Advances in Targeting the Innate and Adaptive Immune Systems to Cure Chronic Hepatitis B Virus Infection. Front Immunol 2020; 10:3127. [PMID: 32117201 PMCID: PMC7018702 DOI: 10.3389/fimmu.2019.03127] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
“Functional cure” is being pursued as the ultimate endpoint of antiviral treatment in chronic hepatitis B (CHB), which is characterized by loss of HBsAg whether or not anti-HBs antibodies are present. “Functional cure” can be achieved in <10% of CHB patients with currently available therapeutic agents. The dysfunction of specific immune responses to hepatitis B virus (HBV) is considered the major cause of persistent HBV infection. Thus, modulating the host immune system to strengthen specific cellular immune reactions might help eliminate HBV. Strategies are needed to restore/enhance innate immunity and induce HBV-specific adaptive immune responses in a coordinated way. Immune and resident cells express pattern recognition receptors like TLRs and RIG I/MDA5, which play important roles in the induction of innate immunity through sensing of pathogen-associated molecular patterns (PAMPs) and bridging to adaptive immunity for pathogen-specific immune control. TLR/RIG I agonists activate innate immune responses and suppress HBV replication in vitro and in vivo, and are being investigated in clinical trials. On the other hand, HBV-specific immune responses could be induced by therapeutic vaccines, including protein (HBsAg/preS and HBcAg), DNA, and viral vector-based vaccines. More than 50 clinical trials have been performed to assess therapeutic vaccines in CHB treatment, some of which display potential effects. Most recently, using genetic editing technology to generate CAR-T or TCR-T, HBV-specific T cells have been produced to efficiently clear HBV. This review summarizes the progress in basic and clinical research investigating immunomodulatory strategies for curing chronic HBV infection, and critically discusses the rather disappointing results of current clinical trials and future strategies.
Collapse
Affiliation(s)
- Zhongji Meng
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Yuanyuan Chen
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Mengji Lu
- Institute of Virology, University Hospital Essen, Essen, Germany
| |
Collapse
|
49
|
Gill US, McCarthy NE. CD4 T cells in hepatitis B virus: "You don't have to be cytotoxic to work here and help". J Hepatol 2020; 72:9-11. [PMID: 31708248 DOI: 10.1016/j.jhep.2019.10.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/16/2019] [Accepted: 10/16/2019] [Indexed: 01/12/2023]
Affiliation(s)
- Upkar S Gill
- Centre for Immunobiology, Blizard Institute, Barts and The London, School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom.
| | - Neil E McCarthy
- Centre for Immunobiology, Blizard Institute, Barts and The London, School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
50
|
Abstract
Chronic hepatitis B (CHB) is a widespread global infection and a leading cause of hepatocellular carcinoma and liver failure. Current approaches to treat CHB involve the suppression of viral replication with either interferon or nucleos(t)ide analog therapy, but neither of these approaches can reliably induce viral eradication, immunologic control or long-lived viral suppression in the absence of continued therapy. In this update, we explore the major obstacles of CHB cure and review new therapeutic strategies and drug candidates.
Collapse
Affiliation(s)
- Lydia Tang
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Shyam Kottilil
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| | - Eleanor Wilson
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Oncology, University of Maryland Marlene & Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD 21201, USA
| |
Collapse
|