1
|
Aguilar-Colomer A, Jiménez-Jiménez C, González B, Esteban J, Vallet-Regí M, Colilla M, Izquierdo-Barba I. Mucolytic and antibiotic combination therapy using silica-based nanocarriers to eradicate Escherichia coli biofilms. NANOSCALE ADVANCES 2025; 7:3414-3425. [PMID: 40270836 PMCID: PMC12012629 DOI: 10.1039/d5na00006h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025]
Abstract
This research provides new insights into the treatment of E. coli biofilm-related infections through the design of new antimicrobial nanoformulations based on mesoporous silica nanoparticles (MSNs) for mucolytic and antibiotic combination therapy against E. coli biofilms. The development of nanosystems with well-defined compartments to house and sequentially deliver different antimicrobial agents was carried out. A relatively simple and direct straightforward approach was carried out, consisting of loading MSNs with levofloxacin (LVX) by an impregnation method followed by external coating with a gelatin shell embedding a mixture of N-acetylcysteine (AC) plus LVX. Thus, the release of the mucolytic agent, AC, at the earliest stage causes disaggregation of the outer mucopolysaccharide layer of the mature E. coli biofilm, as confirmed by confocal laser scanning microscopy studies. This biofilm disruption effect facilitates the antimicrobial action of LVX, which is released in a more sustained manner over longer periods of time than AC, achieving a remarkable reduction (ca. 99.8%) of mature E. coli biofilms. These results are supported by the combined effect of AC and LVX strategically combined in the same nanocarrier. Preliminary in vitro studies with preosteoblastic cells point to the good biocompatibility of these nanosystems.
Collapse
Affiliation(s)
- Anna Aguilar-Colomer
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Carla Jiménez-Jiménez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Blanca González
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Jaime Esteban
- Unidad de Microbiología Clínica, IIS-Fundación Jiménez Díaz Avenida de los Reyes Católicos 2 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC) Madrid Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Montserrat Colilla
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| | - Isabel Izquierdo-Barba
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria, Hospital 12 de Octubre i+12 Plaza Ramón y Cajal s/n 28040 Madrid Spain
- Centro de Investigación Biomédica en Red de Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN) Spain
| |
Collapse
|
2
|
Amod A, Anand AA, Sahoo AK, Samanta SK. Diagnostic and therapeutic strategies in combating implanted medical device-associated bacterial biofilm infections. Folia Microbiol (Praha) 2025; 70:321-342. [PMID: 39865215 DOI: 10.1007/s12223-025-01242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 01/14/2025] [Indexed: 01/28/2025]
Abstract
Bacterial biofilms exhibit remarkable resistance against conventional antibiotics and are capable of evading the humoral immune response. They account for nearly 80% of chronic infections in humans. Development of bacterial biofilms on medical implants results in their malfunctioning and subsequently leads to high mortality rates worldwide. Therefore, early and precise diagnosis of bacterial biofilms on implanted medical devices is essential to prevent their failure and associated complications. Culture-based methods are time consuming, more prone to contamination and often exhibit low sensitivity. Different molecular, imaging, and physical methods can aid in more accurate and faster detection of implant-associated bacterial biofilms. Biofilm growth on implant surface can be prevented either through modification of the implant material or by application of different antibacterial coatings on implant surface. Experimental studies have shown that pre-existing biofilms from medical implants can be removed by breaking down biofilm matrix, utilizing physical methods, nanomaterials and antimicrobial peptides. The current review delves into mechanism of biofilm formation on implanted medical devices and the subsequent host immune response. Much emphasis has been laid on different ongoing diagnostic and therapeutic strategies to achieve improved patient outcomes and reduced socio-economic burden.
Collapse
Affiliation(s)
- Ayush Amod
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India.
| | - Ananya Anurag Anand
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India
| | - Sintu Kumar Samanta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, 211012, Uttar Pradesh, India.
| |
Collapse
|
3
|
González MJ, Lain M, Iribarnegaray V, Robino L, Scavone P. Broaden properties of ambroxol hydrochloride as an antibiofilm compound. Rev Argent Microbiol 2025; 57:114-124. [PMID: 39694762 DOI: 10.1016/j.ram.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 12/20/2024] Open
Abstract
Biofilm-associated microorganisms can cause many infections and are an important cause of resistance to several antimicrobials. The antibiotic crisis has led to a pressing need for new therapeutic tools. Ambroxol is frequently used as a mucolytic agent in respiratory diseases with increased mucus production. In addition, a wide range of properties has been described, including the effect on biofilms. In this work, we evaluate the anti-biofilm effect of ambroxol on four strains with clinical relevance: Proteus mirabilis, Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii. In vitro, biofilm formation was assessed using the crystal violet quantification technique in microplate and glass coverslip. The inhibition of biofilm formation was evaluated by adding ambroxol at the initial time. Ambroxol hydrochloride was evaluated over the preformed biofilm and live/dead bacteria were quantified. The effect of ambroxol in the ethidium bromide efflux assay and the relative expression of the five major P. mirabilis efflux pump family genes were analyzed. Ambroxol inhibited biofilm formation in all the bacteria tested. Moreover, ambroxol significantly reduces both biofilm biomass and viable bacteria. Ambroxol was able to affect P. mirabilis efflux pumps depending on the concentration used and induced the overexpression of several efflux pump genes. In summary, ambroxol kills planktonic cells, reduce biofilm biomass as it increases cell death, and affect the expression of efflux pumps. Furthermore, it presents a viable alternative for the treatment of biofilm infection alone or in combination with antibiotic therapy.
Collapse
Affiliation(s)
- María J González
- Lab. De Biofilms Microbianos, Dept. de Microbiología, Inst. de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | | | - Victoria Iribarnegaray
- Dept. de Patobiología, Unidad de Microbiología, Facultad de Veterinaria, Univ. de la República, Montevideo, Uruguay
| | - Luciana Robino
- Dept. de Bacteriología y Virología, Inst. de Higiene, Univ. de la Republica, Montevideo, Uruguay
| | - Paola Scavone
- Lab. De Biofilms Microbianos, Dept. de Microbiología, Inst. de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay.
| |
Collapse
|
4
|
Javanmard Z, Pourhajibagher M, Bahador A. Advancing Anti-Biofilm Strategies: Innovations to Combat Biofilm-Related Challenges and Enhance Efficacy. J Basic Microbiol 2024; 64:e2400271. [PMID: 39392011 DOI: 10.1002/jobm.202400271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/20/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024]
Abstract
Biofilms are complex communities of microorganisms that can cause significant challenges in various settings, including industrial processes, environmental systems, and human health. The protective nature of biofilms makes them resistant to traditional anti-biofilm strategies, such as chemical agents, mechanical interventions, and surface modifications. To address the limitations of conventional anti-biofilm methods, researchers have explored emerging strategies that encompass the use of natural compounds, nanotechnology-based methods, quorum-sensing inhibition, enzymatic degradation, and antimicrobial photodynamic/sonodynamic therapy. There is an increasing focus on combining multiple anti-biofilm strategies to combat resistance and enhance effectiveness. Researchers are continuously investigating the mechanisms of biofilm formation and developing innovative approaches to overcome the limitations of conventional anti-biofilm methods. These efforts aim to improve the management of biofilms and prevent infections while preserving the environment. This study provides a comprehensive overview of the latest advancements in anti-biofilm strategies. Given the dynamic nature of this field, exploring new approaches is essential to stimulate further research and development initiatives. The effective management of biofilms is crucial for maintaining the health of industrial processes, environmental systems, and human populations.
Collapse
Affiliation(s)
- Zahra Javanmard
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Barman S, Kurnaz LB, Leighton R, Hossain MW, Decho AW, Tang C. Intrinsic antimicrobial resistance: Molecular biomaterials to combat microbial biofilms and bacterial persisters. Biomaterials 2024; 311:122690. [PMID: 38976935 PMCID: PMC11298303 DOI: 10.1016/j.biomaterials.2024.122690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/13/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The escalating rise in antimicrobial resistance (AMR) coupled with a declining arsenal of new antibiotics is imposing serious threats to global public health. A pervasive aspect of many acquired AMR infections is that the pathogenic microorganisms exist as biofilms, which are equipped with superior survival strategies. In addition, persistent and recalcitrant infections are seeded with bacterial persister cells at infection sites. Together, conventional antibiotic therapeutics often fail in the complete treatment of infections associated with bacterial persisters and biofilms. Novel therapeutics have been attempted to tackle AMR, biofilms, and persister-associated complex infections. This review focuses on the progress in designing molecular biomaterials and therapeutics to address acquired and intrinsic AMR, and the fundamental microbiology behind biofilms and persisters. Starting with a brief introduction of AMR basics and approaches to tackling acquired AMR, the emphasis is placed on various biomaterial approaches to combating intrinsic AMR, including (1) semi-synthetic antibiotics; (2) macromolecular or polymeric biomaterials mimicking antimicrobial peptides; (3) adjuvant effects in synergy; (4) nano-therapeutics; (5) nitric oxide-releasing antimicrobials; (6) antimicrobial hydrogels; (7) antimicrobial coatings. Particularly, the structure-activity relationship is elucidated in each category of these biomaterials. Finally, illuminating perspectives are provided for the future design of molecular biomaterials to bypass AMR and cure chronic multi-drug resistant (MDR) infections.
Collapse
Affiliation(s)
- Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States; Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Ryan Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Md Waliullah Hossain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States.
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.
| |
Collapse
|
6
|
Al-Abdi SY, Al-Aamri M. The Potential of Ambroxol as a Panacea for Neonatal Diseases: A Scoping Review. Cureus 2024; 16:e67977. [PMID: 39347262 PMCID: PMC11427714 DOI: 10.7759/cureus.67977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2024] [Indexed: 10/01/2024] Open
Abstract
Ambroxol, a commonly used mucolytic agent, has been extensively studied for its clinical effectiveness in managing respiratory conditions in pediatric and adult patients. The existing body of research on ambroxol demonstrates its safety and efficacy. However, its potential role in preventing and treating neonatal diseases still needs to be explored. This scoping review aims to shed light on the unexplored potential of ambroxol, particularly its applications in perinatal and neonatal care. We aim to offer valuable insights for healthcare professionals, researchers, and academics, thus presenting a positive perspective. Key scientific databases such as Google Scholar, PubMed, Cochrane Library, and Europe PMC were meticulously searched for relevant literature on ambroxol in perinatal and neonatal medicine. Gray literature was also surveyed, and the search encompassed all study designs and languages up to June 2024. Furthermore, citations and reference lists of relevant articles were scrutinized to identify additional pertinent literature. Ambroxol has demonstrated promising effects in preventing and managing respiratory distress syndrome (RDS). It can enter the placental circulation and rapidly build up in human lung tissue to a much greater extent than in plasma. It promotes fetal lung maturation, surfactant production, and alveolar expansion. Numerous studies have demonstrated the efficacy of antenatal and postnatal ambroxol in the prevention and treatment of RDS. Ambroxol has the potential to be administered intravenously or through nebulization, offering the hopeful possibility of reducing the high failure rate typically associated with non-invasive ventilation in extremely preterm infants, instilling a sense of hope and optimism about the potential of ambroxol. It also shows potential in treating bronchopulmonary dysplasia, meconium aspiration syndrome, and neonatal infections. Ambroxol has been observed to assist in the closure of patent ductus arteriosus in preterm infants by inhibiting vasodilator agents such as nitric oxide and exerting vasoconstrictive properties. However, these biological actions may raise concerns regarding the potential induction of pulmonary hypertension and an increased risk of necrotizing enterocolitis. The present scoping review also examines the clinical evidence and the potential of ambroxol in reducing the incidence of intraventricular hemorrhage in preterm infants. Ambroxol may have potential analgesic properties in managing neonatal pain, and as it can penetrate the blood-brain barrier, it suggests potential neuroprotective properties. These properties may encompass the modulation of microglial activation and the antagonistic impact on glutamate receptors. Ambroxol's attributes could contribute to a decreased susceptibility to neurological complications and have demonstrated anticonvulsant effects in preclinical studies. While low-to-moderate-quality evidence indicates potential applications of ambroxol in neonatal care, further research is needed to determine the drug's optimal dosing, timing, and safety profiles in this patient population. We need to investigate ambroxol's potential synergistic effects with antenatal steroids. Exploration is required to assess ambroxol's potential in reducing the high failure rate associated with non-invasive respiratory support for RDS. Lastly, comprehensive studies on the long-term neurodevelopmental outcomes of neonates exposed to ambroxol are essential.
Collapse
Affiliation(s)
| | - Maryam Al-Aamri
- Pediatric Nephrology, Maternity and Children Hospital Al-Ahsa, Al-Ahsa, SAU
| |
Collapse
|
7
|
Blanco-Di Matteo A, Garcia-Fernandez N, Aguinaga Pérez A, Carmona-Torre F, Oteiza AC, Leiva J, Del Pozo JL. In Vivo Effectiveness of Several Antimicrobial Locks To Eradicate Intravascular Catheter Coagulase-Negative Staphylococci Biofilms. Antimicrob Agents Chemother 2023; 67:e0126422. [PMID: 36602372 PMCID: PMC9872714 DOI: 10.1128/aac.01264-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/20/2022] [Indexed: 01/06/2023] Open
Abstract
Tunneled central venous catheter (TCVC) related infection remains a challenge in the care of hemodialysis patients. We aimed to determine the best antimicrobial lock therapy (ALT) to eradicate coagulase-negative staphylococci (CoNS) biofilms. We studied the colonization status of the catheter every 30 days by quantitative blood cultures (QBC) drawn through all catheter lumens. Those patients with a significant culture (i.e.,100 to 1,000 CFU/mL) of a CoNS were classified as patients with a high risk of developing catheter-related bloodstream infections (CRBSI). They were assigned to receive daptomycin, vancomycin, teicoplanin lock solution, or the standard of care (SoC) (i.e., heparin lock). The primary endpoint was to compare eradication ability (i.e., negative QBC for 30 days after ending ALT) rates between different locks and the SoC. A second objective was to analyze the correlation between ALT exposure and isolation of CoNS with antimicrobial resistance. Daptomycin lock was associated with a significant higher eradication success than with the SoC: 85% versus 30% (relative risk [RR] = 14, 95% confidence interval [CI] = 2.4 - 82.7); followed by teicoplanin locks with a 83.3% success (RR = 11.7; 95% CI = 2 - 70.2). We observed CoNs isolates with a higher teicoplanin MIC in patients with repeated teicoplanin locks exposure (coefficient = 0.3; 95% CI = 0.11 - 0.47). However, teicoplanin MICs decreased in patients treated with vancomycin locks (coefficient = -0.56; 95% CI = -0.85 - -0.02). Methicillin-resistance decreased with accumulative ALT (RR = 0.82; 95% CI = 0.69 - 0.98). In this study, daptomycin locks achieve the highest eradication rate of CoNS from hemodialysis catheters in vivo.
Collapse
Affiliation(s)
| | | | - Aitziber Aguinaga Pérez
- Clinical Microbiology Department, Hospital Universitario de Navarra, Pamplona, Spain
- Navarra Health Research Institute-IdiSNA, Pamplona, Spain
| | - Francisco Carmona-Torre
- Infectious Diseases Division, Clinica Universidad de Navarra, Pamplona, Spain
- Navarra Health Research Institute-IdiSNA, Pamplona, Spain
| | - Amaya C. Oteiza
- Clinical Microbiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - José Leiva
- Clinical Microbiology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Navarra Health Research Institute-IdiSNA, Pamplona, Spain
| | - José Luis Del Pozo
- Infectious Diseases Division, Clinica Universidad de Navarra, Pamplona, Spain
- Clinical Microbiology Department, Clínica Universidad de Navarra, Pamplona, Spain
- Navarra Health Research Institute-IdiSNA, Pamplona, Spain
| |
Collapse
|
8
|
Palau M, Muñoz E, Lujan E, Larrosa N, Gomis X, Márquez E, Len O, Almirante B, Abellà J, Colominas S, Gavaldà J. In Vitro and In Vivo Antimicrobial Activity of Hypochlorous Acid against Drug-Resistant and Biofilm-Producing Strains. Microbiol Spectr 2022; 10:e0236522. [PMID: 36190404 PMCID: PMC9602778 DOI: 10.1128/spectrum.02365-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/05/2022] [Indexed: 01/04/2023] Open
Abstract
The aims of this study were as follows. First, we determined the antimicrobial efficacy of hypochlorous acid (HClO) against bacterial, fungal, and yeast strains growing planktonically and growing in biofilms. Second, we sought to compare the activity of the combination of daptomycin and HClO versus those of the antimicrobial agents alone for the treatment of experimental catheter-related Staphylococcus epidermidis infection (CRI) using the antibiotic lock technique (ALT) in a rabbit model. HClO was generated through direct electric current (DC) shots at determined amperages and times. For planktonic susceptibility studies, 1 to 3 DC shots of 2, 5, and 10 mA from 0 to 300 s were applied. A DC shot of 20 mA from 0 to 20 min was applied to biofilm-producing strains. Central venous catheters were inserted into New Zealand White rabbits, inoculated with an S. epidermidis strain, and treated with saline solution or ALT using daptomycin (50 mg/mL), HClO (20 mA for 45 min), or daptomycin plus HClO. One hundred percent of the planktonic bacterial, fungal, and yeast strains were killed by applying one DC shot of 2, 5, and 10 mA, respectively. One DC shot of 20 mA for 20 min was sufficient to eradicate 100% of the tested biofilm-producing strains. Daptomycin plus HClO lock therapy showed the highest activity for experimental CRI with S. epidermidis. HClO could be an effective strategy for treating infections caused by extensively drug-resistant or multidrug-resistant and biofilm-producing strains in medical devices and chronic wounds. The results of the ALT using daptomycin plus HClO may be promising. IMPORTANCE Currently, drug-resistant infections are increasing and there are fewer antibiotics available to treat them. Therefore, there is an urgent need to find new antibiotics and nonantimicrobial strategies to treat these infections. We present a new nonantibiotic strategy based on hypochlorous acid generation to treat long-term catheter-related and chronic wounds infections.
Collapse
Affiliation(s)
- Marta Palau
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Estela Muñoz
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Enric Lujan
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department, IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Nieves Larrosa
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
- Microbiology Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Xavier Gomis
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Ester Márquez
- Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
| | - Oscar Len
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Benito Almirante
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Abellà
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department, IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Sergi Colominas
- Electrochemical Methods Laboratory-Analytical and Applied Chemistry Department, IQS School of Engineering, Universitat Ramon Llull, Barcelona, Spain
| | - Joan Gavaldà
- Antibiotic Resistance Laboratory, Vall d’Hebron Research Institute (VHIR), Infectious Diseases Department, Vall d’Hebron University Hospital, Barcelona, Spain
- Spanish Network for Research in Infectious Diseases (REIPI RD19/0016), Instituto de Salud Carlos III, Madrid, Spain
- CIBERINFEC, ISCIII—CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
9
|
Akinduti PA, Obafemi YD, Ugboko H, El-Ashker M, Akinnola O, Agunsoye CJ, Oladotun A, Phiri BSJ, Oranusi SU. Emerging vancomycin-non susceptible coagulase negative Staphylococci associated with skin and soft tissue infections. Ann Clin Microbiol Antimicrob 2022; 21:31. [PMID: 35778767 PMCID: PMC9250237 DOI: 10.1186/s12941-022-00516-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 05/13/2022] [Indexed: 11/15/2022] Open
Abstract
Backgrounds Observable emergence of Vancomycin-Non susceptible Coagulase-negative Staphylococci (VNS-CoNS) associated with skin and soft tissue infections spreading among the urban and rural populace is gradually intensifying severe complications. The isolated VNS-CoNS were evaluated with Matrix-assisted Laser Desorption/ionization Time of Flight Mass Spectrometry (MALDI ToF MS) for species characterization and pan-antimicrobial resistance pattern. Methods Out of 256 clinical samples collected including pus, abscess, ear swabs, eye swabs, and aspirates, 91 CoNS isolates were biotyped and further characterized with MALDI-TOF MS. Staphylococci marker genes, Vancomycin susceptibility, and biofilm assays were performed. Results Of 91 CoNS isolates, S.cohnii (2.3%), S.condimentii (3.4%), S. saprophyticus (6.7%), and S.scuri (21.1%) were characterized with MALDI-TOF with significant detection rate (99.4%; CI 95, 0.775–0.997, positive predictive values, 90.2%) compared to lower biotyping detection rate (p = 0.001). Hemolytic VNS-CoNS lacked nuc, pvl and spa genes from wound, ear, and aspirates of more 0.83 MARI clustered into a separate phylo-diverse group and were widely distributed in urban and peri-urban locations. MALDI TOF–MS yielded a high discriminatory potential of AUC-ROC score of 0.963 with true-positivity prediction. VNS-CoNS of MIC ≥ 16 µg/mL were observed among all the ages with significant resistance at 25th and 75th quartiles. More than 10.5% of CoNS expressed multi-antibiotic resistance with more than 8 µg/mL vancomycin cut-off values (p < 0.05). Conclusion Antibiotic resistant CoNS should be considered significant pathogens rather than contaminant. Biofilm producing VNS-S. sciuri and S. condimentii are potential strains with high pathological tropism for skin, soft tissues and wound infections, and these strains require urgent surveillance in peri-urban and rural communities. Supplementary Information The online version contains supplementary material available at 10.1186/s12941-022-00516-4.
Collapse
Affiliation(s)
- Paul A Akinduti
- Microbiology Unit, Department of Biological Sciences, Covenant University, Km 10, Idi-Iroko Road, Ota, Nigeria.
| | - Yemisi Dorcas Obafemi
- Microbiology Unit, Department of Biological Sciences, Covenant University, Km 10, Idi-Iroko Road, Ota, Nigeria
| | - Harriet Ugboko
- Microbiology Unit, Department of Biological Sciences, Covenant University, Km 10, Idi-Iroko Road, Ota, Nigeria
| | - Maged El-Ashker
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Olayemi Akinnola
- Microbiology Unit, Department of Biological Sciences, Covenant University, Km 10, Idi-Iroko Road, Ota, Nigeria
| | | | - Abiola Oladotun
- Department of Microbiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - Bruno S J Phiri
- Central Veterinary Research Institute (CVRI), Lusaka, Zambia
| | - Solomon U Oranusi
- Microbiology Unit, Department of Biological Sciences, Covenant University, Km 10, Idi-Iroko Road, Ota, Nigeria
| |
Collapse
|
10
|
Hawas S, Verderosa AD, Totsika M. Combination Therapies for Biofilm Inhibition and Eradication: A Comparative Review of Laboratory and Preclinical Studies. Front Cell Infect Microbiol 2022; 12:850030. [PMID: 35281447 PMCID: PMC8915430 DOI: 10.3389/fcimb.2022.850030] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/04/2022] [Indexed: 12/26/2022] Open
Abstract
Microbial biofilms are becoming increasingly difficult to treat in the medical setting due to their intrinsic resistance to antibiotics. To combat this, several biofilm dispersal agents are currently being developed as treatments for biofilm infections. Combining biofilm dispersal agents with antibiotics is emerging as a promising strategy to simultaneously disperse and eradicate biofilms or, in some cases, even inhibit biofilm formation. Here we review studies that have investigated the anti-biofilm activity of some well-studied biofilm dispersal agents (e.g., quorum sensing inhibitors, nitric oxide/nitroxides, antimicrobial peptides/amino acids) in combination with antibiotics from various classes. This review aims to directly compare the efficacy of different combination strategies against microbial biofilms and highlight synergistic treatments that warrant further investigation. By comparing across studies that use different measures of efficacy, we can conclude that treating biofilms in vitro and, in some limited cases in vivo, with a combination of an anti-biofilm agent and an antibiotic, appears overall more effective than treating with either compound alone. The review identifies the most promising combination therapies currently under development as biofilm inhibition and eradication therapies.
Collapse
Affiliation(s)
- Sophia Hawas
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Anthony D. Verderosa
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, QLD, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
- *Correspondence: Makrina Totsika,
| |
Collapse
|
11
|
Fu J, Zhang Y, Lin S, Zhang W, Shu G, Lin J, Li H, Xu F, Tang H, Peng G, Zhao L, Chen S, Fu H. Strategies for Interfering With Bacterial Early Stage Biofilms. Front Microbiol 2021; 12:675843. [PMID: 34168632 PMCID: PMC8217469 DOI: 10.3389/fmicb.2021.675843] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/03/2021] [Indexed: 01/12/2023] Open
Abstract
Biofilm-related bacteria show high resistance to antimicrobial treatments, posing a remarkable challenge to human health. Given bacterial dormancy and high expression of efflux pumps, persistent infections caused by mature biofilms are not easy to treat, thereby driving researchers toward the discovery of many anti-biofilm molecules that can intervene in early stage biofilms formation to inhibit further development and maturity. Compared with mature biofilms, early stage biofilms have fragile structures, vigorous metabolisms, and early attached bacteria are higher susceptibility to antimicrobials. Thus, removing biofilms at the early stage has evident advantages. Many reviews on anti-biofilm compounds that prevent biofilms formation have already been done, but most of them are based on compound classifications to introduce anti-biofilm effects. This review discusses the inhibitory effects of anti-biofilm compounds on early stage biofilms formation from the perspective of the mechanisms of action, including hindering reversible adhesion, reducing extracellular polymeric substances production, interfering in the quorum sensing, and modifying cyclic di-GMP. This information can be exploited further to help researchers in designing new molecules with anti-biofilm activity.
Collapse
Affiliation(s)
- Jingyuan Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yuning Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiyu Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Gang Shu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juchun Lin
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haohuan Li
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Funeng Xu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huaqiao Tang
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhao
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shiqi Chen
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hualin Fu
- Innovative Engineering Research Center of Veterinary Pharmaceutics, Department of Pharmacy, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
12
|
Ambroxol Treatment Suppresses the Proliferation of Chlamydia pneumoniae in Murine Lungs. Microorganisms 2021; 9:microorganisms9040880. [PMID: 33924075 PMCID: PMC8074272 DOI: 10.3390/microorganisms9040880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 11/25/2022] Open
Abstract
Ambroxol (Ax) is used as a mucolytics in the treatment of respiratory tract infections. Ax, at a general dose for humans, does not alter Chlamydia pneumoniae growth in mice. Therefore, we aimed to investigate the potential anti-chlamydial effect of Ax at a concentration four timed higher than that used in human medicine. Mice were infected with C. pneumoniae and 5-mg/kg Ax was administered orally. The number of recoverable C. pneumoniae inclusion-forming units (IFUs) in Ax-treated mice was significantly lower than that in untreated mice. mRNA expression levels of several cytokines, including interleukin 12 (IL-12), IL-23, IL-17F, interferon gamma (IFN-γ), and surfactant protein (SP)-A, increased in infected mice treated with Ax. The IFN-γ protein expression levels were also significantly higher in infected and Ax-treated mice. Furthermore, the in vitro results suggested that the ERK 1/2 activity was decreased, which is essential for the C. pneumoniae replication. SP-A and SP-D treatments significantly decreased the number of viable C. pneumoniae IFUs and significantly increased the attachment of C. pneumoniae to macrophage cells. Based on our results, a dose of 5 mg/kg of Ax exhibited an anti-chlamydial effect in mice, probably an immunomodulating effect, and may be used as supporting drug in respiratory infections caused by C. pneumoniae.
Collapse
|
13
|
Ielapi N, Nicoletti E, Lorè C, Guasticchi G, Avenoso T, Barbetta A, de Franciscis S, Andreucci M, Sapienza P, Serra R. The Role of Biofilm in Central Venous Catheter Related Bloodstream Infections: Evidence-based Nursing and Review of the Literature. Rev Recent Clin Trials 2021; 15:22-27. [PMID: 31656155 DOI: 10.2174/1574887114666191018144739] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 10/02/2019] [Accepted: 10/05/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Biofilm is a fundamental component in the pathogenesis of infections related to the use of the central venous catheter (CVC,) which can represent an important health issue in everyday practice of nursing and medical staff. OBJECTIVE The objective of the following review is to analyze the components of biofilm and their role in catheter-related infection determinism in an evidencebased nursing perspective in such a way as to give health professionals useful suggestions in the prevention and management of these complications. METHODS The following databases were consulted for the bibliographic search: Medline, Scopus, Science Direct. Biofilm can be the cause of CVC extraction and can lead to serious haematogenic infectious complications that can increase the morbidity and mortality of affected patients. RESULTS Updated pathophysiologic knowledge of biofilm formation and appropriate diagnostic methodology are pivotal in understanding and detecting CVC-related infections. Lock therapy appears to be a useful, preventive, and therapeutic aid in the management of CVCrelated infections. New therapies attempting to stop bacterial adhesion on the materials used could represent new frontiers for the prevention of CVC-related infections. CONCLUSION The correct evidence-based nursing methods, based on the use of guidelines, provides the opportunity to minimize the risks of infection through the implementation of a series of preventive measures both during the CVC positioning phase and in the subsequent phase, for example, during device management which is performed by medical and nursing staff.
Collapse
Affiliation(s)
- Nicola Ielapi
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Emergency, Vibo Valentia Hospital, Vibo Valentia (VV), Italy
| | | | | | - Giorgio Guasticchi
- Department of Medicine, Media Valle del Tevere Hospital, Todi (PG), Italy
| | - Tiziana Avenoso
- Department of Ophtalmology. Pugliese - Ciaccio - Hospital, Catanzaro (CZ), Italy
| | - Andrea Barbetta
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Stefano de Franciscis
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Michele Andreucci
- Department of Health Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Paolo Sapienza
- Department of Surgery "Pietro Valdoni", "Sapienza" University of Rome, Rome, Italy
| | - Raffaele Serra
- Interuniversity Center of Phlebolymphology (CIFL), International Research and Educational Program in Clinical and Experimental Biotechnology, Headquarters, University Magna Graecia of Catanzaro, Catanzaro, Italy.,Department of Medical and Surgical Sciences, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
14
|
Li S, Kuok KI, Ji X, Xu A, Yin H, Zheng J, Tan H, Wang R. Supramolecular Modulation of Antibacterial Activity of Ambroxol by Cucurbit[7]uril. Chempluschem 2021; 85:679-683. [PMID: 32253831 DOI: 10.1002/cplu.202000119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/24/2020] [Indexed: 12/14/2022]
Abstract
Supramolecular encapsulation by cucurbit[7]uril (CB[7]) was recently demonstrated to provide a simple and efficient method for antibacterial activity regulation of antibiotics. In this work, CB[7] was shown to form binary host-guest complex with ambroxol hydrochloride (ABX), a clinical mucokinetic and expectorant drug, which was reported to exhibit certain antibacterial activity. 1 H NMR titration and isothermal titration calorimetry experiment results suggested that the 4-hydroxyl cyclohexylamine group of ABX was included inside the CB[7] cavity, with a binding constant Ka of (6.69±0.11)×105 M-1 in phosphate buffered saline (PBS) solution, thermodynamically driven by both enthalpy change (ΔH=-12.2 kJ/mol) and entropy change (TΔS=21.1 kJ/mol). More importantly, ABX's inhibitory activity (MIC50 ) against bacillary strains towards Pseudomonas aeruginosa and Escherichia coli strains was decreased from (5.11±0.31)×10-6 M-1 and (2.63±0.34)×10-5 M-1 to zero upon encapsulation by CB[7], and was subsequently recovered to almost its original activity when a competitive guest, amantadine hydrochloride, for disassembling CB[7]-ABX complex, was added, suggesting that the antibacterial activity of ABX could be readily "turned off/on" upon its complexation and decomplexation with CB[7].
Collapse
Affiliation(s)
- Shengke Li
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Kit Ieng Kuok
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, P. R. China
| | - Xia Ji
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, P. R. China
| | - Anni Xu
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Hang Yin
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, P. R. China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, P. R. China
| | - Huaping Tan
- School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, 999078, Macau, P. R. China
| |
Collapse
|
15
|
Liang H, Zhang L, Guo X, Sun L. Vancomycin-lock therapy for prevention of catheter-related bloodstream infection in very low body weight infants. BMC Pediatr 2021; 21:3. [PMID: 33397325 PMCID: PMC7780620 DOI: 10.1186/s12887-020-02482-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 12/20/2020] [Indexed: 11/10/2022] Open
Abstract
Background This study was to evaluate the effectiveness and safety of vancomycin- lock therapy for the prevention of catheter-related bloodstream infection (CRBSI) in very low body weight (VLBW) preterm infant patients. Methods One hundred and thirty-seven cases of VLBW preterm infants who retained peripherally inserted central catheters (PICCs) were retrospectively reviewed, including 68 treating with heparin plus vancomycin (vancomycin-lock group) and 69 with heparin only (control group). The incidence of CRBSI, related pathogenic bacteria, adverse events during the treatment, complications, antibiotic exposure, PICC usage time, hospital stay, etc. were compared between the above two groups. Results The incidence rate of CRBSI in the vancomycin-lock group (4.4%, 3/68) was significantly less than in the control group (21.7%, 15/69, p = 0.004). Total antibiotic exposure time during the whole observation period was significantly shorter in the group than in the control group (11.2 ± 10.0 vs 23.6 ± 16.1 d; p < 0.001). No hypoglycemia occurred during the locking, and the blood concentrations of vancomycin were not detectable. Conclusions Vancomycin-lock may effectively prevent CRBSI in Chinese VLBW preterm infants and reduce the exposure time of antibiotics, without causing obvious side complications.
Collapse
Affiliation(s)
- Hong Liang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, P.R. China
| | - Lian Zhang
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, P.R. China. .,Department of Neonatology, Shenzhen Bao'an Maternal and Child Health Hospital, Shenzhen, 518133, P.R. China.
| | - Xiaoping Guo
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, P.R. China
| | - Li Sun
- Department of Neonatology, Guangzhou Women and Children's Medical Center, Guangzhou, 510623, P.R. China
| |
Collapse
|
16
|
Pinto RM, Soares FA, Reis S, Nunes C, Van Dijck P. Innovative Strategies Toward the Disassembly of the EPS Matrix in Bacterial Biofilms. Front Microbiol 2020; 11:952. [PMID: 32528433 PMCID: PMC7264105 DOI: 10.3389/fmicb.2020.00952] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 04/21/2020] [Indexed: 12/14/2022] Open
Abstract
Bacterial biofilms represent a major concern at a worldwide level due to the high demand for implantable medical devices and the rising numbers of bacterial resistance. The complex structure of the extracellular polymeric substances (EPS) matrix plays a major role in this phenomenon, since it protects bacteria from antibiotics, avoiding drug penetration at bactericidal concentrations. Besides, this structure promotes bacterial cells to adopt a dormant lifestyle, becoming less susceptible to antibacterial agents. Currently, the available treatment for biofilm-related infections consists in the administration of conventional antibiotics at high doses for a long-term period. However, this treatment lacks efficiency against mature biofilms and for implant-associated biofilms it may be necessary to remove the medical device. Thus, biofilm-related infections represent an economical burden for the healthcare systems. New strategies focusing on the matrix are being highlighted as alternative therapies to eradicate biofilms. Here, we outline reported matrix disruptive agents, nanocarriers, and technologies, such as application of magnetic fields, photodynamic therapy, and ultrasounds, that have been under investigation to disrupt the EPS matrix of clinically relevant bacterial biofilms. In an ideal therapy, a synergistic effect between antibiotics and the explored innovated strategies is aimed to completely eradicate biofilms and avoid antimicrobial resistance phenomena.
Collapse
Affiliation(s)
- Rita M Pinto
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal.,Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| | - Filipa A Soares
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, Porto, Portugal
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, KU Leuven, Leuven, Belgium.,Center for Microbiology, VIB-KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
Bengtsson T, Selegård R, Musa A, Hultenby K, Utterström J, Sivlér P, Skog M, Nayeri F, Hellmark B, Söderquist B, Aili D, Khalaf H. Plantaricin NC8 αβ exerts potent antimicrobial activity against Staphylococcus spp. and enhances the effects of antibiotics. Sci Rep 2020; 10:3580. [PMID: 32107445 PMCID: PMC7046733 DOI: 10.1038/s41598-020-60570-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
The use of conventional antibiotics has substantial clinical efficacy, however these vital antimicrobial agents are becoming less effective due to the dramatic increase in antibiotic-resistant bacteria. Novel approaches to combat bacterial infections are urgently needed and bacteriocins represent a promising alternative. In this study, the activities of the two-peptide bacteriocin PLNC8 αβ were investigated against different Staphylococcus spp. The peptide sequences of PLNC8 α and β were modified, either through truncation or replacement of all L-amino acids with D-amino acids. Both L- and D-PLNC8 αβ caused rapid disruption of lipid membrane integrity and were effective against both susceptible and antibiotic resistant strains. The D-enantiomer was stable against proteolytic degradation by trypsin compared to the L-enantiomer. Of the truncated peptides, β1–22, β7–34 and β1–20 retained an inhibitory activity. The peptides diffused rapidly (2 min) through the bacterial cell wall and permeabilized the cell membrane, causing swelling with a disorganized peptidoglycan layer. Interestingly, sub-MIC concentrations of PLNC8 αβ substantially enhanced the effects of different antibiotics in an additive or synergistic manner. This study shows that PLNC8 αβ is active against Staphylococcus spp. and may be developed as adjuvant in combination therapy to potentiate the effects of antibiotics and reduce their overall use.
Collapse
Affiliation(s)
- Torbjörn Bengtsson
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, SE-70362, Sweden
| | - Robert Selegård
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, SE-70362, Sweden.,Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Amani Musa
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, SE-70362, Sweden
| | - Kjell Hultenby
- Department of Laboratory Medicine, Division of Clinical Research Centre, Karolinska Institutet, Stockholm, SE-14186, Sweden
| | - Johanna Utterström
- Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | | | | | - Fariba Nayeri
- PEAS Research Institute, Department of Infection Control, Linköping, SE-58273, Sweden
| | - Bengt Hellmark
- Department of Clinical Microbiology, Örebro University Hospital, Örebro, SE-70185, Sweden
| | - Bo Söderquist
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, SE-70362, Sweden.,Department of Clinical Microbiology, Örebro University Hospital, Örebro, SE-70185, Sweden
| | - Daniel Aili
- Division of Molecular Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping, SE-58183, Sweden
| | - Hazem Khalaf
- Cardiovascular Research Centre, School of Medical Sciences, Örebro University, Örebro, SE-70362, Sweden.
| |
Collapse
|
18
|
Morgado-Gamero WB, Mendoza Hernandez M, Castillo Ramirez M, Medina-Altahona J, De La Hoz S, Posso Mendoza H, Parody A, Teixeira EC, Agudelo-Castañeda DM. Antibiotic Resistance of Airborne Viable Bacteria and Size Distribution in Neonatal Intensive Care Units. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E3340. [PMID: 31510047 PMCID: PMC6765827 DOI: 10.3390/ijerph16183340] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 05/08/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022]
Abstract
Despite their significant impact on public health, antibiotic resistance and size distributions of airborne viable bacteria in indoor environments in neonatal intensive care units (NICU) remain understudied. Therefore, the objective of this study was to assess the antibiotic resistance of airborne viable bacteria for different sizes (0.65-7 µm) in private-style and public-style neonatal intensive care units (NICU). Airborne bacteria concentrations were assessed by a six-stage Andersen impactor, operating at 28.3 L/min. Public-style NICU revealed higher concentrations of airborne viable bacteria (53.00 to 214.37 CFU/m3) than private-style NICU (151.94-466.43), indicating a possible threat to health. In the public-style NICU, Staphylococcus was the highest bacterial genera identified in the present study, were Staphylococcus saprophyticus and Staphylococcus epidermidis predominated, especially in the second bronchi and alveoli size ranges. Alloiococcus otitidis, Bacillus subtiles, Bacillus thuringiensis, Kocuria rosea, and Pseudomonas pseudoalcaligene, were identified in the alveoli size range. In NICU#2, eight species were identified in the alveoli size range: Bacillus cereus, Bacillus subtilis, Bacillus thuringiensis, Eikenella corrodens, Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, and Streptococcus gordoni. Multi-drug-resistant organisms (MDROs) were found in both of the NICUs. Bacillus cereus strains were resistant to Ampicillin, Cefoxitin, Ceftaroline, and Penicillin G. Staphylococcus cohnii ssp. cohnii was resistant in parallel to ampicillin and G penicillin. Staphylococcus saprophyticus strains were resistant to Ampicillin, Penicillin G, Oxaxilin, and Erythromycin. Results may indicate a potential threat to human health due to the airborne bacteria concentration and their antibiotic resistance ability. The results may provide evidence for the need of interventions to reduce indoor airborne particle concentrations and their transfer to premature infants with underdeveloped immune systems, even though protocols for visitors and cleaning are well-established.
Collapse
Affiliation(s)
- Wendy Beatriz Morgado-Gamero
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58#55-66, Barranquilla 080002, Colombia.
| | - Martha Mendoza Hernandez
- Department of Civil and Environmental Engineering, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia.
| | | | - Jhorma Medina-Altahona
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58#55-66, Barranquilla 080002, Colombia
| | - Stephanie De La Hoz
- Department of Exact and Natural Sciences, Universidad de la Costa, Calle 58#55-66, Barranquilla 080002, Colombia.
| | - Heidy Posso Mendoza
- Department of Bacteriology, Universidad Metropolitana, Calle 76 No. 42-78, Barranquilla 080020, Colombia.
| | - Alexander Parody
- Engineering Faculty, Universidad Libre Barranquilla, Carrera 46 No. 48-170, Barranquilla 080002, Colombia.
| | - Elba C Teixeira
- Postgraduate Program in Remote Sensing, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS 91501-970, Brazil.
| | - Dayana Milena Agudelo-Castañeda
- Department of Civil and Environmental Engineering, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 081007, Colombia.
| |
Collapse
|
19
|
Selegård R, Musa A, Nyström P, Aili D, Bengtsson T, Khalaf H. Plantaricins markedly enhance the effects of traditional antibiotics against Staphylococcus epidermidis. Future Microbiol 2019; 14:195-205. [PMID: 30648887 PMCID: PMC6393846 DOI: 10.2217/fmb-2018-0285] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Aim: Bacteriocins are considered as promising alternatives to antibiotics against infections. In this study, the plantaricins (Pln) A, E, F, J and K were investigated for their antimicrobial activity against Staphylococcus epidermidis. Materials & methods: The effects on membrane integrity were studied using liposomes and viable bacteria, respectively. Results: We show that PlnEF and PlnJK caused rapid and significant lysis of S. epidermidis, and induced lysis of liposomes. The PlnEF and PlnJK displayed similar mechanisms by targeting and disrupting the bacterial cell membrane. Interestingly, Pln enhanced the effects of different antibiotics by 30- to 500-fold. Conclusion: This study shows that Pln in combination with low concentrations of antibiotics is efficient against S. epidermidis and may be developed as potential treatment of infections.
Collapse
Affiliation(s)
- Robert Selegård
- Faculty of Medicine & Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Amani Musa
- Faculty of Medicine & Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Pontus Nyström
- Faculty of Medicine & Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Daniel Aili
- Division of Molecular Physics, Department of Physics, Chemistry & Biology (IFM), Linköping University, Linköping, Sweden
| | - Torbjörn Bengtsson
- Faculty of Medicine & Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Hazem Khalaf
- Faculty of Medicine & Health, School of Medical Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
20
|
Ricciardelli A, Casillo A, Papa R, Monti DM, Imbimbo P, Vrenna G, Artini M, Selan L, Corsaro MM, Tutino ML, Parrilli E. Pentadecanal inspired molecules as new anti-biofilm agents against Staphylococcus epidermidis. BIOFOULING 2018; 34:1110-1120. [PMID: 30698031 DOI: 10.1080/08927014.2018.1544246] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/30/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Staphylococcus epidermidis, a harmless human skin colonizer, is a significant nosocomial pathogen in predisposed hosts because of its capability to form a biofilm on indwelling medical devices. In a recent paper, the purification and identification of the pentadecanal produced by the Antarctic bacterium Pseudoalteromonas haloplanktis TAC125, able to impair S. epidermidis biofilm formation, were reported. Here the authors report on the chemical synthesis of pentadecanal derivatives, their anti-biofilm activity on S. epidermidis, and their action in combination with antibiotics. The results clearly indicate that the pentadecanal derivatives were able to prevent, to a different extent, biofilm formation and that pentadecanoic acid positively modulated the antimicrobial activity of the vancomycin. The cytotoxicity of these new anti-biofilm molecules was tested on two different immortalized eukaryotic cell lines in view of their potential applications.
Collapse
Affiliation(s)
| | - Angela Casillo
- a Chemical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Rosanna Papa
- b Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Daria Maria Monti
- a Chemical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Paola Imbimbo
- a Chemical Sciences , University of Naples "Federico II" , Naples , Italy
| | - Gianluca Vrenna
- b Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Marco Artini
- b Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | - Laura Selan
- b Department of Public Health and Infectious Diseases , Sapienza University , Rome , Italy
| | | | - Maria Luisa Tutino
- a Chemical Sciences , University of Naples "Federico II" , Naples , Italy
| | | |
Collapse
|
21
|
Commensal bacterial modulation of the host immune response to ameliorate pain in a murine model of chronic prostatitis. Pain 2018; 158:1517-1527. [PMID: 28715352 DOI: 10.1097/j.pain.0000000000000944] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The human commensal microflora plays an essential role in modulating the immune response to control homeostasis. Staphylococcus epidermidis, a commensal bacterium most commonly associated with the skin exerts such effects locally, modulating local immune responses during inflammation and preventing superinfection by pathogens such as Staphylococcus aureus. Although the prostate is considered by many to be sterile, multiple investigations have shown that small numbers of gram-positive bacterial species such as S. epidermidis can be isolated from the expressed prostatic secretions of both healthy and diseased men. Chronic pelvic pain syndrome is a complex syndrome with symptoms including pain and lower urinary tract dysfunction. It has an unknown etiology and limited effective treatments but is associated with modulation of prostate immune responses. Chronic pelvic pain syndrome can be modeled using murine experimental prostatitis (EAP), where CD4+ve IL17A+ve T cells have been shown to play a critical role in disease orchestration and development of pelvic tactile allodynia. Here, we report that intraurethral instillation of a specific S. epidermidis strain (designated NPI [non-pain inducing]), isolated from the expressed prostatic secretion of a healthy human male, into EAP-treated mice reduced the pelvic tactile allodynia responses and increased CD4+ve IL17A+ve T-cell numbers associated with EAP. Furthermore, a cell wall constituent of NPI, lipoteichoic acid, specifically recapitulates these effects and mediates increased expression of CTLA4-like ligands PDL1 and PDL2 on prostatic CD11b+ve antigen-presenting cells. These results identify a new potential therapeutic role for commensal S. epidermidis NPI lipoteichoic acid in the treatment of prostatitis-associated pain.
Collapse
|
22
|
[More than expectorant: new scientific data on ambroxol in the context of the treatment of bronchopulmonary diseases]. MMW Fortschr Med 2017. [PMID: 28643291 DOI: 10.1007/s15006-017-9805-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Ambroxol has been established for decades in the treatment of acute and chronic respiratory diseases. In 2015, the European Medicines Agency reassessed the clinical benefit-risk ratio of the drug. OBJECTIVE What new scientific data on ambroxol, which are relevant to the treatment of bronchopulmonary diseases, are available? METHOD The review is based on a systematic literature research in medline with the search term "ambroxol" during the publication period 2006-2015. Non-relevant publications were excluded manually. RESULTS AND CONCLUSIONS Ambroxol is still intensively researched. The traditional indication as an expectorant is confirmed. But there is also an ever better understanding of the various mechanisms of action as well as the ever more exact modeling of the structures under investigation. New fields of application are conceivable, e. g. in patients with severe pulmonary disease who undergo surgery or who are in intensive care, as an adjuvant in anti-infective therapies, especially in infections with biofilm-producing pathogens, or in rare diseases such as lysosomal storage diseases. However, final evidence of the clinical relevance in these fields of application is still missing.
Collapse
|
23
|
Investigation of Glycopeptide Susceptibility of Coagulase-Negative Staphylococci (CoNS) From a Tertiary Care Hospital in Gorgan, Northern Iran. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2016. [DOI: 10.5812/pedinfect.37264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|