1
|
Golikova EA, Alshevskaya AA, Alrhmoun S, Sivitskaya NA, Sennikov SV. TCR-T cell therapy: current development approaches, preclinical evaluation, and perspectives on regulatory challenges. J Transl Med 2024; 22:897. [PMID: 39367419 PMCID: PMC11451006 DOI: 10.1186/s12967-024-05703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
TCR-T cell therapy represents a promising advancement in adoptive immunotherapy for cancer treatment. Despite its potential, the development and preclinical testing of TCR-T cells face significant challenges. This review provides a structured overview of the key stages in preclinical testing, including in silico, in vitro, and in vivo methods, within the context of the sequential development of novel therapies. This review aimed to systematically outline the processes for evaluating TCR-T cells at each stage: from in silico approaches used to predict target antigens, assess cross-reactivity, and minimize off-target effects, to in vitro assays designed to measure cell functionality, cytotoxicity, and activation. Additionally, the review discusses the limitations of in vivo testing in animal models, particularly in accurately reflecting the human tumor microenvironment and immune responses. Performed analysis emphasizes the importance of these preclinical stages in the safe and effective development of TCR-T cell therapies. While current models provide valuable insights, we identify critical gaps, particularly in in vivo biodistribution and toxicity assessments, and propose the need for enhanced standardization and the development of more representative models. This structured approach aims to improve the predictability and safety of TCR-T cell therapy as it advances towards clinical application.
Collapse
Affiliation(s)
- Elena A Golikova
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
| | - Alina A Alshevskaya
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia.
| | - Saleh Alrhmoun
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099, Novosibirsk, Russia
| | - Natalia A Sivitskaya
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
| | - Sergey V Sennikov
- Federal State Autonomous Educational Institution of Higher Education, I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), 119435, Moscow, Russia
- Federal State Budgetary Scientific Institution, "Research Institute of Fundamental and Clinical Immunology" (RIFCI), 630099, Novosibirsk, Russia
| |
Collapse
|
2
|
Raines SLM, Falcinelli SD, Peterson JJ, Van Gulck E, Allard B, Kirchherr J, Vega J, Najera I, Boden D, Archin NM, Margolis DM. Nanoparticle delivery of Tat synergizes with classical latency reversal agents to express HIV antigen targets. Antimicrob Agents Chemother 2024; 68:e0020124. [PMID: 38829049 PMCID: PMC11232404 DOI: 10.1128/aac.00201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/10/2024] [Indexed: 06/05/2024] Open
Abstract
Limited cellular levels of the HIV transcriptional activator Tat are one contributor to proviral latency that might be targeted in HIV cure strategies. We recently demonstrated that lipid nanoparticles containing HIV tat mRNA induce HIV expression in primary CD4 T cells. Here, we sought to further characterize tat mRNA in the context of several benchmark latency reversal agents (LRAs), including inhibitor of apoptosis protein antagonists (IAPi), bromodomain and extra-Terminal motif inhibitors (BETi), and histone deacetylase inhibitors (HDACi). tat mRNA reversed latency across several different cell line models of HIV latency, an effect dependent on the TAR hairpin loop. Synergistic enhancement of tat mRNA activity was observed with IAPi, HDACi, and BETi, albeit to variable degrees. In primary CD4 T cells from durably suppressed people with HIV, tat mRNA profoundly increased the frequencies of elongated, multiply-spliced, and polyadenylated HIV transcripts, while having a lesser impact on TAR transcript frequencies. tat mRNAs alone resulted in variable HIV p24 protein induction across donors. However, tat mRNA in combination with IAPi, BETi, or HDACi markedly enhanced HIV RNA and protein expression without overt cytotoxicity or cellular activation. Notably, combination regimens approached or in some cases exceeded the latency reversal activity of maximal mitogenic T cell stimulation. Higher levels of tat mRNA-driven HIV p24 induction were observed in donors with larger mitogen-inducible HIV reservoirs, and expression increased with prolonged exposure time. Combination LRA strategies employing both small molecule inhibitors and Tat delivered to CD4 T cells are a promising approach to effectively target the HIV reservoir.
Collapse
Affiliation(s)
- Samuel L. M. Raines
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shane D. Falcinelli
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jackson J. Peterson
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Ellen Van Gulck
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Brigitte Allard
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jennifer Kirchherr
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jerel Vega
- Arcturus Therapeutics, Science Center Drive, San Diego, California, USA
| | - Isabel Najera
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Daniel Boden
- Janssen Infectious Diseases, Janssen Research and Development, Janssen Pharmaceutica NV, Beerse, Belgium
| | - Nancie M. Archin
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - David M. Margolis
- Department of Medicine and UNC HIV Cure Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
3
|
Barati M, Mirzavi F, Atabaki M, Bibak B, Mohammadi M, Jaafari MR. A review of PD-1/PD-L1 siRNA delivery systems in immune T cells and cancer cells. Int Immunopharmacol 2022; 111:109022. [PMID: 35987146 DOI: 10.1016/j.intimp.2022.109022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 11/19/2022]
Abstract
OBJECTIVES Programmed cell death 1 (PD-1) is a member of the CD28/CTLA-4 family of inhibitory immunological checkpoint receptors that's also widely produced by exhausted T lymphocytes in an immunosuppressive tumor microenvironment. PD-1 binds to programmed death ligand (PD-L1) and suppresses anti-cancer activity of T lymphocytes. We examined the current literature on how siRNA delivery systems can be used to target PD-1 and PD-L1, as well as the anti-cancer mechanisms and challenges associated with siRNA molecules. We look at studies that use program death 1 siRNA or program death 1 ligand siRNA to treat cancer. Several databases have been used for this purpose, including NCBI, Scopus, and Google Scholar. KEY FINDINGS This study looked at several methods for delivering siRNA to immune cells and cancer cells. According to these findings, suppressing PD-1 in T cells increases T lymphocyte activity. PD-L1 suppression in DCs improves antigen presentation and co-stimulatory signals on their surface, resulting in T cell activation. Chemotherapy resistance and cancer cell suppression of T cells are reduced when PD-L1/2 is suppressed in cancer cells. CONCLUSION The findings of this study indicated that several strategies for siRNA transfection to immune and cancer cells have been evaluated in recent decades, some of which effectively transfect siRNA to target cells, and defined PD-1 siRNA as a promising strategy for cancer treatment.
Collapse
Affiliation(s)
- Mehdi Barati
- Department of Pathobiology and Laboratory Sciences, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farshad Mirzavi
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mahdi Atabaki
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Bahram Bibak
- Department of Physiology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mojgan Mohammadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022; 286:121510. [DOI: 10.1016/j.biomaterials.2022.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
5
|
Harris E, Elmer JJ. Optimization of electroporation and other non-viral gene delivery strategies for T cells. Biotechnol Prog 2020; 37:e3066. [PMID: 32808434 DOI: 10.1002/btpr.3066] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022]
Abstract
CAR-T therapy is a particularly effective treatment for some types of cancer that uses retroviruses to deliver the gene for a chimeric antigen receptor (CAR) to a patient's T cells ex vivo. The CAR enables the T cells to bind and eradicate cells with a specific surface marker (e.g., CD19+ B cells) after they are transfused back into the patient. This treatment was proven to be particularly effective in treating non-Hodgkin's lymphoma (NHL) and acute lymphoblastic leukemia (ALL), but the current CAR-T cell manufacturing process has a few significant drawbacks. For example, while lentiviral and gammaretroviral transduction are both relatively effective, the process of producing viral vectors is time-consuming and costly. Additionally, patients must undergo follow up appointments for several years to monitor them for any unanticipated side effects associated with the virus. Therefore, several studies have endeavored to find alternative non-viral gene delivery methods that are less expensive, more precise, simple, and safe. This review focuses on the current state of the most promising non-viral gene delivery techniques, including electroporation and transfection with cationic polymers or lipids.
Collapse
Affiliation(s)
- Emily Harris
- Villanova University, Department of Chemical & Biological Engineering, Villanova, Pennsylvania, USA
| | - Jacob J Elmer
- Villanova University, Department of Chemical & Biological Engineering, Villanova, Pennsylvania, USA
| |
Collapse
|
6
|
Fu Y, Fang Y, Lin Z, Yang L, Zheng L, Hu H, Yu T, Huang B, Chen S, Wang H, Xu S, Bao W, Chen Q, Sun L. Inhibition of cGAS-Mediated Interferon Response Facilitates Transgene Expression. iScience 2020; 23:101026. [PMID: 32283527 PMCID: PMC7155207 DOI: 10.1016/j.isci.2020.101026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/10/2020] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
DNA transfection is often the bottleneck of research and gene therapy practices. To explore the mechanism regulating transgene expression, we investigated the role of the cGAS-STING signaling pathway, which induces type-I interferons in response to DNA. We confirmed that deletion of cGAS enhances transgene expression at the protein level by ~2- to 3-fold. This enhancement is inversely correlated with the expression of interferons and interferon stimulated genes (ISGs), which suppress expression of transfected genes at the mRNA level. Mechanistically, DNA transfection activates the cGAS-STING pathway and induces the expression of the OAS family proteins, leading to the activation of RNaseL and degradation of mRNA derived from transgenes. Administration of chemical inhibitors that block cGAS-mediated signaling cascades improves the expression of transgenes by ~1.5- to 3-fold in multiple cell lines and primary cells, including T cells. These data suggest that targeting the cGAS-STING pathway can improve transgene expression, and this strategy may be applied to gene therapy.
Collapse
Affiliation(s)
- Yajuan Fu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Yijun Fang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Zhang Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Lei Yang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Liqun Zheng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Hao Hu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Tingting Yu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Baoting Huang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Suxing Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Hanze Wang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Shan Xu
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Wei Bao
- Fujian Normal University Hospital, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China.
| | - Lijun Sun
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, College Town, Fuzhou, Fujian Province 350117, China.
| |
Collapse
|
7
|
Stewart MP, Langer R, Jensen KF. Intracellular Delivery by Membrane Disruption: Mechanisms, Strategies, and Concepts. Chem Rev 2018; 118:7409-7531. [PMID: 30052023 PMCID: PMC6763210 DOI: 10.1021/acs.chemrev.7b00678] [Citation(s) in RCA: 456] [Impact Index Per Article: 65.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Intracellular delivery is a key step in biological research and has enabled decades of biomedical discoveries. It is also becoming increasingly important in industrial and medical applications ranging from biomanufacture to cell-based therapies. Here, we review techniques for membrane disruption-based intracellular delivery from 1911 until the present. These methods achieve rapid, direct, and universal delivery of almost any cargo molecule or material that can be dispersed in solution. We start by covering the motivations for intracellular delivery and the challenges associated with the different cargo types-small molecules, proteins/peptides, nucleic acids, synthetic nanomaterials, and large cargo. The review then presents a broad comparison of delivery strategies followed by an analysis of membrane disruption mechanisms and the biology of the cell response. We cover mechanical, electrical, thermal, optical, and chemical strategies of membrane disruption with a particular emphasis on their applications and challenges to implementation. Throughout, we highlight specific mechanisms of membrane disruption and suggest areas in need of further experimentation. We hope the concepts discussed in our review inspire scientists and engineers with further ideas to improve intracellular delivery.
Collapse
Affiliation(s)
- Martin P. Stewart
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Robert Langer
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
- The Koch Institute for Integrative Cancer Research,
Massachusetts Institute of Technology, Cambridge, USA
| | - Klavs F. Jensen
- Department of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, USA
| |
Collapse
|
8
|
Abstract
T-lymphocytes genetically engineered with the chimeric antigen receptor (CAR-T) have shown great therapeutic potential in cancer treatment. A variety of preclinical researches and clinical trials of CAR-T therapy have been carried out to lay the foundation for future clinical application. In these researches, several gene-transfer methods were used to deliver CARs or other genes into T-lymphocytes, equipping CAR-modified T cells with a property of recognizing and attacking antigen-expressing tumor cells in a major histocompatibility complex-independent manner. Here, we summarize the gene-transfer vectors commonly used in the generation of CAR-T cell, including retrovirus vectors, lentivirus vectors, the transposon/transposase system, the plasmid-based system, and the messenger RNA electroporation system. The following aspects were compared in parallel: efficiency of gene transfer, the integration methods in the modified T cells, foreground of scale-up production, and application and development in clinical trials. These aspects should be taken into account to generate the optimal CAR-gene vector that may be suitable for future clinical application.
Collapse
|
9
|
Caffrey LM, deRonde BM, Minter LM, Tew GN. Mapping Optimal Charge Density and Length of ROMP-Based PTDMs for siRNA Internalization. Biomacromolecules 2016; 17:3205-3212. [PMID: 27599388 PMCID: PMC5094354 DOI: 10.1021/acs.biomac.6b00900] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A fundamental understanding of how polymer structure impacts internalization and delivery of biologically relevant cargoes, particularly small interfering ribonucleic acid (siRNA), is of critical importance to the successful design of improved delivery reagents. Herein we report the use of ring-opening metathesis polymerization (ROMP) methods to synthesize two series of guanidinium-rich protein transduction domain mimics (PTDMs): one based on an imide scaffold that contains one guanidinium moiety per repeat unit, and another based on a diester scaffold that contains two guanidinium moieties per repeat unit. By varying both the degree of polymerization and, in effect, the relative number of cationic charges in each PTDM, the performances of the two ROMP backbones for siRNA internalization were evaluated and compared. Internalization of fluorescently labeled siRNA into Jurkat T cells demonstrated that fluorescein isothiocyanate (FITC)-siRNA internalization had a charge content dependence, with PTDMs containing approximately 40 to 60 cationic charges facilitating the most internalization. Despite this charge content dependence, the imide scaffold yielded much lower viabilities in Jurkat T cells than the corresponding diester PTDMs with similar numbers of cationic charges, suggesting that the diester scaffold is preferred for siRNA internalization and delivery applications. These developments will not only improve our understanding of the structural factors necessary for optimal siRNA internalization, but will also guide the future development of optimized PTDMs for siRNA internalization and delivery.
Collapse
Affiliation(s)
- Leah M Caffrey
- Department of Polymer Science and Engineering, ‡Department of Veterinary and Animal Sciences, and §Molecular and Cellular Biology Program, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Brittany M deRonde
- Department of Polymer Science and Engineering, ‡Department of Veterinary and Animal Sciences, and §Molecular and Cellular Biology Program, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Lisa M Minter
- Department of Polymer Science and Engineering, ‡Department of Veterinary and Animal Sciences, and §Molecular and Cellular Biology Program, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, ‡Department of Veterinary and Animal Sciences, and §Molecular and Cellular Biology Program, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
10
|
Lin H, Song P, Zhao Y, Xue LJ, Liu Y, Chu CQ. Targeting Th17 Cells with Small Molecules and Small Interference RNA. Mediators Inflamm 2015; 2015:290657. [PMID: 26792955 PMCID: PMC4697089 DOI: 10.1155/2015/290657] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 11/30/2015] [Indexed: 02/05/2023] Open
Abstract
T helper 17 (Th17) cells play a central role in inflammatory and autoimmune diseases via the production of proinflammatory cytokines interleukin- (IL-) 17, IL-17F, and IL-22. Anti-IL-17 monoclonal antibodies show potent efficacy in psoriasis but poor effect in rheumatoid arthritis (RA) and Crohn's disease. Alternative agents targeting Th17 cells may be a better way to inhibit the development and function of Th17 cells than antibodies of blocking a single effector cytokine. Retinoic acid-related orphan receptor gamma t (RORγt) which acts as the master transcription factor of Th17 differentiation has been an attractive pharmacologic target for the treatment of Th17-mediated autoimmune disease. Recent progress in technology of chemical screen and engineering nucleic acid enable two new classes of therapeutics targeting RORγt. Chemical screen technology identified several small molecule specific inhibitors of RORγt from a small molecule library. Systematic evolution of ligands by exponential enrichment (SELEX) technology enabled target specific aptamers to be isolated from a random sequence oligonucleotide library. In this review, we highlight the development and therapeutic potential of small molecules inhibiting Th17 cells by targeting RORγt and aptamer mediated CD4(+) T cell specific delivery of small interference RNA against RORγt gene expression to inhibit pathogenic effector functions of Th17 lineage.
Collapse
Affiliation(s)
- Hui Lin
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Pingfang Song
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR 97239, USA
| | - Yi Zhao
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li-Jia Xue
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Liu
- Department of Rheumatology and Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and VA Portland Health Care System, Portland, OR 97239, USA
| |
Collapse
|
11
|
deRonde BM, Torres JA, Minter LM, Tew GN. Development of Guanidinium-Rich Protein Mimics for Efficient siRNA Delivery into Human T Cells. Biomacromolecules 2015; 16:3172-9. [PMID: 26324222 DOI: 10.1021/acs.biomac.5b00795] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
RNA interference is gaining attention as a means to explore new molecular pathways and for its potential as a therapeutic; however, its application in immortal and primary T cells is limited due to challenges with efficient delivery in these cell types. Herein, we report the development of guanidinium-rich protein transduction domain mimics (PTDMs) based on a ring-opening metathesis polymerization scaffold that delivers siRNA into Jurkat T cells and human peripheral blood mononuclear cells (hPBMCs). Homopolymer and block copolymer PTDMs with varying numbers of guanidinium moieties were designed and tested to assess the effect cationic charge content and the addition of a segregated, hydrophobic block had on siRNA internalization and delivery. Internalization of fluorescently labeled siRNA into Jurkat T cells illustrates that the optimal cationic charge content, 40 charges per polymer, leads to higher efficiencies, with block copolymers outperforming their homopolymer counterparts. PTDMs also outperformed commercial reagents commonly used for siRNA delivery applications. Select PTDM candidates were further screened to assess the role the PTDM structure has on the delivery of biologically active siRNA into primary cells. Specifically, siRNA to hNOTCH1 was delivered to hPBMCs enabling 50-80% knockdown efficiencies, with longer PTDMs showing improved protein reduction. By evaluating the PTDM design parameters for siRNA delivery, more efficient PTDMs were discovered that improved delivery and gene (NOTCH) knockdown in T cells. Given the robust delivery of siRNA by these novel PTDMs, their development should aid in the exploration of T cell molecular pathways leading eventually to new therapeutics.
Collapse
Affiliation(s)
- Brittany M deRonde
- Department of Polymer Science and Engineering, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Joe A Torres
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Lisa M Minter
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| | - Gregory N Tew
- Department of Polymer Science and Engineering, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States.,Department of Veterinary and Animal Sciences, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States.,Molecular and Cellular Biology Program, University of Massachusetts Amherst , Amherst, Massachusetts 01003, United States
| |
Collapse
|
12
|
Song P, Chou YK, Zhang X, Meza-Romero R, Yomogida K, Benedek G, Chu CQ. CD4 aptamer-RORγt shRNA chimera inhibits IL-17 synthesis by human CD4(+) T cells. Biochem Biophys Res Commun 2014; 452:1040-5. [PMID: 25241192 DOI: 10.1016/j.bbrc.2014.09.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 09/10/2014] [Indexed: 01/23/2023]
Abstract
Cell type specific delivery of RNAi to T cells has remained to be a challenge. Here we describe an aptamer mediated delivery of shRNA to CD4(+) T cells targeting RORγt to suppress Th17 cells. A cDNA encoding CD4 aptamer and RORγt shRNA was constructed and the chimeric CD4 aptamer-RORγt shRNA (CD4-AshR-RORγt) was generated using in vitro T7 RNA transcription. 2'-F-dCTP and 2'-F-dUTP were incorporated into CD4-AshR-RORγt for RNase resistance. CD4-AshR-RORγt was specifically uptaken by CD4(+) Karpas 299 cells and primary human CD4(+) T cells. The RORγt shRNA moiety of CD4-AshR-RORγt chimera was cleaved and released by Dicer. Furthermore, CD4-AshR-RORγt suppressed RORγt gene expression in Karpas 299 cells and CD4(+) T cells and consequently inhibited Th17 cell differentiation and IL-17 production. These results demonstrate that aptamer-facilitated cell specific delivery of shRNA represents a novel approach for efficient RNAi delivery and is potentially to be developed for therapeutics targeting specific T cells subtypes.
Collapse
Affiliation(s)
- Pingfang Song
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and Portland VA Medical Center, Portland, OR 97239, United States
| | - Yuan K Chou
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and Portland VA Medical Center, Portland, OR 97239, United States
| | - Xiaowei Zhang
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and Portland VA Medical Center, Portland, OR 97239, United States
| | - Roberto Meza-Romero
- Neuroimmunology Research, Portland VA Medical Center, Portland, OR 97239, United States
| | - Kentaro Yomogida
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and Portland VA Medical Center, Portland, OR 97239, United States; Department of Pediatrics, Oakland University William Beaumont Hospital, Royal Oak, MI 48073, United States
| | - Gil Benedek
- Neuroimmunology Research, Portland VA Medical Center, Portland, OR 97239, United States
| | - Cong-Qiu Chu
- Division of Arthritis and Rheumatic Diseases, Oregon Health & Science University and Portland VA Medical Center, Portland, OR 97239, United States.
| |
Collapse
|
13
|
Advances in siRNA delivery to T-cells: potential clinical applications for inflammatory disease, cancer and infection. Biochem J 2013; 455:133-47. [DOI: 10.1042/bj20130950] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The specificity of RNAi and its ability to silence ‘undruggable’ targets has made inhibition of gene expression in T-cells with siRNAs an attractive potential therapeutic strategy for the treatment of inflammatory disease, cancer and infection. However, delivery of siRNAs into primary T-cells represents a major hurdle to their use as potential therapeutic agents. Recent advances in siRNA delivery through the use of electroporation/nucleofection, viral vectors, peptides/proteins, nanoparticles, aptamers and other agents have now enabled efficient gene silencing in primary T-cells both in vitro and in vivo. Overcoming such barriers in siRNA delivery offers exciting new prospects for directly targeting T-cells systemically with siRNAs, or adoptively transferring T-cells back into patients following ex vivo manipulation with siRNAs. In the present review, we outline the challenges in delivering siRNAs into primary T-cells and discuss the mechanism and therapeutic opportunities of each delivery method. We emphasize studies that have exploited RNAi-mediated gene silencing in T-cells for the treatment of inflammatory disease, cancer and infection using mouse models. We also discuss the potential therapeutic benefits of manipulating T-cells using siRNAs for the treatment of human diseases.
Collapse
|
14
|
Koelsch KA, Wang Y, Maier-Moore JS, Sawalha AH, Wren JD. GFP affects human T cell activation and cytokine production following in vitro stimulation. PLoS One 2013; 8:e50068. [PMID: 23577054 PMCID: PMC3618152 DOI: 10.1371/journal.pone.0050068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/19/2012] [Indexed: 11/19/2022] Open
Abstract
There are many Green Fluorescent Proteins (GFPs) originating from diverse species that are invaluable to cell biologists today because of their ability to provide experimental visualization of protein expression. Since their initial discovery, they have been modified and improved to provide more stable variants with emission ranges spanning a wide array of colors. Due to their ease of expression both in-vitro and in-vivo, they are an attractive choice for use as markers in molecular biology. GFPs are generally assumed to have negligible effects on the cells to which they have been introduced. However, a growing number of reports indicate that this is not always the case. Consequently, because of GFP's ubiquitous use, it is important to document the nature and extent of unintended effects. In this report, we find that GFP affects T cell activation, leading to defects in clustering, upregulation of the activation marker CD25 and IL-2 cytokine production following stimulation in human primary T cells that also express TurboGFP. We utilized a reporter assay which has been routinely used to assay the NF-κB pathway and found reduced NF-κB activitation in stimulated HEK293 and HeLa cells that were co-transfected with TurboGFP, suggesting that GFP interferes with signaling through the NF-κB pathway. These findings indicate that the utilization of GFP-tagged vectors may negatively impact in vitro experiments in T cells, emphasizing the critical importance of controls to identify any GFP-induced effects.
Collapse
Affiliation(s)
- Kristi A. Koelsch
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, Oklahoma, United States of America
- * E-mail: (KAK); (JDW)
| | - YuJing Wang
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, Oklahoma, United States of America
| | - Jacen S. Maier-Moore
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, Oklahoma, United States of America
- University of Oklahoma Health Sciences Center, Department of Medicine, Oklahoma City, Oklahoma, United States of America
| | - Amr H. Sawalha
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, Oklahoma, United States of America
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jonathan D. Wren
- Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, Oklahoma, United States of America
- University of Oklahoma Health Sciences Center, Department of Biochemistry and Molecular Biology, Oklahoma City, Oklahoma, United States of America
- * E-mail: (KAK); (JDW)
| |
Collapse
|
15
|
Li L, Allen C, Shivakumar R, Peshwa MV. Large volume flow electroporation of mRNA: clinical scale process. Methods Mol Biol 2013; 969:127-138. [PMID: 23296932 DOI: 10.1007/978-1-62703-260-5_9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Genetic modification for enhancing cellular function has been continuously pursued for fighting diseases. Messenger RNA (mRNA) transfection is found to be a promising solution in modifying hematopoietic and immune cells for therapeutic purpose. We have developed a flow electroporation-based system for large volume electroporation of cells with various molecules, including mRNA. This allows robust and scalable mRNA transfection of primary cells of different origin. Here we describe transfection of chimeric antigen receptor (CAR) mRNA into NK cells to modulate the ability of NK cells to target tumor cells. High levels of CAR expression in NK cells can be maintained for 3-7 days post transfection. CD19-specific CAR mRNA transfected NK cells demonstrate targeted lysis of CD19-expressing tumor cells OP-1, primary B-CLL tumor cells, and autologous CD19+ B cells in in vitro assays with enhanced potency: >80% lysis at effector-target ratio of 1:1. This allows current good manufacturing practices (cGMP) and regulatory compliant manufacture of CAR mRNA transfected NK cells for clinical delivery.
Collapse
MESH Headings
- Animals
- Antigens, CD19/biosynthesis
- Antigens, CD19/genetics
- Antigens, CD19/immunology
- Electroporation/methods
- Humans
- Killer Cells, Natural/cytology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/immunology
- RNA, Messenger/metabolism
- Receptors, Antigen/biosynthesis
- Receptors, Antigen/genetics
- Receptors, Antigen/immunology
- Transfection/methods
Collapse
|
16
|
Srinivasan C, Peer D, Shimaoka M. Integrin-targeted stabilized nanoparticles for an efficient delivery of siRNAs in vitro and in vivo. Methods Mol Biol 2012; 820:105-116. [PMID: 22131028 DOI: 10.1007/978-1-61779-439-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Utilizing small interfering RNAs (siRNAs) to silence disease-associated genes holds promise as a potential therapeutic strategy. However, the greatest challenge for RNAi remains the delivery of siRNA to target tissues or cells. Specifically lymphocytes are difficult to transduce by conventional methods but represent good targets for anti-inflammatory therapeutics. Integrins are an important class of cell adhesion receptors on leukocytes. Antibodies to integrins have been used to inhibit inflammatory reactions in patients. Here, we describe a strategy to deliver the siRNA cargo to leukocytes by stabilized nanoparticles surface-decorated with antibodies to integrin as targeting moieties. A detailed methodology for preparation of the integrin-targeted stabilized nanoparticles (I-tsNPs) and their delivery in vitro and in vivo is discussed.
Collapse
|
17
|
Zhao X, Su H, Yin G, Liu X, Liu Z, Suo X. High transfection efficiency of porcine peripheral blood T cells via nucleofection. Vet Immunol Immunopathol 2011; 144:179-86. [PMID: 22055481 DOI: 10.1016/j.vetimm.2011.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 09/04/2011] [Accepted: 10/10/2011] [Indexed: 12/27/2022]
|
18
|
Lai W, Yu M, Huang MN, Okoye F, Keegan AD, Farber DL. Transcriptional control of rapid recall by memory CD4 T cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:133-40. [PMID: 21642544 DOI: 10.4049/jimmunol.1002742] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Memory T cells are distinguished from naive T cells by their rapid production of effector cytokines, although mechanisms for this recall response remain undefined. In this study, we investigated transcriptional mechanisms for rapid IFN-γ production by Ag-specific memory CD4 T cells. In naive CD4 T cells, IFN-γ production only occurred after sustained Ag activation and was associated with high expression of the T-bet transcription factor required for Th1 differentiation and with T-bet binding to the IFN-γ promoter as assessed by chromatin immunoprecipitation analysis. By contrast, immediate IFN-γ production by Ag-stimulated memory CD4 T cells occurred in the absence of significant nuclear T-bet expression or T-bet engagement on the IFN-γ promoter. We identified rapid induction of NF-κB transcriptional activity and increased engagement of NF-κB on the IFN-γ promoter at rapid times after TCR stimulation of memory compared with naive CD4 T cells. Moreover, pharmacologic inhibition of NF-κB activity or peptide-mediated inhibition of NF-κB p50 translocation abrogated early memory T cell signaling and TCR-mediated effector function. Our results reveal a molecular mechanism for memory T cell recall through enhanced NF-κB p50 activation and promoter engagement, with important implications for memory T cell modulation in vaccines, autoimmunity, and transplantation.
Collapse
Affiliation(s)
- Wendy Lai
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | |
Collapse
|
19
|
He CX, Prevot N, Boitard C, Avner P, Rogner UC. Inhibition of type 1 diabetes by upregulation of the circadian rhythm-related aryl hydrocarbon receptor nuclear translocator-like 2. Immunogenetics 2010; 62:585-92. [PMID: 20676886 DOI: 10.1007/s00251-010-0467-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 07/12/2010] [Indexed: 12/21/2022]
Abstract
The genetic locus Idd6 is involved in type 1 diabetes development in the non-obese diabetic (NOD) mouse through its effect on the immune system and in particular, on T cell activities. Analysis of congenic strains for Idd6 has established the Aryl hydrocarbon receptor nuclear translocator-like 2 (Arntl2) as a likely candidate gene. In this study we investigate the role of Arntl2 in the autoimmune disease and T cell activation. An Arntl2 expressing plasmid was transfected into CD4(+) T cells by nucleofection. Expression levels of cytokines and CD4(+) T cell activation markers, cell death, apoptosis, and cell proliferation rates were characterized in ex vivo experiments whilst in vivo the transfected cells were transferred into NOD.SCID mice to monitor diabetes development. The results demonstrate that Arntl2 overexpression leads to inhibition of CD4(+) T cell proliferation and decreases in their diabetogenic activity without influence on the expression levels of cytokines, CD4(+) T cell activation markers, cell death, and apoptosis. Our findings suggest that Arntl2 at the Idd6 locus may act via the inhibition of CD4(+) T cell proliferation and the reduction in the diabetogenic activity of CD4(+) T cells to protect against autoimmune type 1 diabetes in the NOD mice.
Collapse
Affiliation(s)
- Chen-Xia He
- Institut Pasteur, Unité de Génétique Moléculaire Murine, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | | | | | | | |
Collapse
|
20
|
Chang JW, Koike T, Iwashima M. hnRNP-K is a nuclear target of TCR-activated ERK and required for T-cell late activation. Int Immunol 2009; 21:1351-61. [PMID: 19880579 DOI: 10.1093/intimm/dxp106] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sustained extracellular signal-regulated kinase (ERK)-signaling plays a critical role in T-cell-mediated IL-2 production. Although many downstream targets are known for ERK, details remain unknown about which molecules play functional roles in IL-2 production. Here, we addressed this question using proteomic analysis of nuclear proteins from TCR-activated T cells and identified hnRNP-K as one of the ERK targets essential for IL-2 production. hnRNP-K was previously shown by others to be a direct substrate of ERK and form complexes with multiple signaling proteins as well as DNA and RNA. Our data showed a clear ERK-dependent increase in one form of hnRNP-K after TCR stimulation. Small interfering RNA-mediated gene knockdown of hnRNP-K expression abrogated IL-2 production by T cells. Moreover, reduction of hnRNP-K expression caused a notable increase in proteolysis of Vav1, a binding target of hnRNP-K. Since Vav1 is an essential molecule for T-cell activation, the data suggest that ERK signaling is required for T-cell activation partly by inhibiting activation-induced proteolysis of Vav1.
Collapse
Affiliation(s)
- Jing-Wen Chang
- Department of Medicine, Immunotherapy Center, Medical College of Georgia, Augusta, GA 30912-2600, USA
| | | | | |
Collapse
|
21
|
Li L, Liu LN, Feller S, Allen C, Shivakumar R, Fratantoni J, Wolfraim LA, Fujisaki H, Campana D, Chopas N, Dzekunov S, Peshwa M. Expression of chimeric antigen receptors in natural killer cells with a regulatory-compliant non-viral method. Cancer Gene Ther 2009; 17:147-54. [PMID: 19745843 DOI: 10.1038/cgt.2009.61] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Natural killer (NK) cells hold promise for cancer therapy. NK cytotoxicity can be enhanced by expression of chimeric antigen receptors that re-direct specificity toward target cells by engaging cell surface molecules expressed on target cells. We developed a regulatory-compliant, scalable non-viral approach to engineer NK cells to be target-specific based on transfection of mRNA encoding chimeric receptors. Transfection of eGFP mRNA into ex vivo expanded NK cells (N=5) or purified unstimulated NK cells from peripheral blood (N=4) resulted in good cell viability with eGFP expression in 85+/-6% and 86+/-4%, 24 h after transfection, respectively. An mRNA encoding a receptor directed against CD19 (anti-CD19-BB-z) was also transfected into NK cells efficiently. Ex vivo expanded and purified unstimulated NK cells expressing anti-CD19-BB-z exhibited enhanced cytotoxicity against CD19(+) target cells resulting in > or =80% lysis of acute lymphoblastic leukemia and B-lineage chronic lymphocytic leukemia cells at effector target ratios lower than 10:1. The target-specific cytotoxicity for anti-CD19-BB-z mRNA-transfected NK cells was observed as early as 3 h after transfection and persisted for up to 3 days. The method described here should facilitate the clinical development of NK-based antigen-targeted immunotherapy for cancer.
Collapse
Affiliation(s)
- L Li
- MaxCyte Inc, Gaithersburg, MD 20878, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Collier FM, Loving A, Baker AJ, McLeod J, Walder K, Kirkland MA. RTKN2 Induces NF-KappaB Dependent Resistance to Intrinsic Apoptosis in HEK Cells and Regulates BCL-2 Genes in Human CD4(+) Lymphocytes. J Cell Death 2009; 2:9-23. [PMID: 26124677 PMCID: PMC4474337 DOI: 10.4137/jcd.s2891] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The gene for Rhotekin 2 (RTKN2) was originally identified in a promyelocytic cell line resistant to oxysterol-induced apoptosis. It is differentially expressed in freshly isolated CD4+ T-cells compared with other hematopoietic cells and is down-regulated following activation of the T-cell receptor. However, very little is known about the function of RTKN2 other than its homology to Rho-GTPase effector, rhotekin, and the possibility that they may have similar roles. Here we show that stable expression of RTKN2 in HEK cells enhanced survival in response to intrinsic apoptotic agents; 25-hydroxy cholesterol and camptothecin, but not the extrinsic agent, TNFα. Inhibitors of NF-KappaB, but not MAPK, reversed the resistance and mitochondrial pro-apoptotic genes, Bax and Bim, were down regulated. In these cells, there was no evidence of RTKN2 binding to the GTPases, RhoA or Rac2. Consistent with the role of RTKN2 in HEK over-expressing cells, suppression of RTKN2 in primary human CD4+ T-cells reduced viability and increased sensitivity to 25-OHC. The expression of the pro-apoptotic genes, Bax and Bim were increased while BCL-2 was decreased. In both cell models RTKN2 played a role in the process of intrinsic apoptosis and this was dependent on either NF-KappaB signaling or expression of downstream BCL-2 genes. As RTKN2 is a highly expressed in CD4+ T-cells it may play a role as a key signaling switch for regulation of genes involved in T-cell survival.
Collapse
Affiliation(s)
- Fiona M Collier
- Barwon Biomedical Research, Geelong Hospital, Barwon Health, Ryrie St, Geelong, Victoria, 3227, Australia. ; Metabolic Research Unit, School of Medicine and Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria, 3217, Australia
| | - Andrea Loving
- Barwon Biomedical Research, Geelong Hospital, Barwon Health, Ryrie St, Geelong, Victoria, 3227, Australia
| | - Adele J Baker
- Department of Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, Melbourne, Victoria, 3181, Australia
| | - Janet McLeod
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3217, Australia
| | - Ken Walder
- Metabolic Research Unit, School of Medicine and Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria, 3217, Australia
| | - Mark A Kirkland
- Barwon Biomedical Research, Geelong Hospital, Barwon Health, Ryrie St, Geelong, Victoria, 3227, Australia
| |
Collapse
|
23
|
Magg T, Hartrampf S, Albert M. Stable Nonviral Gene Transfer into Primary Human T Cells. Hum Gene Ther 2009; 20:989-98. [DOI: 10.1089/hum.2008.180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- T. Magg
- Department of Pediatric Hematology/Oncology, Dr. von Haunersches Kinderspital, 80337 Munich, Germany
| | - S. Hartrampf
- Department of Pediatric Hematology/Oncology, Dr. von Haunersches Kinderspital, 80337 Munich, Germany
| | - M.H. Albert
- Department of Pediatric Hematology/Oncology, Dr. von Haunersches Kinderspital, 80337 Munich, Germany
| |
Collapse
|
24
|
Wang YH, Ho ML, Chang JK, Chu HC, Lai SC, Wang GJ. Microporation is a valuable transfection method for gene expression in human adipose tissue-derived stem cells. Mol Ther 2008; 17:302-8. [PMID: 19066595 DOI: 10.1038/mt.2008.267] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Stem cells are a promising resource for gene therapy. Adipose tissue-derived stem cells (ADSCs) offer advantages because of their abundance and ease of isolation. However, it is difficult to transduce genes into ADSCs by common transfection methods, especially nonviral methods. We report here the use of a new electroporation method, termed "microporation," to transduce plasmids into human ADSCs (hADSCs). We determined optimal conditions that led to efficient transfection of >76.1% of the microporated hADSCs with only minimal cell damage or cytotoxicity. We demonstrated the expression of both enhanced green fluorescent protein (EGFP) and luciferase from different promoters in microporated hADSCs. More important, the microporated hADSCs retained their multipotency and reporter gene expression was maintained for >2 weeks in vitro and in vivo. We further showed that a Tet-ON-inducible gene expression system could be microporated into hADSCs and that this system was functional following transplantation of the microporated cells into nude mice. Taken together, our data demonstrate that microporation allows a highly efficient transfection of hADSCs, without impairing their stem cell properties.
Collapse
Affiliation(s)
- Yan-Hsiung Wang
- Orthopaedic Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
25
|
Mantei A, Rutz S, Janke M, Kirchhoff D, Jung U, Patzel V, Vogel U, Rudel T, Andreou I, Weber M, Scheffold A. siRNA stabilization prolongs gene knockdown in primary T lymphocytes. Eur J Immunol 2008; 38:2616-25. [DOI: 10.1002/eji.200738075] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
26
|
Siemen H, Nolden L, Terstegge S, Koch P, Brüstle O. Nucleofection of human embryonic stem cells. Methods Mol Biol 2008; 423:131-8. [PMID: 18370194 DOI: 10.1007/978-1-59745-194-9_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Human embryonic stem cells (HESCs) are widely used as a model system for human cell type specification. Genetic modification forms a valuable tool for HESC technology, as it provides the basis for lineage selection, i.e., the purification of a specific cell type after differentiation. Electroporation is an efficient way to transfect HESCs. Nucleofection is an electroporation-based transfection technique which utilizes cell-type-specific buffer solutions and specific electric settings. Customization of these two parameters has been proven to result in highly efficient gene transfer even in hard-to-transfect cells. We can show that nucleofection surpasses conventional electroporation in efficiency and decreases the experimental effort for transfection of HESCs.
Collapse
Affiliation(s)
- Henrike Siemen
- Institute of Reconstructive Neurobiology, Life and Brain Center, University of Bonn, Bonn, Germany
| | | | | | | | | |
Collapse
|
27
|
Chandok MR, Okoye FI, Ndejembi MP, Farber DL. A Biochemical Signature for Rapid Recall of Memory CD4 T Cells. THE JOURNAL OF IMMUNOLOGY 2007; 179:3689-98. [PMID: 17785805 DOI: 10.4049/jimmunol.179.6.3689] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Mechanisms for the rapid recall response mediated by memory T cells remain unknown. In this study, we present a novel, multiparameter analysis of TCR-coupled signaling and function in resting and activated naive and memory CD4 T cells, revealing a biochemical basis for immunological recall. We identify a striking elevation in expression of the proximal tyrosine kinase Zap70 in resting Ag-specific and polyclonal mouse memory vs naive CD4 T cells that is stably maintained independent of protein synthesis. Elevated Zap70 protein levels control effector function as IFN-gamma production occurs exclusively from the Zap70(high) fraction of activated T cells in vitro and in vivo, and specific down-modulation of Zap70 expression in memory CD4 T cells by small interfering RNA or protein inhibition significantly reduces rapid IFN-gamma production. Downstream of Zap70, we show quantitative differences in distal phosphorylation associated with effector function in naive and memory subsets, with low accumulation of phosphorylation in memory T cells producing IFN-gamma at early time points, contrasting extensive phosphorylation associated with IFN-gamma production following sustained activation of naive T cells. Our results reveal a novel biochemical signature imparted to memory CD4 T cells enabling efficacious responses through increased Zap70 expression and reduced accumulation of downstream signaling events.
Collapse
Affiliation(s)
- Meena R Chandok
- Division of Transplantation, Department of Surgery, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
28
|
Peer D, Zhu P, Carman CV, Lieberman J, Shimaoka M. Selective gene silencing in activated leukocytes by targeting siRNAs to the integrin lymphocyte function-associated antigen-1. Proc Natl Acad Sci U S A 2007; 104:4095-100. [PMID: 17360483 PMCID: PMC1820714 DOI: 10.1073/pnas.0608491104] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Silencing gene expression by RNAi is a powerful method for exploring gene function and validating drug targets and potentially for therapy. Lymphocytes and other primary blood cells are resistant to lipid-based transfection in vitro and are difficult to target in vivo. We show here that antibody-protamine fusion proteins targeting the human integrin lymphocyte function-associated antigen-1 (LFA-1) efficiently deliver siRNAs and specifically induce silencing in primary lymphocytes, monocytes, and dendritic cells. Moreover, a fusion protein constructed from an antibody that preferentially recognizes activation-dependent conformational changes in LFA-1 selectively targets activated leukocytes and can be used to suppress gene expression and cell proliferation only in activated lymphocytes. The siRNA-fusion protein complexes do not cause lymphocyte activation or induce IFN responses. K562 cells expressing latent WT or constitutively activated LFA-1 engrafted in the lungs of SCID mice are selectively targeted by intravenously injected fusion protein-siRNA complexes, demonstrating the potential in vivo applicability of LFA-1-directed siRNA delivery.
Collapse
Affiliation(s)
- Dan Peer
- *CBR Institute for Biomedical Research, and
- Departments of Anesthesia and
| | - Pengcheng Zhu
- *CBR Institute for Biomedical Research, and
- Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115; and
| | - Christopher V. Carman
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215
| | - Judy Lieberman
- *CBR Institute for Biomedical Research, and
- Pediatrics, Harvard Medical School, 200 Longwood Avenue, Boston, MA 02115; and
- To whom correspondence may be addressed. E-mail:
and
| | - Motomu Shimaoka
- *CBR Institute for Biomedical Research, and
- Departments of Anesthesia and
- To whom correspondence may be addressed. E-mail:
and
| |
Collapse
|
29
|
Zaragosi LE, Billon N, Ailhaud G, Dani C. Nucleofection is a valuable transfection method for transient and stable transgene expression in adipose tissue-derived stem cells. Stem Cells 2006; 25:790-7. [PMID: 17158239 DOI: 10.1634/stemcells.2006-0235] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Adipose tissue-derived stem cells are a powerful tool for in vitro study of adult stem cell biology. So far, they have not been extensively used for gain or loss of function studies since they are resistant to most common transfection methods. Herein, we tested several classic transfection methods on human multipotent adipose tissue-derived stem (hMADS) cells. Our results showed that lipofectants and calcium phosphate were poorly efficient for transgene delivery in hMADS cells. In contrast, nucleofection, an electroporation-based method that is assumed to target plasmid DNA directly to the cell nucleus, led to a significant transient transgene expression in hMADS cells (up to 76% enhanced green fluorescent protein [EGFP]-positive cells were detected). Furthermore, after selection of hMADS cells that were nucleofected with a selectable plasmid coding for EGFP, stable EGFP expressing clones could be propagated in culture and efficiently induced to differentiate into EGFP-positive adipocytes and osteoblasts. Finally, we verified that nucleofected hMADS cells could produce a functional, transgene-encoded, secreted protein. To this aim, hMADS cells were nucleofected with a plasmid coding for leukemia inhibitory factor (LIF). This protein was detected at high concentrations in supernatants from pCAG-LIF transfected hMADS cells. Moreover, supernatants were able to maintain mouse embryonic stem cells' undifferentiated phenotype, indicating that hMADS cells could secrete a functional LIF protein. Taken together, our data demonstrate that nucleofection allows both transient and stable gene expression in adipose tissue-derived stem cells, without impairing their differentiation potential.
Collapse
Affiliation(s)
- Laure-Emmanuelle Zaragosi
- Institut de Recherche, Signalisation, Biologie du Développement et Cancer, CNRS UMR6543, Centre de Biochimie, Faculté des Sciences, Université Nice Sophia-Antipolis, 06108 Nice Cedex 2, France
| | | | | | | |
Collapse
|
30
|
Uhrberg M, Schönberg K, Weinhold S, Trompeter HI. Non-viral gene delivery into primary natural killer lymphocytes. FASEB J 2006; 20:2660. [PMID: 17142802 DOI: 10.1096/fj.06-1204ufm] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Cesnulevicius K, Timmer M, Wesemann M, Thomas T, Barkhausen T, Grothe C. Nucleofection is the most efficient nonviral transfection method for neuronal stem cells derived from ventral mesencephali with no changes in cell composition or dopaminergic fate. Stem Cells 2006; 24:2776-91. [PMID: 16902196 DOI: 10.1634/stemcells.2006-0176] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Neuronal progenitor cells (NPCs) play an important role in potential regenerative therapeutic strategies for neurodegenerative diseases, such as Parkinson disease. However, survival of transplanted cells is, as yet, limited, and the identification of grafted cells in situ remains difficult. The use of NPCs could be more effective with regard to a better survival and maturation when transfected with one or more neurotrophic factors. Therefore, we investigated the possibility of transfecting mesencephalic neuronal progenitors with different constructs carrying neurotrophic factors or the expression reporters enhanced green fluorescence protein (EGFP) and red fluorescent protein (DsRed). Different techniques for transfection were compared, and the highest transfection rate of up to 47% was achieved by nucleofection. Mesencephalic neuronal progenitors survived the transfection procedure; 6 hours after transfection, viability was approximately 40%, and the transfected cells differentiated into, for example, tyrosine hydroxylase-positive neurons. Within the group of transfected cells, many progenitors and several neurons were found. To provide the progenitor cells with a neurotrophic factor, different isoforms of fibroblast growth factor-2 were introduced. To follow the behavior of the transfected cells in vitro, functional tests such as the cell viability assay (water-soluble tetrazolium salt assay [WST-1]) and the cell proliferation assay (5-bromo-2'-deoxyuridine-enzyme-linked immunosorbent assay) were performed. In addition, these transfected NPCs were viable after transplantation, expressed tyrosine hydroxylase in vivo, and could easily be detected within the host striatum because of their EGFP expression. This study shows that genetic modification of neural progenitors could provide attractive perspectives for new therapeutic concepts in neurodegenerative diseases.
Collapse
|
32
|
van Leeuwen EBM, Cloosen S, Senden-Gijsbers BLMG, Germeraad WTV, Bos GMJ. Transduction with a fiber-modified adenoviral vector is superior to non-viral nucleofection for expressing tumor-associated Ag mucin-1 in human DC. Cytotherapy 2006; 8:36-46. [PMID: 16627343 DOI: 10.1080/14653240500508166] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND DC-presenting tumor Ag are currently being developed to be used as a vaccine in human cancer immunotherapy. To increase the chances for successful therapy it is important to deliver full-length tumor Ag instead of loading single peptides. Methodologically, several recombinant DNA delivery techniques have been used. METHODS In this study we compared nucleofection, an optimized form of electroporation, and adenoviral transduction regarding their efficiency to transduce human monocyte-derived (Mo-) DC in vitro. Expression of the tumor-associated Ag mucin-1 (MUC1) after adenoviral transduction (rAd5Fib35-MUC1) was determined using two MAb. RESULTS We showed that the viability of cells and percentage of green fluorescent protein (GFP)-positive cells after transduction with a fiber-modified adenoviral vector (rAd5F35-GFP) was much higher than after nucleofection. Furthermore, phenotype and function of DC were not impaired by infection with adenovirus particles. Cells matured normally; up-regulation of CD40, CD80, CD83, CD86 and HLA-DR was not affected by adenoviral transduction. The capacity to stimulate naive T-cell proliferation was preserved and no change in IL-10 production was observed. Production of IL-12 increased up to 500-fold upon adenoviral transduction, considered to contribute positively to an anti-tumor immune response. Non-transduced mature DC expressed low levels of endogenous MUC1. After transduction with the rAd5F35-MUC1 adenoviral vector, a 100-fold increase in MUC1 expression by DC was observed. DISCUSSION The use of the fiber-modified adenoviral vector presented here may therefore be favorable compared with non-viral gene delivery systems for DC that will be used in cancer immunotherapy.
Collapse
Affiliation(s)
- E B M van Leeuwen
- Department of Internal Medicine, Division of Hemato-Oncology, University Hospital Maastricht, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Nguyen DH, Hurtado-Ziola N, Gagneux P, Varki A. Loss of Siglec expression on T lymphocytes during human evolution. Proc Natl Acad Sci U S A 2006; 103:7765-70. [PMID: 16682635 PMCID: PMC1472519 DOI: 10.1073/pnas.0510484103] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We report here that human T cells give much stronger proliferative responses to specific activation via the T cell receptor (TCR) than those from chimpanzees, our closest evolutionary relatives. Nonspecific activation using phytohemagglutinin was robust in chimpanzee T cells, indicating that the much lower response to TCR simulation is not due to any intrinsic inability to respond to an activating stimulus. CD33-related Siglecs are inhibitory signaling molecules expressed on most immune cells and are thought to down-regulate cellular activation pathways via cytosolic immunoreceptor tyrosine-based inhibitory motifs. Among human immune cells, T lymphocytes are a striking exception, expressing little to none of these molecules. In stark contrast, we find that T lymphocytes from chimpanzees as well as the other closely related "great apes" (bonobos, gorillas, and orangutans) express several CD33-related Siglecs on their surfaces. Thus, human-specific loss of T cell Siglec expression occurred after our last common ancestor with great apes, potentially resulting in an evolutionary difference with regard to inhibitory signaling. We confirmed this by studying Siglec-5, which is prominently expressed on chimpanzee lymphocytes, including CD4 T cells. Ab-mediated clearance of Siglec-5 from chimpanzee T cells enhanced TCR-mediated activation. Conversely, primary human T cells and Jurkat cells transfected with Siglec-5 become less responsive; i.e., they behave more like chimpanzee T cells. This human-specific loss of T cell Siglec expression associated with T cell hyperactivity may help explain the strikingly disparate prevalence and severity of T cell-mediated diseases such as AIDS and chronic active hepatitis between humans and chimpanzees.
Collapse
Affiliation(s)
- Dzung H. Nguyen
- *Glycobiology Research and Training Center and Departments of Medicine and Cellular and Molecular Medicine, and
| | - Nancy Hurtado-Ziola
- *Glycobiology Research and Training Center and Departments of Medicine and Cellular and Molecular Medicine, and
- Biomedical Sciences Graduate Program, University of California at San Diego, La Jolla, CA 92093
| | - Pascal Gagneux
- *Glycobiology Research and Training Center and Departments of Medicine and Cellular and Molecular Medicine, and
| | - Ajit Varki
- *Glycobiology Research and Training Center and Departments of Medicine and Cellular and Molecular Medicine, and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
34
|
Tahvanainen J, Pykäläinen M, Kallonen T, Lähteenmäki H, Rasool O, Lahesmaa R. Enrichment of nucleofected primary human CD4+ T cells: a novel and efficient method for studying gene function and role in human primary T helper cell differentiation. J Immunol Methods 2006; 310:30-9. [PMID: 16516225 DOI: 10.1016/j.jim.2005.11.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 11/29/2005] [Accepted: 11/30/2005] [Indexed: 02/04/2023]
Abstract
Identification of key factors mediating the differentiation of naïve CD4(+) T helper cells into Th1 and Th2 subsets is important for understanding the molecular mechanisms of the development of autoimmune diseases as well as asthma and allergy. Functional importance of a given gene in the initiation of human T helper cell differentiation has been hard to study due to the difficulty in transfecting primary resting human T lymphocytes. In this study we have successfully transfected human primary CD4(+) T helper cells using Amaxa's Nucleofection technology. To overcome the background caused by untransfected cells, we have developed a system for enriching nucleofected unstimulated human primary T helper cells that express the gene of interest. This is achieved by introducing a plasmid construct containing a bicistronic unit coding for a truncated mouse MHC class l H-2K(k) cell surface marker followed by selection of H-2K(k) positive cells using antibody coated beads. We demonstrate that the nucleofected and enriched H-2K(k) positive T helper cells differentiate into Th1 and Th2 cells as well as the non-transfected control cells. We also show that by using this novel method, introduction of an shRNA targeting Stat6, a key molecule driving the Th2 cell development, results in impaired Th2 cell differentiation, as expected. The method described here, enables fast and feasible preparation of highly pure transfected primary CD4(+) T cell cultures ideal for studying the influence of overexpression or knockdown of a given gene on T helper cell differentiation and other primary human T cell functions.
Collapse
Affiliation(s)
- Johanna Tahvanainen
- Turku Centre for Biotechnology, Turku University and Abo Akademi University, Finland.
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
A rapid method for efficient gene delivery into primary rodent lymphocytes would greatly facilitate the study of signaling and metabolic pathways in untransformed hematopoietic cells as well as the validation of gene expression and targeting strategies before the generation of knockout or knock-down animals. Here, we report that species-adapted nucleofection procedures combined with optimized cultivation conditions render proliferating primary T cells, B cells, and natural killer cells from widely used rat and mouse strains susceptible to high-level gene delivery. As a result, transgene expression levels were enhanced approximately 10- to 370-fold over established protocols. The effectiveness of the nucleofection approach for functional analyses was demonstrated by specific down-regulation of CD4 cell surface molecules by either transient expression of the endocytosis-inducing Nef protein from human immunodeficiency virus or by specific gene silencing mediated by small interfering RNA. In conclusion, this species-adapted procedure for nonviral gene delivery renders primary rodent lymphocytes accessible to rapid functional ex vivo studies, which until now have not been feasible. Furthermore, nucleofection may aid the advancement of therapeutic nonviral gene delivery approaches.
Collapse
MESH Headings
- Adenoviridae/genetics
- Animals
- Animals, Genetically Modified
- CD4 Antigens/biosynthesis
- Cells, Cultured
- DNA, Recombinant/administration & dosage
- DNA, Recombinant/genetics
- Endocytosis
- Feasibility Studies
- Female
- Gene Silencing
- Genes, nef
- Genetic Vectors/administration & dosage
- Lentivirus/genetics
- Lymphocyte Subsets
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- RNA, Small Interfering/administration & dosage
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Rats
- Rats, Sprague-Dawley
- Spleen/cytology
- T-Lymphocytes
- Transduction, Genetic
- Transfection
Collapse
|
36
|
Laible G, Wagner S, Alderson J. Oligonucleotide-mediated gene modification and its promise for animal agriculture. Gene 2005; 366:17-26. [PMID: 16330159 DOI: 10.1016/j.gene.2005.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 10/15/2005] [Indexed: 11/20/2022]
Abstract
One of the great aspirations in modern biology is the ability to utilise the expanding knowledge of the genetic basis of phenotypic diversity through the purposeful tailoring of the mammalian genome. A number of technologies are emerging which have the capacity to modify genes in their chromosomal context. Not surprisingly, the major thrust in this area has come from the evaluation of gene therapy applications to correct mutations implicated in human genetic diseases. The recent development of somatic cell nuclear transfer (SCNT) provides access to these technologies for the purposeful modification of livestock animals. The enormous phenotypic variety existent in contemporary livestock animals has in many cases been linked to quantitative trait loci (QTL) and their underlying point mutations, often referred to as single-nucleotide polymorphisms (SNPs). Thus, the ability for the targeted genetic modification of livestock animals constitutes an attractive opportunity for future agricultural applications. In this review, we will summarize attempts and approaches for oligonucleotide-mediated gene modification (OGM) strategies for the site-specific modification of the genome, with an emphasis on chimeric RNA-DNA oligonucleotides (RDOs) and single-stranded oligonucletides (ssODNs). The potential of this approach for the directed genetic improvement of livestock animals is illustrated through examples, outlining the effects of point mutations on important traits, including meat and milk production, reproductive performance, disease resistance and superior models of human diseases. Current technological hurdles and potential strategies that might remove these barriers in the future are discussed.
Collapse
Affiliation(s)
- Götz Laible
- AgResearch, Ruakura Research Centre, PB 3123, Hamilton, New Zealand.
| | | | | |
Collapse
|
37
|
Zhao Y, Zheng Z, Cohen CJ, Gattinoni L, Palmer DC, Restifo NP, Rosenberg SA, Morgan RA. High-efficiency transfection of primary human and mouse T lymphocytes using RNA electroporation. Mol Ther 2005; 13:151-9. [PMID: 16140584 PMCID: PMC1473967 DOI: 10.1016/j.ymthe.2005.07.688] [Citation(s) in RCA: 223] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Revised: 07/21/2005] [Accepted: 07/22/2005] [Indexed: 11/24/2022] Open
Abstract
The use of nonviral gene transfer methods in primary lymphocytes has been hampered by low gene transfer efficiency and high transfection-related toxicity. In this report, high gene transfection efficiency with low transfection-related toxicity was achieved by electroporation using in vitro-transcribed mRNA. Using these methods, >90% transgene expression with >80% viable cells was observed in stimulated primary human and murine T lymphocytes transfected with GFP or mCD62L. Electroporation of unstimulated human PBMCs or murine splenocytes with GFP RNA yielded 95 and 56% GFP+ cells, respectively. Electroporation of mRNA for NY-ESO-1, MART-1, and p53 antigen-specific TCRs into human T lymphocytes redirected these lymphocytes to recognize melanoma cell lines in an MHC-restricted manner. The onset of gene expression was rapid (within 30 min) and durable (up to 7 days postelectroporation) using both GFP and TCR-mediated recognition of target cells. There was no adverse effect observed on the T lymphocytes subjected to RNA electroporation evaluated by cell growth rate, annexin-V staining of apoptotic cells, BrdU incorporation, tumor antigen-specific recognition or antigen-specific TCR affinity. The results of this study indicate that mRNA electroporation provides a powerful tool to introduce genes into both human and murine primary T lymphocytes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Richard A. Morgan
- *To whom correspondence and reprint requests should be addressed. Fax: +1 301 435 5167. E-mail:
| |
Collapse
|
38
|
Johnson BD, Gershan JA, Natalia N, Zujewski H, Weber JJ, Yan X, Orentas RJ. Neuroblastoma Cells Transiently Transfected to Simultaneously Express the Co-Stimulatory Molecules CD54, CD80, CD86, and CD137L Generate Antitumor Immunity in Mice. J Immunother 2005; 28:449-60. [PMID: 16113601 DOI: 10.1097/01.cji.0000171313.93299.74] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The goal of this study was to show that nonviral gene transfection technology can be used to genetically modify neuroblastoma cells with immune stimulatory molecules, and that the modified cells can generate an antitumor immune response. The authors found that an electroporation-based gene transfection method, nucleofection, could be used to modify mouse AGN2a (an aggressive variant of Neuro-2a) neuroblastoma cells to simultaneously express as many as four different immune stimulatory molecules encoded by separate plasmid vectors. Within 18 hours after nucleofection, greater than 60% of the cells typically expressed the transfected gene products, and the percentages of cells expressing the products often exceeded 96%. High levels of plasmid in cell nuclei immediately after nucleofection documented instantaneous availability of gene vectors to the transcriptional machinery. AGN2a cells nucleofected to express the co-stimulatory molecules CD80 and CD86 expressed higher levels of these molecules than cells that had been permanently transfected with these same plasmid vectors, and the nucleofected cells were as effective as the permanently transfected cells at inducing an antitumor response in vivo in a tumor prevention model. AGN2a cells nucleofected with four separate plasmid vectors encoding CD54, CD80, CD86, and CD137L induced a T-cell immune response in vitro and served as a potent tumor vaccine in the tumor prevention model. These data show that transient transfection using a nonviral based method, nucleofection, can be used to rapidly generate novel cell-based tumor vaccines.
Collapse
Affiliation(s)
- Bryon D Johnson
- Department of Pediatrics, Medical College of Wisconsin and Children's Research Institute, Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Simon M, Grandage VL, Linch DC, Khwaja A. Constitutive activation of the Wnt/beta-catenin signalling pathway in acute myeloid leukaemia. Oncogene 2005; 24:2410-20. [PMID: 15735743 DOI: 10.1038/sj.onc.1208431] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The beta-catenin protein is at the core of the canonical Wnt signalling pathway. Wnt stimulation leads to beta-catenin accumulation, nuclear translocation and interaction with T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription factors to regulate genes important for embryonic development and proliferation. Wnt/beta-catenin can promote stem cell self-renewal and is dysregulated in colon carcinoma. We have examined the role of the Wnt pathway in the development of acute myeloid leukaemia (AML) and find that the beta-catenin protein is readily detected in primary AML samples. Using transfection of a TCF/LEF reporter construct into primary AML cells and normal human progenitors, we find increased reporter activity in 16/25 leukaemia samples. Retrovirally mediated expression of a mutant active beta-catenin in normal progenitors preserves CD34 expression and impairs myelomonocytic differentiation. Activation of TCF/LEF signalling decreases factor withdrawal-induced apoptosis of normal progenitors. A significant proportion of AML cases show aberrant expression of components of the Wnt pathway including Wnt-1, Wnt-2b and LEF-1. These results provide evidence for the involvement of the Wnt/beta-catenin pathway in the pathogenesis of AML.
Collapse
Affiliation(s)
- Maria Simon
- Department of Haematology, Royal Free & University College Medical School, 98 Chenies Mews, London WC1E 6HX, UK
| | | | | | | |
Collapse
|
40
|
Smits E, Ponsaerts P, Lenjou M, Nijs G, Van Bockstaele DR, Berneman ZN, Van Tendeloo VFI. RNA-based gene transfer for adult stem cells and T cells. Leukemia 2004; 18:1898-902. [PMID: 15385941 DOI: 10.1038/sj.leu.2403463] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Electroporation of mRNA has become an established method for gene transfer into dendritic cells for immunotherapeutic purposes. However, many more cell types and applications might benefit from an efficient mRNA-based gene transfer method. In this study, we investigated the potential of mRNA-based gene transfer to induce short-term transgene expression in adult stem cells and activated T cells, based on electroporation with mRNA encoding the enhanced green fluorescent protein. The results show efficient transgene expression in CD34-positive hematopoietic progenitor cells (35%), in in vitro cultured mesenchymal cells (90%) and in PHA-stimulated T cells (50%). Next to presentation of gene transfer results, potential applications of mRNA-based gene transfer in stem cells and T cells are discussed.
Collapse
Affiliation(s)
- E Smits
- Laboratory of Experimental Hematology, Faculty of Medicine, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | | | | | | | | | | | | |
Collapse
|