1
|
Yu J, Hasing ME, Preiksaitis JK, Pang X. Evaluation of a Reverse Transcription-Quantitative Polymerase Chain Reaction (RT-qPCR)-Based Microneutralization Assay for Assessing Clinical Human Cytomegalovirus-Neutralizing Antibody Activity. Microorganisms 2024; 12:742. [PMID: 38674686 PMCID: PMC11052257 DOI: 10.3390/microorganisms12040742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
Development of a vaccine for human cytomegalovirus (hCMV) is critical because of the severe consequences of infection in congenitally infected newborns and immunocompromised patients. The assessment of hCMV-neutralizing antibody activity is crucial for vaccine development. This study evaluated a RT-qPCR assay targeting the immediate-early gene transcript of hCMV for determining microneutralizing antibody activity. The assay was evaluated for sensitivity, specificity, and precision using endotheliotropic clinical isolate VR1814 that infects fibroblasts, epithelial, and endothelial cells. The RT-qPCR-based neutralization assay was compared with an immunostaining-based neutralization assay using virions present in hCMV-positive urine, saliva, and breast-milk samples. Our results showed that hCMV replication was detectable at 20 h post-infection with a limit of detection of 1 infectious units (IU)/reaction. The RT-qPCR assay had a dynamic range of 1 to 1.0 × 104 IU/reaction, with coefficients of variation ranging from 0.94% to 15.08%. The RT-qPCR results were in high agreement with the immunostaining assay for hCMV-antibody neutralization assessment. Overall, the RT-qPCR neutralization assay is a reliable, rapid, efficient, and sensitive alternative method for evaluating hCMV-neutralizing activity in vitro.
Collapse
Affiliation(s)
- Jiaao Yu
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Maria E. Hasing
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
| | | | - Xiaoli Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 1C9, Canada
- Provincial Laboratory for Public Health, Edmonton, AB T6G 2J2, Canada
| |
Collapse
|
2
|
Vaidya SR. Immuno-Colorimetric Neutralization Test: A Surrogate for Widely Used Plaque Reduction Neutralization Tests in Public Health Virology. Viruses 2023; 15:v15040939. [PMID: 37112919 PMCID: PMC10143445 DOI: 10.3390/v15040939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/23/2023] [Accepted: 03/30/2023] [Indexed: 04/29/2023] Open
Abstract
Since their first documentation in 1952, plaque reduction neutralization tests (PRNTs) have become the choice of test for the measurement of neutralizing antibodies against a particular virus. However, PRNTs can be performed only against viruses that cause cytopathic effects (CPE). PRNTs also require skilled personnel and can be time-consuming depending on the time required for the virus to cause CPE. Hence, their application limits large-scale studies or epidemiological and laboratory investigations. Since 1978, many surrogate PRNTs or immunocolorimetric assay (ICA)-based focus reduction neutralization tests (FRNT) have been developed. In this article, ICAs and their utility in FRNTs for the characterization of neutralizing antibodies, homologous or heterologous cross-neutralization, and laboratory diagnosis of viruses of public health importance have been discussed. Additionally, possible advancements and automations have been described that may help in the development and validation of novel surrogate tests for emerging viruses.
Collapse
Affiliation(s)
- Sunil R Vaidya
- Virus Registry and Virus Repository, ICMR-National Institute of Virology, 20-A Dr. Ambedkar Road, Pune 411001, India
| |
Collapse
|
3
|
Shibamura M, Yoshikawa T, Yamada S, Inagaki T, Nguyen PHA, Fujii H, Harada S, Fukushi S, Oka A, Mizuguchi M, Saijo M. Association of human cytomegalovirus (HCMV) neutralizing antibodies with antibodies to the HCMV glycoprotein complexes. Virol J 2020; 17:120. [PMID: 32746933 PMCID: PMC7397426 DOI: 10.1186/s12985-020-01390-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/28/2020] [Indexed: 12/18/2022] Open
Abstract
Background Human cytomegalovirus (HCMV) causes asymptomatic infections, but also causes congenital infections when women were infected with HCMV during pregnancy, and life-threatening diseases in immunocompromised patients. To better understand the mechanism of the neutralization activity against HCMV, the association of HCMV NT antibody titers was assessed with the antibody titers against each glycoprotein complex (gc) of HCMV. Methods Sera collected from 78 healthy adult volunteers were used. HCMV Merlin strain and HCMV clinical isolate strain 1612 were used in the NT assay with the plaque reduction assay, in which both the MRC-5 fibroblasts cells and the RPE-1 epithelial cells were used. Glycoprotein complex of gB, gH/gL complexes (gH/gL/gO and gH/gL/UL128–131A [PC]) and gM/gN were selected as target glycoproteins. 293FT cells expressed with gB, gM/gN, gH/gL/gO, or PC, were prepared and used for the measurement of the antibody titers against each gc in an indirect immunofluorescence assay (IIFA). The correlation between the IIFA titers to each gc and the HCMV-NT titers was evaluated. Results There were no significant correlations between gB-specific IIFA titers and the HCMV-NT titers in epithelial cells or between gM/gN complex-specific IIFA titers and the HCMV-NT titers. On the other hand, there was a statistically significant positive correlation between the IIFA titers to gH/gL complexes and HCMV-NT titers. Conclusions The data suggest that the gH/gL complexes might be the major target to induce NT activity against HCMV.
Collapse
Affiliation(s)
- Miho Shibamura
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Tomoki Yoshikawa
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Souichi Yamada
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Takuya Inagaki
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Life Science and Medical Bioscience, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo, Japan
| | - Phu Hoang Anh Nguyen
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Hikaru Fujii
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,The Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Shizuko Harada
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Shuetsu Fukushi
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan
| | - Akira Oka
- Department of Pediatrics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Masashi Mizuguchi
- Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
| | - Masayuki Saijo
- Department of Virology 1, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan. .,Department of Developmental Medical Sciences, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
4
|
Cui X, Cao Z, Wang S, Adler SP, McVoy MA, Snapper CM. Immunization with Human Cytomegalovirus Core Fusion Machinery and Accessory Envelope Proteins Elicit Strong Synergistic Neutralizing Activities. Vaccines (Basel) 2020; 8:vaccines8020179. [PMID: 32294946 PMCID: PMC7348949 DOI: 10.3390/vaccines8020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/04/2020] [Accepted: 04/10/2020] [Indexed: 12/15/2022] Open
Abstract
Human cytomegalovirus (HCMV) core fusion machinery proteins gB and gH/gL, and accessory proteins UL128/UL130/UL131A, are the key envelope proteins that mediate HCMV entry into and infection of host cells. To determine whether these HCMV envelope proteins could elicit neutralizing activities synergistically, we immunized rabbits with individual or various combinations of these proteins adsorbed to aluminum hydroxide mixed with CpG-ODN. We then analyzed serum neutralizing activities with multiple HCMV laboratory strains and clinical isolates. HCMV trimeric gB and gH/gL elicited high and moderate titers of HCMV neutralizing activity, respectively. HCMV gB in combination with gH/gL elicited up to 17-fold higher HCMV neutralizing activities compared to the sum of neutralizing activity elicited by the individual proteins analyzed with both fibroblasts and epithelial cells. HCMV gB+gH/gL+UL128/UL130/UL131A in combination increased the neutralizing activity up to 32-fold compared to the sum of neutralizing activities elicited by the individual proteins analyzed with epithelial cells. Adding UL128/UL130/UL131A to gB and gH/gL combination did not increase further the HCMV neutralizing activity analyzed with fibroblasts. These data suggest that the combination of HCMV core fusion machinery envelope proteins gB+gH/gL or the combination of gB and pentameric complex could be ideal vaccine candidates that would induce optimal immune responses against HCMV infection.
Collapse
Affiliation(s)
- Xinle Cui
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: ; Tel.: +1-301-295-3498
| | - Zhouhong Cao
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Shuishu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Michael A. McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Clifford M. Snapper
- The Institute for Vaccine Research and Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
5
|
Cui X, Cao Z, Wang S, Lee RB, Wang X, Murata H, Adler SP, McVoy MA, Snapper CM. Novel trimeric human cytomegalovirus glycoprotein B elicits a high-titer neutralizing antibody response. Vaccine 2018; 36:5580-5590. [PMID: 30082162 PMCID: PMC6556890 DOI: 10.1016/j.vaccine.2018.07.056] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/03/2018] [Accepted: 07/20/2018] [Indexed: 12/18/2022]
Abstract
Human cytomegalovirus (HCMV) is a major cause of disability in congenitally infected infants and in the immunosuppressed. There is currently no licensed prophylactic HCMV vaccine. The HCMV envelope glycoprotein B (gB) is considered a major vaccine target antigen based on its critical role in mediating viral-host cell fusion and thus viral entry. The natural conformation of HCMV gB within the viral envelope is a trimer, but there has been no reported success in producing a recombinant trimeric gB suitable for vaccine use. Phase II clinical trials of a monomeric recombinant gB protein demonstrated 50% efficacy in preventing HCMV infection in seronegative women of reproductive age, and in reducing viremia in solid organ transplantation recipients. We now report the production of a uniformly trimeric recombinant HCMV gB protein in Chinese ovary cells, as demonstrated by Western blot analysis under modified non-reducing conditions and size exclusion chromatography with multi-angle scattering. Immunization of mice with trimeric HCMV gB induced up to 11-fold higher serum titers of total gB-specific IgG relative to monomeric HCMV gB using Alum + CpG as adjuvants. Further, trimeric HCMV gB elicited 50-fold higher complement-independent and 20-fold higher complement-dependent HCMV neutralizing titers compared to monomeric HCMV gB using the fibroblast cell line, MRC-5, and up to 6-fold higher complement-independent and -dependent HCMV neutralizing titers using the epithelial cell line, ARPE-19. The markedly enhanced HCMV neutralizing activity in response to trimeric HCMV gB was also observed using an additional four distinct clinical HCMV isolates. These data support a role for trimeric HCMV gB as an important component for clinical testing of a prophylactic HCMV vaccine.
Collapse
Affiliation(s)
- Xinle Cui
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States.
| | - Zhouhong Cao
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Shuishu Wang
- Department of Biochemistry, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| | - Ronzo B Lee
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Xiao Wang
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Haruhiko Murata
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Stuart P Adler
- CMV Research Foundation, Richmond VA 23229, United States
| | - Michael A McVoy
- Department of Pediatrics, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Clifford M Snapper
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, United States
| |
Collapse
|
6
|
Wang X, Peden K, Murata H. RT-qPCR-based microneutralization assay for human cytomegalovirus using fibroblasts and epithelial cells. Vaccine 2015; 33:7254-7261. [DOI: 10.1016/j.vaccine.2015.10.110] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 08/28/2015] [Accepted: 10/28/2015] [Indexed: 01/03/2023]
|
7
|
McVoy MA, Lee R, Saccoccio FM, Hartikka J, Smith LR, Mahajan R, Wang JB, Cui X, Adler SP. A cytomegalovirus DNA vaccine induces antibodies that block viral entry into fibroblasts and epithelial cells. Vaccine 2015; 33:7328-7336. [PMID: 26597035 DOI: 10.1016/j.vaccine.2015.10.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 07/08/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022]
Abstract
A vaccine to prevent congenital cytomegalovirus (CMV) infections is a national priority. Investigational vaccines have targeted the viral glycoprotein B (gB) as an inducer of neutralizing antibodies and phosphoprotein 65 (pp65) as an inducer of cytotoxic T cells. Antibodies to gB neutralize CMV entry into all cell types but their potency is low compared to antibodies that block epithelial cell entry through targeting the pentameric complex (gH/gL/UL128/UL130/UL131). Hence, more potent overall neutralizing responses may result from a vaccine that combines gB with pentameric complex-derived antigens. To assess the ability of pentameric complex subunits to generate epithelial entry neutralizing antibodies, DNA vaccines encoding UL128, UL130, and/or UL131 were formulated with Vaxfectin(®), an adjuvant that enhances antibody responses to DNA vaccines. Mice were immunized with individual DNA vaccines or with pair-wise or trivalent combinations. Only the UL130 vaccine induced epithelial entry neutralizing antibodies and no synergy was observed from bi- or trivalent combinations. In rabbits the UL130 vaccine again induced epithelial entry neutralizing antibodies while UL128 or UL131 vaccines did not. To evaluate compatibility of the UL130 vaccine with DNA vaccines encoding gB or pp65, mono-, bi-, or trivalent combinations were evaluated. Fibroblast and epithelial entry neutralizing titers did not differ between rabbits immunized with gB alone vs. gB/UL130, gB/pp65, or gB/UL130/pp65 combinations, indicating a lack of antagonism from coadministration of DNA vaccines. Importantly, gB-induced epithelial entry neutralizing titers were substantially higher than activities induced by UL130, and both fibroblast and epithelial entry neutralizing titers induced by gB alone as well as gB/pp65 or gB/UL130/pp65 combinations were comparable to those observed in sera from humans with naturally-acquired CMV infections. These findings support further development of Vaxfectin(®)-formulated gB-expressing DNA vaccine for prevention of congenital CMV infections.
Collapse
Affiliation(s)
- Michael A McVoy
- Virginia Commonwealth University, Richmond, VA, United States
| | - Ronzo Lee
- Virginia Commonwealth University, Richmond, VA, United States
| | | | | | | | | | - Jian Ben Wang
- Virginia Commonwealth University, Richmond, VA, United States
| | - Xiaohong Cui
- Virginia Commonwealth University, Richmond, VA, United States
| | - Stuart P Adler
- Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
8
|
Development of an enzyme-linked immunospot assay for determination of rotavirus infectivity. J Virol Methods 2014; 209:7-14. [DOI: 10.1016/j.jviromet.2014.08.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/13/2014] [Accepted: 08/15/2014] [Indexed: 12/30/2022]
|
9
|
Chen L, Liu J, Wang W, Ye J, Wen L, Zhao Q, Zhu H, Cheng T, Xia N. Development of a varicella-zoster virus neutralization assay using a glycoprotein K antibody enzyme-linked immunosorbent spot assay. J Virol Methods 2014; 200:10-4. [DOI: 10.1016/j.jviromet.2014.01.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 01/13/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
|
10
|
Yang L, He D, Tang M, Li Z, Liu C, Xu L, Chen Y, Du H, Zhao Q, Zhang J, Cheng T, Xia N. Development of an enzyme-linked immunosorbent spot assay to measure serum-neutralizing antibodies against coxsackievirus B3. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:312-20. [PMID: 24391137 PMCID: PMC3957675 DOI: 10.1128/cvi.00359-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 12/23/2013] [Indexed: 11/20/2022]
Abstract
Coxsackievirus B3 (CVB3) is the most common pathogen that induces acute and chronic viral myocarditis in children. The cytopathic effect (CPE)-based neutralization test (Nt-CPE) and the plaque reduction neutralization test (PRNT) are the most common methods for measuring neutralizing antibody titers against CVB3 in blood serum samples. However, these two methods are inefficient for CVB3 vaccine clinical trials, which require the testing of a large number of serum specimens. In this study, we developed an efficient neutralization test based on the enzyme-linked immunospot (Nt-ELISPOT) assay for measuring CVB3-neutralizing antibodies. This modified ELISPOT assay was based on the use of a monoclonal antibody against the viral capsid protein VP1 to detect the cells that are infected with CVB3, which, after immunoperoxidase staining, are counted as spots using an automated ELISPOT analyzer. Using the modified ELISPOT assay, we characterized the infection kinetics of CVB3 and divided the infection process of CVB3 on a cluster of cells into four phases. The stability of the Nt-ELISPOT was then evaluated. We found that over a wide range of infectious doses (10(2) to 10(6.5)× 50% tissue culture infectious dose [TCID(50)] per well), the neutralizing titers of the sera were steady as long as they were tested during the log phase or the first half of the stationary phase of growth of the spots. We successfully shortened the testing period from 7 days to approximately 20 h. We also found that there was a good correlation (R(2) = 0.9462) between the Nt-ELISPOT and the Nt-CPE assays. Overall, the Nt-ELISPOT assay is a reliable and efficient method for measuring neutralizing antibodies in serum.
Collapse
|
11
|
Eschbaumer M, Law S, Solis C, Chernick A, van der Meer F, Czub M. Rapid detection of neutralizing antibodies against bovine viral diarrhoea virus using quantitative high-content screening. J Virol Methods 2014; 198:56-63. [DOI: 10.1016/j.jviromet.2013.12.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/26/2013] [Accepted: 12/17/2013] [Indexed: 11/29/2022]
|
12
|
Li B, Fouts AE, Stengel K, Luan P, Dillon M, Liang WC, Feierbach B, Kelley RF, Hötzel I. In vitro affinity maturation of a natural human antibody overcomes a barrier to in vivo affinity maturation. MAbs 2014; 6:437-45. [PMID: 24492299 DOI: 10.4161/mabs.27875] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Antibodies isolated from human donors are increasingly being developed for anti-infective therapeutics. These antibodies undergo affinity maturation in vivo, minimizing the need for engineering of therapeutic leads for affinity. However, the affinities required for some therapeutic applications may be higher than the affinities of the leads obtained, requiring further affinity maturation in vitro. To improve the neutralization potency of natural human antibody MSL-109 targeting human cytomegalovirus (CMV), we affinity matured the antibody against the gH/gL glycoprotein complex. A phage display library where most of the six complementary-determining regions (CDRs) were allowed to vary in only one amino acid residue at a time was used to scan for mutations that improve binding affinity. A T55R mutation and multiple mutations in position 53 of the heavy chain were identified that, when present individually or in combination, resulted in higher apparent affinities to gH/gL and improved CMV neutralization potency of Fab fragments expressed in bacterial cells. Three of these mutations in position 53 introduced glycosylation sites in heavy chain CDR 2 (CDR H2) that impaired binding of antibodies expressed in mammalian cells. One high affinity (KD<10 pM) variant was identified that combined the D53N and T55R mutations while avoiding glycosylation of CDR H2. However, all the amino acid substitutions identified by phage display that improved binding affinity without introducing glycosylation sites required between two and four simultaneous nucleotide mutations to avoid glycosylation. These results indicate that the natural human antibody MSL-109 is close to a local affinity optimum. We show that affinity maturation by phage display can be used to identify and bypass barriers to in vivo affinity maturation of antibodies imposed by glycosylation and codon usage. These constraints may be relatively prevalent in human antibodies due to the codon usage and the amino acid sequence encoded by the natural human repertoire.
Collapse
Affiliation(s)
- Bing Li
- Department of Antibody Engineering; Genentech; South San Francisco, CA USA
| | - Ashley E Fouts
- Department of Infectious Diseases; Genentech; South San Francisco, CA USA
| | - Katharina Stengel
- Department of Structural Biology; Genentech; South San Francisco, CA USA
| | - Peng Luan
- Department of Antibody Engineering; Genentech; South San Francisco, CA USA
| | - Michael Dillon
- Department of Antibody Engineering; Genentech; South San Francisco, CA USA
| | - Wei-Ching Liang
- Department of Antibody Engineering; Genentech; South San Francisco, CA USA
| | - Becket Feierbach
- Department of Infectious Diseases; Genentech; South San Francisco, CA USA
| | - Robert F Kelley
- Department of Antibody Engineering; Genentech; South San Francisco, CA USA
| | - Isidro Hötzel
- Department of Antibody Engineering; Genentech; South San Francisco, CA USA
| |
Collapse
|
13
|
Mao Q, Cheng T, Zhu F, Li J, Wang Y, Li Y, Gao F, Yang L, Yao X, Shao J, Xia N, Liang Z, Wang J. The cross-neutralizing activity of enterovirus 71 subgenotype c4 vaccines in healthy chinese infants and children. PLoS One 2013; 8:e79599. [PMID: 24260259 PMCID: PMC3834186 DOI: 10.1371/journal.pone.0079599] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 09/24/2013] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND EV71 is one of major etiologic causes of hand-foot-mouth disease (HFMD) and leads to severe neurological complications in young children and infants. Recently inactivated EV71 vaccines have been developed by five manufactures and clinically show good safety and immunogenicity. However, the cross-neutralizing activity of these vaccines remains unclear, and is of particular interest because RNA recombination is seen more frequently in EV71 epidemics. METHODOLOGY/PRINCIPAL FINDINGS In this post-hoc study, sera from a subset of 119 infants and children in two clinical trials of EV71 subgenotype C4 vaccines (ClinicalTrials.gov Identifier: NCT01313715 and NCT01273246), were detected for neutralizing antibody (NTAb) titres with sera from infected patients as controls. Cytopathogenic effect method was employed to test NTAb against EV71 subgenotype B4, B5, C2, C4 and C5, which were prominent epidemic strains worldwide over the past decade. To validate the accuracy of the results, ELISpot assay was employed in parallel to detect NTAb in all the post-vaccine sera. After two-dose vaccination, 49 out of 53 participants in initially seronegative group and 52 out of 53 participants in initially seropositive group showed less than 4-fold differences in NTAb titers against five EV71 strains, whereas corresponding values among sera from pediatric patients recovering from EV71-induced HFMD and subclinically infected participants were 8/8 and 41/43, respectively. The geometric mean titers of participants against five subgenotypes EV71 all grew significantly after vaccinations, irrespective of the baseline NTAb titer. The relative fold increase in antibody titers (NTAb-FI) against B4, B5, C2, and C5 displayed a positive correlation to the NTAb-FI against C4. CONCLUSIONS/SIGNIFICANCE The results demonstrated broad cross-neutralizing activity induced by two C4 EV71 vaccines in healthy Chinese infants and children. However, the degree of induced cross-protective immunity, and the potential escape evolution for EV71 still need to be monitored and researched in future for these new vaccines.
Collapse
Affiliation(s)
- Qunying Mao
- National Institutes for Food and Drug Control, Beijing, China
| | - Tong Cheng
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Science, Xiamen University, Xiamen, China
| | - Fengcai Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Jingxin Li
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yiping Wang
- National Institutes for Food and Drug Control, Beijing, China
| | - Yanping Li
- The Center for Disease Control and Prevention of the Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fan Gao
- National Institutes for Food and Drug Control, Beijing, China
| | - Lisheng Yang
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Science, Xiamen University, Xiamen, China
| | - Xin Yao
- National Institutes for Food and Drug Control, Beijing, China
| | - Jie Shao
- National Institutes for Food and Drug Control, Beijing, China
| | - Ningshao Xia
- National Institute of Diagnostics and Vaccine Development in Infectious Disease, School of Life Science, Xiamen University, Xiamen, China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control, Beijing, China
- * E-mail: (ZL); (JW)
| | - Junzhi Wang
- National Institutes for Food and Drug Control, Beijing, China
- * E-mail: (ZL); (JW)
| |
Collapse
|
14
|
Characterization of the guinea pig CMV gH/gL/GP129/GP131/GP133 complex in infection and spread. Virology 2013; 441:75-84. [PMID: 23562482 DOI: 10.1016/j.virol.2013.03.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 02/15/2013] [Accepted: 03/13/2013] [Indexed: 11/20/2022]
Abstract
In human cytomegalovirus (HCMV), the UL128-131A locus plays an essential role in cellular tropism and spread. Here, we report the complete annotation of the GP129-133 locus from guinea pig cytomegalovirus (GPCMV) and the discovery of the UL131A homolog, named GP133. We have found that similar to HCMV the GP129-133 proteins form a pentamer complex with the GPCMV glycoproteins gH and gL. In addition, we find that the GP129-133 proteins play a critical role in entry as the GP129-133 deletion mutant shows a defect in both endothelial and fibroblast cell entry. Although the GP129-133 deletion strain can propagate in vitro, we find that the deletion fails to spread in vivo. Interestingly, the wildtype strain can spontaneously give rise to the GP129-133 deletion strain during in vivo spread, suggesting genetic instability at this locus.
Collapse
|
15
|
Proteomics-directed cloning of circulating antiviral human monoclonal antibodies. Nat Biotechnol 2013; 30:1039-43. [PMID: 23138294 DOI: 10.1038/nbt.2406] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Development of a novel baculovirus titration method using the Enzyme-linked immunosorbent spot (ELISPOT) assay. J Virol Methods 2012; 188:114-20. [PMID: 23274754 DOI: 10.1016/j.jviromet.2012.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 12/11/2012] [Accepted: 12/17/2012] [Indexed: 01/09/2023]
Abstract
The baculovirus expression vector system (BEVS) is one of the most powerful methods for production of recombinant proteins for research or commercial purposes. Titration of viable virus in insect cell culture is often required when BEVS is used for basic research or bioprocessing. An enzyme-linked immunosorbent spot (ELISPOT) assay using monoclonal antibodies against the major capsid protein VP39 of both Autographa californica nuclear polyhedrosis virus (AcMNPV) and Bombyx mori nuclear polyhedrosis virus (BmNPV) was developed for baculovirus quantitation at 48h post-infection. The titer was determined by visualizing infected insect cells as blue spots and automated spot counting was achieved with ELISPOT hardware and software. Log-scale comparison of the results between the ELISPOT assay and a conventional end point dilution assay using a fluorescent marker showed a good correlation for both AcMNPV (R(2)=0.9980, p<0.05) and BmNPV (R(2)=0.9834, p<0.05). In conclusion, a novel, rapid and semi-automated procedure for titrating baculovirus was developed based on the specific immunostaining of infected cells followed by automated spot counting.
Collapse
|
17
|
Development and evaluation of an automatable focus reduction neutralisation test for the detection of measles virus antibodies using imaging analysis. J Virol Methods 2011; 178:124-8. [DOI: 10.1016/j.jviromet.2011.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/12/2011] [Accepted: 08/15/2011] [Indexed: 11/23/2022]
|
18
|
A novel high-throughput neutralization assay for supporting clinical evaluations of human cytomegalovirus vaccines. Vaccine 2011; 29:8350-6. [DOI: 10.1016/j.vaccine.2011.08.086] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 07/18/2011] [Accepted: 08/16/2011] [Indexed: 11/20/2022]
|
19
|
Reinhard H, Le VTK, Ohlin M, Hengel H, Trilling M. Exploitation of herpesviral transactivation allows quantitative reporter gene-based assessment of virus entry and neutralization. PLoS One 2011; 6:e14532. [PMID: 21264213 PMCID: PMC3022015 DOI: 10.1371/journal.pone.0014532] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 12/06/2010] [Indexed: 01/12/2023] Open
Abstract
Herpesviral entry is a highly elaborated process requiring many proteins to act in precise conjunction. Neutralizing antibodies interfere with this process to abrogate viral infection. Based on promoter transactivation of a reporter gene we established a novel method to quantify herpesvirus entry and neutralization by antibodies. Following infection with mouse and human cytomegalovirus and Herpes simplex virus 1 we observed promoter transactivation resulting in substantial luciferase expression (>1000-fold). No induction was elicited by UV-inactivated viruses. The response was MOI-dependent and immunoblots confirmed a correlation between luciferase induction and pp72-IE1 expression. Monoclonal antibodies, immune sera and purified immunoglobulin preparations decreased virus-dependent luciferase induction dose-dependently, qualifying this approach as surrogate virus neutralization test. Besides the reduced hands-on time, this assay allows analysis of herpesvirus entry in semi-permissive and non-adherent cells, which were previously non-assessable but play significant roles in herpesvirus pathology.
Collapse
Affiliation(s)
- Henrike Reinhard
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vu Thuy Khanh Le
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Hartmut Hengel
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (HH); (MT)
| | - Mirko Trilling
- Institute for Virology, Heinrich-Heine-University, Düsseldorf, Germany
- * E-mail: (HH); (MT)
| |
Collapse
|
20
|
Sirskyj D, Weltzin R, Golshani A, Anderson D, Bozic J, Diaz-Mitoma F, Azizi A. Detection of influenza A and B neutralizing antibodies in vaccinated ferrets and macaques using specific biotin-streptavidin conjugated antibodies. J Virol Methods 2009; 163:459-64. [PMID: 19913054 DOI: 10.1016/j.jviromet.2009.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2009] [Revised: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022]
Abstract
Several critical factors of an influenza microneutralization assay, utilizing a rapid biotin-streptavidin conjugated system for detecting influenza virus subtypes A and B, are addressed within this manuscript. Factors such as incubation times, amount of virus, cell seeding, sonication, and TPCK trypsin were evaluated for their ability to affect influenza virus neutralization in a microplate-based neutralization assay using Madin-Darby canine kidney (MDCK) cells. It is apparent that the amount of virus used in the assay is the most critical factor to be optimized in an influenza microneutralization assay. Results indicate that 100xTCID(50) of influenza A/Solomon Islands/03/2006 (H1N1) virus overloads the assay and results in no, to low, neutralization, in both ferret and macaque sera, respectively, whereas using 6xTCID(50) resulted in significantly improved neutralization. Conversely, strong neutralization was observed against 100xTCID(50) of B/Malaysia/2506/04 virus. In this manuscript the critical factors described above were optimized and the results indicate that the described biotin-streptavidin conjugated influenza microneutralization assay is a rapid and robust method for detecting the presence of functional, influenza virus-neutralizing antibodies.
Collapse
Affiliation(s)
- Danylo Sirskyj
- Variation Biotechnologies Inc., 1740 Woodroffe Ave, Building 400, Ottawa, ON, K2G 3R8, Canada
| | | | | | | | | | | | | |
Collapse
|
21
|
Cytomegalovirus vaccines fail to induce epithelial entry neutralizing antibodies comparable to natural infection. Vaccine 2008; 26:5760-6. [PMID: 18718497 DOI: 10.1016/j.vaccine.2008.07.092] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 07/24/2008] [Accepted: 07/28/2008] [Indexed: 01/08/2023]
Abstract
Antibodies that neutralize cytomegalovirus (CMV) entry into fibroblasts are predominantly directed against epitopes within virion glycoproteins that are required for attachment and entry. However, the mechanism of CMV entry into epithelial and endothelial cells differs from fibroblast entry. Using assays that simultaneously measured neutralizing activities against CMV entry into fibroblasts and epithelial cells, we found that human immune sera and CMV-hyperimmuneglobulins have on on average 48-fold higher neutralizing activities against epithelial cell entry compared to fibroblast entry, suggesting that natural CMV infections elicit neutralizing antibodies that are epithelial entry-specific. This activity could not be adsorbed with recombinant gB. The Towne vaccine and the gB/MF59 subunit vaccine induced epithelial entry-specific neutralizing activities that were on on average 28-fold (Towne) or 15-fold (gB/MF59) lower than those observed following natural infection. These results suggest that CMV vaccine efficacy may be enhanced by the induction of epithelial entry-specific neutralizing antibodies.
Collapse
|