1
|
McKenzie CI, Dvorscek AR, Ding Z, Robinson MJ, O'Donnell K, Pitt C, Ferguson DT, Mulder J, Herold MJ, Tarlinton DM, Quast I. Syndecans and glycosaminoglycans influence B-cell development and activation. EMBO Rep 2025; 26:2435-2458. [PMID: 40155751 PMCID: PMC12069707 DOI: 10.1038/s44319-025-00432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 03/07/2025] [Accepted: 03/12/2025] [Indexed: 04/01/2025] Open
Abstract
Syndecans (SDCs) are glycosaminoglycan-containing cell surface proteins with diverse functions in the immune system with SDC1 (CD138) and SDC4 expressed in B-lineage cells. Here, we show that stem cells lacking either molecule generate fewer B-cell progenitors but give rise to mature B cells in vivo. Deletion of the plasma cell "marker" CD138 has no effect on homeostatic or antigen-induced plasma cell formation. Naive B cells express high SDC4 and encounter with cognate antigen results in transient CD138 upregulation and SDC4 loss, both further modulated by IL-4, IL-21, and CD40 ligation. SDC4 is downregulated on germinal center B cells and absent on most memory B cells. Glycosaminoglycans such as those attached to SDCs, and heparin, a commonly used therapeutic, regulate survival and activation of naive B cells by limiting responsiveness to cognate antigen. Conversely, ablation of SDC4 results in increased baseline and antigen-induced B-cell activation. Collectively, our data reveal B-cell activation- and subset-dependent SDC expression and show that SDC4 and GAGs can limit antigen-induced activation to promote B-cell survival and expansion.
Collapse
Affiliation(s)
- Craig I McKenzie
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia.
- Murdoch Children's Research Institute, Melbourne, VIC, 3052, Australia.
| | - Alexandra R Dvorscek
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Zhoujie Ding
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Marcus J Robinson
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Kristy O'Donnell
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Catherine Pitt
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Daniel T Ferguson
- Australian Centre for Blood Diseases, Monash University, Melbourne, VIC, 3004, Australia
| | - Jesse Mulder
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Marco J Herold
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, 3052, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, VIC, 3052, Australia
- Olivia Newton-John Cancer Research Centre, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Heidelberg, VIC, 3084, Australia
| | - David M Tarlinton
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia
| | - Isaak Quast
- Department of Immunology, Monash University, Melbourne, VIC, 3004, Australia.
| |
Collapse
|
2
|
Milardi G, Lleo A. Tumor-Infiltrating B Lymphocytes: Promising Immunotherapeutic Targets for Primary Liver Cancer Treatment. Cancers (Basel) 2023; 15:2182. [PMID: 37046842 PMCID: PMC10093314 DOI: 10.3390/cancers15072182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 04/14/2023] Open
Abstract
Hepatocellular carcinoma and cholangiocarcinoma are the fourth most lethal primary cancers worldwide. Therefore, there is an urgent need for therapeutic strategies, including immune cell targeting therapies. The heterogeneity of liver cancer is partially explained by the characteristics of the tumor microenvironment (TME), where adaptive and innate immune system cells are the main components. Pioneering studies of primary liver cancers revealed that tumor-infiltrating immune cells and their dynamic interaction with cancer cells significantly impacted carcinogenesis, playing an important role in cancer immune evasion and responses to immunotherapy treatment. In particular, B cells may play a prominent role and have a controversial function in the TME. In this work, we highlight the effect of B lymphocytes as tumor infiltrates in relation to primary liver cancers and their potential prognostic value. We also present the key pathways underlying B-cell interactions within the TME, as well as the way that a comprehensive characterization of B-cell biology can be exploited to develop novel immune-based therapeutic approaches.
Collapse
Affiliation(s)
- Giulia Milardi
- Hepatobiliary Immunopathology Labaratory, IRCCS Humanitas Research Hospital, 20089 Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, 20072 Milan, Italy
- Department of Gastroenterology, Division of Internal Medicine and Hepatology, IRCCS Humanitas Research Hospital, Rozzano, 20089 Milan, Italy
| |
Collapse
|
3
|
Åkerstrand H, Boldrin E, Montano G, Vanhee S, Olsson K, Krausse N, Vergani S, Cieśla M, Bellodi C, Yuan J. Enhanced protein synthesis is a defining requirement for neonatal B cell development. Front Immunol 2023; 14:1130930. [PMID: 37138883 PMCID: PMC10149930 DOI: 10.3389/fimmu.2023.1130930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/21/2023] [Indexed: 05/05/2023] Open
Abstract
The LIN28B RNA binding protein exhibits an ontogenically restricted expression pattern and is a key molecular regulator of fetal and neonatal B lymphopoiesis. It enhances the positive selection of CD5+ immature B cells early in life through amplifying the CD19/PI3K/c-MYC pathway and is sufficient to reinitiate self-reactive B-1a cell output when ectopically expressed in the adult. In this study, interactome analysis in primary B cell precursors showed direct binding by LIN28B to numerous ribosomal protein transcripts, consistent with a regulatory role in cellular protein synthesis. Induction of LIN28B expression in the adult setting is sufficient to promote enhanced protein synthesis during the small Pre-B and immature B cell stages, but not during the Pro-B cell stage. This stage dependent effect was dictated by IL-7 mediated signaling, which masked the impact of LIN28B through an overpowering stimulation on the c-MYC/protein synthesis axis in Pro-B cells. Importantly, elevated protein synthesis was a distinguishing feature between neonatal and adult B cell development that was critically supported by endogenous Lin28b expression early in life. Finally, we used a ribosomal hypomorphic mouse model to demonstrate that subdued protein synthesis is specifically detrimental for neonatal B lymphopoiesis and the output of B-1a cells, without affecting B cell development in the adult. Taken together, we identify elevated protein synthesis as a defining requirement for early-life B cell development that critically depends on Lin28b. Our findings offer new mechanistic insights into the layered formation of the complex adult B cell repertoire.
Collapse
Affiliation(s)
- Hugo Åkerstrand
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Elena Boldrin
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Giorgia Montano
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Stijn Vanhee
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Karin Olsson
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Niklas Krausse
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Stefano Vergani
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Maciej Cieśla
- RNA and Stem Cell Biology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Cristian Bellodi
- RNA and Stem Cell Biology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Joan Yuan
- Developmental Immunology Unit, Department of Molecular Hematology, Lund Stem Cell Center, Lund University, Lund, Sweden
- *Correspondence: Joan Yuan,
| |
Collapse
|
4
|
Osma-Garcia IC, Capitan-Sobrino D, Mouysset M, Aubert Y, Maloudi O, Turner M, Diaz-Muñoz MD. The splicing regulators TIA1 and TIAL1 are required for the expression of the DNA damage repair machinery during B cell lymphopoiesis. Cell Rep 2022; 41:111869. [PMID: 36543128 PMCID: PMC9794549 DOI: 10.1016/j.celrep.2022.111869] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 10/01/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
B cell lymphopoiesis requires dynamic modulation of the B cell transcriptome for timely coordination of somatic mutagenesis and DNA repair in progenitor B (pro-B) cells. Here, we show that, in pro-B cells, the RNA-binding proteins T cell intracellular antigen 1 (TIA1) and TIA1-like protein (TIAL1) act redundantly to enable developmental progression. They are global splicing regulators that control the expression of hundreds of mRNAs, including those involved in DNA damage repair. Mechanistically, TIA1 and TIAL1 bind to 5' splice sites for exon definition, splicing, and expression of DNA damage sensors, such as Chek2 and Rif1. In their absence, pro-B cells show exacerbated DNA damage, altered P53 expression, and increased cell death. Our study uncovers the importance of tight regulation of RNA splicing by TIA1 and TIAL1 for the expression of integrative transcriptional programs that control DNA damage sensing and repair during B cell development.
Collapse
Affiliation(s)
- Ines C. Osma-Garcia
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse 31024, France
| | - Dunja Capitan-Sobrino
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse 31024, France
| | - Mailys Mouysset
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse 31024, France
| | - Yann Aubert
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse 31024, France
| | - Orlane Maloudi
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse 31024, France
| | - Martin Turner
- Immunology Program, The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Manuel D. Diaz-Muñoz
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), Inserm UMR1291, CNRS UMR5051, University Paul Sabatier, CHU Purpan, Toulouse 31024, France,Corresponding author
| |
Collapse
|
5
|
Pfeifer M, Brem R, Lippert TP, Boulianne B, Ho HN, Robinson ME, Stebbing J, Feldhahn N. SSB1/SSB2 Proteins Safeguard B Cell Development by Protecting the Genomes of B Cell Precursors. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:3423-3433. [PMID: 31085591 PMCID: PMC6545462 DOI: 10.4049/jimmunol.1801618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/12/2019] [Indexed: 12/22/2022]
Abstract
Induction of programmed DNA damage and its recognition and repair are fundamental for B cell development. The ssDNA-binding protein SSB1 has been described in human cells as essential for the recognition and repair of DNA damage. To study its relevance for B cells, we recently developed Ssb1 -/- and conditional Ssb1 -/- mice. Although SSB1 loss did not affect B cell development, Ssb1 -/- cells exhibited compensatory expression of its homolog SSB2. We have now generated Ssb2 -/- mice and show in this study that SSB2 is also dispensable for B cell development and DNA damage response activation. In contrast to the single loss of Ssb1 or Ssb2, however, combined SSB1/2 deficiency caused a defect in early B cell development. We relate this to the sensitivity of B cell precursors as mature B cells largely tolerated their loss. Toxicity of combined genetic SSB1/2 loss can be rescued by ectopic expression of either SSB1 or SSB2, mimicked by expression of SSB1 ssDNA-binding mutants, and attenuated by BCL2-mediated suppression of apoptosis. SSB1/2 loss in B cell precursors further caused increased exposure of ssDNA associated with disruption of genome fragile sites, inefficient cell cycle progression, and increased DNA damage if apoptosis is suppressed. As such, our results establish SSB1/2 as safeguards of B cell development and unveil their differential requirement in immature and mature B lymphocytes.
Collapse
Affiliation(s)
- Matthias Pfeifer
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, W12 0NN London, United Kingdom
| | - Reto Brem
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
| | - Timothy P Lippert
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
| | - Bryant Boulianne
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
| | - Howin Ng Ho
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
| | - Mark E Robinson
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, W12 0NN London, United Kingdom
| | - Justin Stebbing
- Division of Cancer, Department of Surgery and Cancer, Imperial College London, W12 0NN London, United Kingdom
| | - Niklas Feldhahn
- Centre for Hematology, Department of Medicine, Imperial College London, W12 0NN London, United Kingdom; and
| |
Collapse
|
6
|
Yu X, Zhang H, Yuan M, Zhang P, Wang Y, Zheng M, Lv Z, Odhiambo WO, Li C, Liu C, Ma Y, Ji Y. Identification and characterization of a murine model of BCR‑ABL1+ acute B‑lymphoblastic leukemia with central nervous system metastasis. Oncol Rep 2019; 42:521-532. [PMID: 31173268 PMCID: PMC6610040 DOI: 10.3892/or.2019.7184] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 05/21/2019] [Indexed: 12/13/2022] Open
Abstract
Breakpoint cluster region (BCR)-Abelson murine leukemia (ABL)1+ acute B-lymphoblastic leukemia (B-ALL) is a disease associated with a dismal prognosis and a high incidence of central nervous system (CNS) metastasis. However, BCR-ABL1+ B-ALL with CNS infiltration has not been previously characterized, at least to the best of our knowledge. In the present study, a murine model of BCR-ABL1+ B-ALL with CNS metastasis was established using retroviral transduction. The vast majority of BCR-ABL1+ leukemic cells were found to be immature B cells with a variable proportion of pro-B and pre-B populations. The present results indicated that the BCR-ABL1+ B-leukemic cells expressed high levels integrin subunit alpha 6 (Itga6) and L-selectin adhesion molecules, and have an intrinsic ability to disseminate and accumulate in CNS tissues, predominantly in meninges. On the whole, these results provide an approach for addressing the mechanisms of BCR-ABL1+ B-ALL with CNS metastasis and may guide the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaozhuo Yu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Hua Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Meng Yuan
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Ping Zhang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Yang Wang
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Mingzhe Zheng
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Zhuangwei Lv
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Woodvine Otieno Odhiambo
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Canyu Li
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Chengcheng Liu
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Yunfeng Ma
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| | - Yanhong Ji
- Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Centre, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
7
|
Anzilotti C, Swan DJ, Boisson B, Deobagkar-Lele M, Oliveira C, Chabosseau P, Engelhardt KR, Xu X, Chen R, Alvarez L, Berlinguer-Palmini R, Bull KR, Cawthorne E, Cribbs AP, Crockford TL, Dang TS, Fearn A, Fenech EJ, de Jong SJ, Lagerholm BC, Ma CS, Sims D, van den Berg B, Xu Y, Cant AJ, Kleiner G, Leahy TR, de la Morena MT, Puck JM, Shapiro RS, van der Burg M, Chapman JR, Christianson JC, Davies B, McGrath JA, Przyborski S, Santibanez Koref M, Tangye SG, Werner A, Rutter GA, Padilla-Parra S, Casanova JL, Cornall RJ, Conley ME, Hambleton S. An essential role for the Zn 2+ transporter ZIP7 in B cell development. Nat Immunol 2019; 20:350-361. [PMID: 30718914 PMCID: PMC6561116 DOI: 10.1038/s41590-018-0295-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 12/05/2018] [Indexed: 12/20/2022]
Abstract
Despite the known importance of zinc for human immunity, molecular insights into its roles have remained limited. Here we report a novel autosomal recessive disease characterized by absent B cells, agammaglobulinemia and early onset infections in five unrelated families. The immunodeficiency results from hypomorphic mutations of SLC39A7, which encodes the endoplasmic reticulum-to-cytoplasm zinc transporter ZIP7. Using CRISPR-Cas9 mutagenesis we have precisely modeled ZIP7 deficiency in mice. Homozygosity for a null allele caused embryonic death, but hypomorphic alleles reproduced the block in B cell development seen in patients. B cells from mutant mice exhibited a diminished concentration of cytoplasmic free zinc, increased phosphatase activity and decreased phosphorylation of signaling molecules downstream of the pre-B cell and B cell receptors. Our findings highlight a specific role for cytosolic Zn2+ in modulating B cell receptor signal strength and positive selection.
Collapse
Affiliation(s)
- Consuelo Anzilotti
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David J Swan
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Bertrand Boisson
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163 Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
| | - Mukta Deobagkar-Lele
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Catarina Oliveira
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Pauline Chabosseau
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College, London, UK
| | - Karin R Engelhardt
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Xijin Xu
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Rui Chen
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Luis Alvarez
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Katherine R Bull
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Eleanor Cawthorne
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Adam P Cribbs
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tanya L Crockford
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Tarana Singh Dang
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Amy Fearn
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Emma J Fenech
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Sarah J de Jong
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
| | - B Christoffer Lagerholm
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Cindy S Ma
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Darlinghurst, New South Wales, Australia
| | - David Sims
- MRC WIMM Centre for Computational Biology, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Bert van den Berg
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Yaobo Xu
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew J Cant
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Gary Kleiner
- Pediatric Allergy and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - T Ronan Leahy
- Paediatric Immunology and Infectious Diseases, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - M Teresa de la Morena
- Division of Immunology, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, USA
| | - Jennifer M Puck
- Department of Pediatrics, Division of Allergy, Immunology, and Blood and Bone Marrow Transplantation, University of California, San Francisco, CA, USA
- UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | | | - Mirjam van der Burg
- Department of Immunology, Erasmus University Medical Centre, Rotterdam, the Netherlands
| | - J Ross Chapman
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | | | - Benjamin Davies
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - John A McGrath
- St John's Institute of Dermatology, King's College London, London, UK
| | | | | | - Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
- St Vincent's Clinical School, Faculty of Medicine, University of NSW, Darlinghurst, New South Wales, Australia
| | - Andreas Werner
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| | - Guy A Rutter
- Section of Cell Biology and Functional Genomics, Division of Diabetes, Endocrinology and Metabolism, Department of Medicine, Imperial College, London, UK
| | - Sergi Padilla-Parra
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
- Dynamic Structural Virology Group, Biocruces Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Jean-Laurent Casanova
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Inserm U1163 Necker Hospital for Sick Children, Paris, France
- Paris Descartes University, Imagine Institute, Paris, France
- Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, Paris, France
- Howard Hughes Medical Institute, New York, NY, USA
| | - Richard J Cornall
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| | - Mary Ellen Conley
- St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| | - Sophie Hambleton
- Primary Immunodeficiency Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
- Great North Children's Hospital, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK.
| |
Collapse
|
8
|
Li M, Lazorchak AS, Ouyang X, Zhang H, Liu H, Arojo OA, Yan L, Jin J, Han Y, Qu G, Fu Y, Xu X, Liu X, Zhang W, Yang Z, Ruan C, Wang Q, Liu D, Huang C, Lu L, Jiang S, Li F, Su B. Sin1/mTORC2 regulate B cell growth and metabolism by activating mTORC1 and Myc. Cell Mol Immunol 2019; 16:757-769. [PMID: 30705387 DOI: 10.1038/s41423-018-0185-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/29/2018] [Indexed: 12/20/2022] Open
Abstract
Proper control of B cell growth and metabolism is crucial for B-cell-mediated immunity, but the underlying molecular mechanisms remain incompletely understood. In this study, Sin1, a key component of mTOR complex 2 (mTORC2), specifically regulates B cell growth and metabolism. Genetic ablation of Sin1 in B cells reduces the cell size at either the transitional stage or upon antigen stimulation and severely impairs metabolism. Sin1 deficiency also severely impairs B-cell proliferation, antibody responses, and anti-viral immunity. At the molecular level, Sin1 controls the expression and stability of the c-Myc protein and maintains the activity of mTORC1 through the Akt-dependent inactivation of GSK3 and TSC1/2, respectively. Therefore, our study reveals a novel and specific role for Sin1 in coordinating the activation of mTORC2 and mTORC1 to control B cell growth and metabolism.
Collapse
Affiliation(s)
- Man Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Adam S Lazorchak
- Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA.,EMD Serono Research & Development Institute, Inc., 45 Middlesex Tpke, Billerica, MA, 01821-3936, USA
| | - Xinxing Ouyang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huihui Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hongzhi Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Omotooke A Arojo
- Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Lichong Yan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jingsi Jin
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuheng Han
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Guojun Qu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuhong Fu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Xiaocao Xu
- Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Xiaobo Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenqian Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhengfeng Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chuan Ruan
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qijun Wang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dou Liu
- Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA
| | - Chuanxin Huang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lu Lu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Shibo Jiang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology of MOE/MOH, Fudan University, Shanghai, China
| | - Fubin Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Hongqiao International Institute of Medicine, Shanghai Tongren Hospital and Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Bing Su
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China. .,Department of Immunobiology and the Vascular Biology and Therapeutics Program, Yale University School of Medicine, 333 Cedar Street, New Haven, Connecticut, 06520, USA.
| |
Collapse
|
9
|
Schabla NM, Perry GA, Palmer VL, Swanson PC. VprBP (DCAF1) Regulates RAG1 Expression Independently of Dicer by Mediating RAG1 Degradation. THE JOURNAL OF IMMUNOLOGY 2018; 201:930-939. [PMID: 29925675 DOI: 10.4049/jimmunol.1800054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/03/2018] [Indexed: 12/21/2022]
Abstract
The assembly of Ig genes in developing B lymphocytes by V(D)J recombination is initiated by the RAG1-RAG2 endonuclease complex. We previously identified an interaction between RAG1 and viral protein R binding protein (VprBP) (also known as DNA damage binding protein 1 cullin 4-associated factor 1 [DCAF1]), a substrate receptor for the cullin 4-really interesting new gene (RING) E3 ubiquitin ligase (CRL4). We report in this article that in mice, B cell-intrinsic loss of VprBP increases RAG1 protein levels and disrupts expression of the endoribonuclease Dicer, which is essential for microRNA maturation. Rag1/2 transcription is known to be derepressed by loss of microRNA-mediated suppression of phosphatase and tensin homolog, raising the possibility that the elevated level of RAG1 observed in VprBP-deficient B cells is caused indirectly by the loss of Dicer. However, we show that VprBP restrains RAG1 expression posttranscriptionally and independently of Dicer. Specifically, loss of VprBP stabilizes RAG1 protein, which we show is normally degraded via a mechanism requiring both 20S proteasome and cullin-RING E3 ubiquitin ligase activity. Furthermore, we show that RAG1 stabilization through small molecule inhibition of cullin-RING E3 ubiquitin ligase activation promotes V(D)J recombination in a murine pre-B cell line. Thus, in addition to identifying a role for VprBP in maintaining Dicer levels in B cells, our findings reveal the basis for RAG1 turnover and provide evidence that the CRL4VprBP(DCAF1) complex functions to maintain physiological levels of V(D)J recombination.
Collapse
Affiliation(s)
- N Max Schabla
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| | - Greg A Perry
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| | - Victoria L Palmer
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| | - Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| |
Collapse
|
10
|
Greaves SA, Peterson JN, Torres RM, Pelanda R. Activation of the MEK-ERK Pathway Is Necessary but Not Sufficient for Breaking Central B Cell Tolerance. Front Immunol 2018; 9:707. [PMID: 29686680 PMCID: PMC5900439 DOI: 10.3389/fimmu.2018.00707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/22/2018] [Indexed: 01/12/2023] Open
Abstract
Newly generated bone marrow B cells are positively selected into the peripheral lymphoid tissue only when they express a B cell receptor (BCR) that is nonautoreactive or one that binds self-antigen with only minimal avidity. This positive selection process, moreover, is critically contingent on the ligand-independent tonic signals transduced by the BCR. We have previously shown that when autoreactive B cells express an active form of the rat sarcoma (RAS) oncogene, they upregulate the receptor for the B cell activating factor (BAFFR) and undergo differentiation in vitro and positive selection into the spleen in vivo, overcoming central tolerance. Based on the in vitro use of pharmacologic inhibitors, we further showed that this cell differentiation process is critically dependent on the activation of the mitogen-activated protein kinase kinase pathway MEK (MAPKK)-extracellular signal-regulated kinase (ERK), which is downstream of RAS. Here, we next investigated if activation of ERK is not only necessary but also sufficient to break central B cell tolerance and induce differentiation of autoreactive B cells in vitro and in vivo. Our results demonstrate that activation of ERK is critical for upregulating BAFFR and overcoming suboptimal levels of tonic BCR signals or low amounts of antigen-induced BCR signals during in vitro B cell differentiation. However, direct activation of ERK does not lead high avidity autoreactive B cells to increase BAFFR levels and undergo positive selection and differentiation in vivo. B cell-specific MEK-ERK activation in mice is also unable to lead to autoantibody secretion, and this in spite of a general increase of serum immunoglobulin levels. These findings indicate that additional pathways downstream of RAS are required for high avidity autoreactive B cells to break central and/or peripheral tolerance.
Collapse
Affiliation(s)
- Sarah A Greaves
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jacob N Peterson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
11
|
Shiba T, Makino I, Sasaki T, Fukuhara Y, Kawakami K, Kato I, Kobayashi T. p-Cresyl sulfate decreases peripheral B cells in mice with adenine-induced renal dysfunction. Toxicol Appl Pharmacol 2018; 342:50-59. [PMID: 29407365 DOI: 10.1016/j.taap.2018.01.025] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 12/29/2022]
Abstract
Infection is a major cause of mortality in chronic kidney disease (CKD) patients. Although immune dysfunction is a risk factor for infection in CKD patients, its causes are not fully elucidated. In the present study, we evaluated whether p-cresyl sulfate (pCS), an intestinal bacteria-derived uremic toxin, was involved in immune dysfunction in CKD. We used osmotic pumps to establish adenine-induced renal dysfunction mice with a chronically high blood pCS concentration. Analysis of lymphocyte subsets revealed that pCS significantly reduced peripheral B cells in renal dysfunction mice. In vitro, pCS inhibited interleukin (IL)-7-induced proliferation of CD43+ B-cell progenitors and suppressed IL-7-induced phosphorylation of signal transducer and activator of transcription 5 (STAT5) in these cells. Cell cycle analysis showed that pCS significantly decreased the percentage of CD43+ B-cell progenitors in S phase and increased that in G1 phase. These results suggest that pCS suppressed IL-7-induced STAT5 signaling and inhibited B-cell progenitor proliferation, leading to reduction of peripheral B cells in adenine-induced renal dysfunction mice. Therefore, pCS decreases peripheral B cells by inhibiting proliferation of CD43+ B-cell progenitors and is a likely cause of immune dysfunction in CKD patients.
Collapse
Affiliation(s)
- Takahiro Shiba
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo 186-8650, Japan.
| | - Ikuyo Makino
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo 186-8650, Japan
| | - Takashi Sasaki
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo 186-8650, Japan
| | - Yuji Fukuhara
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo 186-8650, Japan
| | - Koji Kawakami
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo 186-8650, Japan
| | - Ikuo Kato
- Yakult Central Institute, 5-11 Izumi, Kunitachi-Shi, Tokyo 186-8650, Japan
| | | |
Collapse
|
12
|
Abstract
In this brief review, we discuss immune tolerance as a factor that determines the magnitude and quality of serum antibody responses to HIV-1 infection and vaccination in the context of recent work. We propose that many conserved, neutralizing epitopes of HIV-1 are weakly immunogenic because they mimic host antigens. In consequence, B cells that strongly bind these determinants are removed by the physiological process of immune tolerance. This structural mimicry may represent a significant impediment to designing protective HIV-1 vaccines, but we note that several vaccine strategies may be able to mitigate this evolutionary adaptation of HIV and other microbial pathogens.
Collapse
|
13
|
Holl TM, Yang G, Kuraoka M, Verkoczy L, Alam SM, Moody MA, Haynes BF, Kelsoe G. Enhanced antibody responses to an HIV-1 membrane-proximal external region antigen in mice reconstituted with cultured lymphocytes. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 192:3269-79. [PMID: 24591365 PMCID: PMC4003504 DOI: 10.4049/jimmunol.1302829] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We have shown that the protective HIV-1 Ab, 2F5, avidly reacts with a conserved mammalian self-Ag, kynureninase, and that the development of B cells specific for the 2F5 epitope is constrained by immunological tolerance. These observations suggest that the capacity to mount Ab responses to the 2F5 epitope is mitigated by tolerance, but such capacity may be latent in the pretolerance and/or anergic B cell pools. In this study, we use B cell tetramer reagents to track the frequencies of B cells that recognize the HIV-1 2F5 epitope (SP62): in C57BL/6 mice, SP62-binding transitional B cells are readily identified in bone marrow but are lost during subsequent development. Unsurprisingly then, immunization with SP62 immunogen does not elicit significant humoral responses in normal C57BL/6 mice. Reconstitution of Rag1(null) mice with normal congenic B cells that have matured in vitro restores the capacity to mount significant serum Ab and germinal center responses to this HIV-1 epitope. These B cell cultures are permissive for the development of autoreactive B cells and support the development of SP62-specific B cell compartments normally lost in 2F5 Ab knockin mice. The recovery of humoral responses to the 2F5/SP62 epitope of HIV-1 by reconstitution with B cells containing forbidden, autoreactive clones provides direct evidence that normal C57BL/6 mice latently possess the capacity to generate humoral responses to a conserved, neutralizing HIV-1 epitope.
Collapse
Affiliation(s)
- T. Matt Holl
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| | - Guang Yang
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| | - Masayuki Kuraoka
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
| | - Laurent Verkoczy
- Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
- Department of Pathology, Duke University, Durham, North Carolina 27710, USA
| | - S. Munir Alam
- Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
- Department of Pathology, Duke University, Durham, North Carolina 27710, USA
- Department of Medicine Duke University, Durham, North Carolina 27710, USA
| | - M. Anthony Moody
- Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
- Department of Pathology, Duke University, Durham, North Carolina 27710, USA
| | - Barton F. Haynes
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
- Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
- Department of Medicine Duke University, Durham, North Carolina 27710, USA
| | - Garnett Kelsoe
- Department of Immunology, Duke University, Durham, North Carolina 27710, USA
- Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
14
|
Abstract
The creation of bone marrow and fetal liver chimeric mice has proven to be a valuable tool in the field of immunology. Chimeric mice are used to study the contribution of various cell types of hematopoietic versus non-hematopoietic origin in the course of an immune response. In this chapter, we describe a detailed method to obtain bone marrow or fetal liver chimeric mice and assess the efficiency of donor cells to repopulate the hematopoietic compartment of recipient mice.
Collapse
|
15
|
Murine B cell development and antibody responses to model antigens are not impaired in the absence of the TNF receptor GITR. PLoS One 2012; 7:e31632. [PMID: 22328941 PMCID: PMC3273462 DOI: 10.1371/journal.pone.0031632] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 01/14/2012] [Indexed: 12/31/2022] Open
Abstract
The Glucocorticoid-Induced Tumor necrosis factor Receptor GITR, a member of the tumor necrosis factor receptor superfamily, has been shown to be important in modulating immune responses in the context of T cell immunity. B lymphocytes also express GITR, but a role of GITR in humoral immunity has not been fully explored. To address this question, we performed studies to determine the kinetics of GITR expression on naïve and stimulated B cells and the capacity of B cells to develop and mount antibody responses in GITR−/− mice. Results of our studies indicate that all mature B cells express GITR on the cell surface, albeit at different levels. Expression of GITR on naïve mature B cells is upregulated by BCR signaling, but is counteracted by helper T cell-related factors and other inflammatory signals in vitro. In line with these findings, expression of GITR on germinal center and memory B cells is lower than that on naïve B cells. However, the expression of GITR is strongly upregulated in plasma cells. Despite these differences in GITR expression, the absence of GITR has no effect on T cell-dependent and T cell-independent antibody responses to model antigens in GITR−/− mice, or on B cell activation and proliferation in vitro. GITR deficiency manifests only with a slight reduction of mature B cell numbers and increased turnover of naïve B cells, suggesting that GITR slightly contributes to mature B cell homeostasis. Overall, our data indicate that GITR does not play a significant role in B cell development and antibody responses to T-dependent and independent model antigens within the context of a GITR-deficient genetic background.
Collapse
|
16
|
Verkoczy L, Chen Y, Bouton-Verville H, Zhang J, Diaz M, Hutchinson J, Ouyang YB, Alam SM, Holl TM, Hwang KK, Kelsoe G, Haynes BF. Rescue of HIV-1 broad neutralizing antibody-expressing B cells in 2F5 VH x VL knockin mice reveals multiple tolerance controls. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2011; 187:3785-97. [PMID: 21908739 PMCID: PMC3192533 DOI: 10.4049/jimmunol.1101633] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The HIV-1 broadly neutralizing Ab (bnAb) 2F5 has been shown to be poly-/self-reactive in vitro, and we previously demonstrated that targeted expression of its VDJ rearrangement alone was sufficient to trigger a profound B cell developmental blockade in 2F5 V(H) knockin (KI) mice, consistent with central deletion of 2F5 H chain-expressing B cells. In this study, we generate a strain expressing the entire 2F5 bnAb specificity, 2F5 V(H) × V(L) KI mice, and find an even higher degree of tolerance control than observed in the 2F5 V(H) KI strain. Although B cell development was severely impaired in 2F5 V(H) × V(L) KI animals, we demonstrate rescue of their B cells when cultured in IL-7/BAFF. Intriguingly, even under these conditions, most rescued B cell hybridomas produced mAbs that lacked HIV-1 Envelope (Env) reactivity due to editing of the 2F5 L chain, and the majority of rescued B cells retained an anergic phenotype. Thus, when clonal deletion is circumvented, κ editing and anergy are additional safeguards preventing 2F5 V(H)/V(L) expression by immature/transitional B cells. Importantly, 7% of rescued B cells retained 2F5 V(H)/V(L) expression and secreted Env-specific mAbs with HIV-1-neutralizing activity. This partial rescue was further corroborated in vivo, as reflected by the anergic phenotype of most rescued B cells in 2F5 V(H) × V(L) KI × Eμ-Bcl-2 transgenic mice and significant (yet modest) enrichment of Env-specific B cells and serum Igs. The rescued 2F5 mAb-producing B cell clones in this study are the first examples, to our knowledge, of in vivo-derived bone marrow precursors specifying HIV-1 bnAbs and provide a starting point for design of strategies aimed at rescuing such B cells.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Department of Medicine, Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Activation-induced cytidine deaminase mediates central tolerance in B cells. Proc Natl Acad Sci U S A 2011; 108:11560-5. [PMID: 21700885 DOI: 10.1073/pnas.1102571108] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Aicda gene product, activation-induced cytidine deaminase (AID), initiates somatic hypermutation, class-switch recombination, and gene conversion of Ig genes by the deamination of deoxycytidine, followed by error-prone mismatch- or base-excision DNA repair. These processes are crucial for the generation of genetically diverse, high affinity antibody and robust humoral immunity, but exact significant genetic damage and promote cell death. In mice, physiologically significant AID expression was thought to be restricted to antigen-activated, mature B cells in germinal centers. We now demonstrate that low levels of AID in bone marrow immature and transitional B cells suppress the development of autoreactivity. Aicda(-/-) mice exhibit significantly increased serum autoantibody and reduced capacity to purge autoreactive immature and transitional B cells. In vitro, AID deficient immature/transitional B cells are significantly more resistant to anti-IgM-induced apoptosis than their normal counterparts. Thus, early AID expression plays a fundamental and unanticipated role in purging self-reactive immature and transitional B cells during their maturation in the bone marrow.
Collapse
|
18
|
Verkoczy L, Kelsoe G, Moody MA, Haynes BF. Role of immune mechanisms in induction of HIV-1 broadly neutralizing antibodies. Curr Opin Immunol 2011; 23:383-90. [PMID: 21524897 DOI: 10.1016/j.coi.2011.04.003] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 04/01/2011] [Accepted: 04/04/2011] [Indexed: 12/20/2022]
Abstract
Although antibodies can be elicited by HIV-1 infection or immunization, those that are broadly neutralizing (bnAbs) are undetectable in most individuals, and when they do arise in HIV-1 infection, only do so years after transmission. Until recently, the reasons for difficulty in inducing such bnAbs have been obscure. Recent technological advances in isolating bnAbs from rare patients have increased our knowledge of their specificities and features, and along with gene-targeting studies, have also begun uncovering evidence of immunoregulatory roadblocks preventing their induction. One crucial avenue towards developing an effective HIV-1 vaccine is to harness this emerging information into the rational design of immunogens and formulation of adjuvants, such that structural and immunological hurdles to routinely eliciting bnAbs can be overcome.
Collapse
Affiliation(s)
- Laurent Verkoczy
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA.
| | | | | | | |
Collapse
|