1
|
Carey Hoppé A, Obeid S, Milner B, Venturi V, Munier CML. Ultrasound-Guided Fine Needle Biopsy of Human Axillary Lymph Nodes to Assess B Cell Responses to Vaccination. Methods Mol Biol 2024; 2826:15-30. [PMID: 39017882 DOI: 10.1007/978-1-0716-3950-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Ultrasound-guided fine needle biopsy, also known as fine needle aspiration, of human axillary lymph nodes is a safe and effective procedure to assess the immune response within the lymph nodes following vaccination. Once acquired, lymph node cells can be characterized via flow cytometric immunophenotyping and/or single-cell RNA sequencing for gene expression and T and B cell receptors. Analysis of the immune cells from the lymph nodes enables the investigation of T and B cells that may interact at this site. These interactions may lead to germinal center formation and expansion, critical for the generation of effective immunity to vaccination. Directly studying the dynamic processes and interaction of the key cells has been challenging in humans due to the anatomically protected location of these cells. Here, we describe the methods involved in ultrasound-guided fine needle biopsy of human axillary lymph nodes in response to vaccination and subsequent analyses of the B cell populations.
Collapse
Affiliation(s)
- Alexandra Carey Hoppé
- Immunology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - Solange Obeid
- St Vincent's Hospital Sydney, Sydney, NSW, Australia
| | - Brad Milner
- St Vincent's Hospital Sydney, Sydney, NSW, Australia
| | - Vanessa Venturi
- Immunology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia
| | - C Mee Ling Munier
- Immunology and Pathogenesis Program, Kirby Institute, UNSW Sydney, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Dufour JP, Allers C, Schiro F, Falkenstein KP, Gregoire KK, Glover CD, Chamel AN, Woods A, Phillippi JP, Gideon TM, Kaur A. Comparison of fine-needle aspiration techniques. J Med Primatol 2023; 52:400-404. [PMID: 37712216 PMCID: PMC10872887 DOI: 10.1111/jmp.12676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/25/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
BACKGROUND Fine-needle aspiration (FNA) has been reported since 1912 beginning with the use of trocars and other specialized instruments that were impractical. Since then, FNA has proven to be a successful alternative technique to excisional biopsy for some assays despite a few limitations. METHODS In this study, we compared four different techniques for FNA in rhesus macaques by evaluating total live cells recovered and cell viability using a standard 6 mL syringe and 1.5-inch 22-gauge needle. RESULTS Technique B which was the only technique in which the needle was removed from the syringe after collection of the sample to allow forced air through the needle to expel the contents into media followed by flushing of the syringe and needle resulted in the highest total cell count and second highest cell viability in recovered cells. CONCLUSION Based on our results, Technique B appears to be the superior method.
Collapse
Affiliation(s)
| | | | - Faith Schiro
- Tulane National Primate Research Center, Covington, LA
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Poloni C, Schonhofer C, Ivison S, Levings MK, Steiner TS, Cook L. T-cell activation-induced marker assays in health and disease. Immunol Cell Biol 2023; 101:491-503. [PMID: 36825901 PMCID: PMC10952637 DOI: 10.1111/imcb.12636] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Activation-induced marker (AIM) assays have proven to be an accessible and rapid means of antigen-specific T-cell detection. The method typically involves short-term incubation of whole blood or peripheral blood mononuclear cells with antigens of interest, where autologous antigen-presenting cells process and present peptides in complex with major histocompatibility complex (MHC) molecules. Recognition of peptide-MHC complexes by T-cell receptors then induces upregulation of activation markers on the T cells that can be detected by flow cytometry. In this review, we highlight the most widely used activation markers for assays in the literature while identifying nuances and potential downfalls associated with the technique. We provide a summary of how AIM assays have been used in both discovery science and clinical studies, including studies of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunity. This review primarily focuses on AIM assays using human blood or peripheral blood mononuclear cell samples, with some considerations noted for tissue-derived T cells and nonhuman samples. AIM assays are a powerful tool that enables detailed analysis of antigen-specific T-cell frequency, phenotype and function without needing to know the precise antigenic peptides and their MHC restriction elements, enabling a wider analysis of immunity generated following infection and/or vaccination.
Collapse
Affiliation(s)
- Chad Poloni
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Cole Schonhofer
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Sabine Ivison
- BC Children's Hospital Research InstituteVancouverBCCanada
- Department of SurgeryUniversity of British ColumbiaVancouverBCCanada
| | - Megan K Levings
- BC Children's Hospital Research InstituteVancouverBCCanada
- Department of SurgeryUniversity of British ColumbiaVancouverBCCanada
| | - Theodore S Steiner
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- BC Children's Hospital Research InstituteVancouverBCCanada
| | - Laura Cook
- Division of Infectious Diseases, Department of MedicineUniversity of British ColumbiaVancouverBCCanada
- Department of Microbiology and ImmunologyUniversity of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Department of Critical Care, Melbourne Medical SchoolUniversity of MelbourneMelbourneAustralia
| |
Collapse
|
4
|
Baiyegunhi OO, Mann J, Khaba T, Nkosi T, Mbatha A, Ogunshola F, Chasara C, Ismail N, Ngubane T, Jajbhay I, Pansegrouw J, Dong KL, Walker BD, Ndung'u T, Ndhlovu ZM. CD8 lymphocytes mitigate HIV-1 persistence in lymph node follicular helper T cells during hyperacute-treated infection. Nat Commun 2022; 13:4041. [PMID: 35831418 PMCID: PMC9279299 DOI: 10.1038/s41467-022-31692-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/29/2022] [Indexed: 11/09/2022] Open
Abstract
HIV persistence in tissue sites despite ART is a major barrier to HIV cure. Detailed studies of HIV-infected cells and immune responses in native lymph node tissue environment is critical for gaining insight into immune mechanisms impacting HIV persistence and clearance in tissue sanctuary sites. We compared HIV persistence and HIV-specific T cell responses in lymph node biopsies obtained from 14 individuals who initiated therapy in Fiebig stages I/II, 5 persons treated in Fiebig stages III-V and 17 late treated individuals who initiated ART in Fiebig VI and beyond. Using multicolor immunofluorescence staining and in situ hybridization, we detect HIV RNA and/or protein in 12 of 14 Fiebig I/II treated persons on suppressive therapy for 1 to 55 months, and in late treated persons with persistent antigens. CXCR3+ T follicular helper cells harbor the greatest amounts of gag mRNA transcripts. Notably, HIV-specific CD8+ T cells responses are associated with lower HIV antigen burden, suggesting that these responses may contribute to HIV suppression in lymph nodes during therapy. These results reveal HIV persistence despite the initiation of ART in hyperacute infection and highlight the contribution of virus-specific responses to HIV suppression in tissue sanctuaries during suppressive ART.
Collapse
Affiliation(s)
- Omolara O Baiyegunhi
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Jaclyn Mann
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Trevor Khaba
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thandeka Nkosi
- Africa Health Research Institute (AHRI), Durban, South Africa
| | - Anele Mbatha
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Funsho Ogunshola
- Africa Health Research Institute (AHRI), Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | | | - Nasreen Ismail
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | - Thandekile Ngubane
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
| | | | | | - Krista L Dong
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
| | - Bruce D Walker
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
- Institute for Medical Sciences and Engineering and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Thumbi Ndung'u
- Africa Health Research Institute (AHRI), Durban, South Africa
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA
- Max Planck Institute for Infection Biology, Berlin, Germany
- Division of Infection and Immunity, University College London, London, UK
| | - Zaza M Ndhlovu
- Africa Health Research Institute (AHRI), Durban, South Africa.
- HIV Pathogenesis Programme, The Doris Duke Medical Research Institute, University of KwaZulu-Natal, Durban, South Africa.
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Law H, Mach M, Howe A, Obeid S, Milner B, Carey C, Elfis M, Fsadni B, Ognenovska K, Phan TG, Carey D, Xu Y, Venturi V, Zaunders J, Kelleher AD, Munier CML. Early expansion of CD38+ICOS+ GC Tfh in draining lymph nodes during influenza vaccination immune response. iScience 2022; 25:103656. [PMID: 35028536 PMCID: PMC8741621 DOI: 10.1016/j.isci.2021.103656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 01/23/2023] Open
Abstract
T follicular helper (Tfh) cells provide critical help to B cells during the germinal center (GC) reaction to facilitate generation of protective humoral immunity. Accessing the human lymph node (LN) to study the commitment of CD4 T cells to GC Tfh cell differentiation during in vivo vaccine responses is difficult. We used ultrasound guided fine needle biopsy to monitor recall responses in axillary LNs to seasonal influenza vaccination in healthy volunteers. Specific expansion of GC cell subsets occurred exclusively within draining LNs five days postvaccination. Draining LN GC Tfh and precursor-Tfh cells express higher levels of CD38, ICOS, and Ki67, indicating they were significantly more activated, motile, and proliferating, compared to contralateral LN cells. These observations provide insight into the early expansion phase of the human Tfh lineage within LNs during a vaccine induced memory response and highlights early LN immune responses may not be reflected in the periphery. Early response to influenza vaccine is characterized by expansion of GC cell subsets Specific expansion of CD38+ ICOS+ GC Tfh and Pre-Tfh occurs in draining LNs only Activated GC Tfh and Pre-Tfh are also proliferating, expressing high levels of Ki67 Correlation between activated Pre-Tfh and activated c-Tfh suggests a potential origin
Collapse
Affiliation(s)
- Hannah Law
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Melanie Mach
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia.,The University of Sydney, Sydney 2006, NSW, Australia
| | - Annett Howe
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Solange Obeid
- St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia
| | - Brad Milner
- St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia
| | - Cate Carey
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Maxine Elfis
- St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia
| | - Bertha Fsadni
- St Vincent's Centre for Applied Medical Research (AMR), Sydney 2010, NSW, Australia
| | | | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney 2010, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney 2010, NSW, Australia
| | - Diane Carey
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Yin Xu
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Vanessa Venturi
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - John Zaunders
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia.,St Vincent's Centre for Applied Medical Research (AMR), Sydney 2010, NSW, Australia
| | - Anthony D Kelleher
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia.,St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia.,St Vincent's Centre for Applied Medical Research (AMR), Sydney 2010, NSW, Australia
| | | |
Collapse
|
6
|
Barber-Axthelm IM, Kelly HG, Esterbauer R, Wragg KM, Gibbon AM, Lee WS, Wheatley AK, Kent SJ, Tan HX, Juno JA. Coformulation with Tattoo Ink for Immunological Assessment of Vaccine Immunogenicity in the Draining Lymph Node. THE JOURNAL OF IMMUNOLOGY 2021; 207:735-744. [PMID: 34244296 DOI: 10.4049/jimmunol.2001299] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 05/17/2021] [Indexed: 11/19/2022]
Abstract
Characterization of germinal center B and T cell responses yields critical insights into vaccine immunogenicity. Nonhuman primates are a key preclinical animal model for human vaccine development, allowing both lymph node (LN) and circulating immune responses to be longitudinally sampled for correlates of vaccine efficacy. However, patterns of vaccine Ag drainage via the lymphatics after i.m. immunization can be stochastic, driving uneven deposition between lymphoid sites and between individual LN within larger clusters. To improve the accurate isolation of Ag-exposed LN during biopsies and necropsies, we developed and validated a method for coformulating candidate vaccines with tattoo ink in both mice and pigtail macaques. This method allowed for direct visual identification of vaccine-draining LN and evaluation of relevant Ag-specific B and T cell responses by flow cytometry. This approach is a significant advancement in improving the assessment of vaccine-induced immunity in highly relevant nonhuman primate models.
Collapse
Affiliation(s)
- Isaac M Barber-Axthelm
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia
| | - Hannah G Kelly
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia.,Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Victoria, Australia
| | - Robyn Esterbauer
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia
| | - Kathleen M Wragg
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia
| | - Anne M Gibbon
- Monash Animal Research Platform, Monash University, Clayton, Victoria, Australia; and
| | - Wen Shi Lee
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia.,Australian Research Council Centre for Excellence in Convergent Bio-Nano Science and Technology, University of Melbourne, Melbourne, Victoria, Australia.,Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Hyon-Xhi Tan
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne Victoria, Australia;
| |
Collapse
|
7
|
Havenar-Daughton C, Carnathan DG, Boopathy AV, Upadhyay AA, Murrell B, Reiss SM, Enemuo CA, Gebru EH, Choe Y, Dhadvai P, Viviano F, Kaushik K, Bhiman JN, Briney B, Burton DR, Bosinger SE, Schief WR, Irvine DJ, Silvestri G, Crotty S. Rapid Germinal Center and Antibody Responses in Non-human Primates after a Single Nanoparticle Vaccine Immunization. Cell Rep 2020; 29:1756-1766.e8. [PMID: 31722194 PMCID: PMC6905039 DOI: 10.1016/j.celrep.2019.10.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 09/06/2019] [Accepted: 10/02/2019] [Indexed: 11/25/2022] Open
Abstract
The first immunization in a protein prime-boost vaccination is likely to
be critical for how the immune response unfolds. Using fine needle aspirates
(FNAs) of draining lymph nodes (LNs), we tracked the kinetics of the primary
immune response in rhesus monkeys immunized intramuscularly (IM) or
subcutaneously (s.c.) with an eOD-GT8 60-mer nanoparticle immunogen to
facilitate clinical trial design. Significant numbers of germinal center B
(BGC) cells and antigen-specific CD4 T cells were detectable in
the draining LN as early as 7 days post-immunization and peaked near day 21.
Strikingly, s.c. immunization results in 10-fold larger antigen-specific
BGC cell responses compared to IM immunization. Lymphatic
drainage studies revealed that s.c. immunization resulted in faster and more
consistent axillary LN drainage than IM immunization. These data indicate robust
antigen-specific germinal center responses can occur rapidly to a single
immunization with a nanoparticle immunogen and vaccine drainage substantially
impacts immune responses in local LNs. The first immunization of protein prime-boost vaccination is likely
critical but has been understudied in large animals and humans. Havenar-Daughton
et al. use lymph node fine needle aspirates to determine primary germinal center
response kinetics in rhesus monkeys immunized intramuscularly or subcutaneously
with a clinical trial candidate nanoparticle immunogen.
Collapse
Affiliation(s)
- Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Diane G Carnathan
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Archana V Boopathy
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Amit A Upadhyay
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Ben Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm 17177, Sweden
| | - Samantha M Reiss
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Chiamaka A Enemuo
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Etse H Gebru
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Yury Choe
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Pallavi Dhadvai
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Federico Viviano
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kirti Kaushik
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jinal N Bhiman
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA
| | - Bryan Briney
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA
| | - Steven E Bosinger
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - William R Schief
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA
| | - Darrell J Irvine
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02129, USA
| | - Guido Silvestri
- Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Immunology (LJI), La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA 92037, USA; Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, San Diego, CA 92103, USA.
| |
Collapse
|
8
|
Verma A, Schmidt BA, Elizaldi SR, Nguyen NK, Walter KA, Beck Z, Trinh HV, Dinasarapu AR, Lakshmanappa YS, Rane NN, Matyas GR, Rao M, Shen X, Tomaras GD, LaBranche CC, Reimann KA, Foehl DH, Gach JS, Forthal DN, Kozlowski PA, Amara RR, Iyer SS. Impact of T h1 CD4 Follicular Helper T Cell Skewing on Antibody Responses to an HIV-1 Vaccine in Rhesus Macaques. J Virol 2020; 94:e01737-19. [PMID: 31827000 PMCID: PMC7158739 DOI: 10.1128/jvi.01737-19] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Generating durable humoral immunity through vaccination depends upon effective interactions of follicular helper T (Tfh) cells with germinal center (GC) B cells. Th1 polarization of Tfh cells is an important process shaping the success of Tfh-GC B cell interactions by influencing costimulatory and cytokine-dependent Tfh help to B cells. However, the question remains as to whether adjuvant-dependent modulation of Tfh cells enhances HIV-1 vaccine-induced antienvelope (anti-Env) antibody responses. We investigated whether an HIV-1 vaccine platform designed to increase the number of Th1-polarized Tfh cells enhances the magnitude and quality of anti-Env antibodies. Utilizing a novel interferon-induced protein 10 (IP-10)-adjuvanted HIV-1 DNA prime followed by a monophosphoryl lipid A and QS-21 (MPLA+QS-21)-adjuvanted Env protein boost (DIP-10 PALFQ) in macaques, we observed higher anti-Env serum IgG titers with greater cross-clade reactivity, specificity for V1V2, and effector functions than in macaques primed with DNA lacking IP-10 and boosted with MPLA-plus-alum-adjuvanted Env protein (DPALFA) The DIP-10 PALFQ vaccine regimen elicited higher anti-Env IgG1 and lower IgG4 antibody levels in serum, showing for the first time that adjuvants can dramatically impact the IgG subclass profile in macaques. The DIP-10 PALFQ regimen also increased vaginal and rectal IgA antibodies to a greater extent. Within lymph nodes, we observed augmented GC B cell responses and the promotion of Th1 gene expression profiles in GC Tfh cells. The frequency of GC Tfh cells correlated with both the magnitude and avidity of anti-Env serum IgG. Together, these data suggest that adjuvant-induced stimulation of Th1-Tfh cells is an effective strategy for enhancing the magnitude and quality of anti-Env antibody responses.IMPORTANCE The results of the RV144 trial demonstrated that vaccination could prevent HIV transmission in humans and that longevity of anti-Env antibodies may be key to this protection. Efforts to improve upon the prime-boost vaccine regimen used in RV144 have indicated that booster immunizations can increase serum anti-Env antibody titers but only transiently. Poor antibody durability hampers efforts to develop an effective HIV-1 vaccine. This study was designed to identify the specific elements involved in the immunological mechanism necessary to produce robust HIV-1-specific antibodies in rhesus macaques. By clearly defining immune-mediated pathways that improve the magnitude and functionality of the anti-HIV-1 antibody response, we will have the foundation necessary for the rational development of an HIV-1 vaccine.
Collapse
Affiliation(s)
- Anil Verma
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Brian A Schmidt
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Sonny R Elizaldi
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
- Graduate Group in Immunology, UC Davis, Davis, California, USA
| | - Nancy K Nguyen
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Korey A Walter
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Zoltan Beck
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Hung V Trinh
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, USA
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Ashok R Dinasarapu
- Emory Department of Human Genetics, Emory University, Atlanta, Georgia, USA
| | | | - Niharika N Rane
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
| | - Gary R Matyas
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Mangala Rao
- U.S. Military HIV Research Program, Laboratory of Adjuvant and Antigen Research, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Celia C LaBranche
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA
| | - Keith A Reimann
- Nonhuman Primate Reagent Resource, MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, USA
| | - David H Foehl
- Nonhuman Primate Reagent Resource, MassBiologics, University of Massachusetts Medical School, Boston, Massachusetts, USA
| | - Johannes S Gach
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, School of Medicine, UC Irvine, Irvine, California, USA
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine, School of Medicine, UC Irvine, Irvine, California, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, School of Medicine, UC Irvine, Irvine, California, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Rama R Amara
- Department of Microbiology and Immunology, Emory University, Atlanta, Georgia, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Smita S Iyer
- The Center for Immunology and Infectious Diseases, UC Davis, Davis, California, USA
- California National Primate Research Center, School of Veterinary Medicine, UC Davis, Davis, California, USA
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, UC Davis, Davis, California, USA
| |
Collapse
|
9
|
Havenar-Daughton C, Newton IG, Zare SY, Reiss SM, Schwan B, Suh MJ, Hasteh F, Levi G, Crotty S. Normal human lymph node T follicular helper cells and germinal center B cells accessed via fine needle aspirations. J Immunol Methods 2020; 479:112746. [PMID: 31958451 DOI: 10.1016/j.jim.2020.112746] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 01/06/2020] [Accepted: 01/14/2020] [Indexed: 12/21/2022]
Abstract
Germinal centers (GC) are critically important for maturation of the antibody response and generation of memory B cells, processes that form the basis for long-term protection from pathogens. GCs only occur in lymphoid tissue, such as lymph nodes, and are not present in blood. Therefore, GC B cells and GC T follicular helper (TFH) cells are not well-studied in humans under normal healthy conditions, due to the limited availability of healthy lymph node samples. We used a minimally invasive, routine clinical procedure, lymph node fine needle aspirations (LN FNAs), to obtain LN cells from healthy human subjects. This study of 73 LNs demonstrates that human LN FNAs are a safe and feasible technique for immunological research, and suggests benchmarks for human GC biology under noninflammatory conditions. The findings indicate that assessment of the GC response via LN FNAs will have application to the study of human vaccination, allergy, and autoimmune disease.
Collapse
Affiliation(s)
- Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Isabel G Newton
- Department of Radiology, Division of Interventional Radiology, University of California, San Diego, CA 92093, USA.; Veterans Administration San Diego Healthcare System, San Diego, CA 92161, USA
| | - Somaye Y Zare
- Department of Pathology, University of California San Diego, San Diego, CA 92103, USA
| | - Samantha M Reiss
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Brittany Schwan
- Clinical Studies Core, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Min Ji Suh
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Farnaz Hasteh
- Department of Pathology, University of California San Diego, San Diego, CA 92103, USA
| | - Gina Levi
- Clinical Studies Core, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, San Diego, CA 92103, USA..
| |
Collapse
|
10
|
Early T Follicular Helper Cell Responses and Germinal Center Reactions Are Associated with Viremia Control in Immunized Rhesus Macaques. J Virol 2019; 93:JVI.01687-18. [PMID: 30463978 DOI: 10.1128/jvi.01687-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 11/13/2018] [Indexed: 12/15/2022] Open
Abstract
T follicular helper (TFH) cells are fundamental in germinal center (GC) maturation and selection of antigen-specific B cells within secondary lymphoid organs. GC-resident TFH cells have been fully characterized in human immunodeficiency virus (HIV) infection. However, the role of GC TFH cells in GC B cell responses following various simian immunodeficiency virus (SIV) vaccine regimens in rhesus macaques (RMs) has not been fully investigated. We characterized GC TFH cells of RMs over the course of a mucosal/systemic vaccination regimen to elucidate GC formation and SIV humoral response generation. Animals were mucosally primed twice with replicating adenovirus type 5 host range mutant (Ad5hr)-SIV recombinants and systemically boosted with ALVAC-SIVM766Gag/Pro/gp120-TM and SIVM766&CG7V gD-gp120 proteins formulated in alum hydroxide (ALVAC/Env) or DNA encoding SIVenv/SIVGag/rhesus interleukin 12 (IL-12) plus SIVM766&CG7V gD-gp120 proteins formulated in alum phosphate (DNA&Env). Lymph nodes were biopsied in macaque subgroups prevaccination and at day 3, 7, or 14 after the 2nd Ad5hr-SIV prime and the 2nd vector/Env boost. Evaluations of GC TFH and GC B cell dynamics including correlation analyses supported a significant role for early GC TFH cells in providing B cell help during initial phases of GC formation. GC TFH responses at day 3 post-mucosal priming were consistent with generation of Env-specific memory B cells in GCs and elicitation of prolonged Env-specific humoral immunity in the rectal mucosa. GC Env-specific memory B cell responses elicited early post-systemic boosting correlated significantly with decreased viremia postinfection. Our results highlight the importance of early GC TFH cell responses for robust GC maturation and generation of long-lasting SIV-specific humoral responses at mucosal and systemic sites. Further investigation of GC TFH cell dynamics should facilitate development of an efficacious HIV vaccine.IMPORTANCE The modest HIV protection observed in the human RV144 vaccine trial associated antibody responses with vaccine efficacy. T follicular helper (TFH) cells are CD4+ T cells that select antibody secreting cells with high antigenic affinity in germinal centers (GCs) within secondary lymphoid organs. To evaluate the role of TFH cells in eliciting prolonged virus-specific humoral responses, we vaccinated rhesus macaques with a combined mucosal prime/systemic boost regimen followed by repeated low-dose intrarectal challenges with SIV, mimicking human exposure to HIV-1. Although the vaccine regimen did not prevent SIV infection, decreased viremia was observed in the immunized macaques. Importantly, vaccine-induced TFH responses elicited at day 3 postimmunization and robust GC maturation were strongly associated. Further, early TFH-dependent SIV-specific B cell responses were also correlated with decreased viremia. Our findings highlight the contribution of early vaccine-induced GC TFH responses to elicitation of SIV-specific humoral immunity and implicate their participation in SIV control.
Collapse
|
11
|
Patricia D'Souza M, Allen MA, Baumblatt JAG, Boggiano C, Crotty S, Grady C, Havenar-Daughton C, Heit A, Hu DJ, Kunwar N, McElrath MJ. Innovative approaches to track lymph node germinal center responses to evaluate development of broadly neutralizing antibodies in human HIV vaccine trials. Vaccine 2018; 36:5671-5677. [PMID: 30097219 DOI: 10.1016/j.vaccine.2018.07.071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 07/16/2018] [Accepted: 07/28/2018] [Indexed: 01/29/2023]
Abstract
Phase 1 clinical studies will soon evaluate novel HIV-1 envelope immunogens targeting distinct 'germline' and memory B cell receptors to ultimately elicit HIV-1 broadly neutralizing antibodies (bNAbs). The National Institute of Allergy and Infectious Diseases (NIAID) recently convened a panel of US-based expert scientists, clinicians, sponsors and ethicists to discuss the role of sampling draining lymph nodes within preventive HIV vaccine trials. The meeting addressed the importance of evaluating germinal center (GC) responses following immunization to predict bNAb potency and breadth, and reviewed key aspects of this procedure within the clinical research setting, including informed consent, adverse event monitoring, study participant acceptability, medical expertise and training. We review highlights from the meeting and discuss the advantages and disadvantages of sampling lymph nodes by excisional biopsies compared to fine needle aspirations (FNA) in the context of prophylactic HIV vaccine trials.
Collapse
Affiliation(s)
| | | | | | | | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | | | - Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Antje Heit
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| | - Dale J Hu
- Division of AIDS, NIAID, Bethesda, MD, USA
| | | | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, USA
| |
Collapse
|
12
|
Harnessing T Follicular Helper Cell Responses for HIV Vaccine Development. Viruses 2018; 10:v10060336. [PMID: 29921828 PMCID: PMC6024737 DOI: 10.3390/v10060336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 12/12/2022] Open
Abstract
Passive administration of broadly neutralizing antibodies (bNAbs) capable of recognizing a broad range of viral strains to non-human primates has led to protection from infection with chimeric SIV/HIV virus (SHIV). This data suggests that generating protective antibody responses could be an effective strategy for an HIV vaccine. However, classic vaccine approaches have failed so far to induce such protective antibodies in HIV vaccine trials. HIV-specific bNAbs identified in natural infection show high levels of somatic hypermutations, demonstrating that they underwent extensive affinity maturation. It is likely that to gain ability to recognize diverse viral strains, vaccine-induced humoral responses will also require complex, iterative maturation. T follicular helper cells (Tfh) are a specialized CD4+ T cell subset that provides help to B cells in the germinal center for the generation of high-affinity and long-lasting humoral responses. It is therefore probable that the quality and quantity of Tfh responses upon vaccination will impact development of bNAbs. Here, we review studies that advanced our understanding of Tfh differentiation, function and regulation. We discuss correlates of Tfh responses and bNAb development in natural HIV infection. Finally, we highlight recent strategies to optimize Tfh responses upon vaccination and their impact on prophylactic HIV vaccine research.
Collapse
|
13
|
Abstract
Germinal centers (GCs) are organized lymphoid tissue microstructures where B cells proliferate and differentiate into memory B cells and plasma cells. A few distinctive subsets of highly specialized T cells gain access to the GCs by expressing the B cell zone–homing C-X-C chemokine receptor type 5 (CXCR5) while losing the T cell zone–homing chemokine receptor CCR7. Help from T cells is critical to induce B cell proliferation and somatic hyper mutation and to limit GC reactions. CD4+ T follicular helper (TFH) cells required for the formation of GCs and for the generation of long-lived, high-affinity B cells. Regulatory CD4+ (TFR) and CD8+ T cells co-localize with TFH cells and keep their expansion in check, thus limiting GC reactions. A cytotoxic CXCR5pos CD8+ T cell subset has been described in GCs in humans: although low in number, GC CD8+ T cells can expand rapidly during certain viral infections. Because these subsets find their home in secondary lymphoid tissues (lymph nodes and spleen) that are difficult to obtain in humans, GC–homing T cells have been extensively studied in mice. Nevertheless, significant limitations in using this model, such as evolutionary divergences between mice and humans and the lack of an optimal mouse model for certain human diseases, have prompted investigators to characterize GC–homing T cells in macaques instead. This review will focus on discoveries made in macaques, particularly in the non-human primate models of simian immunodeficiency virus and simian–human immunodeficiency virus infection. Indeed, experimental studies in these models have allowed researchers to gain insight into the relative role of follicular T cell subsets in HIV progression, virus persistence, and specific B cell responses induced by HIV vaccines. These discoveries have prompted the testing of novel approaches aimed to manipulate follicular T cells to increase the efficacy of HIV vaccines and to eliminate HIV reservoirs.
Collapse
Affiliation(s)
- Monica Vaccari
- Animal Models and Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Genoveffa Franchini
- Animal Models and Vaccine Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
14
|
Havenar-Daughton C, Carnathan DG, Torrents de la Peña A, Pauthner M, Briney B, Reiss SM, Wood JS, Kaushik K, van Gils MJ, Rosales SL, van der Woude P, Locci M, Le KM, de Taeye SW, Sok D, Mohammed AUR, Huang J, Gumber S, Garcia A, Kasturi SP, Pulendran B, Moore JP, Ahmed R, Seumois G, Burton DR, Sanders RW, Silvestri G, Crotty S. Direct Probing of Germinal Center Responses Reveals Immunological Features and Bottlenecks for Neutralizing Antibody Responses to HIV Env Trimer. Cell Rep 2017; 17:2195-2209. [PMID: 27880897 DOI: 10.1016/j.celrep.2016.10.085] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/16/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023] Open
Abstract
Generating tier 2 HIV-neutralizing antibody (nAb) responses by immunization remains a challenging problem, and the immunological barriers to induction of such responses with Env immunogens remain unclear. Here, some rhesus monkeys developed autologous tier 2 nAbs upon HIV Env trimer immunization (SOSIP.v5.2) whereas others did not. This was not because HIV Env trimers were immunologically silent because all monkeys made similar ELISA-binding antibody responses; the key difference was nAb versus non-nAb responses. We explored the immunological barriers to HIV nAb responses by combining a suite of techniques, including longitudinal lymph node fine needle aspirates. Unexpectedly, nAb development best correlated with booster immunization GC B cell magnitude and Tfh characteristics of the Env-specific CD4 T cells. Notably, these factors distinguished between successful and unsuccessful antibody responses because GC B cell frequencies and stoichiometry to GC Tfh cells correlated with nAb development, but did not correlate with total Env Ab binding titers.
Collapse
Affiliation(s)
- Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA
| | - Diane G Carnathan
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Alba Torrents de la Peña
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Matthias Pauthner
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Bryan Briney
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Samantha M Reiss
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA
| | - Jennifer S Wood
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Kirti Kaushik
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA
| | - Marit J van Gils
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Sandy L Rosales
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Patricia van der Woude
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Michela Locci
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA
| | - Khoa M Le
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Steven W de Taeye
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Devin Sok
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Jessica Huang
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Sanjeev Gumber
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - AnaPatricia Garcia
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Sudhir P Kasturi
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bali Pulendran
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - John P Moore
- Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Rafi Ahmed
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Grégory Seumois
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Rogier W Sanders
- Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Department of Microbiology and Immunology, Weill Medical College of Cornell University, New York, NY 10065, USA
| | - Guido Silvestri
- Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA; Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA 92037, USA; Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, La Jolla, CA 92037, USA; Department of Medicine, Division of Infectious Diseases, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
15
|
Havenar-Daughton C, Lee JH, Crotty S. Tfh cells and HIV bnAbs, an immunodominance model of the HIV neutralizing antibody generation problem. Immunol Rev 2017; 275:49-61. [PMID: 28133798 DOI: 10.1111/imr.12512] [Citation(s) in RCA: 141] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The generation of HIV bnAbs may be one of the greatest feats of the human immune system and our best hope of finally creating an HIV vaccine. The striking amount of somatic hypermutation in HIV bnAbs led to the hypothesis that T follicular helper (Tfh) cells and germinal centers (GC) play a critical role in the ability of the immune system to generate these uncommon antibodies. In this review, we first summarize what is known about the immunological process of HIV bnAb development, the challenges of eliciting bnAbs via immunizations, and the putative central roles of Tfh cells and GC in the generation of HIV bnAbs. Next, we explore factors that have impeded our understanding of the GC and Tfh-cell processes involved in bnAb generation, including the difficulty of quantifying antigen-specific GC Tfh cells and the difficulty of tracking GC in human and non-human primate vaccine studies. Finally, we discuss antibody immunodominance pertaining to neutralizing antibody generation and the GC response, propose models to explain the negative effects of immunodominance on neutralizing antibody generation, and consider means of optimizing Tfh and GC responses to potentially overcome these problems.
Collapse
Affiliation(s)
- Colin Havenar-Daughton
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Jeong Hyun Lee
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA
| | - Shane Crotty
- Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA.,Scripps Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery (CHAVI-ID), La Jolla, CA, USA.,Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Hey-Nguyen WJ, Xu Y, Pearson CF, Bailey M, Suzuki K, Tantau R, Obeid S, Milner B, Field A, Carr A, Bloch M, Cooper DA, Kelleher AD, Zaunders JJ, Koelsch KK. Quantification of Residual Germinal Center Activity and HIV-1 DNA and RNA Levels Using Fine Needle Biopsies of Lymph Nodes During Antiretroviral Therapy. AIDS Res Hum Retroviruses 2017; 33:648-657. [PMID: 28287825 DOI: 10.1089/aid.2016.0171] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
HIV-1 reservoirs are most often studied in peripheral blood (PB), but not all lymphocytes recirculate, particularly T follicular helper (Tfh) CD4+ T cells, as well as germinal center (GC) B cells, in lymph nodes (LNs). Ultrasound-guided fine needle biopsies (FNBs) from inguinal LNs and PB samples were obtained from 10 healthy controls (HCs) and 21 HIV-1-infected subjects [11 antiretroviral therapy (ART) naive and 10 on ART]. Tfh cells and GC B cells were enumerated by flow cytometry. HIV-1 DNA and cell-associated (CA) RNA levels in LNs and PB were quantified by real-time polymerase chain reaction. FNBs were obtained without adverse events. Tfh cells and GC B cells were highly elevated in ART-naive subjects, with a median GC B cell count >300-fold higher than HCs, but also remained higher in 4 out of the 10 subjects on ART. GC B cell counts and Tfh cell counts were highly correlated with each other, and also with activated T cells in LNs but not in blood. Levels of HIV-1 DNA and CA RNA viral burden in highly purified CD4+ T cells from FNBs were significantly elevated compared with those in CD4+ T cells from PB in the ART-naive group, but only trended toward an increase in the ART patients. FNBs enabled minimally invasive access to, and parallel measurement of residual activated T and B cells and viral burden within LNs in HIV-1-infected patients. These FNBs revealed significant GC activity that was not apparent from corresponding PB samples.
Collapse
Affiliation(s)
| | - Yin Xu
- Kirby Institute, UNSW Sydney, Sydney, Australia
| | | | | | - Kazuo Suzuki
- Kirby Institute, UNSW Sydney, Sydney, Australia
- Centre for Applied Medical Research, St. Vincent's Hospital, Darlinghurst, Australia
| | - Robyn Tantau
- Department of Medical Imaging, St. Vincent's Hospital, Darlinghurst, Australia
| | - Solange Obeid
- Department of Medical Imaging, St. Vincent's Hospital, Darlinghurst, Australia
| | - Brad Milner
- Department of Medical Imaging, St. Vincent's Hospital, Darlinghurst, Australia
| | - Andrew Field
- Department of Anatomical Pathology, St. Vincent's Hospital, Darlinghurst, Australia
| | - Andrew Carr
- Centre for Applied Medical Research, St. Vincent's Hospital, Darlinghurst, Australia
| | - Mark Bloch
- Holdsworth House Medical Practice, Darlinghurst, Australia
| | - David A. Cooper
- Kirby Institute, UNSW Sydney, Sydney, Australia
- Centre for Applied Medical Research, St. Vincent's Hospital, Darlinghurst, Australia
| | - Anthony D. Kelleher
- Kirby Institute, UNSW Sydney, Sydney, Australia
- Centre for Applied Medical Research, St. Vincent's Hospital, Darlinghurst, Australia
| | - John J. Zaunders
- Kirby Institute, UNSW Sydney, Sydney, Australia
- Centre for Applied Medical Research, St. Vincent's Hospital, Darlinghurst, Australia
| | - Kersten K. Koelsch
- Kirby Institute, UNSW Sydney, Sydney, Australia
- Centre for Applied Medical Research, St. Vincent's Hospital, Darlinghurst, Australia
| |
Collapse
|
17
|
Zaunders J, Xu Y, Kent SJ, Koelsch KK, Kelleher AD. Divergent Expression of CXCR5 and CCR5 on CD4 + T Cells and the Paradoxical Accumulation of T Follicular Helper Cells during HIV Infection. Front Immunol 2017; 8:495. [PMID: 28553284 PMCID: PMC5427074 DOI: 10.3389/fimmu.2017.00495] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 04/10/2017] [Indexed: 12/23/2022] Open
Abstract
Viral infection sets in motion a cascade of immune responses, including both CXCR5+CD4+ T follicular helper (Tfh) cells that regulate humoral immunity and CCR5+CD4+ T cells that mediate cell-mediated immunity. In peripheral blood mononuclear cells, the majority of memory CD4+ T cells appear to fall into either of these two lineages, CCR5−CXCR5+ or CCR5+CXCR5−. Very high titers of anti-HIV IgG antibodies are a hallmark of infection, strongly suggesting that there is significant HIV-specific CD4+ T cell help to HIV-specific B cells. We now know that characteristic increases in germinal centers (GC) in lymphoid tissue (LT) during SIV and HIV-1 infections are associated with an increase in CXCR5+PD-1high Tfh, which expand to a large proportion of memory CD4+ T cells in LT, and are presumably specific for SIV or HIV epitopes. Macaque Tfh normally express very little CCR5, yet are infected by CCR5-using SIV, which may occur mainly through infection of a subset of PD-1intermediateCCR5+Bcl-6+ pre-Tfh cells. In contrast, in human LT, a subset of PD-1high Tfh appears to express low levels of CCR5, as measured by flow cytometry, and this may also contribute to the high rate of infection of Tfh. Also, we have found, by assessing fine-needle biopsies of LT, that increases in Tfh and GC B cells in HIV infection are not completely normalized by antiretroviral therapy (ART), suggesting a possible long-lasting reservoir of infected Tfh. In contrast to the increase of CXCR5+ Tfh, there is no accumulation of proliferating CCR5+ CD4 T HIV Gag-specific cells in peripheral blood that make IFN-γ. Altogether, CXCR5+CCR5− CD4 T cells that regulate humoral immunity are allowed greater freedom to operate and expand during HIV-1 infection, but at the same time can contain HIV DNA at levels at least as high as in other CD4 subsets. We argue that early ART including a CCR5 blocker may directly reduce the infected Tfh reservoir in LT and also interrupt cycles of antibody pressure driving virus mutation and additional GC responses to resulting neoantigens.
Collapse
Affiliation(s)
- John Zaunders
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Yin Xu
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, Peter Doherty Institute, University of Melbourne, Melbourne, VIC, Australia.,Department of Infectious Diseases, Alfred Hospital, Monash University, Melbourne, VIC, Australia
| | - Kersten K Koelsch
- The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| | - Anthony D Kelleher
- St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Sydney, NSW, Australia.,The Kirby Institute, The University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
18
|
Cook L, Zaunders JJ, Kelleher AD. Comment on "A Cytokine-Independent Approach To Identify Antigen-Specific Human Germinal Center T Follicular Helper Cells and Rare Antigen-Specific CD4+ T Cells in Blood". THE JOURNAL OF IMMUNOLOGY 2016; 197:2557-8. [PMID: 27638935 DOI: 10.4049/jimmunol.1601311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Laura Cook
- Department of Medicine, University of British Columbia, Vancouver, British Columbia V5Z 1M9, Canada; Child & Family Research Institute, Vancouver, British Columbia V5Z 4H4, Canada;
| | - John J Zaunders
- Immunovirology and Pathogenesis Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales 2052, Australia; and Immunovirology Laboratory, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis Program, The Kirby Institute, University of New South Wales, Sydney, New South Wales 2052, Australia; and Immunovirology Laboratory, St Vincent's Centre for Applied Medical Research, St Vincent's Hospital, Darlinghurst, New South Wales 2010, Australia
| |
Collapse
|
19
|
Klippert A, Stolte-Leeb N, Neumann B, Sauermann U, Daskalaki M, Gawanbacht A, Kirchhoff F, Stahl-Hennig C. Frequencies of lymphoid T-follicular helper cells obtained longitudinally by lymph node fine-needle aspiration correlate significantly with viral load in SIV-infected rhesus monkeys. J Med Primatol 2015; 44:253-62. [PMID: 26227257 DOI: 10.1111/jmp.12186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND T-follicular helper (T(FH)) cells are an important population in lymph nodes (LNs) contributing to the generation of highly specific B cells. For SIV studies in rhesus macaques (RM), analysis of LN is necessary, but restricted due to invasive sampling. We applied the minimally invasive LN fine-needle aspiration (LN-FNA) and examined dynamics of T(FH) cells during SIV infection. MATERIALS AND METHODS LN-FNA and LN resection were carried out on uninfected RM. Lymphocytes were analyzed by flow cytometry. Additionally, cells obtained by LN-FNA over time from SIV-infected RM were analyzed. RESULTS Percentages of lymphocyte subsets were similar in LN aspirates and whole LNs. Analysis of LN aspirates from SIV-infected RM demonstrated a decrease of CD4(+) T cells, while T(FH) cell frequencies increased over time and correlated significantly with plasma viral load. CONCLUSIONS By applying LN-FNA, we showed that T(FH) cell expansion in chronic SIV infection is associated with viral load.
Collapse
Affiliation(s)
- Antonina Klippert
- Unit of Infection Models, German Primate Center, Goettingen, Germany
| | | | - Berit Neumann
- Unit of Infection Models, German Primate Center, Goettingen, Germany
| | - Ulrike Sauermann
- Unit of Infection Models, German Primate Center, Goettingen, Germany
| | - Maria Daskalaki
- Unit of Infection Models, German Primate Center, Goettingen, Germany
| | - Ali Gawanbacht
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | |
Collapse
|
20
|
Phetsouphanh C, Xu Y, Zaunders J. CD4 T Cells Mediate Both Positive and Negative Regulation of the Immune Response to HIV Infection: Complex Role of T Follicular Helper Cells and Regulatory T Cells in Pathogenesis. Front Immunol 2015; 5:681. [PMID: 25610441 PMCID: PMC4285174 DOI: 10.3389/fimmu.2014.00681] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 12/17/2014] [Indexed: 12/13/2022] Open
Abstract
HIV-1 infection results in chronic activation of cells in lymphoid tissue, including T cells, B-cells, and myeloid lineage cells. The resulting characteristic hyperplasia is an amalgam of proliferating host immune cells in the adaptive response, increased concentrations of innate response mediators due to viral and bacterial products, and homeostatic responses to inflammation. While it is generally thought that CD4 T cells are greatly depleted, in fact, two types of CD4 T cells appear to be increased, namely, regulatory T cells (Tregs) and T follicular helper cells (Tfh). These cells have opposing roles, but may both be important in the pathogenic process. Whether Tregs are failing in their role to limit lymphocyte activation is unclear, but there is no doubt now that Tfh are associated with B-cell hyperplasia and increased germinal center activity. Antiretroviral therapy may reduce the lymphocyte activation, but not completely, and therefore, there is a need for interventions that selectively enhance normal CD4 function without exacerbating Tfh, B-cell, or Treg dysfunction.
Collapse
Affiliation(s)
- Chansavath Phetsouphanh
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| | - Yin Xu
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| | - John Zaunders
- Centre for Applied Medical Research, Kirby Institute, St Vincent's Hospital, University of New South Wales , Sydney, NSW , Australia
| |
Collapse
|
21
|
Magden ER, Mansfield KG, Simmons JH, Abee CR. Nonhuman Primates. LABORATORY ANIMAL MEDICINE 2015:771-930. [DOI: 10.1016/b978-0-12-409527-4.00017-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|