1
|
Bennett RP, Yoluç Y, Salter JD, Ripp A, Jessen HJ, Kaiser SM, Smith HC. Sangivamycin is preferentially incorporated into viral RNA by the SARS-CoV-2 polymerase. Antiviral Res 2023; 218:105716. [PMID: 37690700 DOI: 10.1016/j.antiviral.2023.105716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/12/2023]
Abstract
Sangivamycin (S) is an adenosine (A) nucleoside analog with low nanomolar antiviral activity against SARS-CoV-2 in vitro. Previously, low nanomolar antiviral efficacy was revealed when tested against multiple viral variants in several cell types. SARS-CoV-2 RNA isolated from live virus infected cells and the virions released from these cells was analyzed by mass spectrometry (MS) for S incorporation. Dose-dependent incorporation occurred up to 1.8 S per 1,000 nucleotides (49 S per genome) throughout the viral genomes isolated from both infected cells and viral particles, but this incorporation did not change the viral mutation rate. In contrast, host mRNA, affinity purified from the same infected and treated cells, contained little or no S. Sangivamycin triphosphate (STP) was synthesized to evaluate its incorporation into RNA by recombinant SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) under defined in vitro conditions. SARS-CoV-2 RdRp showed that S was not a chain terminator and S containing oligonucleotides templated as A. Though the antiviral mechanism remains to be determined, the data suggests that SARS-CoV-2 RdRp incorporates STP into SARS-CoV-2 RNA, which does not significantly impair viral RNA synthesis or the mutation rate.
Collapse
Affiliation(s)
| | - Yasemin Yoluç
- Department of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.
| | | | - Alexander Ripp
- Institute of Organic Chemistry Albert-Ludwigs-University, Freiburg, Germany.
| | - Henning J Jessen
- Institute of Organic Chemistry Albert-Ludwigs-University, Freiburg, Germany.
| | - Stefanie M Kaiser
- Department of Pharmaceutical Chemistry, Goethe University Frankfurt, Frankfurt, Germany.
| | - Harold C Smith
- OyaGen, Inc., Rochester, NY, USA; Department of Biochemistry and Biophysics, Center for RNA Biology, Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
2
|
Dofuor AK, Quartey NKA, Osabutey AF, Boateng BO, Lutuf H, Osei JHN, Ayivi-Tosuh SM, Aiduenu AF, Ekloh W, Loh SK, Opoku MJ, Aidoo OF. The Global Impact of COVID-19: Historical Development, Molecular Characterization, Drug Discovery and Future Directions. CLINICAL PATHOLOGY (THOUSAND OAKS, VENTURA COUNTY, CALIF.) 2023; 16:2632010X231218075. [PMID: 38144436 PMCID: PMC10748929 DOI: 10.1177/2632010x231218075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/16/2023] [Indexed: 12/26/2023]
Abstract
In December 2019, an outbreak of a respiratory disease called the coronavirus disease 2019 (COVID-19) caused by a new coronavirus known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began in Wuhan, China. The SARS-CoV-2, an encapsulated positive-stranded RNA virus, spread worldwide with disastrous consequences for people's health, economies, and quality of life. The disease has had far-reaching impacts on society, including economic disruption, school closures, and increased stress and anxiety. It has also highlighted disparities in healthcare access and outcomes, with marginalized communities disproportionately affected by the SARS-CoV-2. The symptoms of COVID-19 range from mild to severe. There is presently no effective cure. Nevertheless, significant progress has been made in developing COVID-19 vaccine for different therapeutic targets. For instance, scientists developed multifold vaccine candidates shortly after the COVID-19 outbreak after Pfizer and AstraZeneca discovered the initial COVID-19 vaccines. These vaccines reduce disease spread, severity, and mortality. The addition of rapid diagnostics to microscopy for COVID-19 diagnosis has proven crucial. Our review provides a thorough overview of the historical development of COVID-19 and molecular and biochemical characterization of the SARS-CoV-2. We highlight the potential contributions from insect and plant sources as anti-SARS-CoV-2 and present directions for future research.
Collapse
Affiliation(s)
- Aboagye Kwarteng Dofuor
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Naa Kwarley-Aba Quartey
- Department of Food Science and Technology, Faculty of Biosciences, College of Science, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Belinda Obenewa Boateng
- Coconut Research Program, Oil Palm Research Institute, Council for Scientific and Industrial Research, Sekondi-Takoradi, Ghana
| | - Hanif Lutuf
- Crop Protection Division, Oil Palm Research Institute, Council for Scientific and Industrial Research, Kade, Ghana
| | - Joseph Harold Nyarko Osei
- Department of Parasitology, Noguchi Memorial Institute for Medical Research, College of Health Sciences, University of Ghana, Legon, Accra, Ghana
| | - Selina Mawunyo Ayivi-Tosuh
- Department of Biochemistry, School of Life Sciences, Northeast Normal University, Changchun, Jilin Province, China
| | - Albert Fynn Aiduenu
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon, Accra, Ghana
| | - William Ekloh
- Department of Biochemistry, School of Biological Sciences, College of Agriculture and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Seyram Kofi Loh
- Department of Built Environment, School of Sustainable Development, University of Environment and Sustainable Development, Somanya, Ghana
| | - Maxwell Jnr Opoku
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| | - Owusu Fordjour Aidoo
- Department of Biological Sciences, School of Natural and Environmental Sciences, University of Environment and Sustainable Development, Somanya, Ghana
| |
Collapse
|
3
|
Khushboo, Siddiqi NJ, Sharma B. Pathophysiology of SARS-CoV2 Mediated Depression, Therapeutics, and Consequences: A Comprehensive Narrative. Mini Rev Med Chem 2023; 23:217-229. [PMID: 35658879 DOI: 10.2174/1381612828666220603150637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/31/2022] [Accepted: 04/13/2022] [Indexed: 11/22/2022]
Abstract
The Coronavirus Disease 2019 (COVID-19), caused by Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), belongs to emerging and reemerging diseases, which was first identified and reported in Wuhan, China, in December 2019. The genetic sequence of SARS-CoV-2 was similar to the SARS virus, a β-coronavirus. The epidemiological studies suggest that the transmission of SARS-CoV-2 mainly occurs from an infected person to others through close contact with the respiratory droplets or by having contact with SARS-CoV-2 adhering to objects and surfaces. The incubation period ranges from 5 to14 days. The symptoms include fever, dry cough, tiredness, aches, chest pain, conjunctivitis, diarrhea, headache, difficulty in breathing or short breath, loss of taste, smell, rashes on the skin, and sore throat. Some reports indicated that males exhibited lower scores than females, the younger populations displayed increased symptoms, Chinese/Taiwanese people registered only scarce symptoms, and Canadians experienced more symptoms. The results of several studies suggested that while COVID-19 had a significant effect on depression, job instability affected anxiety and depression. The diagnostics to detect the presence of coronavirus involve ELISA and RT-PCR. There is no specific treatment available to eradicate COVID-19. The therapeutics used to treat COVID 19 exhibited severe side effects. Recently, some Indian traditional medicinal plants have shown promise in reducing the risk of viral infection and also boosting the immunity of an individual. This paper presents an overview of the current status of depression in the SARS CoV2 infected people and the measures required to overcome COVID-19 induced depression in patients even after recovery.
Collapse
Affiliation(s)
- Khushboo
- Departments of Biochemistry, University of Allahabad, Allahabad 211002, UP-India
| | - Nikhat J Siddiqi
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Bechan Sharma
- Departments of Biochemistry, University of Allahabad, Allahabad 211002, UP-India
| |
Collapse
|
4
|
Mondal S, Chen Y, Lockbaum GJ, Sen S, Chaudhuri S, Reyes AC, Lee JM, Kaur AN, Sultana N, Cameron MD, Shaffer SA, Schiffer CA, Fitzgerald KA, Thompson PR. Dual Inhibitors of Main Protease (M Pro) and Cathepsin L as Potent Antivirals against SARS-CoV2. J Am Chem Soc 2022; 144:21035-21045. [PMID: 36356199 PMCID: PMC9662648 DOI: 10.1021/jacs.2c04626] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Indexed: 11/12/2022]
Abstract
Given the current impact of SARS-CoV2 and COVID-19 on human health and the global economy, the development of direct acting antivirals is of paramount importance. Main protease (MPro), a cysteine protease that cleaves the viral polyprotein, is essential for viral replication. Therefore, MPro is a novel therapeutic target. We identified two novel MPro inhibitors, D-FFRCMKyne and D-FFCitCMKyne, that covalently modify the active site cysteine (C145) and determined cocrystal structures. Medicinal chemistry efforts led to SM141 and SM142, which adopt a unique binding mode within the MPro active site. Notably, these inhibitors do not inhibit the other cysteine protease, papain-like protease (PLPro), involved in the life cycle of SARS-CoV2. SM141 and SM142 block SARS-CoV2 replication in hACE2 expressing A549 cells with IC50 values of 8.2 and 14.7 nM. Detailed studies indicate that these compounds also inhibit cathepsin L (CatL), which cleaves the viral S protein to promote viral entry into host cells. Detailed biochemical, proteomic, and knockdown studies indicate that the antiviral activity of SM141 and SM142 results from the dual inhibition of MPro and CatL. Notably, intranasal and intraperitoneal administration of SM141 and SM142 lead to reduced viral replication, viral loads in the lung, and enhanced survival in SARS-CoV2 infected K18-ACE2 transgenic mice. In total, these data indicate that SM141 and SM142 represent promising scaffolds on which to develop antiviral drugs against SARS-CoV2.
Collapse
Affiliation(s)
- Santanu Mondal
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Yongzhi Chen
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Gordon J. Lockbaum
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Sudeshna Sen
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Sauradip Chaudhuri
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Archie C. Reyes
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Jeong Min Lee
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Arshia N. Kaur
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Nadia Sultana
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Michael D. Cameron
- Department of Molecular Medicine, The Scripps Research Institute,130 Scripps Way, Jupiter, FL 33458, USA
| | - Scott A. Shaffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Katherine A. Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Paul R. Thompson
- Program in Chemical Biology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
5
|
Mahroum N, Seida I, Esirgün SN, Bragazzi NL. The COVID-19 pandemic - How many times were we warned before? Eur J Intern Med 2022; 105:8-14. [PMID: 35864073 PMCID: PMC9289047 DOI: 10.1016/j.ejim.2022.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/01/2022] [Accepted: 07/05/2022] [Indexed: 11/04/2022]
Abstract
Infectious diseases are known to act in both predictable and unpredictable ways, which leads to the notions of emerging and reemerging infectious diseases. Emerging diseases with their disastrous consequences might be surprising and unpredictable, but they could be foreseen. For instance, some emerging diseases and recently the coronavirus disease 2019 (COVID-19) were the reason for papers published by the World Health Organization (WHO) and other researchers addressing the likely pathogens causing future outbreaks, according to the reports of the WHO in 2016 and 2018. Although it might seem like a wisdom in retrospect, several studies had already indicated possible future outbreaks caused by coronaviruses. Announcements, which may be viewed as "warnings," appeared since the emergence of the first coronavirus-related outbreak caused by severe acute respiratory syndrome coronavirus (SARS-CoV) in the winter of 2002-2003 and a later outbreak caused by the Middle East respiratory syndrome coronavirus (MERS-CoV) in 2012-2013. Therefore, we were curious to review the medical literature prior to the COVID-19 pandemic with an aim to enumerate and evaluate studies addressing and warning against future outbreaks, and surprisingly pandemics, of members of coronaviruses. Interestingly, we found numerous studies that correctly predicted the current pandemic of COVID-19. While this part is highly interesting, how authorities reacted and prepared for warnings, if any, and how will they get prepared for the next warnings are our main messages. Taking these points into serious consideration will certainly aid in analyzing reports regarding possible future outbreaks as well as in developing various strategies for prevention and coping with such epidemics.
Collapse
Affiliation(s)
- Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Göztepe Mah, Atatürk Cd. No:40, Beykoz, Istanbul 34810, Turkey.
| | - Isa Seida
- International School of Medicine, Istanbul Medipol University, Göztepe Mah, Atatürk Cd. No:40, Beykoz, Istanbul 34810, Turkey
| | - Sevval Nil Esirgün
- International School of Medicine, Istanbul Medipol University, Göztepe Mah, Atatürk Cd. No:40, Beykoz, Istanbul 34810, Turkey
| | - Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, Canada
| |
Collapse
|
6
|
Mahgoub RE, Mohamed FE, Alzyoud L, Ali BR, Ferreira J, Rabeh WM, AlNeyadi SS, Atatreh N, Ghattas MA. The Discovery of Small Allosteric and Active Site Inhibitors of the SARS-CoV-2 Main Protease via Structure-Based Virtual Screening and Biological Evaluation. Molecules 2022; 27:6710. [PMID: 36235244 PMCID: PMC9572942 DOI: 10.3390/molecules27196710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
The main protease enzyme (Mpro) of SARS-CoV-2 is one of the most promising targets for COVID-19 treatment. Accordingly, in this work, a structure-based virtual screening of 3.8 million ligand libraries was carried out. After rigorous filtering, docking, and post screening assessments, 78 compounds were selected for biological evaluation, 3 of which showed promising inhibition of the Mpro enzyme. The obtained hits (CB03, GR04, and GR20) had reasonable potencies with Ki values in the medium to high micromolar range. Interestingly, while our most potent hit, GR20, was suggested to act via a reversible covalent mechanism, GR04 was confirmed as a noncompetitive inhibitor that seems to be one of a kind when compared to the other allosteric inhibitors discovered so far. Moreover, all three compounds have small sizes (~300 Da) with interesting fittings in their relevant binding sites, and they possess lead-like characteristics that can introduce them as very attractive candidates for the future development of COVID-19 treatments.
Collapse
Affiliation(s)
- Radwa E. Mahgoub
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Feda E. Mohamed
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Lara Alzyoud
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Bassam R. Ali
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Zayed Centre for Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Juliana Ferreira
- Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Wael M. Rabeh
- Science Division, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Shaikha S. AlNeyadi
- Department of Chemistry, College of Science, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Noor Atatreh
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| | - Mohammad A. Ghattas
- College of Pharmacy, Al Ain University, Abu Dhabi 64141, United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi 64141, United Arab Emirates
| |
Collapse
|
7
|
Quinteros JA, Noormohammadi AH, Lee SW, Browning GF, Diaz‐Méndez A. Genomics and pathogenesis of the avian coronavirus infectious bronchitis virus. Aust Vet J 2022; 100:496-512. [PMID: 35978541 PMCID: PMC9804484 DOI: 10.1111/avj.13197] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/25/2022] [Accepted: 05/02/2022] [Indexed: 01/05/2023]
Abstract
Infectious bronchitis virus (IBV) is a member of the family Coronaviridae, together with viruses such as SARS-CoV, MERS-CoV and SARS-CoV-2 (the causative agent of the COVID-19 global pandemic). In this family of viruses, interspecies transmission has been reported, so understanding their pathobiology could lead to a better understanding of the emergence of new serotypes. IBV possesses a single-stranded, non-segmented RNA genome about 27.6 kb in length that encodes several non-structural and structural proteins. Most functions of these proteins have been confirmed in IBV, but some other proposed functions have been based on research conducted on other members of the family Coronaviridae. IBV has variable tissue tropism depending on the strain, and can affect the respiratory, reproductive, or urinary tracts; however, IBV can also replicate in other organs. Additionally, the pathogenicity of IBV is also variable, with some strains causing only mild clinical signs, while infection with others results in high mortality rates in chickens. This paper extensively and comprehensibly reviews general aspects of coronaviruses and, more specifically, IBV, with emphasis on protein functions and pathogenesis. The pathogenicity of the Australian strains of IBV is also reviewed, describing the variability between the different groups of strains, from the classical to the novel and recombinant strains. Reverse genetic systems, cloning and cell culture growth techniques applicable to IBV are also reviewed.
Collapse
Affiliation(s)
- JA Quinteros
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- Present address:
Escuela de Ciencias Agrícolas y VeterinariasUniversidad Viña del Mar, Agua Santa 7055 2572007Viña del MarChile
| | - AH Noormohammadi
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneWerribeeVictoriaAustralia
| | - SW Lee
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
- College of Veterinary MedicineKonkuk UniversitySeoulRepublic of Korea
| | - GF Browning
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - A Diaz‐Méndez
- Asia‐Pacific Centre for Animal Health, Melbourne Veterinary School, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
8
|
In silico exploration of disulfide derivatives of Ferula foetida oleo-gum (Covexir®) as promising therapeutics against SARS-CoV-2. Comput Biol Med 2022; 146:105566. [PMID: 35598351 PMCID: PMC9112615 DOI: 10.1016/j.compbiomed.2022.105566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 01/17/2023]
Abstract
Although vaccines have been significantly successful against coronavirus, due to the high rate of the Omicron variant spread many researchers are trying to find efficient drugs against COVID-19. Herein, we conducted a computational study to investigate the binding mechanism of four potential inhibitors (including disulfide derivatives isolated from Ferula foetida) to SARS-CoV-2 main protease. Our findings revealed that the disulfides mainly interacted with HIS41, MET49, CYS145, HIS64, MET165, and GLN189 residues of SARS-CoV-2 main protease. The binding free energy decomposition results also showed that the van der Waals (vdW) energy plays the main role in the interaction of HIS41, MET49, CYS145, HIS64, MET165, and GLN189 residues with the inhibitors. Furthermore, it is found that the Z-isomer derivatives have a stronger interaction with SARS-CoV-2, and the strongest interaction belongs to the (Z)-1-(1-(methylthio)propyl)-2-(prop-1-enyl)disulfane (ΔG = -18.672 kcal/mol). The quantum mechanical calculations demonstrated that the second-order perturbation stabilization energy and the electron density values for MET49-ligand interactions are higher than the other residue-ligand complexes. This finding confirms the stronger interaction of this residue with the ligands.
Collapse
|
9
|
Hoteit R, Yassine HM. Biological Properties of SARS-CoV-2 Variants: Epidemiological Impact and Clinical Consequences. Vaccines (Basel) 2022; 10:919. [PMID: 35746526 PMCID: PMC9230982 DOI: 10.3390/vaccines10060919] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a virus that belongs to the coronavirus family and is the cause of coronavirus disease 2019 (COVID-19). As of May 2022, it had caused more than 500 million infections and more than 6 million deaths worldwide. Several vaccines have been produced and tested over the last two years. The SARS-CoV-2 virus, on the other hand, has mutated over time, resulting in genetic variation in the population of circulating variants during the COVID-19 pandemic. It has also shown immune-evading characteristics, suggesting that vaccinations against these variants could be potentially ineffective. The purpose of this review article is to investigate the key variants of concern (VOCs) and mutations of the virus driving the current pandemic, as well as to explore the transmission rates of SARS-CoV-2 VOCs in relation to epidemiological factors and to compare the virus's transmission rate to that of prior coronaviruses. We examined and provided key information on SARS-CoV-2 VOCs in this study, including their transmissibility, infectivity rate, disease severity, affinity for angiotensin-converting enzyme 2 (ACE2) receptors, viral load, reproduction number, vaccination effectiveness, and vaccine breakthrough.
Collapse
Affiliation(s)
- Reem Hoteit
- Clinical Research Institute, Faculty of Medicine, American University of Beirut, Beirut 110236, Lebanon;
| | - Hadi M. Yassine
- Biomedical Research Center and College of Health Sciences-QU Health, Qatar University, Doha 2713, Qatar
| |
Collapse
|
10
|
Yonenaga K, Itai S, Hoshi K. Implications for clinical dental practice during the coronavirus disease pandemic: A scoping review. J Prosthodont Res 2022; 66:6-11. [PMID: 34707074 DOI: 10.2186/jpr.jpr_d_21_00064] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
PURPOSE It is over a year since the first case of coronavirus disease (COVID-19) was confirmed in China. This paper reviews and summarizes the characteristics of COVID-19, as understood of December 2020, from a dental perspective. STUDY SELECTION The PubMed and Scopus online databases were searched using a combination of free words and Medical Subject Headings terms: "dentist" OR "oral care" AND "COVID-19" OR "SARS-CoV-2." RESULTS Older people and those with underlying medical conditions have an increased risk of serious illness due to COVID-19. The virus enters the body by binding to the angiotensin-converting enzyme 2 (ACE2) receptor. It is common for people with COVID-19 to have mild or no symptoms. Moreover, the disease is not contagious in most infected people; it is only highly contagious in some infected people, thereby forming clusters. Due to the large number of virus particles that are shed prior to the onset of symptoms of the disease, retrospective surveys are important. Appropriate personal protective equipment against corona vortices is also important in clinical practice. Although polymerase chain reaction tests are useful for confirming infection in suspected individuals, their reliability is questionable. In addition, concerns regarding long-term sequelae have been reported. CONCLUSION There are few high-quality reports on the implications of COVID-19 in dental practice. However, reports suggest that insufficient oral hygiene may be a risk factor for infection. Reports that ACE2 receptors are abundant in the oral cavity also suggest the importance of oral care.
Collapse
Affiliation(s)
- Kazumichi Yonenaga
- Department of Eat-Loss Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shunsuke Itai
- Department of Eat-Loss Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kazuto Hoshi
- Department of Oral-maxillofacial Surgery, Dentistry and Orthodontics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Murtuja S, Shilkar D, Sarkar B, Sinha BN, Jayaprakash V. A short survey of dengue protease inhibitor development in the past 6 years (2015-2020) with an emphasis on similarities between DENV and SARS-CoV-2 proteases. Bioorg Med Chem 2021; 49:116415. [PMID: 34601454 PMCID: PMC8450225 DOI: 10.1016/j.bmc.2021.116415] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/06/2021] [Accepted: 09/11/2021] [Indexed: 11/26/2022]
Abstract
Dengue remains a disease of significant concern, responsible for nearly half of all arthropod-borne disease cases across the globe. Due to the lack of potent and targeted therapeutics, palliative treatment and the adoption of preventive measures remain the only available options. Compounding the problem further, the failure of the only dengue vaccine, Dengvaxia®, also delivered a significant blow to any hopes for the treatment of dengue fever. However, the success of Human Immuno-deficiency Virus (HIV) and Hepatitis C Virus (HCV) protease inhibitors in the past have continued to encourage researchers to investigate other viral protease targets. Dengue virus (DENV) NS2B-NS3 protease is an attractive target partly due to its role in polyprotein processing and also for being the most conserved domain in the viral genome. During the early days of the COVID-19 pandemic, a few cases of Dengue-COVID 19 co-infection were reported. In this review, we compared the substrate-peptide residue preferences and the residues lining the sub-pockets of the proteases of these two viruses and analyzed the significance of this similarity. Also, we attempted to abridge the developments in anti-dengue drug discovery in the last six years (2015-2020), focusing on critical discoveries that influenced the research.
Collapse
Affiliation(s)
- Sheikh Murtuja
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Deepak Shilkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Barij Nayan Sinha
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India
| | - Venkatesan Jayaprakash
- Department of Pharmaceutical Sciences & Technology, Birla Institute of Technology, Mesra, Ranchi 835215 (JH), India.
| |
Collapse
|
12
|
TAMTA SHIKA, VINODHKUMAR OR, KARTHIKEYAN A, DUBAL ZB, KHAN SHARUN, A SAIED ABDULRAHMAN, DHAWAN MANISH, DHAMA KULDEEP, MALIK YS. Epidemiological profiling of SARS-CoV-2 with focus on one-health approaches in mitigating COVID-19 pandemic. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v91i10.117206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Of the 1,415 human pathogens identified, 175 are responsible for causing emerging diseases, 132 are zoonotic and majority of the diseases are categorized as emerging or re-emerging. Emerging novel Coronavirus (COVID- 19) is one of them, and it is responsible for causing social and economically critical disease in both humans and animals. This review presents the understanding of epidemiological characteristics of the COVID-19 pandemic related to host, agent, and the environment with transmission and spread of the disease for better prevention of the COVID-19. The inclination of the viruses to spillover between different species and determining the number of the reservoir of coronaviruses in an entirely new host to create infection is of emerging importance. The understanding of disease patterns will potentiate our expertise to alert how, when, and where the potential epidemic will occur. One health approach involves co-operation from all the sectors, including healthcare (medical and veterinary), environmental, pharmaceutical, educational, research, police, and administration, to combat the COVID-19 pandemic and reduce the public health threat.
Collapse
|
13
|
Krishnan S, Thirunavukarasu A, Jha NK, Gahtori R, Roy AS, Dholpuria S, Kesari KK, Singh SK, Dua K, Gupta PK. Nanotechnology-based therapeutic formulations in the battle against animal coronaviruses: an update. JOURNAL OF NANOPARTICLE RESEARCH : AN INTERDISCIPLINARY FORUM FOR NANOSCALE SCIENCE AND TECHNOLOGY 2021; 23:229. [PMID: 34690535 PMCID: PMC8520458 DOI: 10.1007/s11051-021-05341-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Outbreak of infectious diseases imposes a serious threat to human population and also causes a catastrophic impact on global economy. Animal coronaviruses remain as one of the intriguing problems, known to cause deadly viral diseases on economically important animal population, and also these infections may spread to other animals and humans. Through isolation of the infected animals from others and providing appropriate treatment using antiviral drugs, it is possible to prevent the virus transmission from animals to other species. In recent times, antiviral drug-resistant strains are being emerged as a deadly virus which are known to cause pandemic. To overcome this, nanoparticles-based formulations are developed as antiviral agent which attacks the animal coronaviruses at multiple sites in the virus replication cycle. Nanovaccines are also being formulated to protect the animals from coronaviruses. Nanoformulations contain particles of one or more dimensions in nano-scale (few nanometers to 1000 nm), which could be inorganic or organic in nature. This review presents the comprehensive outline of the nanotechnology-based therapeutics formulated against animal coronaviruses, which includes the nanoparticles-based antiviral formulations and nanoparticles-based adjuvant vaccines. The mechanism of action of these nanoparticles-based antivirals against animal coronavirus is also discussed using relevant examples. In addition, the scope of repurposing the existing nano-enabled antivirals and vaccines to combat the coronavirus infections in animals is elaborated.
Collapse
Affiliation(s)
| | | | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Plot no. 32 – 34, Knowledge Park III, Greater Noida, 201310 Uttar Pradesh India
| | - Rekha Gahtori
- Department of Biotechnology, Sir J. C. Bose Technical Campus, Kumaun University, Nainital, 263136 Uttarakhand India
| | - Ayush Singha Roy
- Department of Biotechnology, Amity School of Biotechnology, Amity University, Mumbai-Pune Expressway, Mumbai, Maharashtra 410206 India
| | - Sunny Dholpuria
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, 121006 Haryana India
| | | | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Plot no. 32 – 34, Knowledge Park III, Greater Noida, 201310 Uttar Pradesh India
| |
Collapse
|
14
|
Hu J, Stojanović J, Yasamineh S, Yasamineh P, Karuppannan SK, Hussain Dowlath MJ, Serati-Nouri H. The potential use of microRNAs as a therapeutic strategy for SARS-CoV-2 infection. Arch Virol 2021; 166:2649-2672. [PMID: 34278528 PMCID: PMC8286877 DOI: 10.1007/s00705-021-05152-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/21/2021] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To date, there is no effective therapeutic approach for treating SARS-CoV-2 infections. MicroRNAs (miRNAs) have been recognized to target the viral genome directly or indirectly, thereby inhibiting viral replication. Several studies have demonstrated that host miRNAs target different sites in SARS-CoV-2 RNA and constrain the production of essential viral proteins. Furthermore, miRNAs have lower toxicity, are more immunogenic, and are more diverse than protein-based and even plasmid-DNA-based therapeutic agents. In this review, we emphasize the role of miRNAs in viral infection and their potential use as therapeutic agents against COVID-19 disease. The potential of novel miRNA delivery strategies, especially EDV™ nanocells, for targeting lung tissue for treatment of SARS-CoV-2 infection is also discussed.
Collapse
Affiliation(s)
- Jiulue Hu
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, Henan, China
| | - Jelena Stojanović
- Faculty of Mathematics and Computer Science in Belgrade, ALFA BK University, Belgrade, Serbia
| | - Saman Yasamineh
- Young Researcher and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| | - Pooneh Yasamineh
- Young Researcher and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sathish Kumar Karuppannan
- Center for Environmental Nuclear Research, Directorate of Research and Virtual Education, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Mohammed Junaid Hussain Dowlath
- Center for Environmental Nuclear Research, Directorate of Research and Virtual Education, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Hamed Serati-Nouri
- Stem cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Kundu S, Sarkar D. Synthetic Attempts Towards Eminent Anti-Viral Candidates of SARS-CoV. Mini Rev Med Chem 2021; 22:232-247. [PMID: 34254915 DOI: 10.2174/1389557521666210712205655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/14/2021] [Accepted: 06/06/2021] [Indexed: 11/22/2022]
Abstract
Severe Acute Respiratory Syndrome (SARS) aka SARS-CoV spread over southern China for the first time in 2002-2003 and history repeated again since last year and take away more than two million people so far. On March 11, 2020 COVID-19 outbreak was officially declared as pandemic by World Health Organization (WHO). Entire world united to fight back against this ultimate destruction. Around 90 vaccines are featured against SARS-CoV-2 and more than 300 active clinical trials are underway by several groups and individuals. So far, no drugs are currently approved that completely eliminates the deadly corona virus. The promising SARS-CoV-2 anti-viral drugs are favipiravir, remdesivir, lopinavir, ribavirin and avifavir. In this review, we have discussed the synthetic approaches elaborately made so far by different groups and chemical companies all around the world towards top three convincing anti-viral drugs against SARS-CoV-2 which are favipiravir, remdesivir and lopinavir.
Collapse
Affiliation(s)
- Subhradip Kundu
- Organic Synthesis and Molecular Engineering Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| | - Debayan Sarkar
- Organic Synthesis and Molecular Engineering Lab, Department of Chemistry, National Institute of Technology, Rourkela, India
| |
Collapse
|
16
|
MİSHRA A, MİSHRA P, DAS R. Drug Discovery and Treatment of an Emerging Pandemic Infection Covid-19. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.897044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
17
|
Adegbola AE, Fadahunsi OS, Alausa A, Abijo AZ, Balogun TA, Aderibigbe TS, Semire B, Adegbola PI. Computational prediction of nimbanal as potential antagonist of respiratory syndrome coronavirus. INFORMATICS IN MEDICINE UNLOCKED 2021; 24:100617. [PMID: 34075339 PMCID: PMC8161736 DOI: 10.1016/j.imu.2021.100617] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 12/19/2022] Open
Abstract
The high pathogenic nature of the Middle East Respiratory coronavirus (MER) and the associated high fatality rate demands an urgent attention from researchers. Because there is currently no approved drug for the management of the disease, research efforts have been intensified towards the discovery of a potent drug for the treatment of the disease. Papain Like protease (PLpro) is one of the key proteins involved in the viral replication. We therefore docked forty-six compounds already characterized from Azadirachta indica, Xylopia aethipica and Allium cepa against MERS-CoV-PLpro. The molecular docking analysis was performed with AutoDock 1.5.6 and compounds which exhibit more negative free energy of binding, and low inhibition constant (Ki) with the protein (MERS-CoV-PLpro) were considered potent. The physicochemical and pharmacokinetic properties of the compounds were predicted using the Swissadme web server. Twenty-two of the compounds showed inhibition potential similar to dexamethasone and remdesvir, which had binding affinity of -6.8 and -6.3 kcal/mol respectively. The binding affinity of the compounds ranged between -3.4 kcal/mol and -7.7 kcal/mol whereas; hydroxychloroquine had a binding affinity of -4.5 kcal/mol. Among all the compounds, nimbanal and verbenone showed drug likeliness, they did not violate the Lipinski rule neither were they inhibitors of drug-metabolizing enzymes. Both nimbanal and verbenone were further post-scored with MM/GBSA and the binding free energy of nimbanal (-25.51 kcal/mol) was comparable to that of dexamethasone (-25.46 kcal/mol). The RMSD, RMSF, torsional angle, and other analysis following simulation further substantiate the efficacy of nimbanal as an effective drug candidate. In conclusion, our study showed that nimbanal is a more promising therapeutic agent and could be a lead for the discovery of a new drug that may be useful in the management of severe respiratory coronavirus syndrome.
Collapse
Affiliation(s)
- Aanuoluwa Eunice Adegbola
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Nigeria
| | - Olumide Samuel Fadahunsi
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Nigeria
| | - Abdulahi Alausa
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Nigeria
| | - Ayodeji Zabdiel Abijo
- Department of Anatomy, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Nigeria
| | | | - Taiwo Sarah Aderibigbe
- Department of Science Laboratory Technology, Biological Sciences, Microbiology Unit, the Oke Ogun Polytechnic Saki, Nigeria
| | - Banjo Semire
- Department of Pure and Applied Chemistry, Faculty of Pure and Applied Sciences, Ladoke Akintola University of Technology, Nigeria
| | - Peter Ifeoluwa Adegbola
- Department of Biochemistry, Faculty of Basic Medical Sciences, Ladoke Akintola University of Technology, Nigeria
| |
Collapse
|
18
|
Grudlewska-Buda K, Wiktorczyk-Kapischke N, Wałecka-Zacharska E, Kwiecińska-Piróg J, Buszko K, Leis K, Juszczuk K, Gospodarek-Komkowska E, Skowron K. SARS-CoV-2-Morphology, Transmission and Diagnosis during Pandemic, Review with Element of Meta-Analysis. J Clin Med 2021; 10:1962. [PMID: 34063654 PMCID: PMC8125301 DOI: 10.3390/jcm10091962] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 04/28/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2). Thus far, the virus has killed over 2,782,112 people and infected over 126,842,694 in the world (state 27 March 2021), resulting in a pandemic for humans. Based on the present data, SARS-CoV-2 transmission from animals to humans cannot be excluded. If mutations allowing breaking of the species barrier and enhancing transmissibility occurred, next changes in the SARS-CoV-2 genome, leading to easier spreading and greater pathogenicity, could happen. The environment and saliva might play an important role in virus transmission. Therefore, there is a need for strict regimes in terms of personal hygiene, including hand washing and surface disinfection. The presence of viral RNA is not an equivalent of active viral infection. The positive result of the RT-PCR method may represent either viral residues or infectious virus particles. RNA-based tests should not be used in patients after the decline of disease symptoms to confirm convalescence. It has been proposed to use the test based on viral, sub-genomic mRNA, or serological methods to find the immune response to infection. Vertical transmission of SARS-CoV-2 is still a little-known issue. In our review, we have prepared a meta-analysis of the transmission of SARS-CoV-2 from mother to child depending on the type of delivery. Our study indicated that the transmission of the virus from mother to child is rare, and the infection rate is not higher in the case of natural childbirth, breastfeeding, or contact with the mother. We hope that this review and meta-analysis will help to systemize knowledge about SARS-CoV-2 with an emphasis on diagnostic implications and transmission routes, in particular, mother-to-child transmission.
Collapse
Affiliation(s)
- Katarzyna Grudlewska-Buda
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 87-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (J.K.-P.); (E.G.-K.)
| | - Natalia Wiktorczyk-Kapischke
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 87-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (J.K.-P.); (E.G.-K.)
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Joanna Kwiecińska-Piróg
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 87-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (J.K.-P.); (E.G.-K.)
| | - Katarzyna Buszko
- Department of Theoretical Foundations of Biomedical Science and Medical Informatics, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 87-067 Bydgoszcz, Poland;
| | - Kamil Leis
- Faculty of Medicile, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 87-067 Bydgoszcz, Poland;
| | - Klaudia Juszczuk
- Clinic of General, Colorectal and Oncological Surgery, Dr. Jana Biziel University Hospital, No. 2 in Bydgoszcz, 75 Ujejskiego St., 85-168 Bydgoszcz, Poland;
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 87-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (J.K.-P.); (E.G.-K.)
| | - Krzysztof Skowron
- Department of Microbiology, Ludwik Rydygier Collegium Medicum, Nicolaus Copernicus University in Toruń, 87-094 Bydgoszcz, Poland; (K.G.-B.); (N.W.-K.); (J.K.-P.); (E.G.-K.)
| |
Collapse
|
19
|
Debnath F, Chakraborty D, Deb AK, Saha MK, Dutta S. Increased human-animal interface & emerging zoonotic diseases: An enigma requiring multi-sectoral efforts to address. Indian J Med Res 2021; 153:577-584. [PMID: 34643566 PMCID: PMC8555610 DOI: 10.4103/ijmr.ijmr_2971_20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Increased human-animal interfaces impose threats on human life by creating scope for the emergence and resurgence of many infectious diseases. Over the last two decades, emergence of novel viral diseases such as SARS, influenza A/H1N1(09) pdm; MERS; Nipah virus disease; Ebola haemorrhagic fever and the current COVID-19 has resulted in massive outbreaks, epidemics and pandemics thereby causing profound losses of human life, health and economy. The current COVID-19 pandemic has affected more than 200 countries, reporting a global case load of 167,878,000 with 2 per cent mortality as on May 26, 2021. This has highlighted the importance of reducing human- animal interfaces to prevent such zoonoses. Rapid deforestation, shrinking of boundaries between human and animal, crisis for natural habitation, increasing demands for wildlife products and threat of extinction compounded by biodiversity narrowing compel to increased human-animal conflict and contact. Large quantities of animal waste generated due to animal agriculture may also allow rapid selection, amplification, dissemination of zoonotic pathogens and facilitate zoonotic pathogen adaptation and hinder host evolution for resistance. Public health system faces challenges to contain such epidemics due to inadequate understanding, poor preparedness, lack of interdisciplinary approach in surveillance and control strategy and deficient political commitments. Because the management measures are beyond the purview of health system alone, policy-level adaptation in the transdisciplinary issues are required, emphasizing the engagement of multiple stakeholders towards wildlife protection, alternative land use, community empowerment for natural resource management and regulation on business of wildlife products to ensure comprehensive one health practice.
Collapse
Affiliation(s)
- Falguni Debnath
- Division of Epidemiology, ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Debjit Chakraborty
- Division of Epidemiology, ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Alok Kumar Deb
- Division of Epidemiology, ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Malay Kumar Saha
- Division of Virology, ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| | - Shanta Dutta
- Division of Bacteriology, Kolkata, West Bengal, India
- ICMR-National Institute of Cholera & Enteric Diseases, Kolkata, West Bengal, India
| |
Collapse
|
20
|
Citarella A, Scala A, Piperno A, Micale N. SARS-CoV-2 M pro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors. Biomolecules 2021; 11:607. [PMID: 33921886 PMCID: PMC8073203 DOI: 10.3390/biom11040607] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The uncontrolled spread of the COVID-19 pandemic caused by the new coronavirus SARS-CoV-2 during 2020-2021 is one of the most devastating events in the history, with remarkable impacts on the health, economic systems, and habits of the entire world population. While some effective vaccines are nowadays approved and extensively administered, the long-term efficacy and safety of this line of intervention is constantly under debate as coronaviruses rapidly mutate and several SARS-CoV-2 variants have been already identified worldwide. Then, the WHO's main recommendations to prevent severe clinical complications by COVID-19 are still essentially based on social distancing and limitation of human interactions, therefore the identification of new target-based drugs became a priority. Several strategies have been proposed to counteract such viral infection, including the repurposing of FDA already approved for the treatment of HIV, HCV, and EBOLA, inter alia. Among the evaluated compounds, inhibitors of the main protease of the coronavirus (Mpro) are becoming more and more promising candidates. Mpro holds a pivotal role during the onset of the infection and its function is intimately related with the beginning of viral replication. The interruption of its catalytic activity could represent a relevant strategy for the development of anti-coronavirus drugs. SARS-CoV-2 Mpro is a peculiar cysteine protease of the coronavirus family, responsible for the replication and infectivity of the parasite. This review offers a detailed analysis of the repurposed drugs and the newly synthesized molecules developed to date for the treatment of COVID-19 which share the common feature of targeting SARS-CoV-2 Mpro, as well as a brief overview of the main enzymatic and cell-based assays to efficaciously screen such compounds.
Collapse
Affiliation(s)
| | | | | | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.C.); (A.S.); (A.P.)
| |
Collapse
|
21
|
Mok PL, Koh AEH, Farhana A, Alsrhani A, Alam MK, Suresh Kumar S. Computational drug screening against the SARS-CoV-2 Saudi Arabia isolates through a multiple-sequence alignment approach. Saudi J Biol Sci 2021; 28:2502-2509. [PMID: 33551661 PMCID: PMC7845492 DOI: 10.1016/j.sjbs.2021.01.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 11/18/2022] Open
Abstract
COVID-19 is a rapidly emerging infectious disease caused by the SARS-CoV-2 virus currently spreading throughout the world. To date, there are no specific drugs formulated for it, and researchers around the globe are racing against the clock to investigate potential drug candidates. The repurposing of existing drugs in the market represents an effective and economical strategy commonly utilized in such investigations. In this study, we used a multiple-sequence alignment approach for preliminary screening of commercially-available drugs on SARS-CoV sequences from the Kingdom of Saudi Arabia (KSA) isolates. The viral genomic sequences from KSA isolates were obtained from GISAID, an open access repository housing a wide variety of epidemic and pandemic virus data. A phylogenetic analysis of the present 164 sequences from the KSA provinces was carried out using the MEGA X software, which displayed high similarity (around 98%). The sequence was then analyzed using the VIGOR4 genome annotator to construct its genomic structure. Screening of existing drugs was carried out by mining data based on viral gene expressions from the ZINC database. A total of 73 hits were generated. The viral target orthologs were mapped to the SARS-CoV-2 KSA isolate sequence by multiple sequence alignment using CLUSTAL OMEGA, and a list of 29 orthologs with purchasable drug information was generated. The results showed that the SARS CoV replicase polyprotein 1a had the highest sequence similarity at 79.91%. Through ZINC data mining, tanshinones were found to have high binding affinities to this target. These compounds could be ideal candidates for SARS-CoV-2. Other matches ranged between 27 and 52%. The results of this study would serve as a significant endeavor towards drug discovery that would increase our chances of finding an effective treatment or prevention against COVID19.
Collapse
Affiliation(s)
- Pooi Ling Mok
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O. Box 2014, Sakaka, Al-Jawf Province, Saudi Arabia
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Avin Ee-Hwan Koh
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Aisha Farhana
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O. Box 2014, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, P.O. Box 2014, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Mohammad Khursheed Alam
- Department of Orthodontics, College of Dentistry, Jouf University, P.O. Box 2014, Sakaka, Al-Jawf Province, Saudi Arabia
| | - Subbiah Suresh Kumar
- Genetics and Regenerative Medicine Research Centre, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Department of Medical Microbiology and Parasitology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Bharath University, Selaiyur, Chennai 600073, Tamil Nadu, India
| |
Collapse
|
22
|
Dowlatshahi S, Shabani E, Abdekhodaie MJ. Serological assays and host antibody detection in coronavirus-related disease diagnosis. Arch Virol 2021; 166:715-731. [PMID: 33492524 PMCID: PMC7830048 DOI: 10.1007/s00705-020-04874-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/27/2020] [Indexed: 02/08/2023]
Abstract
Coronaviruses (CoV) are a family of viral pathogens that infect both birds and mammals, including humans. Seven human coronaviruses (HCoV) have been recognized so far. HCoV-229E, -OC43, -NL63, and -HKU1 account for one-third of common colds with mild symptoms. The other three members are severe acute respiratory syndrome (SARS)-CoV, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2. These viruses are responsible for SARS, MERS, and CoV disease 2019 (COVID-19), respectively. A variety of diagnostic techniques, including chest X-rays, computer tomography (CT) scans, analysis of viral nucleic acids, proteins, or whole virions, and host antibody detection using serological assays have been developed for the detection of these viruses. In this review, we discuss conventional serological tests, such as enzyme-linked immunosorbent assay (ELISA), western blot (WB), immunofluorescence assay (IFA), lateral flow immunoassay (LFIA), and chemiluminescence immunoassay (CLIA), as well as biosensor-based assays that have been developed for diagnosing HCoV-associated diseases since 2003, with an in-depth focus on COVID-19.
Collapse
Affiliation(s)
- Sayeh Dowlatshahi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Ehsan Shabani
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
- Yeates School of Graduate Studies, Ryerson University, Toronto, ON, Canada.
| |
Collapse
|
23
|
Fouladirad S, Bach H. Development of Coronavirus Treatments Using Neutralizing Antibodies. Microorganisms 2021; 9:microorganisms9010165. [PMID: 33451069 PMCID: PMC7828509 DOI: 10.3390/microorganisms9010165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
The Coronavirus disease 2019 (COVID-19), caused by the novel coronavirus SARS-CoV-2, was first reported in December 2019 in Wuhan, Hubei province, China. This virus has led to 61.8 million cases worldwide being reported as of December 1st, 2020. Currently, there are no definite approved therapies endorsed by the World Health Organization for COVID-19, focusing only on supportive care. Treatment centers around symptom management, including oxygen therapy or invasive mechanical ventilation. Immunotherapy has the potential to play a role in the treatment of SARS-CoV-2. Monoclonal antibodies (mAbs), in particular, is a relatively new approach in the world of infectious diseases and has the benefit of overcoming challenges with serum therapy and intravenous immunoglobulins preparations. Here, we reviewed the articles published in PubMed with the purpose of summarizing the currently available evidence for the use of neutralizing antibodies as a potential treatment for coronaviruses. Studies reporting in vivo results were summarized and analyzed. Despite promising data from some studies, none of them progressed to clinical trials. It is expected that neutralizing antibodies might offer an alternative for COVID-19 treatment. Thus, there is a need for randomized trials to understand the potential use of this treatment.
Collapse
Affiliation(s)
- Saman Fouladirad
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z, Canada;
| | - Horacio Bach
- Department of Medicine, University of British Columbia, Vancouver, BC V6T 1Z, Canada;
- Division of Infectious Diseases, University of British Columbia, Vancouver, BC V6T 1Z, Canada
- Correspondence: ; Tel.: +1-604-727-9719; Fax: +1-604-875-4013
| |
Collapse
|
24
|
Tsai PH, Lai WY, Lin YY, Luo YH, Lin YT, Chen HK, Chen YM, Lai YC, Kuo LC, Chen SD, Chang KJ, Liu CH, Chang SC, Wang FD, Yang YP. Clinical manifestation and disease progression in COVID-19 infection. J Chin Med Assoc 2021; 84:3-8. [PMID: 33230062 DOI: 10.1097/jcma.0000000000000463] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is mainly an infectious disease of the respiratory system transmitted through air droplets, and pulmonary symptoms constitute main presentations of this disease. However, COVID-19 demonstrates a clinically diverse manifestation ranging from asymptomatic presentation to critically illness with severe pneumonia, acute respiratory distress syndrome, respiratory failure, or multiple organ failure. Accumulating evidences demonstrated that COVID-19 has extrapulmonary involvement, including neurological, smelling sensation, cardiovascular, digestive, hepatobiliary, renal, endocrinologic, dermatologic system, and others. Over a third of COVID-19 patients manifest a wide range of neurological symptoms involving the central/peripheral nervous system. Underlying cardiovascular comorbidities were associated with detrimental outcomes, meanwhile the occurrence of cardiovascular complications correlate to poor survival. Gastrointestinal symptoms frequently occur and have been associated with a longer period of illness. Impaired hepatic functions were associated with the severity of the disease. Higher rate of acute kidney injury was reported in critically ill patients with COVID-19. Endocrinologic presentations of COVID-19 include exacerbating hyperglycemia, euglycemic ketosis, and diabetic ketoacidosis. The most common cutaneous manifestation was acro-cutaneous (pernio or chilblain-like) lesions, and other skin lesions consist of maculopapular rash, vesicular lesions, livedoid/necrotic lesions, exanthematous rashes, and petechiae. This review article summarized the general clinical signs and symptoms, radiologic features, and disease manifestation with progression in patients with COVID-19.
Collapse
Affiliation(s)
- Ping-Hsing Tsai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yung-Hung Luo
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| | - Yi-Tsung Lin
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Hsiao-Kang Chen
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Department of Medicine, National Yang-Ming University Hospital, Yilan, Taiwan, ROC
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| | - Yi-Chun Lai
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Department of Medicine, National Yang-Ming University Hospital, Yilan, Taiwan, ROC
| | - Li-Chiao Kuo
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Department of Medicine, National Yang-Ming University Hospital, Yilan, Taiwan, ROC
| | - Shew-Dan Chen
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Department of Medicine, National Yang-Ming University Hospital, Yilan, Taiwan, ROC
| | - Kao-Jung Chang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| | - Cheng-Hsuan Liu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| | - Shih-Chieh Chang
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Department of Medicine, National Yang-Ming University Hospital, Yilan, Taiwan, ROC
| | - Fu-Der Wang
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan, ROC
| |
Collapse
|
25
|
Yang KS, Ma XR, Ma Y, Alugubelli YR, Scott DA, Vatansever EC, Drelich AK, Sankaran B, Geng ZZ, Blankenship LR, Ward HE, Sheng YJ, Hsu JC, Kratch KC, Zhao B, Hayatshahi HS, Liu J, Li P, Fierke CA, Tseng CTK, Xu S, Liu WR. A Quick Route to Multiple Highly Potent SARS-CoV-2 Main Protease Inhibitors*. ChemMedChem 2020; 16:942-948. [PMID: 33283984 DOI: 10.1002/cmdc.202000924] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Indexed: 12/23/2022]
Abstract
The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2MPro ) to digest two of its translated long polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replicating in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1MPro ), we have designed and synthesized a series of SC2MPro inhibitors that contain β-(S-2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2MPro active-site cysteine C145. All inhibitors display high potency with Ki values at or below 100 nM. The most potent compound, MPI3, has as a Ki value of 8.3 nM. Crystallographic analyses of SC2MPro bound to seven inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549/ACE2 cells. Two inhibitors, MPI5 and MPI8, completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 μM and A549/ACE2 cells at 0.16-0.31 μM. Their virus inhibition potency is much higher than that of some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2MPro inhibitors with ultra-high antiviral potency.
Collapse
Affiliation(s)
- Kai S Yang
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Xinyu R Ma
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Yuying Ma
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | | | - Danielle A Scott
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Erol C Vatansever
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Aleksandra K Drelich
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zhi Z Geng
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Lauren R Blankenship
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Hannah E Ward
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Yan J Sheng
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Jason C Hsu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kaci C Kratch
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Baoyu Zhao
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Hamed S Hayatshahi
- Department of Pharmaceutical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Jin Liu
- Department of Pharmaceutical Sciences, UNT Health Science Center, Fort Worth, TX 76107, USA
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Carol A Fierke
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.,Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Chien-Te K Tseng
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shiqing Xu
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA
| | - Wenshe Ray Liu
- Department of Chemistry, Texas A&M University, College Station, TX 77843-3255, USA.,Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA.,Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843, USA.,Institute of Biosciences and Technology and Department of Translational Medical Sciences College of Medicine, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
26
|
Artese A, Svicher V, Costa G, Salpini R, Di Maio VC, Alkhatib M, Ambrosio FA, Santoro MM, Assaraf YG, Alcaro S, Ceccherini-Silberstein F. Current status of antivirals and druggable targets of SARS CoV-2 and other human pathogenic coronaviruses. Drug Resist Updat 2020; 53:100721. [PMID: 33132205 PMCID: PMC7448791 DOI: 10.1016/j.drup.2020.100721] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022]
Abstract
Coronaviridae is a peculiar viral family, with a very large RNA genome and characteristic appearance, endowed with remarkable tendency to transfer from animals to humans. Since the beginning of the 21st century, three highly transmissible and pathogenic coronaviruses have crossed the species barrier and caused deadly pneumonia, inflicting severe outbreaks and causing human health emergencies of inconceivable magnitude. Indeed, in the past two decades, two human coronaviruses emerged causing serious respiratory illness: severe acute respiratory syndrome coronavirus (SARS-CoV-1) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV), causing more than 10,000 cumulative cases, with mortality rates of 10 % for SARS-CoV-1 and 34.4 % for MERS-CoV. More recently, the severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) has emerged in China and has been identified as the etiological agent of the recent COVID-19 pandemic outbreak. It has rapidly spread throughout the world, causing nearly 22 million cases and ∼ 770,000 deaths worldwide, with an estimated mortality rate of ∼3.6 %, hence posing serious challenges for adequate and effective prevention and treatment. Currently, with the exception of the nucleotide analogue prodrug remdesivir, and despite several efforts, there is no known specific, proven, pharmacological treatment capable of efficiently and rapidly inducing viral containment and clearance of SARS-CoV-2 infection as well as no broad-spectrum drug for other human pathogenic coronaviruses. Another confounding factor is the paucity of molecular information regarding the tendency of coronaviruses to acquire drug resistance, a gap that should be filled in order to optimize the efficacy of antiviral drugs. In this light, the present review provides a systematic update on the current knowledge of the marked global efforts towards the development of antiviral strategies aimed at coping with the infection sustained by SARS-CoV-2 and other human pathogenic coronaviruses, displaying drug resistance profiles. The attention has been focused on antiviral drugs mainly targeting viral protease, RNA polymerase and spike glycoprotein, that have been tested in vitro and/or in clinical trials as well as on promising compounds proven to be active against coronaviruses by an in silico drug repurposing approach. In this respect, novel insights on compounds, identified by structure-based virtual screening on the DrugBank database endowed by multi-targeting profile, are also reported. We specifically identified 14 promising compounds characterized by a good in silico binding affinity towards, at least, two of the four studied targets (viral and host proteins). Among which, ceftolozane and NADH showed the best multi-targeting profile, thus potentially reducing the emergence of resistant virus strains. We also focused on potentially novel pharmacological targets for the development of compounds with anti-pan coronavirus activity. Through the analysis of a large set of viral genomic sequences, the current review provides a comprehensive and specific map of conserved regions across human coronavirus proteins which are essential for virus replication and thus with no or very limited tendency to mutate. Hence, these represent key druggable targets for novel compounds against this virus family. In this respect, the identification of highly effective and innovative pharmacological strategies is of paramount importance for the treatment and/or prophylaxis of the current pandemic but potentially also for future and unavoidable outbreaks of human pathogenic coronaviruses.
Collapse
Affiliation(s)
- Anna Artese
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy,Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
| | - Valentina Svicher
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy,Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
| | - Romina Salpini
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Velia Chiara Di Maio
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Mohammad Alkhatib
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | | | - Yehuda G. Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion, Israel Institute of Technology, Haifa, Israel
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy,Net4Science Academic Spin-Off, Università “Magna Græcia” di Catanzaro, Campus “S. Venuta”, Catanzaro, Italy
| | | |
Collapse
|
27
|
Liscano Y, Oñate-Garzón J, Ocampo-Ibáñez ID. In Silico Discovery of Antimicrobial Peptides as an Alternative to Control SARS-CoV-2. Molecules 2020; 25:E5535. [PMID: 33255849 PMCID: PMC7728342 DOI: 10.3390/molecules25235535] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
A serious pandemic has been caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The interaction between spike surface viral protein (Sgp) and the angiotensin-converting enzyme 2 (ACE2) cellular receptor is essential to understand the SARS-CoV-2 infectivity and pathogenicity. Currently, no drugs are available to treat the infection caused by this coronavirus and the use of antimicrobial peptides (AMPs) may be a promising alternative therapeutic strategy to control SARS-CoV-2. In this study, we investigated the in silico interaction of AMPs with viral structural proteins and host cell receptors. We screened the antimicrobial peptide database (APD3) and selected 15 peptides based on their physicochemical and antiviral properties. The interactions of AMPs with Sgp and ACE2 were performed by docking analysis. The results revealed that two amphibian AMPs, caerin 1.6 and caerin 1.10, had the highest affinity for Sgp proteins while interaction with the ACE2 receptor was reduced. The effective AMPs interacted particularly with Arg995 located in the S2 subunits of Sgp, which is key subunit that plays an essential role in viral fusion and entry into the host cell through ACE2. Given these computational findings, new potentially effective AMPs with antiviral properties for SARS-CoV-2 were identified, but they need experimental validation for their therapeutic effectiveness.
Collapse
Affiliation(s)
- Yamil Liscano
- Research Group of Chemical and Biotechnology, Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia;
| | - Jose Oñate-Garzón
- Research Group of Chemical and Biotechnology, Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia;
| | - Iván Darío Ocampo-Ibáñez
- Research Group of Microbiology, Industry and Environment, Faculty of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia
| |
Collapse
|
28
|
Lee JY, Shin YS, Lee J, Kwon S, Jin YH, Jang MS, Kim S, Song JH, Kim HR, Park CM. Identification of 4-anilino-6-aminoquinazoline derivatives as potential MERS-CoV inhibitors. Bioorg Med Chem Lett 2020; 30:127472. [PMID: 32781216 PMCID: PMC7414322 DOI: 10.1016/j.bmcl.2020.127472] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/27/2020] [Accepted: 08/04/2020] [Indexed: 10/26/2022]
Abstract
New therapies for treating coronaviruses are urgently needed. A series of 4-anilino-6-aminoquinazoline derivatives were synthesized and evaluated to show high anti-MERS-CoV activities. N4-(3-Chloro-4-fluorophenyl)-N6-(3-methoxybenzyl)quinazoline-4,6-diamine (1) has been identified in a random screen as a hit compound for inhibiting MERS-CoV infection. Throughout optimization process, compound 20 was found to exhibit high inhibitory effect (IC50 = 0.157 μM, SI = 25) with no cytotoxicity and moderate in vivo PK properties.
Collapse
Affiliation(s)
- Jun Young Lee
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Young Sup Shin
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Jihye Lee
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, South Korea
| | - Sunoh Kwon
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea; Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, South Korea
| | - Young-Hee Jin
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea; KM Application Center, Korea Institute of Oriental Medicine, Dong-gu, Daegu 41062, South Korea
| | - Min Seong Jang
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea; Department of Non-Clinical Studies, Korea Institute of Toxicology, Yuseong-gu, Daejeon 34114, South Korea
| | - Seungtaek Kim
- Zoonotic Virus Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, South Korea
| | - Jong Hwan Song
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Hyoung Rae Kim
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea
| | - Chul Min Park
- Center for Convergent Research of Emerging Virus Infection (CEVI), Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, South Korea.
| |
Collapse
|
29
|
Lin P, Wang M, Wei Y, Kim T, Wei X. Coronavirus in human diseases: Mechanisms and advances in clinical treatment. MedComm (Beijing) 2020; 1:270-301. [PMID: 33173860 PMCID: PMC7646666 DOI: 10.1002/mco2.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
Coronaviruses (CoVs), a subfamily of coronavirinae, are a panel of single-stranded RNA virus. Human coronavirus (HCoV) strains (HCoV-229E, HCoV-OC43, HCoV-HKU1, HCoV-NL63) usually cause mild upper respiratory diseases and are believed to be harmless. However, other HCoVs, associated with severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19, have been identified as important pathogens due to their potent infectivity and lethality worldwide. Moreover, currently, no effective antiviral drugs treatments are available so far. In this review, we summarize the biological characters of HCoVs, their association with human diseases, and current therapeutic options for the three severe HCoVs. We also highlight the discussion about novel treatment strategies for HCoVs infections.
Collapse
Affiliation(s)
- Panpan Lin
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Taewan Kim
- Wexner Medical Center The Ohio State University Columbus Ohio 43210 USA
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| |
Collapse
|
30
|
Kumar A, Kumar P, Saumya KU, Kapuganti SK, Bhardwaj T, Giri R. Exploring the SARS-CoV-2 structural proteins for multi-epitope vaccine development: an in-silico approach. Expert Rev Vaccines 2020; 19:887-898. [PMID: 32815406 PMCID: PMC7544969 DOI: 10.1080/14760584.2020.1813576] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/13/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION The ongoing life-threatening pandemic of coronavirus disease 2019 (COVID-19) has extensively affected the world. During this global health crisis, it is fundamentally crucial to find strategies to combat SARS-CoV-2. Despite several efforts in this direction and continuing clinical trials, no vaccine has been approved for it yet. METHODS To find a preventive measure, we have computationally designed a multi-epitopic subunit vaccine using immuno-informatic approaches. RESULTS The structural proteins of SARS-CoV-2 involved in its survival and pathogenicity were used to predict antigenic epitopes. The antigenic epitopes were capable of eliciting a strong humoral as well as cell-mediated immune response, our predictions suggest. The final vaccine was constructed by joining the all epitopes with specific linkers and to enhance their stability and immunogenicity. The physicochemical property of the vaccine was assessed. The vaccine 3D structure prediction and validation were done and docked with the human TLR-3 receptor. Furthermore, molecular dynamics simulations of the vaccine-TLR-3 receptor complex are employed to assess its dynamic motions and binding stability in-silico. CONCLUSION Based on this study, we strongly suggest synthesizing this vaccine, which further can be tested in-vitro and in-vivo to check its potency in a cure for COVID-19.
Collapse
Affiliation(s)
- Amit Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Prateek Kumar
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Kumar Udit Saumya
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | | | - Taniya Bhardwaj
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Rajanish Giri
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| |
Collapse
|
31
|
Luo YH, Chiu HY, Weng CS, Chen YM. Overview of coronavirus disease 2019: Treatment updates and advances. J Chin Med Assoc 2020; 83:805-808. [PMID: 32520770 PMCID: PMC7434015 DOI: 10.1097/jcma.0000000000000367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 01/08/2023] Open
Abstract
In late December 2019, several cases of pneumonia with unknown cause were reported in Wuhan, China, and this new type of pneumonia spread rapidly to across provinces during the subsequent weeks. The pathogen was identified quickly and was named as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The infectious disease caused by this virus is referred to as coronavirus disease 2019 (COVID-19). Within months, it has caused a global pandemic and posed a major threat to public health worldwide. As of May 23, 2020, 5 252 452 patients have been confirmed to have the disease, and 339 026 deaths have been reported. Multiple therapeutic trials are ongoing, and some promising results have been released. A vaccine would provide the most effective approach to fight the virus by preventing infection, but none are currently available. To control the COVID-19 outbreak, large-scale measures have been applied to reduce human-to-human transmission of SARS-CoV-2. Susceptible populations, including older adults, children, and healthcare providers, warrant particular attention to avoid transmission and infection. This review introduces current understanding of SARS-CoV-2 infection and treatment strategies, emphasizing the relevant challenges associated with prevention, diagnosis, and management.
Collapse
Affiliation(s)
- Yung-Hung Luo
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
- Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan, ROC
| | - Hwa-Yen Chiu
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| | - Chia-Sui Weng
- Department of Obstetrics and Gynecology, MacKay Memorial Hospital, Taipei, Taiwan, ROC
| | - Yuh-Min Chen
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- School of Medicine, National Yang-Ming Medical University, Taipei, Taiwan, ROC
| |
Collapse
|
32
|
Shree P, Mishra P, Selvaraj C, Singh SK, Chaube R, Garg N, Tripathi YB. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants - Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) - a molecular docking study. J Biomol Struct Dyn 2020; 40:190-203. [PMID: 32851919 PMCID: PMC7484581 DOI: 10.1080/07391102.2020.1810778] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
COVID-19 (Coronavirus disease 2019) is a transmissible disease initiated and propagated through a new virus strain SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2) since 31st December 2019 in Wuhan city of China and the infection has outspread globally influencing millions of people. Here, an attempt was made to recognize natural phytochemicals from medicinal plants, in order to reutilize them against COVID-19 by the virtue of molecular docking and molecular dynamics (MD) simulation study. Molecular docking study showed six probable inhibitors against SARS-CoV-2 Mpro (Main protease), two from Withania somnifera (Ashwagandha) (Withanoside V [10.32 kcal/mol] and Somniferine [9.62 kcal/mol]), one from Tinospora cordifolia (Giloy) (Tinocordiside [8.10 kcal/mol]) and three from Ocimum sanctum (Tulsi) (Vicenin [8.97 kcal/mol], Isorientin 4'-O-glucoside 2″-O-p-hydroxybenzoagte [8.55 kcal/mol] and Ursolic acid [8.52 kcal/mol]). ADMET profile prediction showed that the best docked phytochemicals from present work were safe and possesses drug-like properties. Further MD simulation study was performed to assess the constancy of docked complexes and found stable. Hence from present study it could be suggested that active phytochemicals from medicinal plants could potentially inhibit Mpro of SARS-CoV-2 and further equip the management strategy against COVID-19-a global contagion. HighlightsHolistic approach of Ayurvedic medicinal plants to avenge against COVID-19 pandemic.Active phytoconstituents of Ayurvedic medicinal plants Withania somnifera (Ashwagandha), Tinospora cordifolia (Giloy) and Ocimum sanctum (Tulsi) predicted to significantly hinder main protease (Mpro or 3Clpro) of SARS-CoV-2.Through molecular docking and molecular dynamic simulation study, Withanoside V, Somniferine, Tinocordiside, Vicenin, Ursolic acid and Isorientin 4'-O-glucoside 2″-O-p-hydroxybenzoagte were anticipated to impede the activity of SARS-CoV-2 Mpro.Drug-likeness and ADMET profile prediction of best docked compounds from present study were predicted to be safe, drug-like compounds with no toxicity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Priya Shree
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Priyanka Mishra
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamilnadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamilnadu, India
| | - Radha Chaube
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Neha Garg
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Yamini Bhusan Tripathi
- Department of Medicinal Chemistry, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
33
|
Stoddard SV, Stoddard SD, Oelkers BK, Fitts K, Whalum K, Whalum K, Hemphill AD, Manikonda J, Martinez LM, Riley EG, Roof CM, Sarwar N, Thomas DM, Ulmer E, Wallace FE, Pandey P, Roy S. Optimization Rules for SARS-CoV-2 M pro Antivirals: Ensemble Docking and Exploration of the Coronavirus Protease Active Site. Viruses 2020; 12:v12090942. [PMID: 32859008 PMCID: PMC7552026 DOI: 10.3390/v12090942] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/14/2020] [Accepted: 08/22/2020] [Indexed: 02/07/2023] Open
Abstract
Coronaviruses are viral infections that have a significant ability to impact human health. Coronaviruses have produced two pandemics and one epidemic in the last two decades. The current pandemic has created a worldwide catastrophe threatening the lives of over 15 million as of July 2020. Current research efforts have been focused on producing a vaccine or repurposing current drug compounds to develop a therapeutic. There is, however, a need to study the active site preferences of relevant targets, such as the SARS-CoV-2 main protease (SARS-CoV-2 Mpro), to determine ways to optimize these drug compounds. The ensemble docking and characterization work described in this article demonstrates the multifaceted features of the SARS-CoV-2 Mpro active site, molecular guidelines to improving binding affinity, and ultimately the optimization of drug candidates. A total of 220 compounds were docked into both the 5R7Z and 6LU7 SARS-CoV-2 Mpro crystal structures. Several key preferences for strong binding to the four subsites (S1, S1′, S2, and S4) were identified, such as accessing hydrogen binding hotspots, hydrophobic patches, and utilization of primarily aliphatic instead of aromatic substituents. After optimization efforts using the design guidelines developed from the molecular docking studies, the average docking score of the parent compounds was improved by 6.59 −log10(Kd) in binding affinity which represents an increase of greater than six orders of magnitude. Using the optimization guidelines, the SARS-CoV-2 Mpro inhibitor cinanserin was optimized resulting in an increase in binding affinity of 4.59 −log10(Kd) and increased protease inhibitor bioactivity. The results of molecular dynamic (MD) simulation of cinanserin-optimized compounds CM02, CM06, and CM07 revealed that CM02 and CM06 fit well into the active site of SARS-CoV-2 Mpro [Protein Data Bank (PDB) accession number 6LU7] and formed strong and stable interactions with the key residues, Ser-144, His-163, and Glu-166. The enhanced binding affinity produced demonstrates the utility of the design guidelines described. The work described herein will assist scientists in developing potent COVID-19 antivirals.
Collapse
Affiliation(s)
- Shana V. Stoddard
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
- Correspondence:
| | - Serena D. Stoddard
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
- College of Veterinary Medicine, Tuskegee University, 201 Frederick D Patterson Dr, Tuskegee, AL 36088, USA
| | - Benjamin K. Oelkers
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Kennedi Fitts
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Kellen Whalum
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Kaylah Whalum
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Alexander D. Hemphill
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Jithin Manikonda
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Linda Michelle Martinez
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Elizabeth G. Riley
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Caroline M. Roof
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Nowreen Sarwar
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Doni M. Thomas
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Emily Ulmer
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
| | - Felissa E. Wallace
- Department of Chemistry, Rhodes College, 2000 North Parkway, Memphis, TN 38112, USA; (S.D.S.); (B.K.O.); (K.F.); (K.W.); (K.W.); (A.D.H.); (J.M.); (L.M.M.); (E.G.R.); (C.M.R.); (N.S.); (D.M.T.); (E.U.); (F.E.W.)
- Walnut Hills High School, 3250 Victory Pkwy, Cincinnati, OH 45207, USA
| | - Pankaj Pandey
- National Center for Natural Products Research, University of Mississippi, University, MS 38677, USA;
| | - Sudeshna Roy
- Department of BioMolecular Sciences, Schools of Pharmacy, University of Mississippi, University, MS 38677, USA;
| |
Collapse
|
34
|
Zu ZY, Jiang MD, Xu PP, Chen W, Ni QQ, Lu GM, Zhang LJ. Coronavirus Disease 2019 (COVID-19): A Perspective from China. Radiology 2020; 296:E15-E25. [PMID: 32083985 PMCID: PMC7233368 DOI: 10.1148/radiol.2020200490] [Citation(s) in RCA: 946] [Impact Index Per Article: 189.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In December 2019, an outbreak of severe acute respiratory syndrome coronavirus 2 infection occurred in Wuhan, Hubei Province, China, and spread across China and beyond. On February 12, 2020, the World Health Organization officially named the disease caused by the novel coronavirus as coronavirus disease 2019 (COVID-19). Because most patients infected with COVID-19 had pneumonia and characteristic CT imaging patterns, radiologic examinations have become vital in early diagnosis and the assessment of disease course. To date, CT findings have been recommended as major evidence for clinical diagnosis of COVID-19 in Hubei, China. This review focuses on the etiology, epidemiology, and clinical symptoms of COVID-19 while highlighting the role of chest CT in prevention and disease control.
Collapse
Affiliation(s)
| | | | - Peng Peng Xu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China (Z.Y.Z., M.D.J., P.P.X., Q.Q.N., G.M.L., L.J.Z); Department of Medical Imaging, Taihe Hospital, Shiyan, Hubei, 442000, China (W.C)
| | - Wen Chen
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China (Z.Y.Z., M.D.J., P.P.X., Q.Q.N., G.M.L., L.J.Z); Department of Medical Imaging, Taihe Hospital, Shiyan, Hubei, 442000, China (W.C)
| | - Qian Qian Ni
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China (Z.Y.Z., M.D.J., P.P.X., Q.Q.N., G.M.L., L.J.Z); Department of Medical Imaging, Taihe Hospital, Shiyan, Hubei, 442000, China (W.C)
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China (Z.Y.Z., M.D.J., P.P.X., Q.Q.N., G.M.L., L.J.Z); Department of Medical Imaging, Taihe Hospital, Shiyan, Hubei, 442000, China (W.C)
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, 210002, China (Z.Y.Z., M.D.J., P.P.X., Q.Q.N., G.M.L., L.J.Z); Department of Medical Imaging, Taihe Hospital, Shiyan, Hubei, 442000, China (W.C)
| |
Collapse
|
35
|
Yang KS, Ma XR, Ma Y, Alugubelli YR, Scott DA, Vatansever EC, Drelich AK, Sankaran B, Geng ZZ, Blankenship LR, Ward HE, Sheng YJ, Hsu JC, Kratch KC, Zhao B, Hayatshahi HS, Liu J, Li P, Fierke CA, Tseng CTK, Xu S, Liu WR. A Speedy Route to Multiple Highly Potent SARS-CoV-2 Main Protease Inhibitors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32766582 DOI: 10.1101/2020.07.28.223784] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The COVID-19 pathogen, SARS-CoV-2, requires its main protease (SC2M Pro ) to digest two of its translated polypeptides to form a number of mature proteins that are essential for viral replication and pathogenesis. Inhibition of this vital proteolytic process is effective in preventing the virus from replication in infected cells and therefore provides a potential COVID-19 treatment option. Guided by previous medicinal chemistry studies about SARS-CoV-1 main protease (SC1M Pro ), we have designed and synthesized a series of SC2M Pro inhibitors that contain β-( S -2-oxopyrrolidin-3-yl)-alaninal (Opal) for the formation of a reversible covalent bond with the SC2M Pro active site cysteine C145. All inhibitors display high potency with IC 50 values at or below 100 nM. The most potent compound MPI3 has as an IC 50 value as 8.5 nM. Crystallographic analyses of SC2M Pro bound to 7 inhibitors indicated both formation of a covalent bond with C145 and structural rearrangement from the apoenzyme to accommodate the inhibitors. Virus inhibition assays revealed that several inhibitors have high potency in inhibiting the SARS-CoV-2-induced cytopathogenic effect in both Vero E6 and A549 cells. Two inhibitors MP5 and MPI8 completely prevented the SARS-CoV-2-induced cytopathogenic effect in Vero E6 cells at 2.5-5 μM and A549 cells at 0.16-0.31 μM. Their virus inhibition potency is much higher than some existing molecules that are under preclinical and clinical investigations for the treatment of COVID-19. Our study indicates that there is a large chemical space that needs to be explored for the development of SC2M Pro inhibitors with extreme potency. Due to the urgent matter of the COVID-19 pandemic, MPI5 and MPI8 may be quickly advanced to preclinical and clinical tests for COVID-19.
Collapse
|
36
|
Liu J, Xie W, Wang Y, Xiong Y, Chen S, Han J, Wu Q. A comparative overview of COVID-19, MERS and SARS: Review article. Int J Surg 2020; 81:1-8. [PMID: 32730205 PMCID: PMC7382925 DOI: 10.1016/j.ijsu.2020.07.032] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/16/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Following the severe acute respiratory syndrome coronavirus (SARS-CoV) and the Middle East respiratory syndrome coronavirus (MERS-CoV), a third, highly pathogenic coronavirus, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) appearing at end of 2019 led to a pandemic, increased panic and attracted global attention. This review analyzes the epidemiology, etiology, clinical characteristics, treatment and sequelae of the severe acute respiratory syndrome (SARS), the Middle East respiratory syndrome (MERS) and the 2019 novel coronavirus disease (COVID-19) to help provide direction for further studies that can help understand COVID-19.
Collapse
Affiliation(s)
- Jie Liu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wanli Xie
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yanting Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yue Xiong
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shiqiang Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingjing Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qingping Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
37
|
Nalbant A, Kaya T, Varim C, Yaylaci S, Tamer A, Cinemre H. Can the neutrophil/lymphocyte ratio (NLR) have a role in the diagnosis of coronavirus 2019 disease (COVID-19)? ACTA ACUST UNITED AC 2020; 66:746-751. [PMID: 32696861 DOI: 10.1590/1806-9282.66.6.746] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/23/2020] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The present study aimed to investigate the role of neutrophil/lymphocyte ratio (NLR), an inflammation marker, complete blood count, and biochemical parameters in the diagnosis of COVID-19. METHODS A total of 80 patients who had been hospitalized in the internal medicine clinic were enrolled in the study. The cases were allocated into two groups, i.e., COVID (+) and (-), based on real-time reverse transcription-polymerase chain reaction. The demographic, clinical, and laboratory [NLR, platelet/lymphocyte ratio (PLR), complete blood count, biochemistry, and serology] data of the patients were retrospectively obtained from the hospital data management system. RESULTS NLR and fever levels were found to be higher in COVID-19 (+) cases (P=0.021, P=0.001, respectively). There was no difference between males and females with regard to COVID-19 positivity (P=0.527). Total bilirubin levels were found to be lower in COVID-19 (+) cases (P=0.040). When the ROC analysis was carried out for NLR in COVID-19 (+) cases, the AUC value was found to be 0.660 (P=0.021), sensitivity as 69.01 %, specificity as 65.40 %, LR+: 1.98 and LR- : 0.48, PPV: 80.43, and NPV: 50.00, when the NLR was ≥2.4. The risk of COVID-19 was found to be 20.3-fold greater when NLR was ≥ 2.4 in the logistic regression (P=0.007). CONCLUSION NLR is an independent predictor for the diagnosis of COVID-19. We also found that fever and total bilirubin measurements could be useful for the diagnosis of COVID-19 in this population.
Collapse
Affiliation(s)
- Ahmet Nalbant
- Departments of Internal Medicine, School of Medicine, Sakarya University, Turkey
| | - Tezcan Kaya
- Departments of Internal Medicine, School of Medicine, Sakarya University, Turkey
| | - Ceyhun Varim
- Departments of Internal Medicine, School of Medicine, Sakarya University, Turkey
| | - Selçuk Yaylaci
- Departments of Internal Medicine, School of Medicine, Sakarya University, Turkey
| | - Ali Tamer
- Departments of Internal Medicine, School of Medicine, Sakarya University, Turkey
| | - Hakan Cinemre
- Departments of Internal Medicine, School of Medicine, Sakarya University, Turkey
| |
Collapse
|
38
|
de Lima Menezes G, da Silva RA. Identification of potential drugs against SARS-CoV-2 non-structural protein 1 (nsp1). J Biomol Struct Dyn 2020; 39:5657-5667. [PMID: 32657643 PMCID: PMC7443570 DOI: 10.1080/07391102.2020.1792992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Non-structural protein 1 (nsp1) is found in all Betacoronavirus genus, an important viral group that causes severe respiratory
human diseases. This protein has significant role in pathogenesis and it is considered a
probably major virulence factor. As it is absent in humans, it becomes an interesting
target of study, especially when it comes to the rational search for drugs, since it
increases the specificity of the target and reduces possible adverse effects that may be
caused to the patient. Using approaches in silico we seek to
study the behavior of nsp1 in solution to obtain its most stable conformation and find
possible drugs with affinity to all of them. For this purpose, complete model of nsp1 of
SARS-CoV-2 were predicted and its stability analyzed by molecular dynamics simulations in
five different replicas. After main pocket validation using two control drugs and the main
conformations of nsp1, molecular docking based on virtual screening were performed to
identify novel potential inhibitors from DrugBank database. It has been found 16 molecules
in common to all five nsp1 replica conformations. Three of them was ranked as the best
compounds among them and showed better energy score than control molecules that have
in vitro activity against nsp1 from SARS-CoV-2. The
results pointed out here suggest new potential drugs for therapy to aid the rational drug
search against COVID-19. Communicated by Ramaswamy H. Sarma
Collapse
|
39
|
Khateb M, Bosak N, Muqary M. Coronaviruses and Central Nervous System Manifestations. Front Neurol 2020; 11:715. [PMID: 32655490 PMCID: PMC7324719 DOI: 10.3389/fneur.2020.00715] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
SARS-CoV-2 is a highly pathogenic coronavirus that has caused an ongoing worldwide pandemic. Emerging in Wuhan, China in December 2019, the virus has spread rapidly around the world. Corona virus disease 2019 (COVID-19), which is caused by SARS-CoV-2, has resulted in significant morbidity and mortality. The most prominent symptoms of SARS-CoV-2 infection are respiratory. However, accumulating evidence highlights involvement of the central nervous system (CNS). This includes headache, anosmia, meningoencephalitis, acute ischemic stroke, and several presumably post/para-infectious syndromes and altered mental status not explained by respiratory etiologies. Interestingly, previous studies in animal models emphasized the neurotropism of coronaviruses; thus, these CNS manifestations of COVID-19 are not surprising. This minireview scans the literature regarding the involvement of the CNS in coronavirus infections in general, and in regard to the recent SARS-CoV-2, specifically.
Collapse
Affiliation(s)
- Mohamed Khateb
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Noam Bosak
- Department of Neurology, Rambam Health Care Campus, Haifa, Israel
| | - Maryam Muqary
- Department of Psychiatry, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
40
|
Lango MN. How did we get here? Short history of COVID-19 and other coronavirus-related epidemics. Head Neck 2020; 42:1535-1538. [PMID: 32445249 PMCID: PMC7283747 DOI: 10.1002/hed.26275] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 01/22/2023] Open
Abstract
The COVID‐19 epidemic was not the first coronavirus epidemic of this century and represents one of the increasing number of zoonoses from wildlife to impact global health. SARS CoV‐2, the virus causing the COVID‐19 epidemic is distinct from, but closely resembles SARS CoV‐1, which was responsible for the severe acute respiratory syndrome (SARS) outbreak in 2002. SARS CoV‐1 and 2 share almost 80% of genetic sequences and use the same host cell receptor to initiate viral infection. However, SARS predominantly affected individuals in close contact with infected animals and health care workers. In contrast, CoV‐2 exhibits robust person to person spread, most likely by means of asymptomatic carriers, which has resulted in greater spread of disease, overall morbidity and mortality, despite its lesser virulence. We review recent coronavirus‐related epidemics and distinguish clinical and molecular features of CoV‐2, the causative agent for COVID‐19, and review the current status of vaccine trials.
Collapse
Affiliation(s)
- Miriam N Lango
- Department of Head and Neck Surgery, M. D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
41
|
Shchelkanov MY, Popova AY, Dedkov VG, Akimkin VG, Maleyev VV. History of investigation and current classification of coronaviruses ( Nidovirales: Coronaviridae). ACTA ACUST UNITED AC 2020. [DOI: 10.15789/2220-7619-hoi-1412] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- M. Yu. Shchelkanov
- International Scientific and Educational Center for Biological Security of Rospotrebnadzor; Federal Scientific Center of East Asia Terrestrial Biodiversity, Far Eastern Branch of RAS; Center of Hygiene and Epidemiology in the Primorsky Territory
| | - A. Yu. Popova
- Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing (Rospotrebnadzor); Russian Medical Academy of Continuing Professional Education
| | | | - V. G. Akimkin
- Central Research Institute of Epidemiology and Microbiology of Rospotrebnadzor
| | - V. V. Maleyev
- Central Research Institute of Epidemiology and Microbiology of Rospotrebnadzor
| |
Collapse
|
42
|
Silva FRD, Guerreiro RDC, Andrade HDA, Stieler E, Silva A, de Mello MT. Does the compromised sleep and circadian disruption of night and shiftworkers make them highly vulnerable to 2019 coronavirus disease (COVID-19)? Chronobiol Int 2020; 37:607-617. [PMID: 32432519 DOI: 10.1080/07420528.2020.1756841] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Rotating and permanent night shiftwork schedules typically result in acute and sometimes chronic sleep deprivation plus acute and sometimes chronic disruption of the circadian time structure. Immune system processes and functionalities are organized as circadian rhythms, and they are also strongly influenced by sleep status. Sleep is a vital behavioral state of living beings and a modulator of immune function and responsiveness. Shiftworkers show increased risk for developing viral infections due to possible compromise of both innate and acquired immunity responses. Short sleep and sleep loss, common consequences of shiftwork, are associated with altered integrity of the immune system. We discuss the possible excess risk for COVID-19 infection in the context of the common conditions among shiftworkers, including nurses, doctors, and first responders, among others of high exposure to the contagion, of sleep imbalance and circadian disruption. ABBREVIATIONS ACE2: Angiotensin-converting enzyme 2; APC: Antigen.-presenting .cells; CCL: Chemokine (C-C motif) ligand; CD+: .Adhesion molecule expression; COVID-19: 2019 coronavirus disease; DCs: Dendritic cells; GH: Growth hormone; HPA: Hypothalamic-pituitary-adrenal; HSF: Heat shock factor; HSP70: Heat shock protein 70; HSP90: Heat shock protein 90; IL: Interleukin; INFγ: Interferon-gamma; LT/LB: T/B lymphocytes; MHC: Major histocompatibility complex; NK: Natural .killer; RAAS: renin-angiotensin-aldosterone system; SARS: .Severe acute respiratory syndrome; SCN: Suprachiasmatic nucleus;SD: Sleep deprivation; SNS: Sympathetic nervous system; Th1/Th2: T helper lymphocytes 1/2; TLR2/TLR4: Toll-like receptor 2/4; TNF-α: Tumor .necrosis .factor alpha; VEGF: Vascular endothelial growth factor.
Collapse
Affiliation(s)
| | | | | | - Eduardo Stieler
- Department of Sports, Universidade Federal de Minas Gerais , Belo Horizonte, Brazil
| | - Andressa Silva
- Department of Sports, Universidade Federal de Minas Gerais , Belo Horizonte, Brazil
| | - Marco Túlio de Mello
- Department of Sports, Universidade Federal de Minas Gerais , Belo Horizonte, Brazil
| |
Collapse
|
43
|
Feasibility of Known RNA Polymerase Inhibitors as Anti-SARS-CoV-2 Drugs. Pathogens 2020; 9:pathogens9050320. [PMID: 32357471 PMCID: PMC7281371 DOI: 10.3390/pathogens9050320] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/23/2020] [Accepted: 04/24/2020] [Indexed: 12/22/2022] Open
Abstract
Coronaviruses (CoVs) are positive-stranded RNA viruses that infect humans and animals. Infection by CoVs such as HCoV-229E, -NL63, -OC43 and -HKU1 leads to the common cold, short lasting rhinitis, cough, sore throat and fever. However, CoVs such as Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and the newest SARS-CoV-2 (the causative agent of COVID-19) lead to severe and deadly diseases with mortality rates ranging between ~1 to 35% depending on factors such as age and pre-existing conditions. Despite continuous global health threats to humans, there are no approved vaccines or drugs targeting human CoVs, and the recent outbreak of COVID-19 emphasizes an urgent need for therapeutic interventions. Using computational and bioinformatics tools, here we present the feasibility of reported broad-spectrum RNA polymerase inhibitors as anti- SARS-CoV-2 drugs targeting its main RNA polymerase, suggesting that investigational and approved nucleoside RNA polymerase inhibitors have potential as anti-SARS-CoV-2 drugs. However, we note that it is also possible for SARS-CoV-2 to evolve and acquire drug resistance mutations against these nucleoside inhibitors.
Collapse
|
44
|
Tu YF, Chien CS, Yarmishyn AA, Lin YY, Luo YH, Lin YT, Lai WY, Yang DM, Chou SJ, Yang YP, Wang ML, Chiou SH. A Review of SARS-CoV-2 and the Ongoing Clinical Trials. Int J Mol Sci 2020; 21:E2657. [PMID: 32290293 PMCID: PMC7177898 DOI: 10.3390/ijms21072657] [Citation(s) in RCA: 432] [Impact Index Per Article: 86.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 12/16/2022] Open
Abstract
The sudden outbreak of 2019 novel coronavirus (2019-nCoV, later named SARS-CoV-2) in Wuhan, China, which rapidly grew into a global pandemic, marked the third introduction of a virulent coronavirus into the human society, affecting not only the healthcare system, but also the global economy. Although our understanding of coronaviruses has undergone a huge leap after two precedents, the effective approaches to treatment and epidemiological control are still lacking. In this article, we present a succinct overview of the epidemiology, clinical features, and molecular characteristics of SARS-CoV-2. We summarize the current epidemiological and clinical data from the initial Wuhan studies, and emphasize several features of SARS-CoV-2, which differentiate it from SARS-CoV and Middle East respiratory syndrome coronavirus (MERS-CoV), such as high variability of disease presentation. We systematize the current clinical trials that have been rapidly initiated after the outbreak of COVID-19 pandemic. Whereas the trials on SARS-CoV-2 genome-based specific vaccines and therapeutic antibodies are currently being tested, this solution is more long-term, as they require thorough testing of their safety. On the other hand, the repurposing of the existing therapeutic agents previously designed for other virus infections and pathologies happens to be the only practical approach as a rapid response measure to the emergent pandemic, as most of these agents have already been tested for their safety. These agents can be divided into two broad categories, those that can directly target the virus replication cycle, and those based on immunotherapy approaches either aimed to boost innate antiviral immune responses or alleviate damage induced by dysregulated inflammatory responses. The initial clinical studies revealed the promising therapeutic potential of several of such drugs, including favipiravir, a broad-spectrum antiviral drug that interferes with the viral replication, and hydroxychloroquine, the repurposed antimalarial drug that interferes with the virus endosomal entry pathway. We speculate that the current pandemic emergency will be a trigger for more systematic drug repurposing design approaches based on big data analysis.
Collapse
Affiliation(s)
- Yung-Fang Tu
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-F.T.); (C.-S.C.); (A.A.Y.); (Y.-Y.L.); (W.-Y.L.); (D.-M.Y.); (S.-J.C.); (Y.-P.Y.)
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (Y.-H.L.); (Y.-T.L.)
| | - Chian-Shiu Chien
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-F.T.); (C.-S.C.); (A.A.Y.); (Y.-Y.L.); (W.-Y.L.); (D.-M.Y.); (S.-J.C.); (Y.-P.Y.)
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Aliaksandr A. Yarmishyn
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-F.T.); (C.-S.C.); (A.A.Y.); (Y.-Y.L.); (W.-Y.L.); (D.-M.Y.); (S.-J.C.); (Y.-P.Y.)
| | - Yi-Ying Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-F.T.); (C.-S.C.); (A.A.Y.); (Y.-Y.L.); (W.-Y.L.); (D.-M.Y.); (S.-J.C.); (Y.-P.Y.)
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yung-Hung Luo
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (Y.-H.L.); (Y.-T.L.)
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Yi-Tsung Lin
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (Y.-H.L.); (Y.-T.L.)
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei 11217, Taiwan
| | - Wei-Yi Lai
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-F.T.); (C.-S.C.); (A.A.Y.); (Y.-Y.L.); (W.-Y.L.); (D.-M.Y.); (S.-J.C.); (Y.-P.Y.)
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - De-Ming Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-F.T.); (C.-S.C.); (A.A.Y.); (Y.-Y.L.); (W.-Y.L.); (D.-M.Y.); (S.-J.C.); (Y.-P.Y.)
| | - Shih-Jie Chou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-F.T.); (C.-S.C.); (A.A.Y.); (Y.-Y.L.); (W.-Y.L.); (D.-M.Y.); (S.-J.C.); (Y.-P.Y.)
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
| | - Yi-Ping Yang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-F.T.); (C.-S.C.); (A.A.Y.); (Y.-Y.L.); (W.-Y.L.); (D.-M.Y.); (S.-J.C.); (Y.-P.Y.)
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Mong-Lien Wang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-F.T.); (C.-S.C.); (A.A.Y.); (Y.-Y.L.); (W.-Y.L.); (D.-M.Y.); (S.-J.C.); (Y.-P.Y.)
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (Y.-H.L.); (Y.-T.L.)
- Institute of Food Safety and Health Risk Assessment, School of Pharmaceutical Sciences, National Yang Ming University, Taipei 11221, Taiwan
| | - Shih-Hwa Chiou
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 11217, Taiwan; (Y.-F.T.); (C.-S.C.); (A.A.Y.); (Y.-Y.L.); (W.-Y.L.); (D.-M.Y.); (S.-J.C.); (Y.-P.Y.)
- School of Medicine, National Yang-Ming University, Taipei 11221, Taiwan; (Y.-H.L.); (Y.-T.L.)
- Institute of Pharmacology, National Yang-Ming University, Taipei 11221, Taiwan
- Genomic Research Center, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
45
|
Zhang X, Chu H, Wen L, Shuai H, Yang D, Wang Y, Hou Y, Zhu Z, Yuan S, Yin F, Chan JFW, Yuen KY. Competing endogenous RNA network profiling reveals novel host dependency factors required for MERS-CoV propagation. Emerg Microbes Infect 2020; 9:733-746. [PMID: 32223537 PMCID: PMC7170352 DOI: 10.1080/22221751.2020.1738277] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Circular RNAs (circRNAs) are an integral component of the host competitive endogenous RNA (ceRNA) network. These noncoding RNAs are characterized by their unique splicing reactions to form covalently closed loop structures and play important RNA regulatory roles in cells. Recent studies showed that circRNA expressions were perturbed in viral infections and circRNAs might serve as potential antiviral targets. We investigated the host ceRNA network changes and biological relevance of circRNAs in human lung adenocarcinoma epithelial (Calu-3) cells infected with the highly pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV). A total of ≥49337 putative circRNAs were predicted. Among the 7845 genes which generated putative circRNAs, 147 (1.9%) of them each generated ≥30 putative circRNAs and were involved in various biological, cellular, and metabolic processes, including viral infections. Differential expression (DE) analysis showed that the proportion of DE circRNAs significantly (P < 0.001) increased at 24 h-post infection. These DE circRNAs were clustered into 4 groups according to their time-course expression patterns and demonstrated inter-cluster and intra-cluster variations in the predicted functions of their host genes. Our comprehensive circRNA-miRNA-mRNA network identified 7 key DE circRNAs involved in various biological processes upon MERS-CoV infection. Specific siRNA knockdown of two selected DE circRNAs (circFNDC3B and circCNOT1) significantly reduced MERS-CoV load and their target mRNA expression which modulates various biological pathways, including the mitogen-activated protein kinase (MAPK) and ubiquitination pathways. These results provided novel insights into the ceRNA network perturbations, biological relevance of circRNAs, and potential host-targeting antiviral strategies for MERS-CoV infection.
Collapse
Affiliation(s)
- Xi Zhang
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Lei Wen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Huiping Shuai
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Dong Yang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Yixin Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Yuxin Hou
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Zheng Zhu
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| | - Feifei Yin
- Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Pathogen Biology, Hainan Medical University, Haikou, People's Republic of China.,Key Laboratory of Translational Tropical Medicine of Ministry of Education, Hainan Medical University, Haikou, People's Republic of China
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Hainan Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou, People's Republic of China, and The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China.,Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China
| | - Kwok-Yung Yuen
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People's Republic of China.,The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
46
|
Engineering a Novel Antibody-Peptide Bispecific Fusion Protein Against MERS-CoV. Antibodies (Basel) 2019; 8:antib8040053. [PMID: 31690009 PMCID: PMC6963733 DOI: 10.3390/antib8040053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/19/2019] [Accepted: 10/23/2019] [Indexed: 01/01/2023] Open
Abstract
In recent years, tremendous efforts have been made in the engineering of bispecific or multi-specific antibody-based therapeutics by combining two or more functional antigen-recognizing elements into a single construct. However, to the best of our knowledge there has been no reported cases of effective antiviral antibody-peptide bispecific fusion proteins. We previously developed potent fully human monoclonal antibodies and inhibitory peptides against Middle East Respiratory Syndrome Coronavirus (MERS-CoV), a novel coronavirus that causes severe acute respiratory illness with high mortality. Here, we describe the generation of antibody-peptide bispecific fusion proteins, each of which contains an anti-MERS-CoV single-chain antibody m336 (or normal human IgG1 CH3 domain as a control) linked with, or without, a MERS-CoV fusion inhibitory peptide HR2P. We found that one of these fusion proteins, designated as m336 diabody-pep, exhibited more potent inhibitory activity than the antibody or the peptide alone against pseudotyped MERS-CoV infection and MERS-CoV S protein-mediated cell-cell fusion, suggesting its potential to be developed as an effective bispecific immunotherapeutic for clinical use.
Collapse
|
47
|
Preparation of virus-like particle mimetic nanovesicles displaying the S protein of Middle East respiratory syndrome coronavirus using insect cells. J Biotechnol 2019; 306:177-184. [PMID: 31614169 PMCID: PMC7114102 DOI: 10.1016/j.jbiotec.2019.10.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 09/26/2019] [Accepted: 10/07/2019] [Indexed: 11/25/2022]
Abstract
Virus-like particle mimetic nanovesicles were prepared using insect cells. Surfactant treatment or mechanical extrusion make it possible to display the S protein on VLPs. Mechanical extrusion is more effective way to display the S protein on VLPs. S protein on the surface of nanovesicles were confirmed by immuno-TEM. The purified S protein (SοTM) has the ability to bind a receptor of MERS-CoV.
Middle East respiratory syndrome coronavirus (MERS-CoV) first emerged in 2012, and over 2000 infections and 800 deaths have been confirmed in 27 countries. However, to date, no commercial vaccine is available. In this study, structural proteins of MERS-CoV were expressed in silkworm larvae and Bm5 cells for the development of vaccine candidates against MERS-CoV and diagnostic methods. The spike (S) protein of MERS-CoV lacking its transmembrane and cytoplasmic domains (SΔTM) was secreted into the hemolymph of silkworm larvae using a bombyxin signal peptide and purified using affinity chromatography. The purified SΔTM forms small nanoparticles as well as the full-length S protein and has the ability to bind human dipeptidyl peptidase 4 (DPP4), which is a receptor of MERS-CoV. These results indicate that bioactive SΔTM was expressed in silkworm larvae. To produce MERS-CoV-like particles (MERS-CoV-LPs), the coexpression of spike proteins was performed in Bm5 cells and envelope (E) and membrane (M) proteins secreted E and M proteins extracellularly, suggesting that MERS-CoV-LPs may be formed. However, this S protein was not displayed on virus-like particles (VLPs) even though E and M proteins were secreted into the culture supernatant. By surfactant treatment and mechanical extrusion using S protein- or three structural protein-expressing Bm5 cells, S protein-displaying nanovesicles with diameters of approximately 100-200 nm were prepared and confirmed by immuno-TEM. The mechanical extrusion method is favorable for obtaining uniform recombinant protein-displaying nanovesicles from cultured cells. The purified SΔTM from silkworm larvae and S protein-displaying nanovesicles from Bm5 cells may lead to the development of nanoparticle-based vaccines against MERS-CoV and the diagnostic detection of MERS-CoV.
Collapse
|
48
|
Skariyachan S, Challapilli SB, Packirisamy S, Kumargowda ST, Sridhar VS. Recent Aspects on the Pathogenesis Mechanism, Animal Models and Novel Therapeutic Interventions for Middle East Respiratory Syndrome Coronavirus Infections. Front Microbiol 2019; 10:569. [PMID: 30984127 PMCID: PMC6448012 DOI: 10.3389/fmicb.2019.00569] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 03/05/2019] [Indexed: 12/17/2022] Open
Abstract
Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is an emerging zoonotic virus considered as one of the major public threat with a total number of 2 298 laboratory-confirmed cases and 811 associated deaths reported by World Health Organization as of January 2019. The transmission of the virus was expected to be from the camels found in Middle Eastern countries via the animal and human interaction. The genome structure provided information about the pathogenicity and associated virulent factors present in the virus. Recent studies suggested that there were limited insight available on the development of novel therapeutic strategies to induce immunity against the virus. The severities of MERS-CoV infection highlight the necessity of effective approaches for the development of various therapeutic remedies. Thus, the present review comprehensively and critically illustrates the recent aspects on the epidemiology of the virus, the structural and functional features of the viral genome, viral entry and transmission, major mechanisms of pathogenesis and associated virulent factors, current animal models, detection methods and novel strategies for the development of vaccines against MERS-CoV. The review further illustrates the molecular and computational virtual screening platforms which provide insights for the identification of putative drug targets and novel lead molecules toward the development of therapeutic remedies.
Collapse
Affiliation(s)
- Sinosh Skariyachan
- R&D Centre, Department of Biotechnology, Dayananda Sagar College of Engineering, Bengaluru, India
| | | | | | | | | |
Collapse
|
49
|
Yan B, Chu H, Yang D, Sze KH, Lai PM, Yuan S, Shuai H, Wang Y, Kao RYT, Chan JFW, Yuen KY. Characterization of the Lipidomic Profile of Human Coronavirus-Infected Cells: Implications for Lipid Metabolism Remodeling upon Coronavirus Replication. Viruses 2019; 11:v11010073. [PMID: 30654597 PMCID: PMC6357182 DOI: 10.3390/v11010073] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/14/2019] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
Lipids play numerous indispensable cellular functions and are involved in multiple steps in the replication cycle of viruses. Infections by human-pathogenic coronaviruses result in diverse clinical outcomes, ranging from self-limiting flu-like symptoms to severe pneumonia with extrapulmonary manifestations. Understanding how cellular lipids may modulate the pathogenicity of human-pathogenic coronaviruses remains poor. To this end, we utilized the human coronavirus 229E (HCoV-229E) as a model coronavirus to comprehensively characterize the host cell lipid response upon coronavirus infection with an ultra-high performance liquid chromatography-mass spectrometry (UPLC–MS)-based lipidomics approach. Our results revealed that glycerophospholipids and fatty acids (FAs) were significantly elevated in the HCoV-229E-infected cells and the linoleic acid (LA) to arachidonic acid (AA) metabolism axis was markedly perturbed upon HCoV-229E infection. Interestingly, exogenous supplement of LA or AA in HCoV-229E-infected cells significantly suppressed HCoV-229E virus replication. Importantly, the inhibitory effect of LA and AA on virus replication was also conserved for the highly pathogenic Middle East respiratory syndrome coronavirus (MERS-CoV). Taken together, our study demonstrated that host lipid metabolic remodeling was significantly associated with human-pathogenic coronavirus propagation. Our data further suggested that lipid metabolism regulation would be a common and druggable target for coronavirus infections.
Collapse
Affiliation(s)
- Bingpeng Yan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Dong Yang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Kong-Hung Sze
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Pok-Man Lai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Huiping Shuai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Yixin Wang
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Richard Yi-Tsun Kao
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Jasper Fuk-Woo Chan
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Hainan-Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 96708, China.
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
- Hainan-Medical University-The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases, Hainan Medical University, Haikou 96708, China.
- The Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| |
Collapse
|
50
|
Zhou Y, Yang Y, Huang J, Jiang S, Du L. Advances in MERS-CoV Vaccines and Therapeutics Based on the Receptor-Binding Domain. Viruses 2019; 11:v11010060. [PMID: 30646569 PMCID: PMC6357101 DOI: 10.3390/v11010060] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 12/28/2022] Open
Abstract
Middle East respiratory syndrome (MERS) coronavirus (MERS-CoV) is an infectious virus that was first reported in 2012. The MERS-CoV genome encodes four major structural proteins, among which the spike (S) protein has a key role in viral infection and pathogenesis. The receptor-binding domain (RBD) of the S protein contains a critical neutralizing domain and is an important target for development of MERS vaccines and therapeutics. In this review, we describe the relevant features of the MERS-CoV S-protein RBD, summarize recent advances in the development of MERS-CoV RBD-based vaccines and therapeutic antibodies, and illustrate potential challenges and strategies to further improve their efficacy.
Collapse
Affiliation(s)
- Yusen Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
- Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - Yang Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| | - Jingwei Huang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Shibo Jiang
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| | - Lanying Du
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|