1
|
AlAli A, Alkanad M, Alkanad K, Venkatappa A, Sirawase N, Warad I, Khanum SA. A comprehensive review on anti-inflammatory, antibacterial, anticancer and antifungal properties of several bivalent transition metal complexes. Bioorg Chem 2025; 160:108422. [PMID: 40187028 DOI: 10.1016/j.bioorg.2025.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/19/2025] [Accepted: 03/25/2025] [Indexed: 04/07/2025]
Abstract
Transition metal complexes have been recognized as possible therapeutic agents, attributed to their special biological actions, including anti-inflammatory, antibacterial, antifungal, and anticancer. The pharmacological perspective connected with Copper (Cu), Cobalt (Co), Nickel (Ni), Manganese (Mn), Palladium (Pd), Zinc (Zn), and Platinum (Pt) metal(II) complexes is comprehensively explored in-depth in this research. The complexes show unique coordination chemistry and modes of action that help interactions with biological targets, including DNA binding, enzyme inhibition, and the formation of reactive oxygen species. All the metal(II) complexes showed notable potential impact in their perspective activity. Conspicuously, Co(II) and Ni(II) complexes show better antibacterial and antifungal action, while Cu(II) and Zn(II) combinations show higher anti-inflammatory activity. While research is constantly investigating alternative metal-based anticancer drugs like Pd(II), which seem to have lowered side effects, Pt(II) complexes especially cisplatin continue to be the benchmark in cancer treatment. Although the possible pharmacological actions are motivating, problems with toxicity and biocompatibility still provide major difficulties, especially in relation to Cd(II) and Hg(II) complexes. Strategies like ligand modification, nanoparticle-based delivery, and prodrug methods are used to increase selectivity and reduce side effects related to metal complexes. This review compiles the most recent developments and continuous research, thereby shedding light on the potential revolutionary power of metal(II) complexes in medical therapy. Understanding their mechanisms and enhancing their safety profiles will help us open the path to creative ideas for addressing some of the most urgent medical issues of today.
Collapse
Affiliation(s)
- Anas AlAli
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Maged Alkanad
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Khaled Alkanad
- Department of Studies in Physics, University of Mysore, Mysuru 570 006, Karnataka, India
| | - Annegowda Venkatappa
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Nischith Sirawase
- Department of Pharmacognosy, Sri. Adichunchanagiri College of Pharmacy, Adichunchanagiri University, B.G. Nagara, Mandya, Karnataka 571448, India
| | - Ismail Warad
- Department of Chemistry, AN-Najah National University, P.O. Box 7, Nablus, Palestine.
| | - Shaukath Ara Khanum
- Department of Chemistry, Yuvaraja's College, University of Mysore, Mysuru 570 006, Karnataka, India.
| |
Collapse
|
2
|
Perontsis S, Hatzidimitriou AG, Psomas G. Coordination compounds of cobalt(II) with carboxylate non-steroidal anti-inflammatory drugs: structure and biological profile. Dalton Trans 2024; 53:15215-15235. [PMID: 39221624 DOI: 10.1039/d4dt01846j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Fourteen cobalt(II) complexes with the non-steroidal anti-inflammatory drugs sodium meclofenamate, tolfenamic acid, mefenamic acid, naproxen, sodium diclofenac, and diflunisal were prepared in the presence or absence of a series of nitrogen-donors (namely imidazole, pyridine, 3-aminopyridine, neocuproine, 2,2'-bipyridine, 1,10-phenanthroline and 2,2'-bipyridylamine) as co-ligands and were characterised by spectroscopic and physicochemical techniques. Single-crystal X-ray crystallography was employed to determine the crystal structure of eight complexes. The biological profile of the complexes was investigated regarding their interaction with serum albumins and DNA, and their antioxidant potency. The interaction of the compounds with calf-thymus DNA takes place via intercalation. The ability of the complexes to cleave pBR322 plasmid DNA at the concentration of 500 μM is rather low. The complexes demonstrated tight and reversible binding to human and bovine serum albumins and the binding site of bovine serum albumin was also examined. In order to assess the antioxidant activity of the compounds, the in vitro scavenging activity towards free radicals, namely 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid), and their ability to reduce H2O2 were studied.
Collapse
Affiliation(s)
- Spyros Perontsis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - Antonios G Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
3
|
Mohamed AA, Sadeek SA, Rashid NG, Elshafie HS, Camele I. Synthesis, Characterization and Evaluation of the Antimicrobial and Herbicidal Activities of Some Transition Metal Ions Complexes with the Tranexamic Acid. Chem Biodivers 2024; 21:e202301970. [PMID: 38683904 DOI: 10.1002/cbdv.202301970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
New tranexamic acid (TXA) complexes of ferric(III), cobalt(II), nickel(II), copper(II) and zirconium(IV) were synthesized and characterized by elemental analysis (CHN), conductimetric (Λ), magnetic susceptibility investigations (μeff), Fourier transform infrared (FT-IR), proton nuclear magnetic resonance (1H-NMR), ultraviolet visible (UV-vis.), optical band gap energy (Eg) and thermal studies (TG/DTG and DTA). TXA complexes were established in 1 : 2 (metal: ligand) stoichiometric ratio according to CHN data. Based on FT-IR and 1H-NMR data the disappeared of the carboxylic proton supported the deprotonating of TXA and linked to metal ions via the carboxylate group's oxygen atom as a bidentate ligand. UV-visible spectra and magnetic moment demonstrated that all chelates have geometric octahedral structures. Eg values indicated that our complexes are more electro conductive. DTA revealed presence of water molecules in inner and outer spheres of the complexes. DTA results showed that endothermic and exothermic peaks were identified in the degradation mechanisms. The ligand and metal complexes were investigated for their antimicrobial and herbicidal efficacy. The Co(II) and Ni(II) complexes showed antimicrobial activity against some tested species. The obtained results showed a promising herbicidal effect of TXA ligand and its metal complexes particularly copper and zirconium against the three tested plants.
Collapse
Affiliation(s)
- Amira A Mohamed
- Department of Basic Science, Zagazig Higher Institute of Engineering and Technology, Zagazig, 44519, Egypt
| | - Sadeek A Sadeek
- Department of Chemistry, Faculty of Science, Zagazig University, Zagazig, 44519, Egypt
| | | | - Hazem S Elshafie
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo, Lucano 10, Potenza, 85100, Italy
| | - Ippolito Camele
- School of Agricultural, Forestry, Food and Environmental Sciences, University of Basilicata, Viale dell'Ateneo, Lucano 10, Potenza, 85100, Italy
| |
Collapse
|
4
|
Gacki M, Kafarska K, Korona-Głowniak I, Schab P, Wojciechowski J, Gierczak N, Wolf WM. 1D and 2D Coordination Polymers of Calcium with Nonsteroidal Anti-Inflammatory Drugs: Synthesis, Crystal Structures, Hirshfeld Surfaces, Antimicrobial and Antioxidant Activities. Chempluschem 2024; 89:e202300734. [PMID: 38216541 DOI: 10.1002/cplu.202300734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/11/2024] [Accepted: 01/12/2024] [Indexed: 01/14/2024]
Abstract
Four alkaline earth metal complexes of ketoprofen (Hket) and indomethacin (Hind) were synthesized and characterized: [Ca(ket)2(H2O)2]n (1), [Mg(ket)2(H2O)2] (2), [Ca(ind)2(EtOH)2]n (3), and [Mg(ind)2(EtOH)2] (4). All compounds were studied by elemental analysis (EA), flame atomic absorption spectrometry (FAAS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Crystal structures of 1 and 3 were determined by single crystal X-ray diffraction technique T=100 K. The structure of 1 is dominated by a one-dimensional coordination polymer, while 3 is formed by a two-dimensional layer stabilized by the calcium zig-zag chains and π⋅⋅⋅π stacking interactions. Crystal packing arrangements were characterized by fingerprint plots (FPs) that were derived from the Hirshfeld surfaces (HSs). The antioxidant and antimicrobial activities of complexes were evaluated against Gram-positive and Gram-negative bacteria as well as yeasts.
Collapse
Affiliation(s)
- Michał Gacki
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Karolina Kafarska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Izabela Korona-Głowniak
- Department of Pharmaceutical Microbiology, Medial University of Lublin, Chodźki 1, 20-093, Lublin, Poland
| | - Patrycja Schab
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | | | - Natalia Gierczak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Wojciech M Wolf
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Łódź University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| |
Collapse
|
5
|
Zygouri E, Bekiari V, Malis G, Karamanos NK, Koutsakis C, Psomas G, Tangoulis V. pH-Sensitive Gold Nanorods for Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Delivery and DNA-Binding Studies. Molecules 2023; 28:molecules28093780. [PMID: 37175189 PMCID: PMC10179929 DOI: 10.3390/molecules28093780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
A facile experimental protocol for the synthesis of poly(ethylene glycol)-modified (PEGylated) gold nanorods (AuNRs@PEG) is presented as well as an effective drug loading procedure using the non-steroidal anti-inflammatory drug (NSAID) naproxen (NAP). The interaction of AuNRs@PEG and drug-loaded AuNRs (AuNRs@PEG@NAP) with calf-thymus DNA was studied at a diverse temperature revealing different interaction modes; AuNRs@PEG may interact via groove-binding and AuNRs@PEG@NAP may intercalate to DNA-bases. The cleavage activity of the gold nanoparticles for supercoiled circular pBR322 plasmid DNA was studied by gel electrophoresis while their affinity for human and bovine serum albumins was also evaluated. Drug-release studies revealed a pH-sensitive behavior with a release up to a maximum of 24% and 33% NAP within the first 180 min at pH = 4.2 and 6.8, respectively. The cytotoxicity of AuNRs@PEG and AuNRs@PEG@NAP was evaluated against MCF-7 and MDA-MB-231 breast cancer cell lines. The development of AuNRs as an efficient non-steroidal anti-inflammatory drugs (NSAIDs) delivery system for chemotherapy is still in its infancy. The present work can shed light and inspire other research groups to work in this direction.
Collapse
Affiliation(s)
- Eleni Zygouri
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, 26504 Patras, Greece
| | - Vlasoula Bekiari
- Department of Crop Science, University of Patras, 30200 Messolonghi, Greece
| | - Georgios Malis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
- Institute of Chemical Engineering Sciences (ICE-HT), Foundation for Research and Technology-Hellas (FORTH), 26504 Patras, Greece
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26504 Patras, Greece
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Vassilis Tangoulis
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Patras, 26504 Patras, Greece
| |
Collapse
|
6
|
Nnabuike GG, Salunke-Gawali S, Patil AS, Butcher RJ, Obaleye JA, Ashtekar H, Prakash B. Cobalt(II) complexes containing mefenamic acid with imidazole and pyridine based auxiliary ligands: Synthesis, structural investigation and cytotoxic evaluation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
7
|
Lazou M, Hatzidimitriou AG, Papadopoulos AN, Psomas G. Transition metal(II) complexes with the non–steroidal anti–inflammatory drug oxaprozin: Characterization and biological profile. J Inorg Biochem 2023; 243:112196. [PMID: 36966675 DOI: 10.1016/j.jinorgbio.2023.112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
A series of copper(II), nickel(II) and cobalt(II) complexes with the non-steroidal anti-inflammatory drug oxaprozin (Hoxa) have been synthesized and characterized by diverse techniques. The crystal structures of two copper(II) complexes, namely the dinuclear complex [Cu2(oxa)4(DMF)2] (1) and the polymeric complex {[Cu2(oxa)4]·2MeOH·0.5MeOH}2 (12) were determined by single-crystal X-ray diffraction studies. In order to evaluate in vitro the antioxidant activity of the resultant complexes, their scavenging ability towards 1,1-diphenyl-picrylhydrazyl (DPPH), hydroxyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radicals was investigated revealing their high effectiveness against these radicals. The binding of the complexes to bovine serum albumin and human serum albumin was examined and the corresponding determined albumin-binding constants showed a tight and reversible interaction. The interaction of the complexes with calf-thymus DNA was monitored by diverse techniques including UV-vis spectroscopy, cyclic voltammetry, DNA-viscosity measurements and competitive studies with ethidium bromide. Intercalation may be proposed as the most possible DNA-interaction mode of the complexes.
Collapse
|
8
|
Metal Complexes with Naphthalene-Based Acetic Acids as Ligands: Structure and Biological Activity. Molecules 2023; 28:molecules28052171. [PMID: 36903416 PMCID: PMC10005298 DOI: 10.3390/molecules28052171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Naproxen (6-methoxy-α-methyl-2-naphthaleneacetic acid), 1-naphthylacetic acid, 2-naphthylacetic acid and 1-pyreneacetic acid are derivatives of acetic acid bearing a naphthalene-based ring. In the present review, the coordination compounds of naproxen, 1- or 2-naphthylacetato and 1-pyreneacetato ligands are discussed in regard to their structural features (nature and nuclearity of metal ions and coordination mode of ligands), their spectroscopic and physicochemical properties and their biological activities.
Collapse
|
9
|
Calcium complexes of oxicams: new dimensions in rheumatoid arthritis treatment. Future Med Chem 2022; 14:1771-1788. [PMID: 36519430 DOI: 10.4155/fmc-2022-0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Various metals have been complexed with drugs to improve their cellular impact. Inflammatory diseases like rheumatoid arthritis (RA) are characterized by unbalanced production of proinflammatory cytokines (PICs) and prostaglandins with decreased levels of vitamin D and calcium. The inflammation can be suppressed through targeting the formation of PICs or related enzymes by various treatment strategies that involve the use of corticosteroids, disease-modifying antirheumatic drugs and NSAIDs. We present a detailed review on the impact of calcium complexes of oxicams as an advanced treatment strategy for RA. The calcium complexes demonstrate promising capabilities to cure the disease, improve the strength of bones and suppress PICs in RA.
Collapse
|
10
|
Vijayan T, Pugazhenthi M, Nasirian A, Kim J, Kasi G, Jayamani A. Mixed ligand octahedral Zn(
II
) complex of N^N^O donor tridentate Schiff base ligand and N^N donor bidentate bipyridine ligand: Synthesis, characterization, biological activity and cytotoxicity. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Thamilarasan Vijayan
- Department of Chemistry and Nano Science Ewha Womans University Seoul Republic of Korea
| | - Mani Pugazhenthi
- Department of Chemistry AVVM Sri Pushpam College (Affiliated to Bharathidasan University, Tiruchirappalli) Poondi Thanjavur Tamil Nadu India
| | - Azam Nasirian
- Department of Chemistry and Nano Science Ewha Womans University Seoul Republic of Korea
| | - Jinheung Kim
- Department of Chemistry and Nano Science Ewha Womans University Seoul Republic of Korea
| | - Gopinath Kasi
- Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies School of Materials and Energy Southwest University Chongqing People's Republic of China
| | - Arumugam Jayamani
- Department of Chemistry, School of Applied Sciences Manav Rachna University Faridabad India
| |
Collapse
|
11
|
Salem AE, Mohammed SF, Sadeek SA, Zordok WA, S. El‐Attar M. Synthesis, structural elucidation, molecular modeling and antimicrobial studies of some nanoparticles mixed ligands complexes of cetirizine in presence of 2,2′‐bipyridine. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ahmed E. Salem
- Department of Chemistry, The Egyptian mineral resources authority (EMRA) Cairo Egypt
| | - Soha F. Mohammed
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| | - Sadeek A. Sadeek
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| | - Wael A. Zordok
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| | - Mohamed S. El‐Attar
- Department of Chemistry, Faculty of Science Zagazig University Zagazig Egypt
| |
Collapse
|
12
|
Karumban KS, Raut R, Gupta P, Muley A, Giri B, Kumbhakar S, Misra A, Maji S. Mononuclear cobalt(II) complexes with polypyridyl ligands: Synthesis, characterization, DNA interactions and in vitro cytotoxicity towards human cancer cells. J Inorg Biochem 2022; 233:111866. [DOI: 10.1016/j.jinorgbio.2022.111866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/28/2022] [Accepted: 05/17/2022] [Indexed: 02/02/2023]
|
13
|
Arumugham MN, Gopinathan H, Sumithra M, Baskaran S, Kumar R, Kaviani S. New cobalt(III) complex with triethylenetetramine and 2,2′-bipyridine: synthesis, crystal structure, DNA interaction, hirshfeld surface, DFT analysis, and cytotoxicity. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2059087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- M. N. Arumugham
- Department of Chemistry, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - H. Gopinathan
- Department of Chemistry, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - M. Sumithra
- Department of Chemistry, Thiruvalluvar University, Vellore, Tamil Nadu, India
| | - S. Baskaran
- Department of Chemistry, Arignar Anna Government Arts College, Cheyyar, Tamil Nadu, India
| | - R. Kumar
- Department of Chemistry, MCM DAV College, Kangra, Himachal Pradesh, India
| | - Sadegh Kaviani
- Research Cener for Modelling and Computational Sciences, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
14
|
Santos ACF, Monteiro LPG, Gomes ACC, Martel F, Santos TM, Ferreira BJML. NSAID-Based Coordination Compounds for Biomedical Applications: Recent Advances and Developments. Int J Mol Sci 2022; 23:2855. [PMID: 35269997 PMCID: PMC8911414 DOI: 10.3390/ijms23052855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/19/2022] Open
Abstract
After the serendipitous discovery of cisplatin, a platinum-based drug with chemotherapeutic effects, an incredible amount of research in the area of coordination chemistry has been produced. Other transition metal compounds were studied, and several new relevant metallodrugs have been synthetized in the past few years. This review is focused on coordination compounds with first-row transition metals, namely, copper, cobalt, nickel or manganese, or with zinc, which have potential or effective pharmacological properties. It is known that metal complexes, once bound to organic drugs, can enhance the drugs' biological activities, such as anticancer, antimicrobial or anti-inflammatory ones. NSAIDs are a class of compounds with anti-inflammatory properties used to treat pain or fever. NSAIDs' properties can be strongly improved when included in complexes using their compositional N and O donor atoms, which facilitate their coordination to metal ions. This review focuses on the research on this topic and on the promising or effective results that complexes of first-row transition metals and NSAIDs can exhibit.
Collapse
Affiliation(s)
- Ariana C. F. Santos
- Department of Chemistry & CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (A.C.F.S.); (L.P.G.M.); (A.C.C.G.); (T.M.S.)
| | - Luís P. G. Monteiro
- Department of Chemistry & CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (A.C.F.S.); (L.P.G.M.); (A.C.C.G.); (T.M.S.)
| | - Adriana C. C. Gomes
- Department of Chemistry & CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (A.C.F.S.); (L.P.G.M.); (A.C.C.G.); (T.M.S.)
| | - Fátima Martel
- Instituto de Investigação e Inovação em Saúde (i3S), R. Alfredo Allen 208, 4200-135 Porto, Portugal
- Department of Biomedicine–Unit of Biochemistry, Faculty of Medicine of Porto, University of Porto, 4200-319 Porto, Portugal;
| | - Teresa M. Santos
- Department of Chemistry & CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (A.C.F.S.); (L.P.G.M.); (A.C.C.G.); (T.M.S.)
| | - Bárbara J. M. Leite Ferreira
- Department of Chemistry & CICECO, Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal; (A.C.F.S.); (L.P.G.M.); (A.C.C.G.); (T.M.S.)
| |
Collapse
|
15
|
Feng Z, Cheng L, Fan H, Liu J, Han F. Two new Co(II)/Zn(II) coordination polymers: Photocatalytic and luminescent property, and application value on alveolar bone reconstruction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131794] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
16
|
Inhibitory effect of two coordination polymers combined with LL-37 against lung cancer. CHEMICAL PAPERS 2022. [DOI: 10.1007/s11696-021-01989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
17
|
Giriraj K, Mohamed Kasim MS, Balasubramaniam K, Thangavel SK, Venkatesan J, Suresh S, Shanmugam P, Karri C. Various coordination modes of new coumarin Schiff bases toward Cobalt (III) ion: Synthesis, spectral characterization, in vitro cytotoxic activity, and investigation of apoptosis. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6536] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Kalaiarasi Giriraj
- Department of Chemistry Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| | - Mohamed Subarkhan Mohamed Kasim
- The First Affiliated Hospital; Key Laboratory of Combined Multi Organ Transplantation, Ministry of Public Health, School of Medicine Zhejiang University Hangzhou PR China
| | - Keerthana Balasubramaniam
- Department of Microbiology Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| | - Sathiya Kamatchi Thangavel
- Centre for Organometallic Chemistry, School of Chemistry Bharathidasan University Tiruchirappalli 620024 India
| | - Janani Venkatesan
- Department of Chemistry Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| | - Sharmila Suresh
- Department of Chemistry Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| | - Pritha Shanmugam
- Department of Chemistry Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| | - Chiranjeevi Karri
- Department of Chemistry Karpagam Academy of Higher Education (Deemed to be University) Coimbatore 641021 India
| |
Collapse
|
18
|
Caglar S, Altay A, Kuzucu M, Caglar B. In Vitro Anticancer Activity of Novel Co(II) and Ni(II) Complexes of Non-steroidal Anti-inflammatory Drug Niflumic Acid Against Human Breast Adenocarcinoma MCF-7 Cells. Cell Biochem Biophys 2021; 79:729-746. [PMID: 33914261 DOI: 10.1007/s12013-021-00984-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 12/16/2022]
Abstract
Herein, we report the synthesis, characterization and anticancer activity of six novel complexes of non-steroidal anti-inflammatory drug niflumic acid with Co(II) and Ni(II). In vitro cytotoxicity screening in MCF-7, HepG2 and HT-29 cancer cell lines showed that the complex 3 [Co(nif)2(met)(4-pic)] and complex 6 [Ni(nif)2(met)(4-pic)] among all the complexes exhibited the highest cytotoxicity against MCF-7 cells with IC50 values of 11.14 µM and, 41.47 µM, respectively. Besides, all the complexes exhibited significantly higher selectivity towards mouse fibroblast 3T3L1 cells. Further mechanistic studies with both complexes on MCF-7 cells revealed their cytotoxic action through the mitochondrial-dependent apoptotic pathway causing an increase oxidative/nitrosative stress, decrease in mitochondrial membrane potential (ΔΨm), inducing the multicaspase activation and arresting the cell cycle at S phase. q-PCR analysis resulted in an increase in the expression of the apoptotic marker proteins bax, p53 and caspase-3 and -8 in MCF-7 cells, but a decrease in the expression of antiapoptotic bcl-2 gene. Moreover, both complexes induced the apoptosis through the inhibition of PI3K/Akt signaling pathway by decreasing the expression of PI3K and increasing dephosphorylation form of Akt protein. These results provide a significant contribution to the explanation of the anticancer mechanisms of these complexes in MCF-7 cells.
Collapse
Affiliation(s)
- Sema Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Ahmet Altay
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey.
| | - Mehmet Kuzucu
- Department of Biology, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| | - Bulent Caglar
- Department of Chemistry, Faculty of Arts and Sciences, Erzincan Binali Yıldırım University, 24100, Erzincan, Turkey
| |
Collapse
|
19
|
Yin T, Wang R, Yang S. Anti-breast Cancer Activity of Co(II) Complex by Inhibiting Cell Viability and Stimulating Cell Apoptosis. J CLUST SCI 2021. [DOI: 10.1007/s10876-021-02192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Deb J, Lakshman TR, Ghosh I, Jana SS, Paine TK. Mechanistic studies of in vitro anti-proliferative and anti-inflammatory activities of the Zn(ii)-NSAID complexes of 1,10-phenanthroline-5,6-dione in MDA-MB-231 cells. Dalton Trans 2021; 49:11375-11384. [PMID: 32766641 DOI: 10.1039/d0dt01721c] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Two zinc(ii)-NSAID complexes [(phendione)ZnII(NPR)2(H2O)2] (1) and [(phendione)ZnII(MFN)2] (2) (HNPR = naproxen and HMFN = mefenamic acid) of 1,10-phenanthroline-5,6-dione (phendione) were isolated and characterized to evaluate their potential as anti-cancer agents. Each of the complexes contains two equivalents of NSAID per zinc(ii)-phendione unit. The complexes are stable in solution under cell culture conditions. Cytotoxic assay on the human breast cancer cell line (MDA-MB-231) reveals that the anti-proliferative activity of phendione is retained in both the complexes. The anti-inflammatory properties of NSAIDs are also preserved in the metal complexes as evident from the PGE2 assay. Both 1 and 2 exhibit selective COX-1 inhibition at a low concentration. Furthermore, the zinc(ii)-naproxen complex (1) disrupts the intercellular bridges displaying in vitro delay in cellular migration and down-regulation of EMT-related genes. The mechanistic studies indicate that the ternary complexes are more active compared to cisplatin and have the potential to overcome cisplatin resistance in MDA MB 231 cells. These findings demonstrate that the zinc(ii)-NSAID complexes are worthy of further in vivo studies for their promising anti-tumor potential.
Collapse
Affiliation(s)
- Jolly Deb
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Triloke Ranjan Lakshman
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Ivy Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| | - Siddhartha Sankar Jana
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Tapan Kanti Paine
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
21
|
Kumar P, Singh P, Saren S, Pakira S, Sivakumar S, Patra AK. Kinetically labile ruthenium(II) complexes of terpyridines and saccharin: effect of substituents on photoactivity, solvation kinetics, and photocytotoxicity. Dalton Trans 2021; 50:8196-8217. [PMID: 34031678 DOI: 10.1039/d1dt00246e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we designed six kinetically labile ruthenium(ii) complexes containing saccharin (sac) and 4'-substituted-2,2':6',2''-terpyridines (R-tpy), viz. trans-[Ru(sac)2(H2O)3(dmso-S)] (1) and [RuII(R-tpy)(sac)2(X)] [X = solvent molecule] (2-6). We intentionally kept the labile hydrolysable Ru-X bonds that were potentially activated via solvent-exchange reactions. This strategy generates a coordinative vacancy that allows further binding with potential biological targets. To gain insight into the electronic effects of ancillary ligands on Ru-X ligand-exchange kinetics or photoreactions, we have used a series of substituted terpyridines (R-tpy) and studied their solvation kinetics. The ternary complexes were also studied for their potential utility in Ru-assisted photoactivated chemotherapy (PACT) synergized with release of saccharin as a highly selective carbonic anhydrase IX (CA-IX) inhibitor, over-expressed in hypoxic tumors. The ternary complexes exhibit distorted octahedral geometry around Ru(ii) from two monodentate transoidal saccharin in the axial position, and tridentate terpyridines and labile solvent molecules at the basal plane (2-6). We studied their speciation, solvation kinetics, and photoreactivity in the presence of green LED light (λirr = 530 nm). All the complexes are relatively labile and undergo solvation in coordinating solvents (e.g. DMSO/DMF). The complexes undergo the ligand-substitution reaction, and their speciation and kinetics were studied by UV-Vis, ESI-MS, 1H-NMR, and structural analysis. We also attempted to assess the effect of various substituents on the ancillary terpyridine ligand (R-tpy) in photo-reactivity and ligand-exchange reactions. The photo-induced absorption and emission measurements suggested dissociation of the saccharin from the Ru-center supporting PACT pathways. The complexes display a significant binding affinity with CT-DNA (Kb ∼ 104-105 M-1) and bovine serum albumin (BSA) (KBSA ∼ 105 M-1). Cytotoxicity was studied in the dark and the presence of low energy UV-A light (365 nm) in cervical cancer cells (HeLa) and breast cancer cells (MCF7). Photoirradiation of the complexes induces the generation of reactive oxygen species (ROS) assessed using 1,3-diphenylisobenzofuran (DPBF) and intracellular DCFDA assays. The complexes are sufficiently internalized in cancer cells throughout the cytoplasm and nucleus and induce apoptosis as studied by staining with dual dyes using confocal microscopy.
Collapse
Affiliation(s)
- Priyaranjan Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| | - Prerana Singh
- Department of Chemical Engineering, DST Thematic Unit of Excellence on Soft Nanofabrication, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India and Department of Biological Sciences & Bioengineering, Indian Institute of Technology Kanpur, Uttar Pradesh 208016, India
| | - Sanjoy Saren
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| | - Sandip Pakira
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| | - Sri Sivakumar
- Department of Chemical Engineering, DST Thematic Unit of Excellence on Soft Nanofabrication, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| |
Collapse
|
22
|
Perontsis S, Geromichalou E, Perdih F, Hatzidimitriou AG, Geromichalos GD, Turel I, Psomas G. Synthesis, structural determination, in vitro and in silico biological evaluation of divalent or trivalent cobalt complexes with indomethacin. J Inorg Biochem 2020; 212:111213. [PMID: 32889129 PMCID: PMC7416082 DOI: 10.1016/j.jinorgbio.2020.111213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 01/02/2023]
Abstract
The interaction of cobalt chloride with the non-steroidal anti-inflammatory drug indomethacin (Hindo) led to the formation of the polymeric complex [Co(indo-O)2(H2O)2(μ-Cl)]n·n(MeOH·H2O) bearing one chlorido bridge between the cobalt atoms. The presence of the nitrogen-donor co-ligands 2,2'-bipyridine (bipy), 2,2'-bipyridylamine (bipyam), 1,10-phenanthroline (phen) or 1H-imidazole (Himi) resulted in the isolation of complexes [Co2(μ-indo-O,O')2(indo-O)2(bipy)2(μ-H2O)]·3.3MeOH, [Co(indo-O,O')2(bipyam)]·0.9MeOH·0.2H2O, [Co(indo-O,O')2(phen)] (4) and [Co(indo-O)2(Himi)2] (5), respectively, where the indomethacin ligands were coordinated in diverse manners. The study of the affinity of the complexes for calf-thymus DNA revealed their intercalation between the DNA-bases. The binding of the complexes to albumins was also examined and the corresponding binding constants and binding subdomain were determined. The free radical scavenging activity of the compounds was evaluated towards 1,1-diphenyl-picrylhydrazyl and 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid). Molecular modeling calculations may usually provide a molecular basis for the understanding of both the impairment of DNA by its binding with the studied complexes and the ability of these compounds to transportation through serum albumin proteins. This study can provide information for the elucidation of the mechanism of action of the compounds in a molecular level.
Collapse
Affiliation(s)
- Spyros Perontsis
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Elena Geromichalou
- Laboratory of Pharmacology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, Athens 11527, Greece
| | - Franc Perdih
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia
| | - Antonios G Hatzidimitriou
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - George D Geromichalos
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece
| | - Iztok Turel
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Vecna pot 113, 1000 Ljubljana, Slovenia
| | - George Psomas
- Department of General and Inorganic Chemistry, Faculty of Chemistry, Aristotle University of Thessaloniki, GR-54124 Thessaloniki, Greece.
| |
Collapse
|
23
|
Dong F, Jiang W, Jiang Y, Li X, Li H. Nonanuclear coordination complex based on {Co9L12}6+ cores: protective effect on coronary heart disease by reducing the inflammatory cytokines releasing. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01390-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Ruthenium(II)/(III) DMSO-Based Complexes of 2-Aminophenyl Benzimidazole with In Vitro and In Vivo Anticancer Activity. Molecules 2020; 25:molecules25184284. [PMID: 32962014 PMCID: PMC7570852 DOI: 10.3390/molecules25184284] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022] Open
Abstract
New anticancer ruthenium(II/III) complexes [RuCl2(DMSO)2(Hapbim)] (1) and [RuCl3(DMSO) (Hapbim)] (2) (Hapbim = 2-aminophenyl benzimidazole) have been synthesized and characterized, and their chemotherapeutic potential evaluated. The interaction of the compounds with DNA was studied by both UV-Visible and fluorescence spectroscopies, revealing intercalation of both the Hapbim ligand and the Ru complexes. The in vitro cytotoxicity of the compounds was tested on human breast cancer (MCF7), human colorectal cancer (Caco2), and normal human liver cell lines (THLE-2), with compound (2) the most potent against cancer cells. The cytotoxic effect of (2) is shown to correlate with the ability of the Ru(III) complex to induce apoptosis and to cause cell-cycle arrest in the G2/M phase. Notably, both compounds were inactive in the noncancerous cell line. The anticancer effect of (2) has also been studied in an EAC (Ehrlich Ascites Carcinoma) mouse model. Significantly, the activity of the complex was more pronounced in vivo, with removal of the cancer burden at doses that resulted in only low levels of hepatotoxicity and nephrotoxicity. An apoptosis mechanism was determined by the observation of increased Bax and caspase 3 and decreased Bcl2 expression. Furthermore, (2) decreased oxidative stress and increased the levels of antioxidant enzymes, especially SOD, suggesting the enhancement of normal cell repair. Overall, compound (2) shows great potential as a chemotherapeutic candidate, with promising activity and low levels of side effects.
Collapse
|
25
|
Liu ZY, Li YY. TWO NEW Co(II)-BASED COORDINATION POLYMERS:
CRYSTAL STRUCTURES AND THE LOCAL
ANALGESIA ACTIVITY DUE TO REDUCING LOCAL
ACETYLCHOLINE CONTENTS. J STRUCT CHEM+ 2020. [DOI: 10.1134/s002247662008017x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
26
|
Two co(II)-based coordination polymers: photocatalytic dye degradation properties and treatment effect against colon cancer by inhibiting IL-6-STAT3 inflammatory signaling pathway. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02129-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
27
|
Navas A, Jannus F, Fernández B, Cepeda J, Medina O’Donnell M, Díaz-Ruiz L, Sánchez-González C, Llopis J, Seco JM, Rufino-Palomares E, Lupiáñez JA, Gómez-Ruiz S, Quiles JL, Battino M, Choquesillo-Lazarte D, Ruiz-Muelle AB, Fernández I, Reyes-Zurita F, Rodríguez-Diéguez A. Designing Single-Molecule Magnets as Drugs with Dual Anti-Inflammatory and Anti-Diabetic Effects. Int J Mol Sci 2020; 21:ijms21093146. [PMID: 32365648 PMCID: PMC7246571 DOI: 10.3390/ijms21093146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 12/19/2022] Open
Abstract
We have designed and synthesized two novel cobalt coordination compounds using bumetanide (bum) and indomethacin (ind) therapeutic agents. The anti-inflammatory effects of cobalt metal complexes with ind and bum were assayed in lipopolysaccharide stimulated RAW 264.7 macrophages by inhibition of nitric oxide production. Firstly, we determined the cytotoxicity and the anti-inflammatory potential of the cobalt compounds and ind and bum ligands in RAW 264.7 cells. Indomethacin-based metal complex was able to inhibit the NO production up to 35% in a concentration-dependent manner without showing cytotoxicity, showing around 6–37 times more effective than indomethacin. Cell cycle analysis showed that the inhibition of NO production was accompanied by a reversion of the differentiation processes in LPS-stimulated RAW 264.7 cells, due to a decreased of cell percentage in G0/G1 phase, with the corresponding increase in the number of cells in S phase. These two materials have mononuclear structures and show slow relaxation of magnetization. Moreover, both compounds show anti-diabetic activity with low in vitro cell toxicities. The formation of metal complexes with bioactive ligands is a new and promising strategy to find new compounds with high and enhanced biochemical properties and promises to be a field of great interest.
Collapse
Affiliation(s)
- Arturo Navas
- Department of Inorganic Chemistry, C/ Severo Ochoa s/n, University of Granada, 18071 Granada, Spain;
| | - Fatin Jannus
- Department of Biochemistry and Molecular Biology I, Severo Ochoa s/n, University of Granada, 18071 Granada, Spain; (F.J.); (L.D.-R.); (E.R.-P.); (J.A.L.)
| | - Belén Fernández
- Institute of Parasitology and Biomedicine “López-Neyra”, CSIC, Av. Conocimiento s/n, 18600 Granada, Spain
- Correspondence: (B.F.); (J.L.Q.); (F.R.-Z.); (A.R.-D.); Tel.: +349-5818-1621 (B.F.); +34-958-24-0057 (J.L.Q.); +34-958-24-3252 (F.R.-Z.); +349-5824-8524 (A.R.-D.)
| | - Javier Cepeda
- Department of Applied Chemistry, University of The Basque Country (UPV/EHU), 20018 San Sebastián, Spain; (J.C.); (J.M.S.)
| | - Marta Medina O’Donnell
- Department of Organic Chemistry, C/ Severo Ochoa s/n, University of Granada, 18071 Granada, Spain;
| | - Luis Díaz-Ruiz
- Department of Biochemistry and Molecular Biology I, Severo Ochoa s/n, University of Granada, 18071 Granada, Spain; (F.J.); (L.D.-R.); (E.R.-P.); (J.A.L.)
| | - Cristina Sánchez-González
- Department of Physiology, University Campus of Cartuja, University of Granada, 18071 Granada, Spain; (C.S.-G.); (J.L.)
| | - Juan Llopis
- Department of Physiology, University Campus of Cartuja, University of Granada, 18071 Granada, Spain; (C.S.-G.); (J.L.)
| | - José M. Seco
- Department of Applied Chemistry, University of The Basque Country (UPV/EHU), 20018 San Sebastián, Spain; (J.C.); (J.M.S.)
| | - E. Rufino-Palomares
- Department of Biochemistry and Molecular Biology I, Severo Ochoa s/n, University of Granada, 18071 Granada, Spain; (F.J.); (L.D.-R.); (E.R.-P.); (J.A.L.)
| | - José Antonio Lupiáñez
- Department of Biochemistry and Molecular Biology I, Severo Ochoa s/n, University of Granada, 18071 Granada, Spain; (F.J.); (L.D.-R.); (E.R.-P.); (J.A.L.)
| | - Santiago Gómez-Ruiz
- Department of Biology and Geology, Physics and Inorganic Chemistry, Rey Juan Carlos University, Calle Tulipán s/n, 28933 Móstoles (Madrid), Spain;
| | - José Luis Quiles
- Department of Physiology. Institute of Nutrition and Food Technology “Jose Mataix”, Biomedical Research Center, Avda. Conocimiento s/n, 18100 Armilla, Spain
- Correspondence: (B.F.); (J.L.Q.); (F.R.-Z.); (A.R.-D.); Tel.: +349-5818-1621 (B.F.); +34-958-24-0057 (J.L.Q.); +34-958-24-3252 (F.R.-Z.); +349-5824-8524 (A.R.-D.)
| | - Maurizio Battino
- Department of Clinical Specialist and Odontostomatological Sciences (DISCO) -Sez. Biochemistry, Faculty of Medicine, Polytechnic University of Marche, 60131 Ancona, Italy;
| | - Duane Choquesillo-Lazarte
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda. de las Palmeras 4, 18100 Armilla, Spain;
| | - Ana Belén Ruiz-Muelle
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain; (A.B.R.-M.); (I.F.)
| | - Ignacio Fernández
- Department of Chemistry and Physics, Research Centre CIAIMBITAL, University of Almería, Ctra. Sacramento s/n, 04120 Almería, Spain; (A.B.R.-M.); (I.F.)
| | - Fernando Reyes-Zurita
- Department of Biochemistry and Molecular Biology I, Severo Ochoa s/n, University of Granada, 18071 Granada, Spain; (F.J.); (L.D.-R.); (E.R.-P.); (J.A.L.)
- Correspondence: (B.F.); (J.L.Q.); (F.R.-Z.); (A.R.-D.); Tel.: +349-5818-1621 (B.F.); +34-958-24-0057 (J.L.Q.); +34-958-24-3252 (F.R.-Z.); +349-5824-8524 (A.R.-D.)
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, C/ Severo Ochoa s/n, University of Granada, 18071 Granada, Spain;
- Correspondence: (B.F.); (J.L.Q.); (F.R.-Z.); (A.R.-D.); Tel.: +349-5818-1621 (B.F.); +34-958-24-0057 (J.L.Q.); +34-958-24-3252 (F.R.-Z.); +349-5824-8524 (A.R.-D.)
| |
Collapse
|
28
|
Synthesis, structural characterization and biological evaluation of novel mixed-ligand Co(II) complexes as quorum sensing inhibitory agent. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Abbas Z, Singh P, Dasari S, Sivakumar S, Patra AK. Luminescent EuIIIand TbIIIbimetallic complexes of N,N′-heterocyclic bases and tolfenamic acid: structures, photophysical aspects and biological activity. NEW J CHEM 2020. [DOI: 10.1039/d0nj03261a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The isostructural bimetallic luminescent EuIIIand TbIIIdimers containing N,N′-heterocyclic bases and tolfenamic acid as a bridging ligands were evaluated for their structures, cellular imaging capability and photocytotoxicity.
Collapse
Affiliation(s)
- Zafar Abbas
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Prerana Singh
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
- Department of Biological Sciences and Bioengineering
| | - Srikanth Dasari
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Sri Sivakumar
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| | - Ashis K. Patra
- Department of Chemistry
- Indian Institute of Technology Kanpur
- Kanpur 208016
- India
| |
Collapse
|
30
|
Meng T, Qin QP, Zou HH, Wang K, Liang FP. Eighteen 5,7-Dihalo-8-quinolinol and 2,2'-Bipyridine Co(II) Complexes as a New Class of Promising Anticancer Agents. ACS Med Chem Lett 2019; 10:1603-1608. [PMID: 31857834 PMCID: PMC6912862 DOI: 10.1021/acsmedchemlett.9b00356] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 10/30/2019] [Indexed: 12/18/2022] Open
Abstract
![]()
Here
we first report the design of a series of bis-chelate Co(II) 5,7-dihalo-8-quinolinol-phenanthroline
derivative complexes, [Co(py)(QL1)2] (Co1),
[Co(py)(QL2)2] (Co2), [Co(Phen)(QL1)2] (Co3), [Co(Phen)(QL2)2] (Co4), [Co(DPQ)(QL1)2]·(CH3OH)4 (Co5), [Co(DPQ)(QL2)2] (Co6), [Co(DPPZ)(QL1)2]·CH3OH (Co7), [Co(MDP)(QL1)2]·3H2O (Co8), [Co(ODP)(QL1)2]·CH3OH (Co9), [Co(PPT)(QL1)2]·CH3OH (Co10), [Co(ClPT)(QL1)2] (Co11), [Co(dpy)(QL3)2] (Co12), [Co(mpy)(QL1)2] (Co13), [Co(Phen)(QL4)2] (Co14), [Co(ODP)(QL4)2] (Co15), [Co(mpy)(QL4)2]I (Co16), [Co(ClPT)(QL4)2] (Co17), and
[Co(ClPT)(QL5)2] (Co18), with 5,7-dihalo-8-quinolinol
and 2,2′-bipyridine mixed ligands. The antitumor activity of Co1–Co18 has been evaluated against human
HeLa (cervical) cancer cells in vitro (IC50 values = 0.8 nM–11.88 μM), as well as in vivo against HeLa xenograft tumor growth (TIR = 43.7%, p < 0.05). Importantly, Co7 exhibited high safety in vivo and was more effective in inhibiting HeLa tumor
xenograft growth (43.7%) than cisplatin (35.2%) under the same conditions
(2.0 mg/kg). In contrast, the H-QL1 and DPPZ ligands greatly enhanced
the activity and selectivity of Co7 in comparison to Co1–Co6, Co8–Co18, and previously reported cobalt(II) compounds. In addition, Co7 (0.8 nM) inhibited telomerase activity, caused G2/M phase
arrest, and induced mitochondrial dysfunction at a concentration 5662.5
times lower than Co1 (4.53 μM) in related assays.
Taken together, Co7 showed low toxicity, and the combination
could be a novel Co(II) antitumor compound candidate.
Collapse
Affiliation(s)
- Ting Meng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Qi-Pin Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
- Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, 1303 Jiaoyudong Road, Yulin 537000, P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
| | - Kai Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| | - Fu-Pei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, 15 Yucai Road, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
31
|
Zarei L, Asadi Z, Samolova E, Dusek M. Preparation of a dimer from self-complementary of cobalt(III) complex with dissymmetric compartmental ligand and study of the interaction of the complex with DNA and BSA. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1694148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Leila Zarei
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Zahra Asadi
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz, Iran
| | - Erika Samolova
- Institute of Physics, ASCR, Prague, Czech Republic
- Department of Inorganic Chemistry, Pavol Jozef Šafárik University in Košice, Slovak Republic Košice
| | - Michal Dusek
- Institute of Physics, ASCR, Prague, Czech Republic
| |
Collapse
|
32
|
Perontsis S, Dimitriou A, Fotiadou P, Hatzidimitriou AG, Papadopoulos AN, Psomas G. Cobalt(II) complexes with the non-steroidal anti-inflammatory drug diclofenac and nitrogen-donor ligands. J Inorg Biochem 2019; 196:110688. [DOI: 10.1016/j.jinorgbio.2019.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 12/21/2022]
|
33
|
Shahabadi N, Jamshidi Z, Hadidi S, Shiri F, Fatahi N. Intercalation of manganese-mefenamic acid complex into double stranded of calf thymus DNA. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2019; 38:901-919. [PMID: 31172862 DOI: 10.1080/15257770.2019.1625379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The interaction of the [Mn(mef)2(phen)H2O] complex in which mef is mefenamic acid drug and phen is 1,10 phenanthrolin ligand with calf thymus DNA (ct-DNA) was studied by using different spectroscopic methods, molecular docking and viscometery. The competitive fluorescence and UV-Vis absorption spectroscopy indicated that the complex interacted with ctDNA via intercalating binding mode with the binding constant of 1.16 × 104 Lmol-1. The thermodynamic studies showed that the reaction between the complex and ctDNA is exothermic. Furthermore, the complex induced changes in DNA viscosity. Circular dichroism spectroscopy (CD) was employed to measure the conformational changes of ctDNA in the presence of the complex and verified intercalation binding mode. The molecular modeling results illustrated that the complex interacted via intercalation by relative binding energy of -28.45 kJ mol-1.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University , Kermanshah , Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Zeinab Jamshidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University , Kermanshah , Iran
| | - Saba Hadidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University , Kermanshah , Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Farshad Shiri
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University , Kermanshah , Iran.,Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences , Kermanshah , Iran
| | - Navid Fatahi
- Kermanshah University of Medical Science, Pharmacy College , Iran
| |
Collapse
|
34
|
Metal-Based Scaffolds of Schiff Bases Derived from Naproxen: Synthesis, Antibacterial Activities, and Molecular Docking Studies. Molecules 2019; 24:molecules24071237. [PMID: 30934936 PMCID: PMC6480638 DOI: 10.3390/molecules24071237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/25/2019] [Accepted: 03/26/2019] [Indexed: 12/28/2022] Open
Abstract
We report here the synthesis, characterization, and antibacterial evaluation of transition metal complexes of Ni, Cu, Co, Mn, Zn, and Cd (6a–f), using a Schiff base ligand (5) derived from naproxen (an anti-inflammatory drug) and 5-bromosalicylaldehyde by a series of reactions. The ligand and the synthesized complexes were characterized by elemental analysis, UV-Visible, FTIR, and XRD techniques. The ligand 5 behaves as a bidentate donor and coordinates with metals in square planar or tetrahedral fashion. In order to evaluate its bioactivity profile, we screened the Schiff base ligand and its metal complexes (6a–f) against different species of bacteria and the complexes were found to exhibit significant antibacterial activity. The complexes showed more potency against Bacillus subtilis as compared to the other species. Moreover, we modeled these complexes’ binding affinity against COX1 protein using computational docking.
Collapse
|
35
|
Lakshman TR, Deb J, Ghosh I, Sarkar S, Paine TK. Combining anti-inflammatory and anti-proliferative activities in ternary metal-NSAID complexes of a polypyridylamine ligand. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.11.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
|
37
|
Manojkumar Y, Ambika S, Arulkumar R, Gowdhami B, Balaji P, Vignesh G, Arunachalam S, Venuvanalingam P, Thirumurugan R, Akbarsha MA. Synthesis, DNA and BSA binding, in vitro anti-proliferative and in vivo anti-angiogenic properties of some cobalt(iii) Schiff base complexes. NEW J CHEM 2019. [DOI: 10.1039/c9nj01269a] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the recent times metal complexes with dual mechanisms of action, anti-cancer and anti-angiogenic, have gained substantial interest in the field of medicinal chemistry.
Collapse
Affiliation(s)
| | - Subramanian Ambika
- Department of Chemistry
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Rasu Arulkumar
- Department of Chemistry
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Balakrishnan Gowdhami
- National Center for Alternatives to Animal Experiments
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Perumalsamy Balaji
- National Center for Alternatives to Animal Experiments
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | - Gobalsamy Vignesh
- Department of Chemistry
- Einstein Art and Science College
- Tirunelveli-627012
- India
| | | | | | - Ramaswamy Thirumurugan
- National Center for Alternatives to Animal Experiments
- Bharathidasan University
- Tiruchirappalli-620024
- India
| | | |
Collapse
|
38
|
Casanovas B, Speed S, El Fallah MS, Vicente R, Font-Bardía M, Zinna F, Di Bari L. Chiral dinuclear Ln(iii) complexes derived from S- and R-2-(6-methoxy-2-naphthyl)propionate. Optical and magnetic properties. Dalton Trans 2019; 48:2059-2067. [DOI: 10.1039/c8dt04149k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Eight dinuclear chiral compounds of the formula [Ln2(S-L)6(phen)2]·3DMF·H2O or [Ln2(R-L)6(phen)2]·3DMF·H2O [Ln = Eu, Gd, Tb and Dy], (S)-(+)- or (R)-(−)-2-(6-methoxy-2-naphthyl)propionic acid, S-HL or R-HL, are reported. Luminescence and magnetic studies are also reported.
Collapse
Affiliation(s)
- Berta Casanovas
- Departament de Química Inorgànica i Orgànica
- Secció de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Saskia Speed
- Departament de Química Inorgànica i Orgànica
- Secció de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Mohamed Salah El Fallah
- Departament de Química Inorgànica i Orgànica
- Secció de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Ramon Vicente
- Departament de Química Inorgànica i Orgànica
- Secció de Química Inorgànica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Mercè Font-Bardía
- Departament de Mineralogia
- Cristal·lografia i Dipòsits Minerals and Unitat de Difracció de R-X
- Centre Científic i Tecnològic de la Universitat de Barcelona (CCiTUB)
- Universitat de Barcelona
- 08028 Barcelona
| | - Francesco Zinna
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Lorenzo Di Bari
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| |
Collapse
|
39
|
Rakhtshah J, Shaabani B, Salehzadeh S, Hosseinpour Moghadam N. The solvent-free synthesis of polysubstituted pyrroles by a reusable copper Schiff base complex immobilized on silica coated Fe3
O4
, and DNA binding study of one resulting derivative as a potential anticancer drug. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4754] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Jamshid Rakhtshah
- Department of Inorganic Chemistry, Faculty of Chemistry; Tabriz University; Tabriz Iran
| | - Behrooz Shaabani
- Department of Inorganic Chemistry, Faculty of Chemistry; Tabriz University; Tabriz Iran
| | - Sadegh Salehzadeh
- Faculty of Chemistry; Bu-Ali Sina University; Hamedan 6517838683 Iran
| | | |
Collapse
|
40
|
Tarushi A, Zampakou M, Perontsis S, Lafazanis K, Pantazaki AA, Hatzidimitriou AG, Geromichalos GD, Psomas G. Manganese(II) complexes of tolfenamic acid or naproxen in polymeric structures or encapsulated in [15-MC-5] manganese(III) metallacrowns: Structure and biological activity. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Akcha S, Gómez-Ruiz S, Kellou-Tairi S, Lezama L, Pérez FB, Benali-Baitich O. Synthesis, characterization, solution equilibria, DFT study, DNA binding affinity and cytotoxic properties of a cobalt(II) complex with a 5-pyrazolone ligand. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
42
|
Terenti N, Ferbinteanu M, Lazarescu A. Crystal Structure and Characterization of Neutral Cobalt(III) 2,3-pyridinedicarboxylate Complex. CHEMISTRY JOURNAL OF MOLDOVA 2018. [DOI: 10.19261/cjm.2017.371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
43
|
Galkina PА, Proskurnin МА. Supramolecular interaction of transition metal complexes with albumins and DNA: Spectroscopic methods of estimation of binding parameters. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Polina А. Galkina
- Moscow State M.V. Lomonosov University; Department of Chemistry; Leninskiye Gory 1, bld. 3 119991 Moscow Russia
| | - Мikhail А. Proskurnin
- Moscow State M.V. Lomonosov University; Department of Chemistry; Leninskiye Gory 1, bld. 3 119991 Moscow Russia
| |
Collapse
|
44
|
Dimiza F, Raptopoulou CP, Psycharis V, Papadopoulos AN, Psomas G. Manganese(ii) complexes with the non-steroidal anti-inflammatory drugs naproxen and mefenamic acid: synthesis, structure, antioxidant capacity, and interaction with albumins and DNA. NEW J CHEM 2018. [DOI: 10.1039/c8nj03226b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The structure, antioxidant activity and interaction with DNA and albumins of a series of manganese(ii) complexes of mefenamic acid or naproxen are presented herein.
Collapse
Affiliation(s)
- Filitsa Dimiza
- Department of General and Inorganic Chemistry
- Faculty of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki
- Greece
| | - Catherine P. Raptopoulou
- Institute of Nanoscience and Nanotechnology
- NCSR “Demokritos”
- GR-15310 Aghia Paraskevi Attikis
- Greece
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology
- NCSR “Demokritos”
- GR-15310 Aghia Paraskevi Attikis
- Greece
| | - Athanasios N. Papadopoulos
- Department of Nutrition and Dietetics
- Faculty of Food Technology and Nutrition
- Alexandrion Technological Educational Institution
- Sindos
- Thessaloniki
| | - George Psomas
- Department of General and Inorganic Chemistry
- Faculty of Chemistry
- Aristotle University of Thessaloniki
- GR-54124 Thessaloniki
- Greece
| |
Collapse
|
45
|
Eskandari A, Kundu A, Lu C, Ghosh S, Suntharalingam K. Synthesis, characterization, and cytotoxic properties of mono- and di-nuclear cobalt(ii)-polypyridyl complexes. Dalton Trans 2018; 47:5755-5763. [DOI: 10.1039/c8dt00577j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report the synthesis and characterisation of mono- and di-nuclear cobalt(ii) complexes (1–3) containing L1, a polypyridyl ligand with pyrazole moieties.
Collapse
Affiliation(s)
| | | | - Chunxin Lu
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization
- Qinzhou University
- Qinzhou 535011
- China
| | | | | |
Collapse
|
46
|
Srivastava P, Singh K, Verma M, Sivakumar S, Patra AK. Photoactive platinum(II) complexes of nonsteroidal anti-inflammatory drug naproxen: Interaction with biological targets, antioxidant activity and cytotoxicity. Eur J Med Chem 2017; 144:243-254. [PMID: 29274491 DOI: 10.1016/j.ejmech.2017.12.025] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 02/02/2023]
Abstract
The effect on the therapeutic efficacy of Pt(II) complexes on combining non-steroidal anti-inflammatory drugs (NSAIDs) is an attractive strategy to circumvent chronic inflammation mediated by cancer and metastasis. Two square-planar platinum(II) complexes: [Pt(dach)(nap)Cl] (1) and [Pt(dach)(nap)2] (2), where dach = (1R,2R)-dichloro(cyclohexane-1,2-diamine) and NSAID drug naproxen (nap), have been designed for studying their biological activity. The naproxen bound to the Pt(II) centre get released upon photoirradiation with low-power UV-A light as confirmed by the significant enhancement in emission intensities of the complexes. The compounds were evaluated for their photophysical properties, photostability, reactivity with 5'-guanosine monophophosphate (5'-GMP), interactions with CT-DNA and BSA, antioxidant activity and reactive oxygen species mediated photo-induced DNA damage properties. ESI-MS studies demonstrated the formation of bis-adduct with 5'-GMP and the formation of PtII-DNA crosslinks by gel electrophoretic mobility shift assay and ITC studies. The interaction of the complexes 1 and 2 with the CT-DNA exhibits potential binding affinity (Kb ∼ 104 M-1, Kapp∼ 105 M-1), implying intercalation to CT-DNA through planar naphthyl ring of the complexes. Both the complexes also exhibit strong binding affinity towards BSA (KBSA∼ 105 M-1). The complexes exhibit efficient DNA damage activity on irradiation at 365 nm via formation of singlet oxygen (1O2) and hydroxyl radical (•OH) under physiological conditions. Both the complexes were cytotoxic in dark and exhibit significant enhancement of cytotoxicity upon photo-exposure against HeLa and HepG2 cancer cells giving IC50 values ranging from 8 to 12 μM for 1 and 2. The cellular internalization data showed cytosolic and nuclear localization of the complexes in the HeLa cells.
Collapse
Affiliation(s)
- Payal Srivastava
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Khushbu Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Madhu Verma
- Department of Chemical Engineering and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Sri Sivakumar
- Department of Chemical Engineering and Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India
| | - Ashis K Patra
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, Uttar Pradesh, India.
| |
Collapse
|
47
|
Sankarganesh M, Adwin Jose P, Dhaveethu Raja J, Kesavan MP, Vadivel M, Rajesh J, Jeyamurugan R, Senthil Kumar R, Karthikeyan S. New pyrimidine based ligand capped gold and platinum nano particles: Synthesis, characterization, antimicrobial, antioxidant, DNA interaction and in vitro anticancer activities. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 176:44-53. [PMID: 28941777 DOI: 10.1016/j.jphotobiol.2017.09.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/12/2017] [Accepted: 09/13/2017] [Indexed: 11/15/2022]
Abstract
In this research work, we have synthesized new pyrimidine based Schiff base ligand, 2-((4,6-dimethoxypyrimidine-2-yl)methyleneenamino)-6-methoxyphenol (DPMM) capped gold (Au) and platinum (Pt) nanoparticles (NPs) by modified Brust-Schiffrin method. The characteristics of DPMM-Au NPs and DPMM-Pt NPs have been examined by UV-Visible, FTIR, SEM, TEM and powder XRD analysis. SEM analysis result shows that surface morphology of the DPMM-Au NPs and DPMM-Pt NPs are in granular and spherical shape, correspondingly. The size of the DPMM-Au NPs and DPMM-Pt NPs are approximately 38.14±4.5 and 58.64±3.0nm respectively, which confirmed by TEM analysis. The DPMM-Au NPs and DPMM-Pt NPs have potent antimicrobial against Escherichia coli, Klebsiella pneumonia, Pseudomonas fluorescens, Shigella sonnei, Staphylococcus aureus and Aspergillus niger, Candida albicans, Candida tropicalis, Mucor indicus, Rhizopus strains. The DPMM-Au NPs and DPMM-Pt NPs have good antioxidant activities than the free ligand (DPMM). The spectroscopic and viscometric measurement confirms the hydrophobic DNA binding abilities of the newly prepared DPMM capped metal NPs. Moreover, the in vitro anticancer activity of DPMM, DPMM-Au NPs and DPMM-Pt NPs against cancer (MCF-7, HeLa & HEp2) and normal (NHDF) cell lines have performed using MTT assay. These results reveals that, DPMM-Au NPs and DPMM-Pt NPs having significant cytotoxic activity against the cancer cell lines and least toxic effect on normal cell line as compared to standard drug cisplatin.
Collapse
Affiliation(s)
- M Sankarganesh
- Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai, Ramanathapuram, Tamil Nadu 623 806, India
| | - P Adwin Jose
- Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai, Ramanathapuram, Tamil Nadu 623 806, India; Research and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu 641 046, India
| | - J Dhaveethu Raja
- Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai, Ramanathapuram, Tamil Nadu 623 806, India.
| | - M P Kesavan
- Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai, Ramanathapuram, Tamil Nadu 623 806, India
| | - M Vadivel
- Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai, Ramanathapuram, Tamil Nadu 623 806, India
| | - J Rajesh
- Chemistry Research Centre, Mohamed Sathak Engineering College, Kilakarai, Ramanathapuram, Tamil Nadu 623 806, India
| | - R Jeyamurugan
- Department of Chemistry, Dr. Zakir Husain College, Ilayangudi, Sivaganga, Tamil Nadu 630 702, India
| | - R Senthil Kumar
- Department of Pharmaceutical Chemistry, Swami Vivekanandha College of Pharmacy, Elayampalayam, Trichengode, Namakkal, Tamil Nadu 637 005, India
| | - S Karthikeyan
- Department of Microbiology, Sourashtra College, Madurai, Tamil Nadu 625 004, India
| |
Collapse
|
48
|
Synthesis, Characterization, Cytotoxic Activity, and Interactions with CT-DNA and BSA of Cationic Ruthenium(II) Complexes Containing Dppm and Quinoline Carboxylates. Bioinorg Chem Appl 2017; 2017:2562780. [PMID: 28814948 PMCID: PMC5549488 DOI: 10.1155/2017/2562780] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 05/30/2017] [Accepted: 06/13/2017] [Indexed: 11/17/2022] Open
Abstract
The complexes cis-[Ru(quin)(dppm)2]PF6 and cis-[Ru(kynu)(dppm)2]PF6 (quin = quinaldate; kynu = kynurenate; dppm = bis(diphenylphosphino)methane) were prepared and characterized by elemental analysis, electronic, FTIR, 1H, and 31P{1H} NMR spectroscopies. Characterization data were consistent with a cis arrangement for the dppm ligands and a bidentate coordination through carboxylate oxygens of the quin and kynu anions. These complexes were not able to intercalate CT-DNA as shown by circular dichroism spectroscopy. On the other hand, bovine serum albumin (BSA) binding constants and thermodynamic parameters suggest spontaneous interactions with this protein by hydrogen bonds and van der Waals forces. Cytotoxicity assays were carried out on a panel of human cancer cell lines including HepG2, MCF-7, and MO59J and one normal cell line GM07492A. In general, the new ruthenium(II) complexes displayed a moderate to high cytotoxicity in all the assayed cell lines with IC50 ranging from 10.1 to 36 µM and were more cytotoxic than the precursor cis-[RuCl2(dppm)2]. The cis-[Ru(quin)(dppm)2]PF6 were two to three times more active than the reference metallodrug cisplatin in the MCF-7 and MO59J cell lines.
Collapse
|
49
|
Omar SN, Abu Ali H. New complexes of Zn(II) with the anti-inflammatory non-steroidal drug, ibuprofen and nitrogen donor ligands. Synthesis, characterization and biological activity. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1337897] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Suhad N. Omar
- Department of Chemistry, Birzeit University, West Bank, Palestine
| | - Hijazi Abu Ali
- Department of Chemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|
50
|
Kamel S, Abu Ali H, Abu Shamma A. New Zn(II) complexes based on biologically active substituted acetic acid and nitrogen donor ligands: synthesis, crystal structure and biological applications. J COORD CHEM 2017. [DOI: 10.1080/00958972.2017.1326593] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Shayma Kamel
- Department of Chemistry, Birzeit University, West Bank, Palestine
| | - Hijazi Abu Ali
- Department of Chemistry, Birzeit University, West Bank, Palestine
| | - Amani Abu Shamma
- Department of Chemistry, Birzeit University, West Bank, Palestine
| |
Collapse
|