1
|
Lin Z, Jia J, Liang C, Ma Y, Liu H, Fang K, Hu Y. Shape-recoverable chitosan/sodium alginate aerogels with sustained oxygen release and antibacterial activity for diabetic wound healing. Int J Biol Macromol 2025; 305:141005. [PMID: 39965687 DOI: 10.1016/j.ijbiomac.2025.141005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/20/2025]
Abstract
Wounds in diabetic patients are often inhibited in angiogenesis and extracellular matrix synthesis due to insufficient oxygen supply, leading to prolonged healing time. Although oxygen therapy has been shown to promote the healing of chronic wounds, its therapeutic effectiveness remains limited by high costs, complex procedures, and a lack of sustainability. In this study, we developed an aerogel composed of chitosan (CS), sodium alginate (SA), and calcium peroxide (CPO). These aerogels can absorb wound exudate and release oxygen upon contact, providing continuous oxygen delivery for over five days. The freeze-dried aerogels are soft and exhibit shape recovery properties, which facilitate enhanced oxygen transport. Furthermore, the CS/SA-CPO aerogel demonstrated strong antioxidant activity, excellent biocompatibility, and potent antibacterial properties (exceeding 99.99 %). In vivo experiments indicated that the CS/SA-CPO aerogel promotes wound healing by continuously releasing oxygen, accelerating collagen deposition, and enhancing re-epithelialization, ultimately achieving 99.65 % wound closure within 21 days. This innovative approach offers a promising strategy for managing chronic, hypoxic diabetic wounds.
Collapse
Affiliation(s)
- Zhihao Lin
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Jiaojiao Jia
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China
| | - Chengzhi Liang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang 330000, China
| | - Yueyan Ma
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Hao Liu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Kuanjun Fang
- College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; Collaborative Innovation Center for Eco-Textiles of Shandong Province and the Ministry of Education, Qingdao University, Qingdao 266071, China.
| | - Yanling Hu
- Department of Orthopedics, Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
2
|
Rex M C, Poddar B, Mandal S, Das S, Mukherjee A. Interactive toxicity effects of metronidazole, diclofenac, ibuprofen, and differently functionalized nanoplastics on marine algae Chlorella sp. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:901-916. [PMID: 39918265 DOI: 10.1039/d4em00780h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Pharmaceutical products (PPs) and nanoplastics (NPs) are prominent emerging contaminants that pose serious threats to marine ecosystems. The present study aimed to investigate both pristine and combined toxicity of PPs (metronidazole, diclofenac, and ibuprofen) and polystyrene nanoplastics (PSNPs) with amine (NH2-PSNPs) and carboxyl (COOH-PSNPs) surface functionalization on marine microalgae Chlorella variabilis. Toxicity assessment included the evaluation of growth inhibition, total reactive oxygen species production, malondialdehyde content, antioxidant activity, and photosynthetic activity. Furthermore, changes in the surface functional groups of the algae after exposure to contaminants were examined. The correlation among the toxicity endpoints was assessed using Pearson correlation and cluster heatmap analysis. Zeta potential analysis and hydrodynamic size measurements revealed that the PSNPs became unstable in the presence of PPs. This instability facilitated the aggregation and rapid settlement of PSNPs, consequently impeding their direct interaction with algal cells. Growth inhibition results indicated that Chlorella variabilis exhibited minimal growth inhibition when exposed to pristine PPs (1 mg L-1), whereas PSNPs (1 mg L-1) caused substantial growth inhibition. Notably, the combined toxicity of PSNPs and PPs was lower compared to pristine PSNPs. The independent action model revealed that the combination of PPs and PSNPs showed an antagonistic mode of interaction. The potential reasons for the decreased toxicity observed in the mixture of PSNPs and PPs compared to pristine PSNPs can be attributed to diminished oxidative stress and enhanced photosynthetic activity. These findings provide valuable insights into the role of PPs in modulating the toxicity of PSNPs towards microalgae.
Collapse
Affiliation(s)
- Camil Rex M
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India.
| | - Bikram Poddar
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India.
| | - Sanmitra Mandal
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India.
| | - Soupam Das
- Centre for Nanobiotechnology, VIT, Vellore, Tamil Nadu, India.
| | | |
Collapse
|
3
|
Lei L, Xu H, Li M, Du M, Chen Z. Dual-pathway tumor radiosensitization strategy based on engineered bacteria capable of targeted delivery of AuNPs and specific hypoxia alleviation. J Nanobiotechnology 2025; 23:254. [PMID: 40155884 PMCID: PMC11954313 DOI: 10.1186/s12951-025-03329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/14/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Radiotherapy efficacy remains constrained by two key challenges: dose-dependent toxicity to healthy tissues at high radiation doses and hypoxia-mediated tumor radioresistance. While radiosensitizers like gold nanoparticles can enhance tumor-specific radiation deposition, their targeted delivery to tumors presents a significant hurdle. Bacteria have emerged as promising bio-carriers that not only actively target tumors and penetrate complex microenvironments, but can also be genetically engineered as multifunctional platforms for radiosensitizer delivery and hypoxia alleviation. RESULTS An integrated nanosystem (PCM@AuNPs), composed of engineered bacteria (PCM) and gold nanoparticles (AuNPs), is used to increase the effectiveness of radiotherapy. PCM can target and colonize tumor sites more effectively, thus improving the delivery efficiency of radiosensitizers. Furthermore, PCM overexpresses catalase (CAT), which decomposes excess H2O2 into O2, helping to mitigate hypoxia in the TME. Under X-ray irradiation, PCM@AuNPs significantly enhance radiosensitization, leading to improved tumor growth inhibition while maintaining good biocompatibility. CONCLUSIONS An effective strategy based on an integrated nanosystem (PCM@AuNPs) for radiosensitization through multiple pathways is developed. This novel engineered bacterial strategy holds great promise for enhancing radiosensitization in cancer therapy.
Collapse
Affiliation(s)
- Lingling Lei
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, China
- Department of Medical Imaging, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Haonan Xu
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
- School of Public Health, University of South China, Hengyang, China
| | - Mingjie Li
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, China
- Department of Medical Imaging, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, China
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China
| | - Meng Du
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, China.
- Department of Medical Imaging, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, China.
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.
| | - Zhiyi Chen
- Key Laboratory of Medical Imaging Precision Theranostics and Radiation Protection, College of Hunan Province, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, China.
- Department of Medical Imaging, Hengyang Medical School, The Affiliated Changsha Central Hospital, University of South China, Changsha, China.
- Institute of Medical Imaging, Hengyang Medical School, University of South China, Hengyang, China.
| |
Collapse
|
4
|
Kaur R, Singh P. Catalase-like activity of perylene diimide based radical anion: Chromogenic substrate for achieving glucose sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 328:125438. [PMID: 39612535 DOI: 10.1016/j.saa.2024.125438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
In this work, perylene diimide based radical anion (PH2-) is synthesized and characterized using optical, NOBF4 methods; cyclic voltammetry (CV) and differential pulse voltammetry (DPV) techniques. The PH2- is stable for 120 min (2 h) in oxygenated environment and 273 min (4.5 h) in hypoxic conditions. The PH2- showed catalase-like activity to reduce H2O2 to H2O with turn-over number (TON) = 20 and turn-over frequency (TOF) = 40 h-1. The catalase-like activity can be measured using optical and electrochemical methods by monitoring the changes at 726 nm (absorbance); 585 nm (emission) and at 0.27 V. We were able to quantitatively monitor the ultra low-level concentrations of the H2O2 as low as 320 fM (absorbance) and 200 fM (emission). Moreover, PH2- could be used as a chromogenic and fluorogenic substrate for monitoring the low-level concentrations of the glucose using GOx based biochemical assay. We have demonstrated the development and validation of the glucose assay kit for the detection of glucose as low as 3.6/2.8 nM in aqueous medium and 6.2/5.6 nM in blood serum.
Collapse
Affiliation(s)
- Rajdeep Kaur
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001, Pb., India
| | - Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143001, Pb., India.
| |
Collapse
|
5
|
Lara-Hernández F, Melero R, Quiroz-Rodríguez ME, Moya-Valera C, de Jesús Gallardo-Espinoza M, Álvarez L, Valarezo-Torres IL, Briongos-Figuero L, Abadía-Otero J, Mena-Martin FJ, Saez G, Redon J, Martín-Escudero JC, García-García AB, Ayala G, Chaves FJ. Genetic interaction between oxidative stress and body mass index in a Spanish population. Redox Biol 2025; 80:103531. [PMID: 39923398 PMCID: PMC11849672 DOI: 10.1016/j.redox.2025.103531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
Oxidative stress may act as a contributing factor in the development of an elevated body mass index (BMI). Oxidative stress has the potential to modulate genetic activity at various levels, including gene transcription and protein function regulation. Nevertheless, the interplay between genetic variants and oxidative stress in relation to BMI remains to be elucidated. Based on this premise, we studied the potential association between 723 single-nucleotide polymorphisms (SNPs) located within a set of 212 genes and both BMI and oxidative stress parameters in 1502 adults from the general Spanish population (Hortega Study). Oxidative stress parameters measured included malondialdehyde (MDA) levels, 8-oxo-2'-deoxyguanosine (8-oxo-dG) levels and oxidised/reduced glutathione ratio (GSSG/GSH). We also examined the potential impact of the interaction between these SNPs and oxidative stress levels on BMI. The genes selected regulate several key biological processes, including obesity, blood pressure, inflammation, lipid metabolism and redox homeostasis. Our findings indicate a robust association between specific genes and both BMI and oxidative stress parameters. Significant BMI-related interactions between genes and oxidative stress parameters were identified, which have a multifactorial impact on oxidative stress modulation and on BMI. SNPs identified in genes such as NPPA, CPT1A, DDIT3, NOX and IL6ST were significantly associated with all oxidative stress parameters analysed, indicating a substantial influence on BMI modulation. The results provide compelling evidence of a significant relationship between oxidative stress levels and genetic background. Our data provide new insights into BMI modulation by oxidative stress levels, highlighting a role for TNF as a key player in the interrelation of oxidative stress and BMI.
Collapse
Affiliation(s)
| | - Rebeca Melero
- Genomics and Diabetes Unit. INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Celeste Moya-Valera
- Genomics and Diabetes Unit. INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | - Luis Álvarez
- Genomics and Diabetes Unit. INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | | | | | - Jessica Abadía-Otero
- Internal Medicine Service. Rio Hortega University Hospital, 47012, Valladolid, Spain
| | | | - Guillermo Saez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine and Odontology. University of Valencia, 46010, Valencia, Spain; Service of Clinical Analysis. University Hospital Dr. Peset-FISABIO, Spain
| | - Josep Redon
- Cardiometabolic Renal Risk Research Group, INCLIVA Biomedical Research Institute, University of Valencia, 46010, Valencia, Spain; CIBEROBN, ISCIII, 28029, Madrid, Spain
| | - Juan-Carlos Martín-Escudero
- Internal Medicine Service. Rio Hortega University Hospital, 47012, Valladolid, Spain; Department of Medicine, Faculty of Medicine, University of Valladolid, 47002, Valladolid, Spain
| | - Ana-Bárbara García-García
- Genomics and Diabetes Unit. INCLIVA Biomedical Research Institute, 46010, Valencia, Spain; CIBERDEM, ISCIII, 28029, Madrid, Spain.
| | - Guillermo Ayala
- Department of Statistics and Operation Research, University of Valencia, Burjassot, 46100, Valencia, Spain
| | - Felipe Javier Chaves
- Genomics and Diabetes Unit. INCLIVA Biomedical Research Institute, 46010, Valencia, Spain; CIBERDEM, ISCIII, 28029, Madrid, Spain
| |
Collapse
|
6
|
Maselli V, Norcia M, Pinto B, Cirillo E, Polese G, Di Cosmo A. Stress Induced by Fishing in Common Octopus ( Octopus vulgaris) and Relative Impact on Its Use as an Experimental Model. Animals (Basel) 2025; 15:503. [PMID: 40002985 PMCID: PMC11851374 DOI: 10.3390/ani15040503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/05/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
The common octopus (Octopus vulgaris), among coleoid cephalopods, has evolved the most complex nervous system and sophisticated behaviors. Historically, O. vulgaris was a key animal model for neurophysiology research, and today, it is studied for its genomic innovations. However, unlike other models, there is no octopus farming for research, so specimens must be collected from the wild. This study assessed the impact of fishing on octopuses used in research, considering those caught using artisanal pots in the 'Regno di Nettuno' Marine Protected Area, Ischia (NA). To evaluate fishing stress, we identified morphological stress indicators such as chromatophore pattern and posture, and three potential molecular markers, estrogen receptor (ER), catalase (CAT), and heat shock protein (HSP70). We measured the percentage of stress signals shown by fished specimens and analyzed their differential gene expression. The transcriptional levels of octopuses caught using traps were compared to control specimens acclimated in captivity. Results indicated fluctuations in gene expression due to fishing stress. These findings suggest that an acclimation period after the stress event of fishing is crucial for ensuring the welfare of octopuses used in research, thus enhancing the quality of physiological and ethological studies.
Collapse
Affiliation(s)
- Valeria Maselli
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (V.M.); (M.N.); (B.P.); (E.C.); (G.P.)
| | - Mariangela Norcia
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (V.M.); (M.N.); (B.P.); (E.C.); (G.P.)
| | - Bruno Pinto
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (V.M.); (M.N.); (B.P.); (E.C.); (G.P.)
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Naples, Italy
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Ischia Marine Centre, 80077 Ischia, Italy
| | - Emanuela Cirillo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (V.M.); (M.N.); (B.P.); (E.C.); (G.P.)
- MNESYS—PNRR Partenariato Esteso, 16132 Genova, Italy
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (V.M.); (M.N.); (B.P.); (E.C.); (G.P.)
- MNESYS—PNRR Partenariato Esteso, 16132 Genova, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, Via Cinthia, 80126 Naples, Italy; (V.M.); (M.N.); (B.P.); (E.C.); (G.P.)
- MNESYS—PNRR Partenariato Esteso, 16132 Genova, Italy
| |
Collapse
|
7
|
Hassanpour H, Mojtahed M, Nasiri L, Vaez-Mahdavi MR, Fallah AA. Association of sulfur mustard toxicity with oxidant/antioxidant system in veterans: A meta-analysis of case-control studies. Int Immunopharmacol 2025; 147:114007. [PMID: 39793222 DOI: 10.1016/j.intimp.2024.114007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/13/2025]
Abstract
Sulfur mustard (SM) is a chemical warfare agent that increases oxidative stress in veterans. The literature assessing oxidant/antioxidant parameters in SM-exposed veterans contains conflicting results. A total of 11 relevant studies were identified and screened. Data were extracted, and effect size and heterogeneity were assessed. The analysis revealed significant elevations in levels of malondialdehyde (MDA, an indicator of lipid peroxidation), catalase (CAT), and a reduction in glutathione (GSH) following SM exposure while superoxide dismutase (SOD) and total antioxidant levels did not change. The meta-analysis revealed that the MDA and CAT levels significantly increased in the two post-exposure sampling times (15-20 and 21-33 years) except for theGSH level, which decreased only in the post-exposure sampling time of 21-33 years. The subgroup meta-analysis of the type of analyzed samples indicated that SOD and CAT levels were only increased in the serum/plasma samples, while GSH was decreased. BALF/sputum and erythrocyte samples also revealed significant increases in MDA and SOD levels while GSH level was significantly decreased. This meta-analysis concluded that SM exposure affects the balance between oxidants and antioxidants, promoting oxidative stress that may persist long after exposure. This condition highlights the need for strategies to enhance antioxidant defenses in SM-exposed veterans.
Collapse
Affiliation(s)
- Hossein Hassanpour
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran; Health Equity Research Center, Shahed University, Tehran, Iran.
| | - Marzieh Mojtahed
- Department of Cellular and Molecular Biology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Leila Nasiri
- Health Equity Research Center, Shahed University, Tehran, Iran
| | - Mohammad-Reza Vaez-Mahdavi
- Health Equity Research Center, Shahed University, Tehran, Iran; Department of Physiology, Medical Faculty, Shahed University, Tehran, Iran
| | - Aziz A Fallah
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
8
|
Tasia W, Washio A, Yamate K, Morita K, Mori Y, Kahar P, Sasaki R, Ogino C. Catalase-Knockout Complements the Radio-Sensitization Effect of Titanium Peroxide Nanoparticles on Pancreatic Cancer Cells. Molecules 2025; 30:629. [PMID: 39942733 PMCID: PMC11820024 DOI: 10.3390/molecules30030629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
In previous studies, titanium peroxide nanoparticles (PAA-TiOx NPs) with surfaces functionalized using polyacrylic acid (PAA) and hydrogen peroxide (H2O2) demonstrated a synergistic effect when combined with X-ray irradiation. The combination generated H2O2 and reactive oxygen species (ROS) that enhanced the irradiation efficacy. In the present study, we examined the relationship between catalase and PAA-TiOx NPs sensitization to X-ray radiation because catalase is the primary antioxidant enzyme that converts H2O2 to water and oxygen. Catalase-knockout PANC-1 (dCAT) cells were generated using the CRISPR/Cas9 system, which was confirmed by the suppression of catalase expression in mRNA and protein levels that resulted in an 81.7% decrease in catalase activity compared with levels in wild-type cells. Catalase deficiency was found to increase the production of ROS, particularly in hypoxia. Also, the combination of PAA-TiOx NPs and X-ray 5 Gy resulted in a 7-fold decrease in the survival fraction (SF; p < 0.01) of dCAT cells compared with rates documented in wild-type cells. Interestingly, the combination treatment with X-ray 3 Gy in dCAT cells resulted in an SF similar to that observed in wild-type cells treated with the same combination but at a higher radiation dose (5 Gy). These results suggest that a strategy of catalase inhibition could be used to establish an advanced combination treatment of PAA-TiOx NPs and X-ray irradiation for pancreatic cancer cells.
Collapse
Affiliation(s)
- Winda Tasia
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 658-8501, Hyogo, Japan; (W.T.); (K.M.); (Y.M.); (P.K.)
- National Research and Innovation Agency (BRIN), Bogor 16911, West Java, Indonesia
| | - Amane Washio
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 658-8501, Hyogo, Japan; (W.T.); (K.M.); (Y.M.); (P.K.)
| | - Koki Yamate
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 658-8501, Hyogo, Japan; (W.T.); (K.M.); (Y.M.); (P.K.)
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 658-8501, Hyogo, Japan; (W.T.); (K.M.); (Y.M.); (P.K.)
| | - Yutaro Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 658-8501, Hyogo, Japan; (W.T.); (K.M.); (Y.M.); (P.K.)
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 658-8501, Hyogo, Japan; (W.T.); (K.M.); (Y.M.); (P.K.)
| | - Ryohei Sasaki
- Division of Radiation Oncology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Hyogo, Japan;
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 658-8501, Hyogo, Japan; (W.T.); (K.M.); (Y.M.); (P.K.)
| |
Collapse
|
9
|
Queiroz LG, do Prado CC, de Oliveira PFM, Valezi DF, Cecconi Portes M, Rocha de Moraes B, Ando RA, Vicente E, de Paiva TC, Pompêo M, Rani-Borges B. The Toxicity of Poly(acrylonitrile-styrene-butadiene) Microplastics toward Hyalella azteca Is Associated with Biofragmentation and Oxidative Stress. Chem Res Toxicol 2025; 38:91-101. [PMID: 39829240 PMCID: PMC11752492 DOI: 10.1021/acs.chemrestox.4c00300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025]
Abstract
Acrylonitrile-butadiene-styrene (ABS) is a thermoplastic copolymer commonly used in the electronics, automotive, and construction industries. In the aquatic environment, the formation of microplastics from larger-sized plastic waste occurs naturally, induced by physical, chemical, and biological processes that promote the aging of these particles. Here, we investigated the interactions between the freshwater amphipod Hyalella azteca and ABS microplastics (10-20 μm) (pristine and after accelerated aging) over 7 days of exposure. At the end of the exposure period, we evaluated the ability of H. azteca to fragment the ABS particles, as well as the changes in its oxidative stress biomarkers (SOD, CAT, MDA, and GST) as the result of ABS exposure. H. azteca promoted a significant fragmentation of ABS particles. The ratio of this biofragmentation was more pronounced in pristine particles. Despite the absence of significant changes in the mortality of exposed organisms, alterations in the oxidative stress biomarkers were observed. The results demonstrate the ability of H. azteca to fragment pristine and aged ABS microplastics and, the consequent susceptibility of these organisms to the effects of microplastic exposure.
Collapse
Affiliation(s)
- Lucas Gonçalves Queiroz
- Institute
of Biosciences, University of São
Paulo, Rua do Matão 321, 05508-090 São Paulo, SP, Brazil
| | - Caio César
Achiles do Prado
- Engineering
School of Lorena, University of São
Paulo, Estrada Municipal
do Campinho 100, 12602-810 Lorena, SP, Brazil
| | | | - Daniel Farinha Valezi
- Physics
Department, State University of Londrina, Rodovia Celso Garcia Cid PR 445
Km 380, 86057-970 Londrina, PR, Brazil
| | - Marcelo Cecconi Portes
- Institute
of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Beatriz Rocha de Moraes
- Institute
of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Rômulo Augusto Ando
- Institute
of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| | - Eduardo Vicente
- Department
of Microbiology and Ecology, University
of Valencia, Dr. Moliner 50, 46100 Burjassot, Spain
| | | | - Marcelo Pompêo
- Institute
of Biosciences, University of São
Paulo, Rua do Matão 321, 05508-090 São Paulo, SP, Brazil
| | - Bárbara Rani-Borges
- Institute
of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
10
|
Lorrain-Soligon L, Boudard L, Sebastiano M, Costantini D, Angelier F, Ribout C, Leclerc M, Kato A, Robin F, Brischoux F. Salty surprises: Developmental and behavioral responses to environmental salinity reveal higher tolerance of inland rather than coastal Bufo spinosus tadpoles. ENVIRONMENTAL RESEARCH 2025; 264:120401. [PMID: 39571705 DOI: 10.1016/j.envres.2024.120401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/04/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024]
Abstract
Salinization is predicted to intensify due to climate change, impacting biodiversity and ecosystem functioning. Amphibians, particularly embryos and larvae, are highly susceptible to environmental salinity. Yet, local adaptation may cause differing vulnerabilities between coastal and inland populations. In this study, we investigated the physiological, behavioural, and life-history responses to environmental salinity (0, 2 and 4 g l-1) of embryos and larvae of a widespread amphibian species (spined toad, Bufo spinosus) from salt-exposed (coastal) and salt-free (inland) populations. Moderate salinity (4 g l-1) altered embryonic and larval development in both populations, causing increased malformations, decreased body size and survival, and altered behavior, but did not affect telomere length or oxidative status. Individuals exposed to low salinity (2 g l-1) performed better across most traits. However, moderate salinity had stronger negative effects on coastal individuals, indicating a lack of local adaptation and overall lower performance compared to their inland counterparts. These findings suggest that increasing salinity will have varied impacts on organisms depending on their population origins and developmental stages.
Collapse
Affiliation(s)
- Léa Lorrain-Soligon
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France; Sorbonne Université, UMR 7619 METIS, Paris, France.
| | - Loïz Boudard
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France
| | - Manrico Sebastiano
- UPMA, Muséum National d'Histoire Naturelle, CNRS, Paris, France; Behavioral Ecology & Ecophysiology Group, Department of Biology, University of Antwerp, Universiteitsplein, Wilrijk, Belgium
| | - David Costantini
- UPMA, Muséum National d'Histoire Naturelle, CNRS, Paris, France; Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Frédéric Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France
| | - Margot Leclerc
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France
| | - Akiko Kato
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France
| | | | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, UMR 7372 CNRS - La Rochelle Université, 79360 Villiers en Bois, France
| |
Collapse
|
11
|
Wei Y, Meng Y, Jia K, Lu W, Huang Y, Lu H. Dimethomorph induces heart and vascular developmental defects by disrupting thyroid hormone in zebrafish embryos. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117413. [PMID: 39693786 DOI: 10.1016/j.ecoenv.2024.117413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/23/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024]
Abstract
Dimethomorph (DMT) is a widely-used selective active fungicide that effectively controls downy mildew, crown rot, and late blight in crops. The extensive application of DMT raises concerns about its ecological impact on non-target organisms in the environment. However, there is limited understanding of the toxicological properties of DMT on these organisms. In this study, we utilized zebrafish as an animal model to assess the toxicity of DMT induced by exposure 5.5-72 hours post-fertilization (hpf). During this period, we monitored and evaluated the development of the zebrafish heart and vascular system. Additionally, embryo samples were collected to perform molecular-level detection of PCNA, oxidative stress, and related genes. The results showed a concentration-dependent decrease in survival rate and hatching rate, shortened body length, slowed heart rate, and pericardial edema, body curvature and reduced eye size as DMT exposure concentration increased. Furthermore, DMT exposure led to impairments in the development of the heart, vascular, along with change in the expression levels of relevant genes. It also caused a decrease in cell proliferation and an increase in oxidative stress levels. Moreover, DMT disrupts the normal development of thyroid follicular cells, leading to a reduction in T3 levels. Thyroid hormone supplementation partially reverses the toxicity induced by DMT, increasing eye size, restoring body length, reducing spine curvature, and reducing pericardial edema. Therefore, we speculate that DMT likely affects the development of zebrafish embryos by disrupting normal thyroid follicle development.
Collapse
Affiliation(s)
- You Wei
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China; Center for drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Yunlong Meng
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China; Center for drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Kun Jia
- Center for drug Screening and Research, School of Geography and Environmental Engineering, Gannan Normal University, Ganzhou, Jiangxi 341000, China
| | - Weijian Lu
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China
| | - Yushan Huang
- Center for Evidence Based Medical and Clinical Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, China.
| | - Huiqiang Lu
- Center for Clinical Medicine Research, First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi, China.
| |
Collapse
|
12
|
Mishra L, Mishra M. Ribose-induced advanced glycation end products reduce the lifespan in Drosophila melanogaster by changing the redox state and down-regulating the Sirtuin genes. Biogerontology 2024; 26:28. [PMID: 39702854 DOI: 10.1007/s10522-024-10172-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Advanced Glycation End (AGE) products are one such factor that accumulates during aging and age-related diseases. However, how exogenous AGE compounds cause aging is an area that needs to be explored. Specifically, how an organ undergoes aging and aging-related phenomena that need further investigation. The intestine is the most exposed area to food substances. How AGEs affect the intestine in terms of aging need to be explored. Drosophila melanogaster, a well-known model organism, is used to decode aging and age-associated phenomena. In this study, we fed Ribose induced Advanced Glycation End products (Rib-AGE) to D. melanogaster to study the aging mechanism. The Rib-AGE-induced aging was checked in Drosophila. We found a series of changes in Rib-AGE-fed flies. Reactive oxygen species (ROS) and nitric oxide species (NOs) were higher in the Rib-AGE-fed flies, and the antioxidant level was lower. The intestinal permeability was altered. The microorganism load was higher inside the gut. The structural arrangement of the gut's microfilament was found to be damaged, and the nuclear shape was found to be irregular. Cell death within the gut was elevated in comparison to control. The food intake was found to be reduced. The relative mRNA expression of the Sirtuin 2 and Sirtuin 6 gene of D. melanogaster was downregulated in Rib-AGE-fed flies compared to the control. All these findings strongly suggest that Rib-AGE accelerates aging and age-related disorders in D. melanogaster.
Collapse
Affiliation(s)
- Lokanath Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India
| | - Monalisa Mishra
- Neural Developmental Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, 769008, India.
| |
Collapse
|
13
|
D'Incau E, Spaudo A, Henry S, Ouvrard S. Phytotoxic response of ryegrass (Lolium multiflorum L.) to extreme exposure to two anionic surfactants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117320. [PMID: 39549569 DOI: 10.1016/j.ecoenv.2024.117320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/24/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
Bioremediation is an effective and environment-friendly treatment used to clean up hydrocarbon-contaminated soil. However, the effectiveness of this treatment is often limited by the low bioavailability of the target contaminants. Surfactants addition thus appears as a way to increase solubility of these hydrophobic molecules and consequently improve their bioavailability. The use of biological surfactants is often favoured over synthetic ones because they are claimed to be non-toxic to the environment though few studies have addressed this issue. The present work evaluated the effects of a synthetic surfactant, sodium dodecyl sulphate (SDS) and a biosurfactant (rhamnolipids) on germination and growth of ryegrass over a wide range of concentrations, between one up to ten times their respective critical micellar concentration (CMC). Experimental results showed that SDS inhibited seed germination of Lolium multiflorum at high concentrations (10 × CMC), unlike rhamnolipids, which did not induce any toxicity symptom at germination stage. At the growth stage, high rhamnolipid concentrations induced chronic phytotoxicity by significantly reducing root length, decreasing biomass production and disrupting the enzymatic defence system. Thus, biosurfactants are less toxic than synthetic ones but their application at high doses in bioremediation treatments might still induce phytotoxicity symptoms and thus negatively affect the environment.
Collapse
Affiliation(s)
| | - Antoine Spaudo
- Université de Lorraine, INRAE, LSE, Nancy F-54000, France
| | - Sonia Henry
- Université de Lorraine, INRAE, LSE, Nancy F-54000, France
| | | |
Collapse
|
14
|
Recart VM, Spohr L, de Aguiar MSS, de Souza AA, Goularte KCM, Bona NP, Pedra NS, Teixeira FC, Stefanello FM, Spanevello RM. Gallic acid attenuates lipopolysaccharide - induced memory deficits, neurochemical changes, and peripheral alterations in purinergic signaling. Metab Brain Dis 2024; 40:43. [PMID: 39601942 DOI: 10.1007/s11011-024-01424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/14/2024] [Indexed: 11/29/2024]
Abstract
Neuroinflammation is associated with many neurological disorders. Gallic acid (GA) has attracted significant attention due to its biological properties, such as neuroprotective, anti-inflammatory, and antioxidant effects. In this study, we evaluated the effects of GA in memory, TNF-α levels, oxidative stress, and activities of acetylcholinesterase (AChE), Na+, K+-ATPase and Ca2+-ATPase in the brain of mice exposed to lipopolysaccharide (LPS). Additionally, we evaluated alterations in adenine nucleotides and nucleosides in the serum. Male mice were orally pretreated with vehicle or GA (50 or 100 mg/kg) for 14 days. Between days 8 and 14, the animals also received LPS injection (250 µg/kg) or saline. At the end of the experimental protocol, the animals were submitted to object recognition test, euthanized and cerebral cortex, hippocampus, striatum and blood were collected. LPS induced memory deficits, which were prevented by GA treatment. GA protected against LPS-induced oxidative damage in the cerebral cortex, hippocampus and striatum by reducing reactive oxygen species and nitrite levels, while increasing total thiol content and activities of antioxidant enzymes. GA also prevented LPS-induced alterations in AChE, Na+, K+-ATPase, and Ca2+-ATPase activities in brain structures. LPS elevated TNF-α levels in the hippocampus and cerebral cortex, which were attenuated by GA treatment. Furthermore, LPS caused a reduction in ADP and AMP hydrolysis and an increase in adenosine deamination in the serum, which were also prevented by GA. The effects of GA against neuroinflammation may be attributed to its potent antioxidant and anti-inflammatory properties, which modulate various pathways, including those involved in memory mechanisms.
Collapse
Affiliation(s)
- Vânia Machado Recart
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Luiza Spohr
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Mayara Sandrielly Soares de Aguiar
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Anita Avila de Souza
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Kelen Cristiane Machado Goularte
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Natália Pontes Bona
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Nathalia Stark Pedra
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Fernanda Cardoso Teixeira
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Francieli Moro Stefanello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Biomarcadores, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil
| | - Roselia Maria Spanevello
- Programa de Pós-Graduação em Bioquímica e Bioprospecção - Laboratório de Neuroquímica, Inflamação e Câncer, Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Campus Universitário S/N, Capão do Leão, RS, Brazil.
| |
Collapse
|
15
|
Zheng H, Zhu R, Zhang Y, Liu K, Xia Q, Li P, Sun X, Sun C, Zhang S. Protective Effect of Marine Peptide from Netunea arthritica cumingii Against Gentamicin-Induced Hair Cell Damage in Zebrafish. Mar Drugs 2024; 22:519. [PMID: 39590799 PMCID: PMC11595687 DOI: 10.3390/md22110519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Auditory hair cell damage induced by aminoglycoside antibiotics (AmAn) leads to hearing loss, which has a serious effect on people's mental and physical health. This ototoxicity is thought to be related with the excessive accumulation of reactive oxygen species (ROS) in hair cells. However, therapeutic agents that protect hair cells are limited. Marine peptides have been shown to have excellent potential applications in disease prevention and treatment. Therefore, this study investigated the protective effects of an active peptide from Neptunea arthritica cumingii against AmAn-induced hair cell damage using the model of hair cell damage zebrafish. We identified the number, ultrastructure, and function of hair cells using fluorescence probes and scanning electron microscopy. The uptake of AmAn, ROS level, mitochondrial permeability transition pore, and apoptosis in hair cells were also tested by fluorescence labeling and TUNEL assay. The molecular mechanism for hair cell protection exerted by the peptide was detected by a real-time quantitative PCR assay. The results indicated that the peptide suppressed the uptake of AmAn but did not damage the function of hair cells mediating hearing. It also prevented ROS accumulation, decreased the occurrence of apoptosis, and rescued the abnormal opening and expressions of mitochondrial permeability transition pore and genes related to antioxidants. The peptide may be an effective therapeutic agent for AmAn-induced ototoxicity. In the future, we plan to use mammalian models to further investigate the otoprotective effect of the peptide.
Collapse
Affiliation(s)
- Hongbao Zheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Ranran Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Qing Xia
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Xiaoyue Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Chen Sun
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China; (H.Z.); (R.Z.); (Y.Z.); (K.L.); (Q.X.); (P.L.); (X.S.)
- Key Laboratory for Drug Screening Technology of the Shandong Academy of Sciences, Jinan 250103, China
| |
Collapse
|
16
|
Riseh RS, Fathi F, Vatankhah M, Kennedy JF. Catalase-associated immune responses in plant-microbe interactions: A review. Int J Biol Macromol 2024; 280:135859. [PMID: 39307505 DOI: 10.1016/j.ijbiomac.2024.135859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/08/2024] [Accepted: 09/19/2024] [Indexed: 11/20/2024]
Abstract
Catalase, an enzyme central to maintaining redox balance and combating oxidative stress in plants, has emerged as a key player in plant defense mechanisms and interactions with microbes. This review article provides a comprehensive analysis of catalase-associated immune responses in plant-microbe interactions. It underscores the importance of catalase in plant defense mechanisms, highlights its influence on plant susceptibility to pathogens, and discusses its implications for understanding plant immunity and host-microbe dynamics. This review contributes to the growing body of knowledge on catalase-mediated immune responses and offers insights that can aid in the development of strategies for improved plant health and disease resistance.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran.
| | - Fariba Fathi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, 7718897111 Rafsanjan, Iran
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom.
| |
Collapse
|
17
|
Gualandris D, Rotondo D, Lorusso C, La Terza A, Calisi A, Dondero F. The Metallothionein System in Tetrahymena thermophila Is Iron-Inducible. TOXICS 2024; 12:725. [PMID: 39453145 PMCID: PMC11511230 DOI: 10.3390/toxics12100725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/30/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Metallothioneins are multifunctional proteins implicated in various cellular processes. They have been used as biomarkers of heavy metal exposure and contamination due to their intrinsic ability to bind heavy metals and their transcriptional response to both physiological and noxious metal ions such as cadmium (Cd) and mercury (Hg). In this study, we aimed to clarify the role of iron and reactive oxygen species (ROSs) in the induction of the metallothionein system (Mtt) in the ciliate protozoan Tetrahymena thermophila. We investigated the relative mRNA abundances of the metallothionein genes Mtt1, Mtt2/4, and Mtt5, revealing for the first time their responsiveness to iron exposure. Furthermore, by using inhibitors of superoxide dismutase (SOD) and catalase (CAT), alone or in combination with iron, we highlighted the roles of superoxide ion and endogenous hydrogen peroxide, as well as the complex interplay between the metal and ROSs. These results enhance our understanding of the metallothionein system in ciliates and suggest that ROSs may be a primary evolutionary driver for the selection of these proteins in nature.
Collapse
Affiliation(s)
- Davide Gualandris
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (D.G.)
| | - Davide Rotondo
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (D.G.)
| | - Candida Lorusso
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (D.G.)
| | - Antonietta La Terza
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Antonio Calisi
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (D.G.)
| | - Francesco Dondero
- Department of Science and Technological Innovation, Università degli Studi del Piemonte Orientale, Viale Michel 11, 15121 Alessandria, Italy; (D.G.)
| |
Collapse
|
18
|
Smagieł R, Tutaj K, Cholewińska E, Sołek P, Mikulski D, Stępniowska A, Jankowski J, Ognik K. The effect of early administration of antibiotics or feeding a diet containing coccidiostats on the level of their accumulation in liver and the redox status of turkeys. Animal 2024; 18:101321. [PMID: 39326126 DOI: 10.1016/j.animal.2024.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/28/2024] Open
Abstract
Early administration of antibiotics may worsen the functioning of the turkeys' antioxidant system. It was also assumed that the longer the time of administration of an antibiotic, e.g. a coccidiostat, the greater the risk of its accumulation in the liver. The study aimed to determine whether early administration of antibiotics or feeding a diet containing coccidiostats causes accumulation in the liver and whether it affects the deterioration of the antioxidant system, and whether preventive vaccinations can intensify it. A total of 3 080 female turkeys were randomly allocated to eight groups. The experiment had a two-factorial design, with four treatments (C, M, E, D) and two groups of birds (vaccinated +, unvaccinated -). The C group did not receive the coccidiostat or antibiotics. Group M was administered monensin at 90 mg/kg feed for 56 days of life. Group E received enrofloxacin at 10 mg/kg BW, and group D received doxycycline at 50 mg/kg BW, added to drinking water, for the first 5 days of life. One-day-old turkeys from groups C+, M+, E+, and D+ were administered live-attenuated vaccines against turkey rhinotracheitis and Newcastle disease by coarse spray; 28-day-old birds were administered a subcutaneously injected inactivated vaccine against Ornithobacterium rhinotracheale. Turkeys from groups C-, M-, E-, and D- were not vaccinated. It was determined that as a result of administration of enrofloxacin or doxycycline until the 5th day of life, biotransformation of these antibiotics occurred in the liver until the 56th day of life of the turkeys, which was confirmed by their lower level than the Maximum Residue Level. Because the concentration of monensin in the liver of turkeys gradually increased with the extension of the time of its administration in the diet, it is probable that discontinuing its addition a day before the slaughter of birds will result in the presence of this coccidiostat in the liver of turkeys. Despite the accumulation of monensin in the liver of turkeys, this coccidiostat did not increase oxidative reactions in the organism of turkeys. Vaccination of turkeys can reduce oxidative reactions and apoptosis in the body. However, the effect of the redox system reaction is different immediately after vaccination, which is due to the mechanism of action of the immune system. If it is necessary to administer an antibiotic in the early rearing period, the effects of doxycycline on the organism's immunity including antioxidant defence will be less severe than those of enrofloxacin.
Collapse
Affiliation(s)
- R Smagieł
- Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
| | - K Tutaj
- Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
| | - E Cholewińska
- Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
| | - P Sołek
- Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
| | - D Mikulski
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - A Stępniowska
- Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland.
| | - J Jankowski
- Department of Poultry Science and Apiculture, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland
| | - K Ognik
- Department of Biochemistry and Toxicology, University of Life Sciences, Akademicka 13, 20-950 Lublin, Poland
| |
Collapse
|
19
|
Collado-González J, Piñero MC, Otálora G, López-Marín J, del Amor FM. Enhanced antioxidant phytochemicals and catalase activity of celery by-products by a combined strategy of selenium and PGPB under restricted N supply. FRONTIERS IN PLANT SCIENCE 2024; 15:1388666. [PMID: 39345979 PMCID: PMC11427293 DOI: 10.3389/fpls.2024.1388666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/27/2024] [Indexed: 10/01/2024]
Abstract
Introduction The reduction of N supplied combined with the use of biostimulants can be an efficient strategy that allows sustainable agriculture to achieve better economic, nutritional and environmental goals without reducing production. Moreover, the industrial processing of celery generates large amounts of waste. Therefore the purpose of this study was improve crop management strategies to reduce nitrate pollution while turning crop waste into value-added products for others sectors. Methods Consequently, in this work twelve treatments were examined: three N nitrogen content in the nutrient solution (100% control, 60%, and 30%) combined with the inoculation of the roots with Azotobacter salinestris, and foliar application selenium solution (8 μM, Na2SeO4). The celery parts from plants grown under limited N dose showed a higher antioxidant activity and TPC (total phenolic compounds) content. Results and discussion The antioxidant activity increased 28% in leaves and 41% in by-products and TPC improved 27% in leaves and 191% in by-products respect to the control. Besides, a significant reduction of β-carotene content (56%, 11% and 43% in petioles, leaves and by-products respect to the control, respectively) was obtained in plants fed with restricted dose of N. The catalase activity was not affected by N dose. The inoculation of the plants with Azotobacter, together with a reduced N dose, achieved a greater accumulation of all the parameters studied. This accumulation was maximum when Se was applied to the leaves compared with the control and depending on the celery part: TPC (121-450%); antioxidant activity (60-68%), of catalase activity (59% - 158%), and of pigments content (50-90%). These findings can boost the valorization of celery by-products as excellent source of bioactive compounds.
Collapse
Affiliation(s)
- Jacinta Collado-González
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), Murcia, Spain
| | | | | | | | - Francisco M. del Amor
- Department of Crop Production and Agri-Technology, Murcia Institute of Agri-Food Research and Development (IMIDA), Murcia, Spain
| |
Collapse
|
20
|
Wunnoo S, Sermwittayawong D, Praparatana R, Voravuthikunchai SP, Jakkawanpitak C. Quercus infectoria Gall Ethanolic Extract Accelerates Wound Healing through Attenuating Inflammation and Oxidative Injuries in Skin Fibroblasts. Antioxidants (Basel) 2024; 13:1094. [PMID: 39334753 PMCID: PMC11428264 DOI: 10.3390/antiox13091094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/23/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Quercus infectoria Olivier (Fagaceae) nutgall, a traditional Asian medicine, is renowned for its efficacy in treating wounds and skin disorders. Although the gall extract has shown promising results in accelerating wound healing in diabetic animal models, its mechanisms, particularly the effects on redox balance, remain poorly understood. This study aims to investigate the effects and mechanisms of Q. infectoria gall ethanolic extract (QIG) on wound healing in fibroblasts, with a specific emphasis on its modulation of oxidative stress. Hydrogen peroxide (H2O2)-treated L929 cells were used as an in vitro model of oxidation-damaged fibroblasts. QIG exhibited potent antioxidant activity with 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), and ferric reducing antioxidant power (FRAP) assay values of 305.43 ± 7.48, 508.94 ± 15.12, and 442.08 ± 9.41 µM Trolox equivalents (TE)/µg, respectively. Elevated H2O2 levels significantly reduced L929 cell viability, with a 50% lethal concentration of 1.03 mM. QIG mitigated H2O2-induced cytotoxicity in a dose-dependent manner, showing protective effects in pre-, post-, and co-treatment scenarios. QIG significantly reduced H2O2-induced intracellular reactive oxygen species production and inflammation-related gene expression (p < 0.05). Additionally, at 25 µg/mL, QIG remarkably improved wound closure in H2O2-treated L929 cells by approximately 9.4 times compared with the H2O2 treatment alone (p < 0.05). These findings suggest QIG has potential therapeutic applications in wound healing, mediated through the regulation of oxidative stress and inflammatory response.
Collapse
Affiliation(s)
- Suttiwan Wunnoo
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.W.); (S.P.V.)
| | - Decha Sermwittayawong
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Rachanida Praparatana
- Faculty of Medical Technology, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
| | - Supayang Piyawan Voravuthikunchai
- Center of Antimicrobial Biomaterial Innovation-Southeast Asia, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; (S.W.); (S.P.V.)
| | - Chanawee Jakkawanpitak
- Center of Excellence for Biochemistry, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand;
- Division of Health and Applied Sciences, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| |
Collapse
|
21
|
Aguzie IO, Oriaku CU, Agbo FI, Ukwueze VO, Asogwa CN, Ikele CB, Aguzie IJ, Ossai NI, Eyo JE, Nwani CD. Single and mixture exposure to atrazine and ciprofloxacin on Clarias gariepinus antioxidant defense status, hepatic condition and immune response. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104523. [PMID: 39089401 DOI: 10.1016/j.etap.2024.104523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
Atrazine (ATRA) and ciprofloxacin (CPRO) are widely detected, persistent and co-existing aquatic pollutants. This study investigated effects of 14-day single and joint ATRA and CPRO exposure on juvenile Clarias gariepinus. Standard bioassay methods were used to determine responses of oxidative stress, hepatic condition, and immunological biomarkers on days 7 and 14. Seven groups were used: Control, CPROEC, CPROSubl, ATRAEC, ATRASubl, CPROEC+ATRAEC, and CPROSubl+ATRASubl. The test substances caused decreased activity of superoxide dismutase, catalase, and glutathione peroxidase. Lipid peroxidation was elevated, especially in CPRO-ATRA mixtures. Serum aminotransferases (ALT, and AST), and alkaline phosphatase activity increased significantly. Total protein, albumin, total immunoglobulin, and respiratory burst decreased significantly. Therefore, single and joint exposure to CPRO and ATRA poses adverse consequences on aquatic life.
Collapse
Affiliation(s)
- Ifeanyi O Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria.
| | | | - Faith I Agbo
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Vera O Ukwueze
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Chinweike N Asogwa
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Chika B Ikele
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Ijeoma J Aguzie
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Nelson I Ossai
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Joseph E Eyo
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| | - Christopher D Nwani
- Department of Zoology and Environmental Biology, University of Nigeria, Nigeria
| |
Collapse
|
22
|
Chen Y, Yu Y, An X, Zhang H, Gong W, Liang Y, Wang J. Changes in Lipid Metabolites and Enzyme Activities of Wheat Flour during Maturation. Foods 2024; 13:2537. [PMID: 39200465 PMCID: PMC11353444 DOI: 10.3390/foods13162537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The maturation of wheat flour is a transformative process that elevates its processing and culinary attributes to their peak performance levels. Despite extensive research on starch and gluten protein modifications, the impact of lipid changes has been largely unexplored. This study addresses this gap by examining the maturation of freshly milled wheat flour at 15 °C, 25 °C, and 40 °C over 60 days, focusing on enzymatic activities-lipase, lipoxidase, and catalase-and lipid metabolites, including free fatty acids, conjugated trienes, p-anisidine value, and total oxidation value. The results of this study showed that free fatty acids continued to increase at all temperatures, with the most significant increase of 50% at 15 °C. The p-anisidine value followed a pattern of initial increase followed by a decline, while conjugated trienes were markedly higher at 40 °C, suggesting temperature's significant influence on lipid peroxidation. Notably, total oxidation values became erratic post 30 days, indicating a shift in oxidative dynamics. This study underscores the correlation between lipid metabolites and enzymatic activities, revealing the enzymes' pivotal role in lipid oxidation. The interplay of temperature and time offers valuable insights for optimizing wheat flour maturation, ensuring superior quality for various applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jinshui Wang
- College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China; (Y.C.); (Y.Y.); (X.A.); (H.Z.); (W.G.); (Y.L.)
| |
Collapse
|
23
|
Badawi K, El Sharazly BM, Negm O, Khan R, Carter WG. Is Cadmium Genotoxicity Due to the Induction of Redox Stress and Inflammation? A Systematic Review. Antioxidants (Basel) 2024; 13:932. [PMID: 39199178 PMCID: PMC11351676 DOI: 10.3390/antiox13080932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/27/2024] [Accepted: 07/27/2024] [Indexed: 09/01/2024] Open
Abstract
The transition metal cadmium (Cd) is toxic to humans and can induce cellular redox stress and inflammation. Cd is a recognized carcinogen, but the molecular mechanisms associated with its genotoxicity and carcinogenicity are not defined. Therefore, a systematic review was undertaken to examine the scientific literature that has covered the molecular mechanism of Cd genotoxicity and its relationship to cellular redox stress and inflammation. An electronic database search of PubMed, Scopus, and the Web of Science Core Collection was conducted to retrieve the studies that had investigated if Cd genotoxicity was directly linked to the induction of redox stress and inflammation. Studies included exposure to Cd via in vitro and in vivo routes of administration. Of 214 publications retrieved, 10 met the inclusion criteria for this review. Preclinical studies indicate that Cd exposure causes the induction of reactive oxygen species (ROS) and, via concomitant activity of the transcription factor NF-κβ, induces the production of pro-inflammatory cytokines and a cytokine profile consistent with the induction of an allergic response. There is limited information regarding the impact of Cd on cellular signal transduction pathways, and the relationship of this to genotoxicity is still inconclusive. Nevertheless, pre-incubation with the antioxidants, N-acetylcysteine or sulforaphane, or the necroptosis inhibitor, necrostatin-1, reduces Cd toxicity; indicative that these agents may be a beneficial treatment adjunct in cases of Cd poisoning. Collectively, this review highlights that Cd-induced toxicity and associated tissue pathology, and ultimately the carcinogenic potential of Cd, may be driven by redox stress and inflammatory mechanisms.
Collapse
Affiliation(s)
- Khulud Badawi
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (K.B.); (B.M.E.S.)
- Department of Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Basma M. El Sharazly
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (K.B.); (B.M.E.S.)
- Parasitology Department, Faculty of Medicine, Tanta University, Tanta 31527, Egypt
| | - Ola Negm
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (O.N.); (R.K.)
- Medical Microbiology and Immunology Department, Faculty of Medicine, Mansoura University, El-Mansoura 35516, Egypt
| | - Raheela Khan
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (O.N.); (R.K.)
| | - Wayne G. Carter
- Clinical Toxicology Research Group, School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Uttoxeter Road, Derby DE22 3DT, UK; (K.B.); (B.M.E.S.)
| |
Collapse
|
24
|
Qi K, Li J, Hu Y, Qiao Y, Mu Y. Research progress in mechanism of anticancer action of shikonin targeting reactive oxygen species. Front Pharmacol 2024; 15:1416781. [PMID: 39076592 PMCID: PMC11284502 DOI: 10.3389/fphar.2024.1416781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 06/13/2024] [Indexed: 07/31/2024] Open
Abstract
Excessive buildup of highly reactive molecules can occur due to the generation and dysregulation of reactive oxygen species (ROS) and their associated signaling pathways. ROS have a dual function in cancer development, either leading to DNA mutations that promote the growth and dissemination of cancer cells, or triggering the death of cancer cells. Cancer cells strategically balance their fate by modulating ROS levels, activating pro-cancer signaling pathways, and suppressing antioxidant defenses. Consequently, targeting ROS has emerged as a promising strategy in cancer therapy. Shikonin and its derivatives, along with related drug carriers, can impact several signaling pathways by targeting components involved with oxidative stress to induce processes such as apoptosis, necroptosis, cell cycle arrest, autophagy, as well as modulation of ferroptosis. Moreover, they can increase the responsiveness of drug-resistant cells to chemotherapy drugs, based on the specific characteristics of ROS, as well as the kind and stage of cancer. This research explores the pro-cancer and anti-cancer impacts of ROS, summarize the mechanisms and research achievements of shikonin-targeted ROS in anti-cancer effects and provide suggestions for designing further anti-tumor experiments and undertaking further experimental and practical research.
Collapse
Affiliation(s)
- Ke Qi
- Department of Diagnostic Clinical Laboratory Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Jiayi Li
- Department of Clinical Test Center, Medical Laboratory, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yang Hu
- Department of Diagnostic Clinical Laboratory Science, Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yiyun Qiao
- Department of Clinical Test Center, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yongping Mu
- Department of Clinical Test Center, Peking University Cancer Hospital (Inner Mongolia Campus), Affiliated Cancer Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| |
Collapse
|
25
|
Xu Z, Chen L, Luo Y, Wei YM, Wu NY, Luo LF, Wei YB, Huang J. Advances in metal-organic framework-based nanozymes in ROS scavenging medicine. NANOTECHNOLOGY 2024; 35:362006. [PMID: 38865988 DOI: 10.1088/1361-6528/ad572a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Reactive oxygen species (ROS) play important roles in regulating various physiological functions in the human body, however, excessive ROS can cause serious damage to the human body, considering the various limitations of natural enzymes as scavengers of ROS in the body, the development of better materials for the scavenging of ROS is of great significance to the biomedical field, and nanozymes, as a kind of nanomaterials which can show the activity of natural enzymes. Have a good potential for the development in the area of ROS scavenging. Metal-organic frameworks (MOFs), which are porous crystalline materials with a periodic network structure composed of metal nodes and organic ligands, have been developed with a variety of active nanozymes including catalase-like, superoxide dismutase-like, and glutathione peroxidase-like enzymes due to the adjustability of active sites, structural diversity, excellent biocompatibility, and they have shown a wide range of applications and prospects. In the present review, we first introduce three representative natural enzymes for ROS scavenging in the human body, methods for the detection of relevant enzyme-like activities and mechanisms of enzyme-like clearance are discussed, meanwhile, we systematically summarize the progress of the research on MOF-based nanozymes, including the design strategy, mechanism of action, and medical application, etc. Finally, the current challenges of MOF-based nanozymes are summarized, and the future development direction is anticipated. We hope that this review can contribute to the research of MOF-based nanozymes in the medical field related to the scavenging of ROS.
Collapse
Affiliation(s)
- Zhong Xu
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Liang Chen
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yan Luo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yan-Mei Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Ning-Yuan Wu
- Guangxi Medical University Life Sciences Institute, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Lan-Fang Luo
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Yong-Biao Wei
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| | - Jin Huang
- Pharmaceutical College, Guangxi Medical University, Nanning 530021, People's Republic of China
| |
Collapse
|
26
|
Wang Z, Liao S, Huang Z, Wang J, Wang Y, Yu W, Huang X, Luo M, Lin H, Zhou C. Dietary Effects of Fermented Cottonseed Meal Substituting Fishmeal on the Growth, Biochemical Indexes, Antioxidant Capacity, and Muscle Quality of Juvenile Golden Pompano ( Trachinotus ovatus). AQUACULTURE NUTRITION 2024; 2024:9972395. [PMID: 39555570 PMCID: PMC11208100 DOI: 10.1155/2024/9972395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 04/21/2024] [Accepted: 05/09/2024] [Indexed: 11/19/2024]
Abstract
This study investigated the effects of the dietary replacing fishmeal (FM) with fermented cottonseed meal (FCSM) on growth performance, body coloration, serum biochemistry, muscle quality, and liver antioxidant capacity of juvenile golden pompano (Trachinotus ovatus). Fish were fed with five experimental diets (0 (FM), 12.5% (CSM12.5), 25% (CSM25), 50% (CSM50), and 100% (CSM100) replacement levels) for 8 weeks. The weight gain rate (WGR), specific growth rate (SGR), and condition factor (CF) in fish fed with CSM25 were significantly higher than those of the FM (P < 0.05). ALT, GLU, TG, TC, and LDL of fish fed with CSM100 diet were significantly higher than those in FM (P < 0.05). No significant difference was observed in SOD, CAT, and MDA among all treatments (P > 0.05). The relative gene expression of Nrf2 of fish fed with CSM25 diet was higher than that of the other groups (P < 0.05). The relative gene expression of Keap-1 of fish fed with CSM25 diet was lower than those in FM (P < 0.05). In addition, the replacement of a high proportion of FM with FCSM negatively affect the liver antioxidant capacity of fish. With dietary replacement of FM with FCSM increasing 0%-25%, the relative expressions of GH, myf5, and MSTN were significantly upregulated (P > 0.05). Based on these results, we recommend that of FCSM in the diet of golden pompano, whereas the optimal level of FCSM should be carefully evaluated. In conclusion, the optimum level of dietary replacing FM with FCSM in T. ovatus diet was 24.74%-29.38% based on SGR and WGR.
Collapse
Affiliation(s)
- Zhanzhan Wang
- Key Laboratory of Aquatic Product ProcessingMinistry of Agriculture and Rural AffairsSouth China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Guangzhou 510300, China
- School of FisheriesTianjin Agricultural University, Tianjin 300384, China
| | - Shuling Liao
- School of Life ScienceGuangzhou University, Guangzhou 510006, China
| | - Zhong Huang
- Shenzhen Base of South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Shenzhen 518121, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan ProvinceSanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Jun Wang
- Key Laboratory of Aquatic Product ProcessingMinistry of Agriculture and Rural AffairsSouth China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan ProvinceSanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Yun Wang
- Key Laboratory of Aquatic Product ProcessingMinistry of Agriculture and Rural AffairsSouth China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan ProvinceSanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Wei Yu
- Shenzhen Base of South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Shenzhen 518121, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan ProvinceSanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Xiaolin Huang
- Shenzhen Base of South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Shenzhen 518121, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan ProvinceSanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Maoyan Luo
- School of Life ScienceGuangzhou University, Guangzhou 510006, China
| | - Heizhao Lin
- Shenzhen Base of South China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Shenzhen 518121, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan ProvinceSanya Tropical Fisheries Research Institute, Sanya 572018, China
| | - Chuanpeng Zhou
- Key Laboratory of Aquatic Product ProcessingMinistry of Agriculture and Rural AffairsSouth China Sea Fisheries Research InstituteChinese Academy of Fishery Sciences, Guangzhou 510300, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan ProvinceSanya Tropical Fisheries Research Institute, Sanya 572018, China
| |
Collapse
|
27
|
Cristian RE, Balta C, Herman H, Ciceu A, Trica B, Sbarcea BG, Miutescu E, Hermenean A, Dinischiotu A, Stan MS. Exploring In Vivo Pulmonary and Splenic Toxicity Profiles of Silicon Quantum Dots in Mice. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2778. [PMID: 38894040 PMCID: PMC11173407 DOI: 10.3390/ma17112778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024]
Abstract
Silicon-based quantum dots (SiQDs) represent a special class of nanoparticles due to their low toxicity and easily modifiable surface properties. For this reason, they are used in applications such as bioimaging, fluorescent labeling, drug delivery, protein detection techniques, and tissue engineering despite a serious lack of information on possible in vivo effects. The present study aimed to characterize and evaluate the in vivo toxicity of SiQDs obtained by laser ablation in the lung and spleen of mice. The particles were administered in three different doses (1, 10, and 100 mg QDs/kg of body weight) by intravenous injection into the caudal vein of Swiss mice. After 1, 6, 24, and 72 h, the animals were euthanized, and the lung and spleen tissues were harvested for the evaluation of antioxidant enzyme activity, lipid peroxidation, protein expression, and epigenetic and morphological changes. The obtained results highlighted a low toxicity in pulmonary and splenic tissues for concentrations up to 10 mg SiQDs/kg body, demonstrated by biochemical and histopathological analysis. Therefore, our study brings new experimental evidence on the biocompatibility of this type of QD, suggesting the possibility of expanding research on the biomedical applications of SiQDs.
Collapse
Affiliation(s)
- Roxana-Elena Cristian
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (R.-E.C.); (A.H.); (M.S.S.)
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Splaiul Independentei 296, 060031 Bucharest, Romania
| | - Cornel Balta
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (C.B.); (H.H.); (A.C.)
| | - Hildegard Herman
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (C.B.); (H.H.); (A.C.)
| | - Alina Ciceu
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (C.B.); (H.H.); (A.C.)
| | - Bogdan Trica
- National Institute for Research & Development in Chemistry and Petrochemistry (INCDCP-ICECHIM), 202 Spl. Independentei, 060021 Bucharest, Romania;
| | - Beatrice G. Sbarcea
- Materials Characterization Department, National Institute for Research & Development in Electrical Engineering (ICPE-CA), 313 Splaiul Unirii, 030138 Bucharest, Romania;
| | - Eftimie Miutescu
- Faculty of Medicine, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania;
| | - Anca Hermenean
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (R.-E.C.); (A.H.); (M.S.S.)
- “Aurel Ardelean” Institute of Life Sciences, Vasile Goldis Western University of Arad, 86 Rebreanu, 310414 Arad, Romania; (C.B.); (H.H.); (A.C.)
| | - Anca Dinischiotu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (R.-E.C.); (A.H.); (M.S.S.)
| | - Miruna S. Stan
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Splaiul Independentei, 050095 Bucharest, Romania; (R.-E.C.); (A.H.); (M.S.S.)
- Research Institute of the University of Bucharest (ICUB), University of Bucharest, 91-95 Spl. Independentei, 050095 Bucharest, Romania
| |
Collapse
|
28
|
Yao L, Zhu X, Shan Y, Zhang L, Yao J, Xiong H. Recent Progress in Anti-Tumor Nanodrugs Based on Tumor Microenvironment Redox Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310018. [PMID: 38269480 DOI: 10.1002/smll.202310018] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/30/2023] [Indexed: 01/26/2024]
Abstract
The growth state of tumor cells is strictly affected by the specific abnormal redox status of the tumor microenvironment (TME). Moreover, redox reactions at the biological level are also central and fundamental to essential energy metabolism reactions in tumors. Accordingly, anti-tumor nanodrugs targeting the disruption of this abnormal redox homeostasis have become one of the hot spots in the field of nanodrugs research due to the effectiveness of TME modulation and anti-tumor efficiency mediated by redox interference. This review discusses the latest research results of nanodrugs in anti-tumor therapy, which regulate the levels of oxidants or reductants in TME through a variety of therapeutic strategies, ultimately breaking the original "stable" redox state of the TME and promoting tumor cell death. With the gradual deepening of study on the redox state of TME and the vigorous development of nanomaterials, it is expected that more anti-tumor nano drugs based on tumor redox microenvironment regulation will be designed and even applied clinically.
Collapse
Affiliation(s)
- Lan Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Xiang Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Yunyi Shan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Liang Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Jing Yao
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| | - Hui Xiong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, Department of Pharmaceutics, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, P. R. China
| |
Collapse
|
29
|
Estornut C, Rinaldi G, Carceller MC, Estornut S, Pérez-Leal M. Systemic and local effect of oxidative stress on recurrent aphthous stomatitis: systematic review. J Mol Med (Berl) 2024; 102:453-463. [PMID: 38376817 DOI: 10.1007/s00109-024-02434-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/30/2024] [Accepted: 02/13/2024] [Indexed: 02/21/2024]
Abstract
Recurrent aphthous stomatitis (RAS) is a chronic and recurrent inflammatory disease of the mouth. It is characterised by the appearance of painful ulcers in the oral mucosa. RAS is believed to be a multifactorial disease with genetic predisposition, environmental factors and alterations in the immune system. Oxidative stress, caused by an imbalance between free radicals and the antioxidant system, also appears to be involved in the pathogenesis of RAS. Several risk factors, such as smoking, iron and vitamin deficiency and anxiety, may contribute to the development of the disease. Understanding the underlying mechanisms may help in the prevention and treatment of RAS. We searched PubMed, Scopus and Web of Science databases for articles on oxidative stress in patients with RAS from 2000 to 2023. Studies analysing oxidant and antioxidant levels in the blood and saliva of RAS patients and healthy controls were selected. Of 170 potentially eligible articles, 24 met the inclusion criteria: 11 studies on blood samples, 6 on salivary samples and 7 on both blood and salivary samples. Multiple oxidative and antioxidant markers were assessed in blood and saliva samples. Overall, statistically significant differences were found between RAS patients and healthy controls for most markers. In addition, increased oxidative DNA damage was observed in patients with RAS. Patients with RAS show elevated levels of oxidative stress compared to healthy controls, with a significant increase in oxidative markers and a significant decrease in antioxidant defences in saliva and blood samples.
Collapse
Affiliation(s)
- Cristina Estornut
- Faculty of Health Sciences, Department of Dentistry, Universidad Europea de Valencia, Valencia, Spain.
| | - Giulia Rinaldi
- Faculty of Health Sciences, Department of Dentistry, Universidad Europea de Valencia, Valencia, Spain
| | - María Carmen Carceller
- Faculty of Health Sciences, Department of Dentistry, Universidad Europea de Valencia, Valencia, Spain
- Department of Pharmacy, Pharmaceutical Technology and Parasitology, Faculty of Pharmacy and Food Sciences, University of Valencia, Av. Vicent Andrés Estellés s/n, Burjassot, Valencia, 46100, Spain
- Interuniversity Research Institute for Molecular Recognition and Technological Development (IDM), University of Valencia, Polytechnic University of Valencia, Av. Vicent A. Estellés s/n, Burjassot, Valencia, 46100, Spain
| | | | - Martín Pérez-Leal
- Faculty of Health Sciences, Department of Dentistry, Universidad Europea de Valencia, Valencia, Spain
| |
Collapse
|
30
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
31
|
Wei Y, Gu Y, Zhou Z, Wu C, Liu Y, Sun H. TRIM21 Promotes Oxidative Stress and Ferroptosis through the SQSTM1-NRF2-KEAP1 Axis to Increase the Titers of H5N1 Highly Pathogenic Avian Influenza Virus. Int J Mol Sci 2024; 25:3315. [PMID: 38542289 PMCID: PMC10970474 DOI: 10.3390/ijms25063315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/26/2024] [Accepted: 03/03/2024] [Indexed: 04/04/2024] Open
Abstract
Tripartite motif-containing protein 21 (TRIM21) is involved in signal transduction and antiviral responses through the ubiquitination of protein targets. TRIM21 was reported to be related to the imbalance of host cell homeostasis caused by viral infection. Our studies indicated that H5N1 highly pathogenic avian influenza virus (HPAIV) infection up-regulated TRIM21 expression in A549 cells. Western blot and qPCR results showed that knockdown of TRIM21 alleviated oxidative stress and ferroptosis induced by H5N1 HPAIV and promoted the activation of antioxidant pathways. Co-IP results showed that TRIM21 promoted oxidative stress and ferroptosis by regulating the SQSTM1-NRF2-KEAP1 axis by increasing SQSTM1 K63-linked polyubiquitination under the condition of HPAIV infection. In addition, TRIM21 attenuated the inhibitory effect of antioxidant NAC on HPAIV titers and enhanced the promoting effect of ferroptosis agonist Erastin on HPAIV titers. Our findings provide new insight into the role of TRIM21 in oxidative stress and ferroptosis induced by viral infection.
Collapse
Affiliation(s)
- Yifan Wei
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Yongxia Gu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Ziwei Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Changrong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Yanwei Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| | - Hailiang Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.W.); (Y.G.); (Z.Z.); (C.W.); (Y.L.)
- Key Laboratory of Zoonosis Control and Prevention of Guangdong Province, South China Agricultural University, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
32
|
Queiroz LG, Prado CCA, Melo EC, Moraes BR, de Oliveira PFM, Ando RA, Paiva TCB, Pompêo M, Rani-Borges B. Biofragmentation of Polystyrene Microplastics: A Silent Process Performed by Chironomus sancticaroli Larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4510-4521. [PMID: 38426442 DOI: 10.1021/acs.est.3c08193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Polystyrene (PS) is one of the main synthetic polymers produced around the world, and it is present in the composition of a wide variety of single-use objects. When released into the environment, these materials are degraded by environmental factors, resulting in microplastics. We investigated the ability of Chironomus sancticaroli (Diptera, Chironomidae) to promote the fragmentation of PS microspheres (24.5 ± 2.9 μm) and the toxic effects associated with exposure to this polymer. C. sancticaroli larvae were exposed to 3 different concentrations of PS (67.5, 135, and 270 particles g-1 of dry sediment) for 144 h. Significant lethality was observed only at the highest concentration. A significant reduction in PS particle size as well as evidence of deterioration on the surface of the spheres, such as grooves and cracks, was observed. In addition, changes in oxidative stress biomarkers (SOD, CAT, MDA, and GST) were also observed. This is the first study to report the ability of Chironomus sp. to promote the biofragmentation of microplastics. The information obtained demonstrates that the macroinvertebrate community can play a key role in the degradation of plastic particles present in the sediment of freshwater environments and can also be threatened by such particle pollution.
Collapse
Affiliation(s)
- Lucas G Queiroz
- Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, 05508-090 São Paulo, Brazil
| | - Caio C A Prado
- School of Engineering of Lorena, Department of Biotechnology, University of São Paulo, Estrada do Campinho s/n, Lorena, 12602-810 São Paulo, Brazil
| | - Eduardo C Melo
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Beatriz R Moraes
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Paulo F M de Oliveira
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Rômulo A Ando
- Institute of Chemistry, Department of Fundamental Chemistry, University of São Paulo, Av Prof. Lineu Prestes 748, São Paulo, 05508-900 São Paulo, Brazil
| | - Teresa C B Paiva
- School of Engineering of Lorena, Department of Basic and Environmental Sciences, University of São Paulo, Estrada do Campinho s/n, Lorena, 12602-810 São Paulo, Brazil
| | - Marcelo Pompêo
- Institute of Biosciences, University of São Paulo, Rua do Matão 277, São Paulo, 05508-090 São Paulo, Brazil
| | - Bárbara Rani-Borges
- Institute of Science and Technology, São Paulo State University, Av Três de Março 511, Sorocaba, 18087-180 São Paulo, Brazil
| |
Collapse
|
33
|
Iorga RE, Moraru AD, Costin D, Munteanu-Dănulescu RS, Brănișteanu DC. Current trends in targeting the oxidative stress in glaucoma (Review). Eur J Ophthalmol 2024; 34:328-337. [PMID: 37974458 DOI: 10.1177/11206721231214297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Glaucoma is a progressive optic neuropathy characterised by retinal ganglion cell degeneration and visual field loss. Glaucoma is considered to be the leading cause of blindness in the industrialised countries. Oxidative damage is an important pathogenic factor in glaucoma, which triggers trabecular meshwork (TM) degeneration, which then leads to intraocular hypertension. Neurodegenerative insults during glaucomatous neurodegeneration initiate an immune response to restore tissue homeostasis. However, the oxidative stress (OS) that develops during the pathogenic processes of glaucoma, along with the agerelated OS, plays a critical role in shifting the physiological equilibrium. In the TM from glaucoma donors, proinflammatory markers were found, which were induced by the activation of a stress response. Chronic changes in the composition of antioxidants found in aqueous humour may induce alterations in TM as well as in the optic nerve head cells. Highlighting the pathogenic role of reactive oxygen species (ROS) in glaucoma has implications in preventing this disease. Various clinical trials are available to test the efficacy of antioxidant drugs in glaucoma management. In this review, we discuss the OS as a therapeutic target, suggesting that the modulation of a pro-oxidant/antioxidant status might be a relevant target for glaucoma prevention and therapy.
Collapse
Affiliation(s)
- Raluca Eugenia Iorga
- Department of Ophthalmology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Andreea Dana Moraru
- Department of Ophthalmology, "Grigore T. Popa" University of Medicine and Pharmacy, Iasi, Romania
| | - Dănuț Costin
- Department of Ophthalmology, "N. Oblu" Clinical Hospital, Iasi, Romania
| | | | | |
Collapse
|
34
|
Ding Z, Wang X, Zou T, Hao X, Zhang Q, Sun B, Du W. Climate warming has divergent physiological impacts on sympatric lizards. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168992. [PMID: 38052387 DOI: 10.1016/j.scitotenv.2023.168992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023]
Abstract
Climate warming is expected to affect the vulnerability of sympatric species differentially due to their divergent traits, but the underlying physiological mechanisms of those impacts are poorly understood. We conducted field warming experiments (present climate vs. warm climate) using open-top chambers to determine the effects of climate warming on active body temperature, oxidative damage, immune competence, growth and survival in two sympatric desert-dwelling lizards, Eremias multiocellata and Eremias argus from May 2019 to September 2020. Our climate warming treatment did not affect survival of the two species, but it did increase active body temperatures and growth rate in E. multiocellata compared to E. argus. Climate warming also induced greater oxidative damage (higher malondialdehyde content and catalase activity) in E. multiocellata, but not in E. argus. Further, climate warming increased immune competence in E. multiocellata, but decreased immune competence in E. argus, with regards to white blood cell counts, bacteria killing ability and relative expression of immunoglobulin M. Our results suggest that climate warming enhances body temperature, and thereby oxidative stress, immune competence and growth in E. multiocellata, but decreases immune competence of E. argus, perhaps as a cost of thermoregulation to maintain body temperatures under climate warming. The divergent physiological effects of climate warming on sympatric species may have profound ecological consequences if it eventually leads to changes in reproductive activities, population dynamics and community structure. Our study highlights the importance of considering interspecific differences in physiological traits when we evaluate the impact of climate warming on organisms, even for those closely-related species coexisting within the same geographical area.
Collapse
Affiliation(s)
- Zihan Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xifeng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingting Zou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Xin Hao
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Qiong Zhang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Baojun Sun
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiguo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
35
|
Thorley J, Thomas C, Thon N, Nuttall H, Martin NRW, Bishop N, Bailey SJ, Clifford T. Combined effects of green tea supplementation and eccentric exercise on nuclear factor erythroid 2-related factor 2 activity. Eur J Appl Physiol 2024; 124:245-256. [PMID: 37439906 PMCID: PMC10786739 DOI: 10.1007/s00421-023-05271-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE This study investigated whether combining eccentric exercise and green tea supplementation synergistically increased nuclear factor erythroid 2-related factor 2 (NRF2) activity, a transcription factor responsible for coordinating endogenous antioxidant expression. METHODS In a double-blinded, randomized, between-subjects design, 24 males (mean [SD]; 23 [3] years, 179.6 [6.1] cm, 78.8 [10.6] kg) performed 100 drop jumps following a 6 days supplementation period with either green tea (poly)phenols (n = 12; 500 mg·d-1) or a placebo (n = 12; inulin). NRF2/antioxidant response element (ARE) binding in peripheral blood mononuclear cells (PBMCs), catalase (CAT) and glutathione reductase (GR) activity, 8-hydroxy-2'-deoxyguanosine (8-OHdG) excretion, and differential leukocyte counts were measured pre-, post-, 1 h and 24 h post-exercise. RESULTS Exercise did not increase NRF2/ARE binding (p = 0.12) (fold change vs rest: green tea = [post] 0.78 ± 0.45, [1 h] 1.17 ± 0.54, [24 h] 1.06 ± 0.56; placebo = [post] 1.40 ± 1.50, [1 h] 2.98 ± 3.70, [24 h] 1.04 ± 0.45). Furthermore, CAT activity (p = 0.12) and 8-OHdG excretion (p = 0.42) were unchanged in response to exercise and were not augmented by green tea supplementation (p > 0.05 for all). Exercise increased GR activity by 30% (p = 0.01), however no differences were found between supplement groups (p = 0.51). Leukocyte and neutrophil concentrations were only elevated post-exercise (p < 0.001 for all). CONCLUSION Eccentric exercise, either performed alone or in conjunction with green tea supplementation, did not significantly increase NRF2 activity in PBMCs. TRIAL REGISTRATION NUMBER osf.io/kz37g (registered: 15/09/21).
Collapse
Affiliation(s)
- Josh Thorley
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Craig Thomas
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Nicolas Thon
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Hannah Nuttall
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Neil R W Martin
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Nicolette Bishop
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Stephen J Bailey
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK
| | - Tom Clifford
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
36
|
Hooshangi Shayesteh MR, Hami Z, Chamanara M, Parvizi MR, Golaghaei A, Nassireslami E. Evaluation of the protective effect of coenzyme Q 10 on hepatotoxicity caused by acute phosphine poisoning. Int J Immunopathol Pharmacol 2024; 38:3946320241250286. [PMID: 38764158 PMCID: PMC11104032 DOI: 10.1177/03946320241250286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 04/12/2024] [Indexed: 05/21/2024] Open
Abstract
Background: Aluminum phosphide (AlP) poisoning is prevalent in numerous countries, resulting in high mortality rates. Phosphine gas, the primary agent responsible for AlP poisoning, exerts detrimental effects on various organs, notably the heart, liver and kidneys. Numerous studies have documented the advantageous impact of Coenzyme Q10 (CoQ10) in mitigating hepatic injuries. The objective of this investigation is to explore the potential protective efficacy of CoQ10 against hepatic toxicity arising from AlP poisoning. Method: The study encompassed distinct groups receiving almond oil, normal saline, exclusive CoQ10 (at a dosage of 100 mg/kg), AlP at 12 mg/kg; LD50 (lethal dose for 50%), and four groups subjected to AlP along with CoQ10 administration (post-AlP gavage). CoQ10 was administered at 10, 50, and 100 mg/kg doses via Intraparietal (ip) injections. After 24 h, liver tissue specimens were scrutinized for mitochondrial complex activities, oxidative stress parameters, and apoptosis as well as biomarkers such as aspartate transaminase (AST) and alanine transaminase (ALT). Results: AlP induced a significant decrease in the activity of mitochondrial complexes I and IV, as well as a reduction in catalase activity, Ferric Reducing Antioxidant Power (FRAP), and Thiol levels. Additionally, AlP significantly elevated oxidative stress levels, indicated by elevated reactive oxygen species (ROS) production, and resulted in the increment of hepatic biomarkers such as AST and ALT. Administration of CoQ10 led to a substantial improvement in the aforementioned biochemical markers. Furthermore, phosphine exposure resulted in a significant reduction in viable hepatocytes and an increase in apoptosis. Co-treatment with CoQ10 exhibited a dose-dependent reversal of these observed alterations. Conclusion: CoQ10 preserved mitochondrial function, consequently mitigating oxidative damage. This preventive action impeded the progression of heart cells toward apoptosis.
Collapse
Affiliation(s)
- Mohammad Reza Hooshangi Shayesteh
- Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Zahra Hami
- Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohsen Chamanara
- Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Parvizi
- Department of Physiology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
| | - Alireza Golaghaei
- Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| | - Ehsan Nassireslami
- Department of Pharmacology and Toxicology, Faculty of Medicine, AJA University of Medical Sciences, Tehran, Iran
- Toxicology Research Center, AJA University of Medical Sciences, Tehran, Iran
| |
Collapse
|
37
|
Hassan HA, Ahmed HS, Hassan DF. Free radicals and oxidative stress: Mechanisms and therapeutic targets. Hum Antibodies 2024; 32:151-167. [PMID: 39031349 DOI: 10.3233/hab-240011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
BACKGROUND Free radicals are small extremely reactive species that have unpaired electrons. Free radicals include subgroups of reactive species, which are all a product of regular cellular metabolism. Oxidative stress happens when the free radicals production exceeds the capacity of the antioxidant system in the body's cells. OBJECTIVE The current review clarifies the prospective role of antioxidants in the inhibition and healing of diseases. METHODS Information on oxidative stress, free radicals, reactive oxidant species, and natural and synthetic antioxidants was obtained by searching electronic databases like PubMed, Web of Science, and Science Direct, with articles published between 1987 and 2023 being included in this review. RESULTS Free radicals exhibit a dual role in living systems. They are toxic byproducts of aerobic metabolism that lead to oxidative injury and tissue disorders and act as signals to activate appropriate stress responses. Endogenous and exogenous sources of reactive oxygen species are discussed in this review. Oxidative stress is a component of numerous diseases, including diabetes mellitus, atherosclerosis, cardiovascular disease, Alzheimer's disease, Parkinson's disease, and cancer. Although various small molecules assessed as antioxidants have shown therapeutic prospects in preclinical studies, clinical trial outcomes have been inadequate. Understanding the mechanisms through which antioxidants act, where, and when they are active may reveal a rational approach that leads to more tremendous pharmacological success. This review studies the associations between oxidative stress, redox signaling, and disease, the mechanisms through which oxidative stress can donate to pathology, the antioxidant defenses, the limits of their effectiveness, and antioxidant defenses that can be increased through physiological signaling, dietary constituents, and probable pharmaceutical interference. Prospective clinical applications of enzyme mimics and current progress in metal- and non-metal-based materials with enzyme-like activities and protection against chronic diseases have been discussed. CONCLUSION This review discussed oxidative stress as one of the main causes of illnesses, as well as antioxidant systems and their defense mechanisms that can be useful in inhibiting these diseases. Thus, the positive and deleterious effects of antioxidant molecules used to lessen oxidative stress in numerous human diseases are discussed. The optimal level of vitamins and minerals is the amount that achieves the best feed benefit, best growth rate, and health, including immune efficiency, and provides sufficient amounts to the body.
Collapse
|
38
|
Pinoșanu EA, Surugiu R, Burada E, Pîrșcoveanu D, Stănciulescu CE, Sandu RE, Pisoschi C, Albu CV. Oxidative Stress and Antioxidant Defense Mechanisms in Acute Ischemic Stroke Patients with Concurrent COVID-19 Infection. Int J Mol Sci 2023; 24:16790. [PMID: 38069113 PMCID: PMC10706234 DOI: 10.3390/ijms242316790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/18/2023] Open
Abstract
Stroke remains a debilitating cerebrovascular condition associated with oxidative stress, while COVID-19 has emerged as a global health crisis with multifaceted systemic implications. This study investigates the hypothesis that patients experiencing acute ischemic stroke alongside COVID-19 exhibit elevated oxidative stress markers and altered antioxidant defense mechanisms compared to those with acute ischemic stroke. We conducted a single-center prospective cross-sectional study to investigate oxidative stress balance through oxidative damage markers: TBARS (thiobarbituric acid reactive substances level) and PCARB (protein carbonyls); antioxidant defense mechanisms: TAC (total antioxidant capacity), GPx (glutathione peroxidase), GSH (reduced glutathione), CAT (catalase), and SOD (superoxide dismutase); as well as inflammatory response markers: NLR (neutrophil-to-lymphocyte ratio), CRP (C-reactive protein), and ESR (erythrocyte sedimentation rate). Statistical analyses and correlation models were employed to elucidate potential associations and predictive factors. Our results revealed increased oxidative stress, predominantly indicated by elevated levels of TBARS in individuals experiencing ischemic stroke alongside a concurrent COVID-19 infection (p < 0.0001). The Stroke-COVID group displayed notably elevated levels of GSH (p = 0.0139 *), GPx (p < 0.0001 ****), SOD (p = 0.0363 *), and CAT (p = 0.0237 *) activities. Multivariate analysis found a significant association for TBARS (p < 0.0001 ****), PCARB (p = 0.0259 *), and GPx activity (p < 0.0001 ****), together with NLR (p = 0.0220 *) and CRP (p = 0.0008 ***). Notably, the interplay between stroke and COVID-19 infection appears to amplify oxidative damage, potentially contributing to exacerbated neurological deficits and poorer outcomes. This study highlights the intricate relationship between oxidative stress, inflammation, and concurrent health conditions. Understanding these interactions may open avenues for novel therapeutic strategies aimed at ameliorating oxidative damage in patients with acute ischemic stroke and COVID-19, ultimately improving their prognosis and quality of life.
Collapse
Affiliation(s)
- Elena Anca Pinoșanu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
- Doctoral School, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania
| | - Roxana Surugiu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (R.S.); (C.E.S.)
| | - Emilia Burada
- Department of Physiology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania;
| | - Denisa Pîrșcoveanu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
| | - Camelia Elena Stănciulescu
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (R.S.); (C.E.S.)
| | - Raluca Elena Sandu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (R.S.); (C.E.S.)
| | - Cătălina Pisoschi
- Department of Biochemistry, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (R.S.); (C.E.S.)
| | - Carmen Valeria Albu
- Department of Neurology, University of Medicine and Pharmacy of Craiova, St. Petru Rares, No. 2-4, 200433 Craiova, Romania; (E.A.P.); (D.P.); (C.V.A.)
| |
Collapse
|
39
|
de Figueiredo AMB, Moraes D, Bailão AM, Rocha OB, Silva LOS, Ribeiro-Dias F, Soares CMDA. Proteomic analysis reveals changes in the proteome of human THP-1 macrophages infected with Paracoccidioides brasiliensis. Front Cell Infect Microbiol 2023; 13:1275954. [PMID: 38045758 PMCID: PMC10693345 DOI: 10.3389/fcimb.2023.1275954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/24/2023] [Indexed: 12/05/2023] Open
Abstract
Paracoccidioides spp. is the etiologic agent of Paracoccidioidomycosis (PCM), a systemic disease with wide distribution in Latin America. Macrophages are very important cells during the response to infection by P. brasiliensis. In this study, we performed a proteomic analysis to evaluate the consequences of P. brasiliensis yeast cells on the human THP-1 macrophage proteome. We have identified 443 and 2247 upregulated or downregulated proteins, respectively, in macrophages co-cultured with yeast cells of P. brasiliensis in comparison to control macrophages unexposed to the fungus. Proteomic analysis revealed that interaction with P. brasiliensis caused metabolic changes in macrophages that drastically affected energy production pathways. In addition, these macrophages presented regulated many factors related to epigenetic modifications and gene transcription as well as a decrease of many proteins associated to the immune system activity. This is the first human macrophage proteome derived from interactions with P. brasiliensis, which contributes to elucidating the changes that occur during the host response to this fungus. Furthermore, it highlights proteins that may be targets for the development of new therapeutic approaches to PCM.
Collapse
Affiliation(s)
- Ana Marina Barroso de Figueiredo
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Dayane Moraes
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Alexandre Melo Bailão
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Olivia Basso Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Lana Ohara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fátima Ribeiro-Dias
- Laboratório de Imunidade Natural (LIN), Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| |
Collapse
|
40
|
Li Z, Han C, Wang Z, Li Z, Ruan L, Lin H, Zhou C. Black soldier fly pulp in the diet of golden pompano: Effect on growth performance, liver antioxidant and intestinal health. FISH & SHELLFISH IMMUNOLOGY 2023; 142:109156. [PMID: 37827247 DOI: 10.1016/j.fsi.2023.109156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 10/14/2023]
Abstract
Black soldier fly (Hermetia illucens) has been widely researched as a protein source for fish meal replacement in aquaculture, but few studies have focused on its potential as a feed additive for growth and immune enhancement. We conducted a 56-day culture experiment to determine the impact of feed addition of black soldier fly pulp (BSFP, with 86.2% small peptides in dry basis) on growth performance, plasma biochemistry, liver antioxidant levels, intestinal immunity, digestion and microbiota of juvenile golden pompano (Trachinotus ovatus, 5.63 ± 0.02 g). BSFP was added to the basal diet at 0%, 1%, 3%, 5%, 7% and 9% (named Control, BSFP-1, BSFP-3, BSFP-5, BSFP-7, BSFP-9), respectively. BSFP increased the weight gain rate, specific growth rate, protein efficiency ratio and reduced the feed conversion rate of juvenile T. ovatus, the optimal growth performance was reached at BSFP-1, after which a negative feedback phenomenon was observed. Low levels of BSFP upregulated the expression of hepatic antioxidant, intestinal tight junctions, anti-inflammatory related genes and enhanced antioxidant, immune and intestinal digestive enzyme activities, which simultaneously reduced hepatic malondialdehyde and plasma aspartate transaminase and alanine aminotransferase concentrations. However, at BSFP-7, catalase activity was significantly reduced, while NF-κB p65 and pro-inflammatory cytokines transcription was significantly enhanced (P < 0.05). The results suggest that high doses of BSFP addition may damage fish health by inhibiting small peptide uptake, decreasing the activity of antioxidant enzyme and activating the canonical NF-κB pathway. Conversely, low doses of BSFP enhanced intestinal tight junction protein transcription, digestive enzyme activity and immune performance, inhibited pathogenic microbiota, while enhancing liver antioxidant capacity, which was associated with activated Nrf2-Keap1 pathway and suppressed NF-κB pathway, showing its potential as a feed additive to aquafeeds.
Collapse
Affiliation(s)
- Zuzhe Li
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Chengzong Han
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhanzhan Wang
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China
| | - Zhenyu Li
- Guangdong Green Coral Bio-Technology Co., Ltd, Dongguan, 523000, China
| | - Leshan Ruan
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Heizhao Lin
- Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya, 572019, China
| | - Chuanpeng Zhou
- Key Laboratory of Aquatic Product Processing, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya, 572019, China.
| |
Collapse
|
41
|
Bushra R, Uzair B, Ali A, Manzoor S, Abbas S, Ahmed I. Draft genome sequence of a halotolerant plant growth-promoting bacterium Pseudarthrobacter oxydans NCCP-2145 isolated from rhizospheric soil of mangrove plant Avicennia marina. ELECTRON J BIOTECHN 2023; 66:52-59. [DOI: 10.1016/j.ejbt.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024] Open
|
42
|
Gerdemann A, Broenhorst M, Behrens M, Humpf HU, Esselen M. Polyphenols Cause Structure Dependent Effects on the Metabolic Profile of Human Hepatocarcinogenic Cells. Mol Nutr Food Res 2023; 67:e2300052. [PMID: 37672806 DOI: 10.1002/mnfr.202300052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Indexed: 09/08/2023]
Abstract
SCOPE Although many beneficial health effects are attributed to polyphenols their influence on the human metabolome has not been elucidated yet. The ubiquitous occurrence of polyphenols in the human diet demands comprehensive knowledge about physiological and toxicological effects of these compounds on human cells. METHODS AND RESULTS The human hepatocarcinogenic cell line HepG2 is used to elucidate the effects of 13 polyphenols and three respective phenolic degradation products on the human metabolome using HPLC-MS/MS. To investigate structure-activity-relationships, structurally related examples of polyphenols from different compound classes are selected. The analysis of catechins points toward a relation between the degree of hydroxylation and the extent of metabolic effects particularly on the urea cycle and the pentose phosphate pathway (PPP). A correlation between the modulation of the PPP and the stability of the compounds is demonstrated, which may be caused by reactive oxygen species (ROS). The incubation of flavones and alkenylbenzenes demonstrates reduced activity of methoxylated compounds and no impact of the B-ring position. CONCLUSION In general, polyphenols induce a multitude of metabolic effects, for example, on energy metabolism, PPP, and urea cycle. These metabolic alterations may be related to the widely reported bioactivity of these compounds such as the anticarcinogenic effects.
Collapse
Affiliation(s)
- Andrea Gerdemann
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Melissa Broenhorst
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Matthias Behrens
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Melanie Esselen
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| |
Collapse
|
43
|
Sun L, Wang W, Zhang X, Gao Z, Cai S, Wang S, Li Y. Bacillus velezensis BVE7 as a promising agent for biocontrol of soybean root rot caused by Fusarium oxysporum. Front Microbiol 2023; 14:1275986. [PMID: 37928669 PMCID: PMC10623355 DOI: 10.3389/fmicb.2023.1275986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Introduction Soybean root rot (SRR), caused by Fusarium oxysporum, is a severe soil-borne disease in soybean production worldwide, which adversely impacts the yield and quality of soybean. The most effective method for managing crop soil-borne diseases and decreasing reliance on chemical fungicides, such as Bacillus spp., is via microbial biocontrol agents. Methods and Results In this study, a soil-isolated strain BVE7 was identified as B. velezensis, exhibiting broad-spectrum activity against various pathogens causing soybean root rot. BVE7 sterile filtrate, at a concentration of 10%, demonstrated significant antifungal activity by inhibiting the conidial germination, production, and mycelial growth of F. oxysporum by 61.11%, 73.44%, and 85.42%, respectively, causing hyphal malformations. The antifungal compound produced by BVE7 demonstrated adaptability to a standard environment. The pot experiment showed that BVE7 suspension could effectively control soybean root rot, with the highest control efficiency of 75.13%. Furthermore, it considerably enhanced the activity of catalase, phenylalanine ammonia lyase, superoxide dismutase, and peroxidase in soybean roots, while also preventing an increase in malondialdehyde activity. By improving the host resistance towards pathogens, the damage caused by fungi and the severity of soybean root rot have been reduced. Discussion This study presents the innovative utilization of B. velezensis, isolated from soybean roots in cold conditions, for effectively controlling soybean root rot caused by F. oxysporum. The findings highlight the remarkable regional and adaptive characteristics of this strain, making it an excellent candidate for combating soybean root rot in diverse environments. In conclusion, B. velezensis BVE7 demonstrated potential in effectively reducing SRR incidence and can be considered as a viable option for SRR management.
Collapse
Affiliation(s)
- Lei Sun
- Heilongjiang Academy of Black Soil Conservation & Utilization, Harbin, China
| | - Wei Wang
- Heilongjiang Academy of Black Soil Conservation & Utilization, Harbin, China
| | - Xue Zhang
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhongchao Gao
- Heilongjiang Academy of Black Soil Conservation & Utilization, Harbin, China
| | - Shanshan Cai
- Heilongjiang Academy of Black Soil Conservation & Utilization, Harbin, China
| | - Shuang Wang
- Heilongjiang Academy of Black Soil Conservation & Utilization, Harbin, China
| | - Yonggang Li
- College of Plant Protection, Northeast Agricultural University, Harbin, Heilongjiang, China
| |
Collapse
|
44
|
Bu LL, Yuan HH, Xie LL, Guo MH, Liao DF, Zheng XL. New Dawn for Atherosclerosis: Vascular Endothelial Cell Senescence and Death. Int J Mol Sci 2023; 24:15160. [PMID: 37894840 PMCID: PMC10606899 DOI: 10.3390/ijms242015160] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/01/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Endothelial cells (ECs) form the inner linings of blood vessels, and are directly exposed to endogenous hazard signals and metabolites in the circulatory system. The senescence and death of ECs are not only adverse outcomes, but also causal contributors to endothelial dysfunction, an early risk marker of atherosclerosis. The pathophysiological process of EC senescence involves both structural and functional changes and has been linked to various factors, including oxidative stress, dysregulated cell cycle, hyperuricemia, vascular inflammation, and aberrant metabolite sensing and signaling. Multiple forms of EC death have been documented in atherosclerosis, including autophagic cell death, apoptosis, pyroptosis, NETosis, necroptosis, and ferroptosis. Despite this, the molecular mechanisms underlying EC senescence or death in atherogenesis are not fully understood. To provide a comprehensive update on the subject, this review examines the historic and latest findings on the molecular mechanisms and functional alterations associated with EC senescence and death in different stages of atherosclerosis.
Collapse
Affiliation(s)
- Lan-Lan Bu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Huan-Huan Yuan
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Ling-Li Xie
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Min-Hua Guo
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China; (H.-H.Y.); (L.-L.X.); (M.-H.G.)
| | - Duan-Fang Liao
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (L.-L.B.); (D.-F.L.)
| | - Xi-Long Zheng
- Departments of Biochemistry and Molecular Biology and Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
45
|
Zhang T, Yang F, Dai X, Liao H, Wang H, Peng C, Liu Z, Li Z, Shan J, Cao H. Role of Caveolin-1 on the molybdenum and cadmium exposure induces pulmonary ferroptosis and fibrosis in the sheep. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122207. [PMID: 37467914 DOI: 10.1016/j.envpol.2023.122207] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Molybdenum (Mo) is an essential trace element that exists in all tissues of the human body, but excessive Mo intake has a toxic effect. Cadmium (Cd) is a widely known and harmful heavy metal that exists in the environment. Although studies on Mo and Cd are available, it is still unknown how the combination of Mo and Cd causes pulmonary injury. Forty-eight sheep that were 2 months old were chosen and randomly separated into four groups as follows: Control group, Mo group, Cd group, and Mo + Cd group. The experiment lasted 50 days. The results showed that Mo and/or Cd caused significant pathological damage and oxidative stress in the lungs of sheep. Moreover, Mo and/or Cd exposure could downregulate the expression levels of xCT (SLC7A11 and SLC3A2), GPX4 and FTH-1 and upregulate the expression levels of PTGS2 and NCOA4, which led to iron overload and ferroptosis. Ferroptosis induced Wnt/β-catenin-mediated fibrosis by elevating the expression levels of Caveolin-1 (CAV-1), Wnt 1, Wnt3a, β-catenin (CTNNB1), TCF4, Cyclin D1, mmp7, α-SMA (ACTA2), Collagen 1 (COL1A1) and Vimentin. These changes were particularly noticeable in the Mo and Cd combination group. In conclusion, these data demonstrated that Mo and/or Cd exposure led to lung ferroptosis by inhibiting the SLC7A11/GSH/GPX4 axis, which in turn increases CAV-1 expression and subsequently activates the Wnt/β-catenin pathway, leading to fibrosis in sheep lungs.
Collapse
Affiliation(s)
- Tao Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Xueyan Dai
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huan Liao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huating Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chengcheng Peng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Zirui Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Zhiyuan Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Jiyi Shan
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
46
|
Park J, Lee HH, Moon H, Lee N, Kim S, Kim JE, Lee Y, Min K, Kim H, Choi GJ, Lee YW, Seo YS, Son H. A combined transcriptomic and physiological approach to understanding the adaptive mechanisms to cope with oxidative stress in Fusarium graminearum. Microbiol Spectr 2023; 11:e0148523. [PMID: 37671872 PMCID: PMC10581207 DOI: 10.1128/spectrum.01485-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 07/04/2023] [Indexed: 09/07/2023] Open
Abstract
In plant-pathogen interactions, oxidative bursts are crucial for plants to defend themselves against pathogen infections. Rapid production and accumulation of reactive oxygen species kill pathogens directly and cause local cell death, preventing pathogens from spreading to adjacent cells. Meanwhile, the pathogens have developed several mechanisms to tolerate oxidative stress and successfully colonize plant tissues. In this study, we investigated the mechanisms responsible for resistance to oxidative stress by analyzing the transcriptomes of six oxidative stress-sensitive strains of the plant pathogenic fungus Fusarium graminearum. Weighted gene co-expression network analysis identified several pathways related to oxidative stress responses, including the DNA repair system, autophagy, and ubiquitin-mediated proteolysis. We also identified hub genes with high intramodular connectivity in key modules and generated deletion or conditional suppression mutants. Phenotypic characterization of those mutants showed that the deletion of FgHGG4, FgHGG10, and FgHGG13 caused sensitivity to oxidative stress, and further investigation on those genes revealed that transcriptional elongation and DNA damage responses play roles in oxidative stress response and pathogenicity. The suppression of FgHGL7 also led to hypersensitivity to oxidative stress, and we demonstrated that FgHGL7 plays a crucial role in heme biosynthesis and is essential for peroxidase activity. This study increases the understanding of the adaptive mechanisms to cope with oxidative stress in plant pathogenic fungi. IMPORTANCE Fungal pathogens have evolved various mechanisms to overcome host-derived stresses for successful infection. Oxidative stress is a representative defense system induced by the host plant, and fungi have complex response systems to cope with it. Fusarium graminearum is one of the devastating plant pathogenic fungi, and understanding its pathosystem is crucial for disease control. In this study, we investigated adaptive mechanisms for coping with oxidative stress at the transcriptome level using oxidative stress-sensitive strains. In addition, by introducing genetic modification technique such as CRISPR-Cas9 and the conditional gene expression system, we identified pathways/genes required for resistance to oxidative stress and also for virulence. Overall, this study advances the understanding of the oxidative stress response and related mechanisms in plant pathogenic fungi.
Collapse
Affiliation(s)
- Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hyun-Hee Lee
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Heeji Moon
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Nahyun Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Sieun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jung-Eun Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, Republic of Korea
| | - Yoonji Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Kyunghun Min
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Young-Su Seo
- Department of Integrated Biological Science, Pusan National University, Busan, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
47
|
Yang F, Liu Y, Zhang X, Liu X, Wang G, Jing X, Wang XF, Zhang Z, Hao GF, Zhang S, You CX. Oxidative post-translational modification of catalase confers salt stress acclimatization by regulating H 2O 2 homeostasis in Malus hupehensis. JOURNAL OF PLANT PHYSIOLOGY 2023; 287:154037. [PMID: 37354701 DOI: 10.1016/j.jplph.2023.154037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/29/2023] [Accepted: 06/08/2023] [Indexed: 06/26/2023]
Abstract
Reactive oxygen species (ROS) play an essential role as both signaling molecule and damage agent during salt stress. As a signaling molecule, proper accumulation of H2O2 is crucial to trigger stress response and enhance stress tolerance. However, the dynamic regulation mechanism of H2O2 remains unclear. Here, we show that MhCAT2 (catalase 2 in Malus hupehensis) undergoes oxidative modification in an O2•--dependent manner and that oxidation at His225 residue reduces the MhCAT2 activity. Furthermore, the substitution of His225 with Tyr weakens the activity of MhCAT2. The oxidation modification provides a post-translational brake mechanism for the excessive scavenging of H2O2 caused by salt stress-induced catalase (CAT) over-expression. Overall, this finding provides mechanistic insights on stress tolerance augmentation by an O2•--mediated switch that regulates H2O2 homeostasis in Malus hupehensis.
Collapse
Affiliation(s)
- Fei Yang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| | - Yankai Liu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| | - Xiao Zhang
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, PR China.
| | - Xuzhe Liu
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, China.
| | - Guanzhu Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| | - Xiuli Jing
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| | - Zhenlu Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| | - Ge-Fei Hao
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Guizhou University, Guiyang, PR China.
| | - Shuai Zhang
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Taian, Shandong, China.
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong, China.
| |
Collapse
|
48
|
Leichtweis J, Welter N, Vieira Y, Storck TR, Clasen B, Silvestri S, Carissimi E. Use of a new ZnFe2O4/biochar composite for degradation and ecotoxicity assessment of effluent containing methylene blue dye. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
49
|
Cao S, Chang J, Yue X, Li J, Liu X. Potential virulence factors of Nocardia seriolae AHLQ20-01 based on whole-genome analysis and its pathogenicity to largemouth bass (Micropterus salmoides). JOURNAL OF FISH DISEASES 2023; 46:333-345. [PMID: 36579505 DOI: 10.1111/jfd.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Nocardia seriolae is a major causative agent of fish nocardiosis that results in serious economic losses in the aquaculture industry. However, the virulence factors and pathogenic mechanisms of the bacterium are poorly understood. Here, a new N. seriolae strain AHLQ20-01 was isolated from the diseased Micropterus salmoides and identified by phenotypic examination combined with 16S rRNA sequencing. Subsequently, the potential virulence factors of the strain were analysed at genome level by whole-genome sequencing. The results showed that the whole-genome sequence derived from N. seriolae AHLQ20-01 circular chromosome contains 8,129,380 bp DNA with G + C content of 68.14%, and encompasses 7650 protein-coding genes, 114 pseudo-genes, 3 rRNAs, 66 tRNAs and 36 non-coding RNAs. More importantly, a total of 139 genes, which mainly involved in adhesion, invasion, resistance to oxidative and nitrosative stress, phagosome arresting, iron acquisition system, toxin production and bacterial secretion systems, were identified as core virulence-associated genes. Furthermore, the pathogenicity of N. seriolae AHLQ20-01 to M. salmoides was further investigated through experimental infection. It was found that the LD50 value of the strain to M. salmoides was 9.3 × 106 colony forming unit/fish. Histopathological examination demonstrated typical granuloma with varying sizes in the liver, head kidney, spleen and heart of the experimentally infected fish. Terminal deoxynucleotidyl transferase dUTP nick end labelling assay and 4',6-diamidino-2-phenylindole staining showed that there were distinctly more apoptotic cells in all the tested tissues in the infection group, but not in the control group. Together, these findings provide the foundation to further explore the pathogenic mechanism of N. seriolae, which might contribute to the prevention and treatment of fish nocardiosis.
Collapse
Affiliation(s)
- Shoulin Cao
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P.R. China
| | - Jiaojiao Chang
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P.R. China
| | - Xiaozhen Yue
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P.R. China
| | - Jinnian Li
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P.R. China
| | - Xuelan Liu
- Anhui Province Key Lab of Veterinary Pathobiology and Disease Control, College of Animal Science and Technology, Anhui Agricultural University, Hefei, P.R. China
| |
Collapse
|
50
|
Hu M, Gou T, Chen Y, Xu M, Chen R, Zhou T, Liu J, Peng C, Ye Q. A Novel Drug Delivery System: Hyodeoxycholic Acid-Modified Metformin Liposomes for Type 2 Diabetes Treatment. Molecules 2023; 28:molecules28062471. [PMID: 36985444 PMCID: PMC10055618 DOI: 10.3390/molecules28062471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
Metformin is a first-line drug for the clinical treatment of type 2 diabetes; however, it always leads to gastrointestinal tolerance, low bioavailability, short half-life, etc. Liposome acts as an excellent delivery system that could reduce drug side effects and promote bioavailability. Hyodeoxycholic acid, a cholesterol-like structure, can regulate glucose homeostasis and reduce the blood glucose levels. As an anti-diabetic active ingredient, hyodeoxycholic acid modifies liposomes to make it overcome the disadvantages of metformin as well as enhance the hypoglycemic effect. By adapting the thin-film dispersion method, three types of liposomes with different proportions of hyodeoxycholic acid and metformin were prepared (HDCA:ME-(0.5:1)-Lips, HDCA:ME-(1:1)-Lips, and HDCA:ME-(2:1)-Lips). Further, the liposomes were characterized, and the anti-type 2 diabetes activity of liposomes was evaluated. The results from this study indicated that three types of liposomes exhibited different characteristics—Excessive hyodeoxycholic acid decreased encapsulation efficiency and drug loading. In the in vivo experiments, liposomes could reduce the fasting blood glucose levels, improve glucose tolerance, regulate oxidative stress markers and protect liver tissue in type 2 diabetic mice. These results indicated that HDCA:ME-(1:1)-Lips was the most effective among the three types of liposomes prepared and showed better effects than metformin. Hyodeoxycholic acid can enhance the hypoglycemic effect of metformin and play a suitable role as an excipient in the liposome.
Collapse
Affiliation(s)
- Minghao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tingting Gou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuchen Chen
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Min Xu
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rong Chen
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Zhou
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Junjing Liu
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.P.); (Q.Y.); Tel.: +86-139-8057-0716 (Q.Y.)
| | - Qiang Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- College of Pharmacy, School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (C.P.); (Q.Y.); Tel.: +86-139-8057-0716 (Q.Y.)
| |
Collapse
|