1
|
Ouali R, Vieira LR, Salmon D, Bousbata S. Trypanosoma cruzi reprograms mitochondrial metabolism within the anterior midgut of its vector Rhodnius prolixus during the early stages of infection. Parasit Vectors 2024; 17:381. [PMID: 39242536 PMCID: PMC11380418 DOI: 10.1186/s13071-024-06415-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/18/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Trypanosoma cruzi is transmitted to humans by hematophagous bugs belonging to the Triatominae subfamily. Its intra-vectorial cycle is complex and occurs exclusively in the insect's midgut. Dissecting the elements involved in the cross-talk between the parasite and its vector within the digestive tract should provide novel targets for interrupting the parasitic life cycle and affecting vectorial competence. These interactions are shaped by the strategies that parasites use to infect and exploit their hosts, and the host's responses that are designed to detect and eliminate parasites. The objective of the current study is to characterize the impact of T. cruzi establishment within its vector on the dynamics of its midgut. METHODS In this study, we evaluated the impact of T. cruzi infection on protein expression within the anterior midgut of the model insect Rhodnius prolixus at 6 and 24 h post-infection (hpi) using high-throughput quantitative proteomics. RESULTS Shortly after its ingestion, the parasite modulates the proteome of the digestive epithelium by upregulating 218 proteins and negatively affecting the expression of 11 proteins involved in a wide array of cellular functions, many of which are pivotal due to their instrumental roles in cellular metabolism and homeostasis. This swift response underscores the intricate manipulation of the vector's cellular machinery by the parasite. Moreover, a more in-depth analysis of proteins immediately induced by the parasite reveals a pronounced predominance of mitochondrial proteins, thereby altering the sub-proteomic landscape of this organelle. This includes various complexes of the respiratory chain involved in ATP generation. In addition to mitochondrial metabolic dysregulation, a significant number of detoxifying proteins, such as antioxidant enzymes and P450 cytochromes, were immediately induced by the parasite, highlighting a stress response. CONCLUSIONS This study is the first to illustrate the response of the digestive epithelium upon contact with T. cruzi, as well as the alteration of mitochondrial sub-proteome by the parasite. This manipulation of the vector's physiology is attributable to the cascade activation of a signaling pathway by the parasite. Understanding the elements of this response, as well as its triggers, could be the foundation for innovative strategies to control the transmission of American trypanosomiasis, such as the development of targeted interventions aimed at disrupting parasite proliferation and transmission within the triatomine vector.
Collapse
Affiliation(s)
- Radouane Ouali
- Laboratory of Vector-Pathogen Biology, Proteomic Platform, Department of Molecular Biology, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
| | - Larissa Rezende Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Didier Salmon
- Institute of Medical Biochemistry Leopoldo de Meis, Centro de Ciências e da Saúde, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Sabrina Bousbata
- Laboratory of Vector-Pathogen Biology, Proteomic Platform, Department of Molecular Biology, Université Libre de Bruxelles, 6041, Gosselies, Belgium.
| |
Collapse
|
2
|
Lima L, Berni M, Mota J, Bressan D, Julio A, Cavalcante R, Macias V, Li Z, Rasgon JL, Bier E, Araujo H. Gene Editing in the Chagas Disease Vector Rhodnius prolixus by Cas9-Mediated ReMOT Control. CRISPR J 2024; 7:88-99. [PMID: 38564197 DOI: 10.1089/crispr.2023.0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Rhodnius prolixus is currently the model vector of choice for studying Chagas disease transmission, a debilitating disease caused by Trypanosoma cruzi parasites. However, transgenesis and gene editing protocols to advance the field are still lacking. Here, we tested protocols for the maternal delivery of CRISPR-Cas9 (clustered regularly spaced palindromic repeats/Cas-9 associated) elements to developing R. prolixus oocytes and strategies for the identification of insertions and deletions (indels) in target loci of resulting gene-edited generation zero (G0) nymphs. We demonstrate successful gene editing of the eye color markers Rp-scarlet and Rp-white, and the cuticle color marker Rp-yellow, with highest effectiveness obtained using Receptor-Mediated Ovary Transduction of Cargo (ReMOT Control) with the ovary-targeting BtKV ligand. These results provide proof of concepts for generating somatic mutations in R. prolixus and potentially for generating germ line-edited lines in triatomines, laying the foundation for gene editing protocols that could lead to the development of novel control strategies for vectors of Chagas disease.
Collapse
Affiliation(s)
- Leonardo Lima
- Program in Cell and Developmental Biology, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Mateus Berni
- Program in Cell and Developmental Biology, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Jamile Mota
- Program in Cell and Developmental Biology, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Daniel Bressan
- Program in Cell and Developmental Biology, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Alison Julio
- Program in Cell and Developmental Biology, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Robson Cavalcante
- Program in Cell and Developmental Biology, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
| | - Vanessa Macias
- Department of Biological Sciences, University of North Texas, Denton, Texas, USA
| | - Zhiqian Li
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA
| | - Jason L Rasgon
- Department of Entomology, The Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ethan Bier
- Department of Cell and Developmental Biology, University of California, San Diego, La Jolla, California, USA
| | - Helena Araujo
- Program in Cell and Developmental Biology, Institute for Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Berhe H, Kumar Cinthakunta Sridhar M, Zerihun M, Qvit N. The Potential Use of Peptides in the Fight against Chagas Disease and Leishmaniasis. Pharmaceutics 2024; 16:227. [PMID: 38399281 PMCID: PMC10892537 DOI: 10.3390/pharmaceutics16020227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Chagas disease and leishmaniasis are both neglected tropical diseases that affect millions of people around the world. Leishmaniasis is currently the second most widespread vector-borne parasitic disease after malaria. The World Health Organization records approximately 0.7-1 million newly diagnosed leishmaniasis cases each year, resulting in approximately 20,000-30,000 deaths. Also, 25 million people worldwide are at risk of Chagas disease and an estimated 6 million people are infected with Trypanosoma cruzi. Pentavalent antimonials, amphotericin B, miltefosine, paromomycin, and pentamidine are currently used to treat leishmaniasis. Also, nifurtimox and benznidazole are two drugs currently used to treat Chagas disease. These drugs are associated with toxicity problems such as nephrotoxicity and cardiotoxicity, in addition to resistance problems. As a result, the discovery of novel therapeutic agents has emerged as a top priority and a promising alternative. Overall, there is a need for new and effective treatments for Chagas disease and leishmaniasis, as the current drugs have significant limitations. Peptide-based drugs are attractive due to their high selectiveness, effectiveness, low toxicity, and ease of production. This paper reviews the potential use of peptides in the treatment of Chagas disease and leishmaniasis. Several studies have demonstrated that peptides are effective against Chagas disease and leishmaniasis, suggesting their use in drug therapy for these diseases. Overall, peptides have the potential to be effective therapeutic agents against Chagas disease and leishmaniasis, but more research is needed to fully investigate their potential.
Collapse
Affiliation(s)
| | | | | | - Nir Qvit
- The Azrieli Faculty of Medicine in the Galilee, Bar-Ilan University, Safed 1311502, Israel; (H.B.); (M.K.C.S.); (M.Z.)
| |
Collapse
|
4
|
Macaluso G, Grippi F, Di Bella S, Blanda V, Gucciardi F, Torina A, Guercio A, Cannella V. A Review on the Immunological Response against Trypanosoma cruzi. Pathogens 2023; 12:282. [PMID: 36839554 PMCID: PMC9964664 DOI: 10.3390/pathogens12020282] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Chagas disease is a chronic systemic infection transmitted by Trypanosoma cruzi. Its life cycle consists of different stages in vector insects and host mammals. Trypanosoma cruzi strains cause different clinical manifestations of Chagas disease alongside geographic differences in morbidity and mortality. Natural killer cells provide the cytokine interferon-gamma in the initial phases of T. cruzi infection. Phagocytes secrete cytokines that promote inflammation and activation of other cells involved in defence. Dendritic cells, monocytes and macrophages modulate the adaptive immune response, and B lymphocytes activate an effective humoral immune response to T. cruzi. This review focuses on the main immune mechanisms acting during T. cruzi infection, on the strategies activated by the pathogen against the host cells, on the processes involved in inflammasome and virulence factors and on the new strategies for preventing, controlling and treating this disease.
Collapse
Affiliation(s)
| | | | - Santina Di Bella
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”, 90129 Palermo, Italy
| | | | | | | | | |
Collapse
|
5
|
Resisting an invasion: A review of the triatomine vector (Kissing bug) defense strategies against a Trypanosoma sp infection. Acta Trop 2023; 238:106745. [PMID: 36375520 DOI: 10.1016/j.actatropica.2022.106745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
Triatomines are an important group of insects in the Americas. They serve as transmission vectors for Trypanosoma cruzi, the etiologic agent responsible for the deadly Chagas disease in humans. The digenetic parasite has a complex life cycle, alternating between mammalian and insect hosts, facing different environments. In the insect vector, the metacyclic trypomastigote (non-replicative) and epimastigote (replicative) stages face a set of insect-mediated environmental changes, such as intestinal pH, body temperature, nutrient availability, and vector immune response. These insects have the ability to differentiate between self and non-self-particles using their innate immune system. This immune system comprises physical barriers, cellular responses (phagocytosis, nodules and encapsulation), humoral factors, including effector mechanisms (antimicrobial peptides and prophenoloxidase cascade) and the intestinal microbiota. Here, we consolidate and synthesize the available literature to describe the defense mechanisms deployed by the triatomine vector against the parasite, as documented in recent years, the possible mechanisms developed by the parasite to protect against the insect's specific microenvironment and innate immune responses, and future perspectives on the Triatomine-Trypanosome interaction.
Collapse
|
6
|
Ren X, Li X, Huang J, Zhang Z, Hafeez M, Zhang J, Chen L, Zhou S, Zhang L, Lu Y. Linking life table and predation rate for evaluating temperature effects on Orius strigicollis for the biological control of Frankliniella occidentalis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1026115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IntroductionOrius spp. are generalist predators released in horticultural and agricultural systems to control thrips. Understanding the effects of temperature on the development, predation rate, and population dynamics of Orius is essential for identifying the optimal timing of Orius release for establishing an adequate population to facilitate synchrony with thrips population growth and to prevent thrips outbreaks. The biological control efficiency of natural enemies as well as predator–prey relationships can be precisely described by integrating life table parameters and the predation rate.MethodsIn this study, the demographic features of Orius strigicollis fed on 2nd instar nymphs of western flower thrips (WFT), Frankliniella occidentalis, were compared at 18.5, 23.5, 27, and 33°C using the TWOSEX-MSChart program. The CONSUME-MSChart program was used to examine predation rates under different temperatures (18.5, 23.5, and 27°C).ResultsThe results showed no significant difference in fecundity among those reared at 18.5, 23.5, and 27°C, but fecundity at these temperatures was significantly higher than that at 33°C. The intrinsic rate of increase (r), finite rate of increase (λ), and net reproduction rate (R0) were the highest at 27°C. The net predation rate (C0) and transformation rate (Qp) were significantly higher at 18.5°C (C0 = 168.39 prey/predator, Qp = 8.22) and 23.5°C (C0 = 140.49 prey/predator, Qp = 6.03) than at 27°C (C0 = 138.39 prey/predator, Qp= 3.81); however, the finite predation rate (ω) showed the opposite trend. In addition to temperature, the stage of O. strigicollis at release can affect population dynamics.DiscussionOur study showed that temperature influenced the demographic traits and predation rates of O. strigicollis. When planning a release, the stage of O. strigicollis and temperature should be taken into account to establish an adequate population for the control of WFT.
Collapse
|
7
|
Valença-Barbosa C, Finamore-Araujo P, Moreira OC, Alvarez MVN, Borges-Veloso A, Barbosa SE, Diotaiuti L, de Souza RDCM. High Parasitic Loads Quantified in Sylvatic Triatoma melanica, a Chagas Disease Vector. Pathogens 2022; 11:1498. [PMID: 36558833 PMCID: PMC9785645 DOI: 10.3390/pathogens11121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Triatoma melanica is a sylvatic vector species in Brazil. In We aimed to characterize the Trypanosoma cruzi discrete typing units (DTUs), the parasitic loads, and the blood meal sources of insects collected in rocky outcrops in rural areas in the state of Minas Gerais. An optical microscope (OM) and kDNA-PCR were used to examine natural infection by T. cruzi, and positive samples were genotyped by conventional multilocus PCR. Quantification of the T. cruzi load was performed using qPCR, and the blood meal sources were identified by Sanger sequencing the 12S rRNA gene. A total of 141 T. melanica were captured. Of these, ~55% (61/111) and ~91% (63/69) were positive by OM and KDNA-PCR, respectively. We genotyped ~89% (56/63) of the T. cruzi-positive triatomines, with TcI (~55%, 31/56) being the most prevalent DTU, followed by TcIII (~20%, 11/56) and TcII (~7%, 4/56). Only TcI+TcIII mixed infections were detected in 10 (~18%) specimens. A wide range of variation in the parasitic loads of T. melanica was observed, with an overall median value of 104 parasites/intestine, with females having higher T. cruzi loads than N2, N4, and N5. TcII showed lower parasitic loads compared to TcI and TcIII. The OM positive diagnosis odds ratio between T. cruzi infection when the parasite load is 107 compared to 103 was approximately 29.1. The most frequent blood meal source was Kerodon rupestris (~58%), followed by Thrichomys apereoides (~18%), Wiedomys cerradensis (~8%), Galactis cuja (~8%) and Gallus gallus (~8%). Our findings characterize biological and epidemiological aspects of the sylvatic population of T. melanica in the study area, highlighting the need to extend surveillance and control to this vector.
Collapse
Affiliation(s)
- Carolina Valença-Barbosa
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Paula Finamore-Araujo
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Otacílio Cruz Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil
| | | | - André Borges-Veloso
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Silvia Ermelinda Barbosa
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Liléia Diotaiuti
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | | |
Collapse
|
8
|
Finamore-Araujo P, Silva da Fonseca GL, Vieira CS, de Castro DP, Moreira OC. RNA as a feasible marker of Trypanosoma cruzi viability during the parasite interaction with the triatomine vector Rhodnius prolixus (Hemiptera, Triatominae). PLoS Negl Trop Dis 2022; 16:e0010535. [PMID: 35797352 PMCID: PMC9307183 DOI: 10.1371/journal.pntd.0010535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 07/22/2022] [Accepted: 05/25/2022] [Indexed: 11/18/2022] Open
Abstract
A recurring question concerning Trypanosoma cruzi DNA detection/quantification is related to the fact that DNA amplification, by itself, does not differentiate between viable or dead parasites. On the other hand, RNA can be considered a potential molecular marker of pathogens viability. Herein, we developed a quantitative real-time PCR with reverse Transcription (RT-qPCR) to quantify viable T. cruzi in artificially infected Rhodnius prolixus whilst evaluating differences between DNA and mRNA quantification along the insect midgut during 5, 9, 15 and 29 days after feeding. The RT-qPCR presented an improved performance with linearities ranging from 107 to 102 parasites equivalents and 3 to 0.0032 intestine unit equivalents, and efficiencies of 100.3% and 102.8% for both T. cruzi and triatomine targets, respectively. Comparing both RT-qPCR and qPCR, we confirmed that RNA is faster degraded, no longer being detected at day 1 after parasite lysis, while DNA detection was stable, with no decrease in parasite load over the days, even after parasite lysis. We also observed statistical differences between the quantification of the parasite load by DNA and by RNA on day 15 after feeding of experimentally infected R. prolixus. When assessing different portions of the digestive tract, by RT-qPCR, we could detect a statistically significant reduction in the parasite amount in the anterior midgut. Oppositely, there was a statistically significant increase of the parasite load in the hindgut. In conclusion, for this study parasite’s viability in R. prolixus digestive tract were assessed targeting T. cruzi mRNA. In addition, differences between DNA and RNA detection observed herein, raise the possibility that RNA is a potential molecular viability marker, which could contribute to understanding the dynamics of the parasite infection in invertebrate hosts. In this study, we developed and standardized a Real-Time PCR with Reverse Transcription (RT-qPCR) to determine T. cruzi viability in R. prolixus samples. Moreover, we aimed to assess differences between the amplification signals of DNA and mRNA on a T. cruzi colonization kinetics in experimentally infected R. prolixus. Thus, it was possible to analyze the potential of parasite’s RNA as a molecular viability marker in parasite-vector interaction. This novel RT-qPCR methodology has potential application in viability assessment and raises the possibility for further monitoring of the parasite load in infected insects or studies related to vectorial capacity. Furthermore, the analysis of parasite viability by RT qPCR could be an especially effective tool for Chagas disease diagnostic purposes.
Collapse
Affiliation(s)
- Paula Finamore-Araujo
- Real Time PCR Platform RPT09A, Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Gabriel Lucio Silva da Fonseca
- Real Time PCR Platform RPT09A, Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Cecília Stahl Vieira
- Laboratory of Biochemistry and Physiology of Insects, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Postgraduate Program in Science and Biotechnology, Biology Institute, Federal Fluminense University, Niterói, Brazil
| | - Daniele Pereira de Castro
- Laboratory of Biochemistry and Physiology of Insects, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Otacilio Cruz Moreira
- Real Time PCR Platform RPT09A, Laboratory of Molecular Virology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
9
|
Synchrotron X-ray biosample imaging: opportunities and challenges. Biophys Rev 2022; 14:625-633. [DOI: 10.1007/s12551-022-00964-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/25/2022] [Indexed: 12/17/2022] Open
|
10
|
de Castro Neto AL, da Silveira JF, Mortara RA. Role of Virulence Factors of Trypanosomatids in the Insect Vector and Putative Genetic Events Involved in Surface Protein Diversity. Front Cell Infect Microbiol 2022; 12:807172. [PMID: 35573777 PMCID: PMC9097677 DOI: 10.3389/fcimb.2022.807172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Trypanosomatids are flagellate protozoans that can infect several invertebrate and vertebrate hosts, including insects and humans. The three most studied species are the human pathogens Trypanosoma brucei, Trypanosoma cruzi and Leishmania spp. which are the causative agents of Human African Trypanosomiasis (HAT), Chagas disease and different clinical forms of leishmaniasis, respectively. These parasites possess complex dixenous life cycles, with zoonotic and anthroponotic stages, and are transmitted by hematophagous insects. To colonize this myriad of hosts, they developed mechanisms, mediated by virulence factors, to infect, propagate and survive in different environments. In insects, surface proteins play roles in parasite attachment and survival in the insect gut, whilst in the mammalian host, the parasites have a whole group of proteins and mechanisms that aid them invading the host cells and evading its immune system components. Many studies have been done on the impact of these molecules in the vertebrate host, however it is also essential to notice the importance of these virulence factors in the insect vector during the parasite life cycle. When inside the insect, the parasites, like in humans, also need to survive defense mechanisms components that can inhibit parasite colonization or survival, e.g., midgut peritrophic membrane barrier, digestive enzymes, evasion of excretion alongside the digested blood meal, anatomic structures and physiological mechanisms of the anterior gut. This protection inside the insect is often implemented by the same group of virulence factors that perform roles of immune evasion in the mammalian host with just a few exceptions, in which a specific protein is expressed specifically for the insect vector form of the parasite. This review aims to discuss the roles of the virulence molecules in the insect vectors, showing the differences and similarities of modes of action of the same group of molecules in insect and humans, exclusive insect molecules and discuss possible genetic events that may have generated this protein diversity.
Collapse
|
11
|
Lopes DM, Provençano AF, de Mello CB, Feder MD, Cunha JA, Nogueira N, Lechuga GC, Bourguignon SC, de Souza W, Garcia ES, das Chagas EF, Azambuja P, Gonzalez MS. Ecdysone modulates both ultrastructural arrangement of hindgut and attachment of Trypanosoma cruzi DM 28c to the rectum cuticle of Rhodnius prolixus fifth-instar nymph. Exp Parasitol 2022; 236-237:108247. [DOI: 10.1016/j.exppara.2022.108247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
|
12
|
Carvalho-Costa TM, Tiveron RDR, Mendes MT, Barbosa CG, Nevoa JC, Roza GA, Silva MV, Figueiredo HCP, Rodrigues V, Soares SDC, Oliveira CJF. Salivary and Intestinal Transcriptomes Reveal Differential Gene Expression in Starving, Fed and Trypanosoma cruzi-Infected Rhodnius neglectus. Front Cell Infect Microbiol 2022; 11:773357. [PMID: 34988032 PMCID: PMC8722679 DOI: 10.3389/fcimb.2021.773357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/04/2021] [Indexed: 11/28/2022] Open
Abstract
Rhodnius neglectus is a potential vector of Trypanosoma cruzi (Tc), the causative agent of Chagas disease. The salivary glands (SGs) and intestine (INT) are actively required during blood feeding. The saliva from SGs is injected into the vertebrate host, modulating immune responses and favoring feeding for INT digestion. Tc infection significantly alters the physiology of these tissues; however, studies that assess this are still scarce. This study aimed to gain a better understanding of the global transcriptional expression of genes in SGs and INT during fasting (FA), fed (FE), and fed in the presence of Tc (FE + Tc) conditions. In FA, the expression of transcripts related to homeostasis maintenance proteins during periods of stress was predominant. Therefore, the transcript levels of Tret1-like and Hsp70Ba proteins were increased. Blood appeared to be responsible for alterations found in the FE group, as most of the expressed transcripts, such as proteases and cathepsin D, were related to digestion. In FE + Tc group, there was a decreased expression of blood processing genes for insect metabolism (e.g., Antigen-5 precursor, Pr13a, and Obp), detoxification (Sult1) in INT and acid phosphatases in SG. We also found decreased transcriptional expression of lipocalins and nitrophorins in SG and two new proteins, pacifastin and diptericin, in INT. Several transcripts of unknown proteins with investigative potential were found in both tissues. Our results also show that the presence of Tc can change the expression in both tissues for a long or short period of time. While SG homeostasis seems to be re-established on day 9, changes in INT are still evident. The findings of this study may be used for future research on parasite-vector interactions and contribute to the understanding of food physiology and post-meal/infection in triatomines.
Collapse
Affiliation(s)
- Tamires Marielem Carvalho-Costa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Rafael Destro Rosa Tiveron
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Maria Tays Mendes
- Biomedical Research Center, The University of Texas at El Paso, El Paso, TX, United States
| | - Cecília Gomes Barbosa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Jessica Coraiola Nevoa
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Guilherme Augusto Roza
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Marcos Vinícius Silva
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | | | - Virmondes Rodrigues
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Siomar de Castro Soares
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Carlo José Freire Oliveira
- Laboratory of Immunology and Bioinformatics, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, Brazil
| |
Collapse
|
13
|
Zingales B, Bartholomeu DC. Trypanosoma cruzi genetic diversity: impact on transmission cycles and Chagas disease. Mem Inst Oswaldo Cruz 2022; 117:e210193. [PMID: 35544857 PMCID: PMC9088421 DOI: 10.1590/0074-02760210193] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
Trypanosoma cruzi, the agent of Chagas disease (ChD), exhibits remarkable biological and genetic diversity, along with eco-epidemiological complexity. In order to facilitate communication among researchers aiming at the characterisation of biological and epidemiological aspects of T. cruzi, parasite isolates and strains were partitioned into seven discrete typing units (DTUs), TcI-TcVI and TcBat, identifiable by reproducible genotyping protocols. Here we present the potential origin of the genetic diversity of T. cruzi and summarise knowledge about eco-epidemiological associations of DTUs with mammalian reservoirs and vectors. Circumstantial evidence of a connection between T. cruzi genotype and ChD manifestations is also discussed emphasising the role of the host’s immune response in clinical ChD progression. We describe genomic aspects of DTUs focusing on polymorphisms in multigene families encoding surface antigens that play essential functions for parasite survival both in the insect vector and the mammalian host. Such antigens most probably contributed to the parasite success in establishing infections in different hosts and exploring several niches. Gaps in the current knowledge and challenges for future research are pointed out.
Collapse
|
14
|
Stewart Merrill TE, Rapti Z, Cáceres CE. Host Controls of Within-Host Disease Dynamics: Insight from an Invertebrate System. Am Nat 2021; 198:317-332. [PMID: 34403315 DOI: 10.1086/715355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
AbstractWithin-host processes (representing the entry, establishment, growth, and development of a parasite inside its host) may play a key role in parasite transmission but remain challenging to observe and quantify. We develop a general model for measuring host defenses and within-host disease dynamics. Our stochastic model breaks the infection process down into the stages of parasite exposure, entry, and establishment and provides associated probabilities for a host's ability to resist infections with barriers and clear internal infections. We tested our model on Daphnia dentifera and the parasitic fungus Metschnikowia bicuspidata and found that when faced with identical levels of parasite exposure, Daphnia patent (transmitting) infections depended on the strength of internal clearance. Applying a Gillespie algorithm to the model-estimated probabilities allowed us to visualize within-host dynamics, within which signatures of host defense could be clearly observed. We also found that early within-host stages were the most vulnerable to internal clearance, suggesting that hosts have a limited window during which recovery can occur. Our study demonstrates how pairing longitudinal infection data with a simple model can reveal new insight into within-host dynamics and mechanisms of host defense. Our model and methodological approach may be a powerful tool for exploring these properties in understudied host-parasite interactions.
Collapse
|
15
|
Padilla-Valdez JM, Antonio-Campos A, Arias-Del-Angel JA, Rivas N, Alejandre-Aguilar R. Susceptibility dynamics between five Trypanosoma cruzi strains and three triatomine (Hemiptera: Reduviidae) species. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2021; 46:82-95. [PMID: 35229585 DOI: 10.52707/1081-1710-46.1.82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/09/2021] [Indexed: 06/14/2023]
Abstract
American trypanosomiasis is a zoonosis caused by the parasite Trypanosoma cruzi and is transmitted mainly by blood-sucking insects belonging to the subfamily Triatominae. The importance of this parasite lies in its wide geographical distribution, high morbidity, and the fact that there has not yet been an effective treatment or vaccine. Previous studies have detailed the interactions between different triatomine species and T. cruzi strains. However, the factors necessary to establish infection in triatomines have not yet been fully elucidated. Furthermore, it is postulated that the coexistence between the parasite and triatomines could modulate the susceptibility to infection in these insects. Accordingly, in this study, we evaluated the susceptibility to T. cruzi infection in the species Triatoma (Meccus) pallidipennis, Triatoma barberi, and Triatoma lecticularia, which were infected with Ninoa, H8, INC-5, Sontecomapan, and Hueypoxtla strains. The criteria used to establish susceptibility were the amount of blood ingested by the insects, percentage of infected triatomines, concentration of parasites in feces, and percentage of metacyclic trypomastigotes in feces. These parameters were analyzed by fresh examination and differential count with Giemsa-stained smears. Our main findings suggest the following order of susceptibility concerning infection with T. cruzi: T. lecticularia > T. barberi > T. (Meccus) pallidipennis. Furthermore, the study concludes that an increased susceptibility to infection of triatomines that share the same geographic region with different strains of T. cruzi is not always a fact.
Collapse
Affiliation(s)
- José Miguel Padilla-Valdez
- Laboratory of Medical Entomology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico
| | - Alberto Antonio-Campos
- Laboratory of Medical Entomology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico
| | - Jorge A Arias-Del-Angel
- Unidad Monterrey, Centro de Investigación y de Estudios Avanzados del IPN, Apocada NL, Mexico
| | - Nancy Rivas
- Laboratory of Medical Entomology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico
| | - Ricardo Alejandre-Aguilar
- Laboratory of Medical Entomology, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico,
| |
Collapse
|
16
|
de Castro Neto AL, da Silveira JF, Mortara RA. Comparative Analysis of Virulence Mechanisms of Trypanosomatids Pathogenic to Humans. Front Cell Infect Microbiol 2021; 11:669079. [PMID: 33937106 PMCID: PMC8085324 DOI: 10.3389/fcimb.2021.669079] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/30/2021] [Indexed: 11/23/2022] Open
Abstract
Trypanosoma brucei, Leishmania spp., and T. cruzi are flagellate protozoans of the family Trypanosomatidae and the causative agents of human African trypanosomiasis, leishmaniasis, and Chagas disease, respectively. These diseases affect humans worldwide and exert a significant impact on public health. Over the course of evolution, the parasites associated with these pathologies have developed mechanisms to circumvent the immune response system throughout the infection cycle. In cases of human infection, this function is undertaken by a group of proteins and processes that allow the parasites to propagate and survive during host invasion. In T. brucei, antigenic variation is promoted by variant surface glycoproteins and other proteins involved in evasion from the humoral immune response, which helps the parasite sustain itself in the extracellular milieu during infection. Conversely, Leishmania spp. and T. cruzi possess a more complex infection cycle, with specific intracellular stages. In addition to mechanisms for evading humoral immunity, the pathogens have also developed mechanisms for facilitating their adhesion and incorporation into host cells. In this review, the different immune evasion strategies at cellular and molecular levels developed by these human-pathogenic trypanosomatids have been discussed, with a focus on the key molecules responsible for mediating the invasion and evasion mechanisms and the effects of these molecules on virulence.
Collapse
Affiliation(s)
- Artur Leonel de Castro Neto
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José Franco da Silveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Renato Arruda Mortara
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Henriques BS, Gomes B, Oliveira PL, Garcia EDS, Azambuja P, Genta FA. Characterization of the Temporal Pattern of Blood Protein Digestion in Rhodnius prolixus: First Description of Early and Late Gut Cathepsins. Front Physiol 2021; 11:509310. [PMID: 33519496 PMCID: PMC7838648 DOI: 10.3389/fphys.2020.509310] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 11/24/2020] [Indexed: 11/18/2022] Open
Abstract
Rhodnius prolixus is one important vector for the parasite Trypanosoma cruzi in Latin America, where Chagas disease is a significant health issue. Although R. prolixus is a model for investigations of vector–parasite interaction and transmission, not much has been done recently to further comprehend its protein digestion. In this work, gut proteolysis was characterized using new fluorogenic substrates, including optimum pH, inhibition profiles, and tissue and temporal expression patterns. Each protease possessed a particular tissue prevalence and activity cycle after feeding. Cathepsin L had a higher activity in the posterior midgut lumen, being characterized by a plateau of high activities during several days in the intermediate phase of digestion. Cathepsin D showed high activity levels in the tissue homogenates and in the luminal content of the posterior midgut, with a single peak 5 days after blood feeding. Aminopeptidases are highly associated with the midgut wall, where the highest activity is located. Assays with proteinaceous substrates as casein, hemoglobin, and serum albumin revealed different activity profiles, with some evidence of biphasic temporal proteolytic patterns. Cathepsin D genes are preferentially expressed in the anterior midgut, while cathepsin L genes are mainly located in the posterior portion of the midgut, with specific sets of genes being differently expressed in the initial, intermediate, or late phases of blood digestion. Significance Statement This is the first description in a non-dipteran hematophagous species of a sequential protease secretion system based on midgut cathepsins instead of the most common insect digestive serine proteases (trypsins and chymotrypsins). The midgut of R. prolixus (Hemiptera) shows a different temporal expression of proteases in the initial, intermediate, and late stages of blood digestion. In this respect, a different timing in protease secretion may be an example of adaptative convergence in blood-sucking vectors from different orders. Expanding the knowledge about gut physiology in triatomine vectors may contribute to the development of new control strategies, aiming the blocking of parasite transmission.
Collapse
Affiliation(s)
- Bianca Santos Henriques
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Bruno Gomes
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil
| | - Pedro Lagerblad Oliveira
- National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil.,Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Elói de Souza Garcia
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil.,National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil
| | - Patrícia Azambuja
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil.,National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil
| | - Fernando Ariel Genta
- Laboratory of Insect Physiology and Biochemistry, Oswaldo Cruz Institute - Oswaldo Cruz Foundation (IOC-FIOCRUZ), Rio de Janeiro, Brazil.,National Institute of Science and Technology for Molecular Entomology (INCT-EM), Cidade Universitária, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Duarte-Silva E, Morais LH, Clarke G, Savino W, Peixoto C. Targeting the Gut Microbiota in Chagas Disease: What Do We Know so Far? Front Microbiol 2020; 11:585857. [PMID: 33362735 PMCID: PMC7758234 DOI: 10.3389/fmicb.2020.585857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
Chagas disease (CD) is a tropical and still neglected disease caused by Trypanosoma cruzi that affects >8 million of people worldwide. Although limited, emerging data suggest that gut microbiota dysfunction may be a new mechanism underlying CD pathogenesis. T. cruzi infection leads to changes in the gut microbiota composition of vector insects, mice, and humans. Alterations in insect and mice microbiota due to T. cruzi have been associated with a decreased immune response against the parasite, influencing the establishment and progression of infection. Further, changes in the gut microbiota are linked with inflammatory and neuropsychiatric disorders, comorbid conditions in CD. Therefore, this review article critically analyses the current data on CD and the gut microbiota of insects, mice, and humans and discusses its importance for CD pathogenesis. An enhanced understanding of host microbiota will be critical for the development of alternative therapeutic approaches to target CD, such as gut microbiota-directed interventions.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, Brazil
- Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Aggeu Magalhães Institute (IAM), Recife, Brazil
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, Brazil
| | - Livia H. Morais
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Wilson Savino
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Christina Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Oswaldo Cruz Foundation (FIOCRUZ-PE), Recife, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
González-Tokman D, Córdoba-Aguilar A, Dáttilo W, Lira-Noriega A, Sánchez-Guillén RA, Villalobos F. Insect responses to heat: physiological mechanisms, evolution and ecological implications in a warming world. Biol Rev Camb Philos Soc 2020; 95:802-821. [PMID: 32035015 DOI: 10.1111/brv.12588] [Citation(s) in RCA: 223] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Surviving changing climate conditions is particularly difficult for organisms such as insects that depend on environmental temperature to regulate their physiological functions. Insects are extremely threatened by global warming, since many do not have enough physiological tolerance even to survive continuous exposure to the current maximum temperatures experienced in their habitats. Here, we review literature on the physiological mechanisms that regulate responses to heat and provide heat tolerance in insects: (i) neuronal mechanisms to detect and respond to heat; (ii) metabolic responses to heat; (iii) thermoregulation; (iv) stress responses to tolerate heat; and (v) hormones that coordinate developmental and behavioural responses at warm temperatures. Our review shows that, apart from the stress response mediated by heat shock proteins, the physiological mechanisms of heat tolerance in insects remain poorly studied. Based on life-history theory, we discuss the costs of heat tolerance and the potential evolutionary mechanisms driving insect adaptations to high temperatures. Some insects may deal with ongoing global warming by the joint action of phenotypic plasticity and genetic adaptation. Plastic responses are limited and may not be by themselves enough to withstand ongoing warming trends. Although the evidence is still scarce and deserves further research in different insect taxa, genetic adaptation to high temperatures may result from rapid evolution. Finally, we emphasize the importance of incorporating physiological information for modelling species distributions and ecological interactions under global warming scenarios. This review identifies several open questions to improve our understanding of how insects respond physiologically to heat and the evolutionary and ecological consequences of those responses. Further lines of research are suggested at the species, order and class levels, with experimental and analytical approaches such as artificial selection, quantitative genetics and comparative analyses.
Collapse
Affiliation(s)
- Daniel González-Tokman
- CONACYT, CDMX, 03940, Mexico.,Red de Ecoetología, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| | - Alex Córdoba-Aguilar
- Instituto de Ecología, Universidad Nacional Autónoma de México. Circuito exterior s/n Ciudad Universitaria, CDMX, 04510, Mexico
| | - Wesley Dáttilo
- Red de Ecoetología, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| | - Andrés Lira-Noriega
- CONACYT, CDMX, 03940, Mexico.,Red de Estudios Moleculares Avanzados, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| | | | - Fabricio Villalobos
- Red de Biología Evolutiva, Instituto de Ecología A. C, Xalapa, 91073, Mexico
| |
Collapse
|
20
|
Sangenito LS, Menna-Barreto RFS, d'Avila-Levy CM, Branquinha MH, Santos ALS. Repositioning of HIV Aspartyl Peptidase Inhibitors for Combating the Neglected Human Pathogen Trypanosoma cruzi. Curr Med Chem 2019; 26:6590-6613. [PMID: 31187704 DOI: 10.2174/0929867326666190610152934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 08/11/2018] [Accepted: 08/23/2018] [Indexed: 12/11/2022]
Abstract
Chagas disease, caused by the flagellate parasite Trypanosoma cruzi, is a wellknown neglected tropical disease. This parasitic illness affects 6-7 million people and can lead to severe myocarditis and/or complications of the digestive tract. The changes in its epidemiology facilitate co-infection with the Human Immunodeficiency Virus (HIV), making even more difficult the diagnosis and prognosis. The parasitic infection is reactivated in T. cruzi/HIV co-infection, with the appearance of unusual manifestations in the chronic phase and the exacerbation of classical clinical signs. The therapeutic arsenal to treat Chagas disease, in all its clinical forms, is restricted basically to two drugs, benznidazole and nifurtimox. Both drugs are extremely toxic and the therapeutic efficacy is still unclear, making the clinical treatment a huge issue to be solved. Therefore, it seems obvious the necessity of new tangible approaches to combat this illness. In this sense, the repositioning of approved drugs appears as an interesting and viable strategy. The discovery of Human Immunodeficiency Virus Aspartyl Peptidase Inhibitors (HIV-PIs) represented a milestone in the treatment of Acquired Immune Deficiency Syndrome (AIDS) and, concomitantly, a marked reduction in both the incidence and prevalence of important bacterial, fungal and parasitic co-infections was clearly observed. Taking all these findings into consideration, the present review summarizes the promising and beneficial data concerning the effects of HIV-PIs on all the evolutionary forms of T. cruzi and in important steps of the parasite's life cycle, which highlight their possible application as alternative drugs to treat Chagas disease.
Collapse
Affiliation(s)
- Leandro S Sangenito
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Rubem F S Menna-Barreto
- Laboratorio de Biologia Celular, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Cláudia M d'Avila-Levy
- Laboratorio de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz (IOC), Fundacao Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - André L S Santos
- Laboratorio de Estudos Avancados de Microrganismos Emergentes e Resistentes (LEAMER), Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Goes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.,Programa de Pós-Graduação em Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Mesías AC, Garg NJ, Zago MP. Redox Balance Keepers and Possible Cell Functions Managed by Redox Homeostasis in Trypanosoma cruzi. Front Cell Infect Microbiol 2019; 9:435. [PMID: 31921709 PMCID: PMC6932984 DOI: 10.3389/fcimb.2019.00435] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/05/2019] [Indexed: 12/11/2022] Open
Abstract
The toxicity of oxygen and nitrogen reactive species appears to be merely the tip of the iceberg in the world of redox homeostasis. Now, oxidative stress can be seen as a two-sided process; at high concentrations, it causes damage to biomolecules, and thus, trypanosomes have evolved a strong antioxidant defense system to cope with these stressors. At low concentrations, oxidants are essential for cell signaling, and in fact, the oxidants/antioxidants balance may be able to trigger different cell fates. In this comprehensive review, we discuss the current knowledge of the oxidant environment experienced by T. cruzi along the different phases of its life cycle, and the molecular tools exploited by this pathogen to deal with oxidative stress, for better or worse. Further, we discuss the possible redox-regulated processes that could be governed by this oxidative context. Most of the current research has addressed the importance of the trypanosomes' antioxidant network based on its detox activity of harmful species; however, new efforts are necessary to highlight other functions of this network and the mechanisms underlying the fine regulation of the defense machinery, as this represents a master key to hinder crucial pathogen functions. Understanding the relevance of this balance keeper program in parasite biology will give us new perspectives to delineate improved treatment strategies.
Collapse
Affiliation(s)
- Andrea C. Mesías
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta, Salta, Argentina
| | - Nisha J. Garg
- Department of Microbiology and Immunology, Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - M. Paola Zago
- Instituto de Patología Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad Nacional de Salta, Salta, Argentina
| |
Collapse
|
22
|
De Fuentes-Vicente JA, Vidal-López DG, Flores-Villegas AL, Moreno-Rodríguez A, De Alba-Alvarado MC, Salazar-Schettino PM, Rodríguez-López MH, Gutiérrez-Cabrera AE. Trypanosoma cruzi: A review of biological and methodological factors in Mexican strains. Acta Trop 2019; 195:51-57. [PMID: 31022383 DOI: 10.1016/j.actatropica.2019.04.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 04/20/2019] [Indexed: 01/09/2023]
Abstract
Trypanosoma cruzi, responsible for Chagas disease, is a serious public health problem in Latin America with eight million people infected in the world. Clinical manifestations observed in humans due to T. cruzi infection are largely associated with the wide biological and genetic heterogeneity of the parasite. This review presents an overview of the parasitological aspects of various strains of T. cruzi isolated mainly in Mexico, as well as an analysis of the methodological processes used to determine their virulence that could be influencing their biological characterization. We emphasize the importance of using uniform protocols to study T. cruzi virulence, taking into account factors related to: strain (i.e. developmental stage, lineage, biological origin, genetic variability), animal model used (i.e. role of hormones, host immune response, age) and methodology (i.e. inoculum size, inoculation route, and laboratory conditions used during strain maintenance). These uniform protocols will then allow proposing elements for understanding clinical evolution and management of the disease, for providing adequate treatment, and for developing tools for future vaccines against Chagas disease.
Collapse
|
23
|
Sandoval-Rodríguez A, Rojo G, López A, Ortiz S, Saavedra M, Botto-Mahan C, Cattan PE, Solari A. Comparing vector competence of Mepraia gajardoi and Triatoma infestans by genotyping Trypanosoma cruzi discrete typing units present in naturally infected Octodon degus. Acta Trop 2019; 190:119-122. [PMID: 30439345 DOI: 10.1016/j.actatropica.2018.11.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/01/2018] [Accepted: 11/09/2018] [Indexed: 11/28/2022]
Abstract
Chagas disease is a vector-borne disease caused by the parasite Trypanosoma cruzi, and transmitted by triatomine insects to several mammal species. In Chile, the wild triatomine species are the endemic Mepraia species, and the only domestic vector of Chagas disease is Triatoma infestans. The aim of this study was to determine the competence of M. gajardoi compared to T. infestans as a T. cruzi vector using the naturally infected rodent Octodon degus. M. gajardoi amplified T. cruzi present in all O. degus studied while T. infestans only in half of the infected rodents. Both triatomine species excrete metacyclic trypomastigotes and amplified the same three T. cruzi DTUs, however, M. gajardoi showed differences in their ability to amplify TcI. TcV and TcVI had the same probability to be amplified by both triatomine species. Both species amplified mixed infections, with TcI-TcVI as the most represented. This study reports the higher vector competence of M. gajardoi in comparison to T. infestans.
Collapse
Affiliation(s)
| | - Gemma Rojo
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Angélica López
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Sylvia Ortiz
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Miguel Saavedra
- Laboratorio de Parasitología, Básico-Clínica, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| | - Carezza Botto-Mahan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | - Pedro E Cattan
- Laboratorio de Ecología, Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile.
| | - Aldo Solari
- Programa de Biología Celular y Molecular, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
24
|
Ihle-Soto C, Costoya E, Correa JP, Bacigalupo A, Cornejo-Villar B, Estadella V, Solari A, Ortiz S, Hernández HJ, Botto-Mahan C, Gorla DE, Cattan PE. Spatio-temporal characterization of Trypanosoma cruzi infection and discrete typing units infecting hosts and vectors from non-domestic foci of Chile. PLoS Negl Trop Dis 2019; 13:e0007170. [PMID: 30768613 PMCID: PMC6395009 DOI: 10.1371/journal.pntd.0007170] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 02/28/2019] [Accepted: 01/17/2019] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Trypanosoma cruzi is a protozoan parasite that is transmitted by triatomine vectors to mammals. It is classified in six discrete typing units (DTUs). In Chile, domestic vectorial transmission has been interrupted; however, the parasite is maintained in non-domestic foci. The aim of this study was to describe T. cruzi infection and DTU composition in mammals and triatomines from several non-domestic populations of North-Central Chile and to evaluate their spatio-temporal variations. METHODOLOGY/PRINCIPAL FINDINGS A total of 710 small mammals and 1140 triatomines captured in six localities during two study periods (summer/winter) of the same year were analyzed by conventional PCR to detect kDNA of T. cruzi. Positive samples were DNA blotted and hybridized with specific probes for detection of DTUs TcI, TcII, TcV, and TcVI. Infection status was modeled, and cluster analysis was performed in each locality. We detected 30.1% of overall infection in small mammals and 34.1% in triatomines, with higher rates in synanthropic mammals and in M. spinolai. We identified infecting DTUs in 45 mammals and 110 triatomines, present more commonly as single infections; the most frequent DTU detected was TcI. Differences in infection rates among species, localities and study periods were detected in small mammals, and between triatomine species; temporally, infection presented opposite patterns between mammals and triatomines. Infection clustering was frequent in vectors, and one locality exhibited half of the 21 clusters found. CONCLUSIONS/SIGNIFICANCE We determined T. cruzi infection in natural host and vector populations simultaneously in a spatially widespread manner during two study periods. All captured species presented T. cruzi infection, showing spatial and temporal variations. Trypanosoma cruzi distribution can be clustered in space and time. These clusters may represent different spatial and temporal risks of transmission.
Collapse
Affiliation(s)
- Camila Ihle-Soto
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Eduardo Costoya
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Juana P. Correa
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Región Metropolitana, Chile
- Facultad de Ciencias, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Antonella Bacigalupo
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Berenice Cornejo-Villar
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Viviana Estadella
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Aldo Solari
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Sylvia Ortiz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Héctor J. Hernández
- Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - Carezza Botto-Mahan
- Facultad de Ciencias, Universidad de Chile, Santiago, Región Metropolitana, Chile
| | - David E. Gorla
- Instituto de Diversidad y Ecología Animal, CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pedro E. Cattan
- Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Región Metropolitana, Chile
| |
Collapse
|
25
|
Bezerra CM, Barbosa SE, Souza RDCMD, Barezani CP, Gürtler RE, Ramos AN, Diotaiuti L. Triatoma brasiliensis Neiva, 1911: food sources and diversity of Trypanosoma cruzi in wild and artificial environments of the semiarid region of Ceará, northeastern Brazil. Parasit Vectors 2018; 11:642. [PMID: 30558643 PMCID: PMC6296072 DOI: 10.1186/s13071-018-3235-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 11/26/2018] [Indexed: 11/18/2022] Open
Abstract
Background Knowledge of triatomine food sources in different ecotopes enables the estimation of T. cruzi transmission risk in diverse environments, as well as its dynamics of dispersion and ecological niche. For Triatoma brasiliensis in the Caatinga, in the northeast of Brazil, seasonal differences influence feeding eclecticism and rates of T. cruzi infection. The objective of the present study was to monitor food sources and to characterize the populations of T. cruzi associated with T. brasiliensis in wild and domestic environments in the Caatinga of northeast Brazil. Methods A cross-sectional study based on a search for triatomines in wild and domestic environments, was undertaken at five different time periods from 2009 to 2015. Insects from 2015 were used for identification of food sources. Two universal primers, based on the conserved regions of the 12S rRNA locus, were used to amplify fragments of 215 bp. The content of the intestinal tract of triatomines was identified by a comparison between the sequences obtained and those deposited in the GenBank database, using BLAST. In triatomines with parasitological diagnosis of infection by trypanosomatids, xenoculture was performed for the isolation and characterization of strains, using cox2, the amplification of the SL-IL mini-exon intergenic spacer and the polymorphism of the D7 divergent domain of the gene 24αrDNA-LSU. Results Food sources were identified in 76.3% (213/279) T. brasiliensis specimens sampled in 2015. The most frequent sources in a total of 20 vertebrate species were: rodents (58%, 123/213), ruminants (30%, 64/213) and cats (6%, 12/213). A total of 49% (44/89) of the samples of T. cruzi isolated in the period from 2009 to 2015 were characterized: TcII (43%, 19/44), TcI (41%, 18/44) and TcIII (16%, 7/44). Conclusions The feeding eclecticism of T. brasiliensis shows its importance in maintaining the transmission dynamics of T. cruzi, with evidence of intense circulation between anthropic and wild environments. Attention should be placed on the association among T. brasiliensis, rodents and ruminants, in addition to the presence of TcIII in the study region. Electronic supplementary material The online version of this article (10.1186/s13071-018-3235-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudia Mendonça Bezerra
- Universidade Federal do Ceará, Departamento de Saúde Comunitária, Faculdade de Medicina, Fortaleza, CE, Brasil. .,Secretaria da Saúde do Estado do Ceará, Fortaleza, CE, Brasil.
| | - Silvia Ermelinda Barbosa
- Grupo Triatomíneos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | | | - Carla Patrícia Barezani
- Grupo Triatomíneos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Ricardo Esteban Gürtler
- Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución, Buenos Aires, Argentina
| | - Alberto Novaes Ramos
- Universidade Federal do Ceará, Departamento de Saúde Comunitária, Faculdade de Medicina, Fortaleza, CE, Brasil
| | - Liléia Diotaiuti
- Grupo Triatomíneos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| |
Collapse
|
26
|
Lipoproteins from vertebrate host blood plasma are involved in Trypanosoma cruzi epimastigote agglutination and participate in interaction with the vector insect, Rhodnius prolixus. Exp Parasitol 2018; 195:24-33. [DOI: 10.1016/j.exppara.2018.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 08/14/2018] [Accepted: 09/23/2018] [Indexed: 01/30/2023]
|
27
|
Vieira CB, Praça YR, Bentes KLDS, Santiago PB, Silva SMM, Silva GDS, Motta FN, Bastos IMD, de Santana JM, de Araújo CN. Triatomines: Trypanosomatids, Bacteria, and Viruses Potential Vectors? Front Cell Infect Microbiol 2018; 8:405. [PMID: 30505806 PMCID: PMC6250844 DOI: 10.3389/fcimb.2018.00405] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/29/2018] [Indexed: 12/17/2022] Open
Abstract
Triatominae bugs are the vectors of Chagas disease, a major concern to public health especially in Latin America, where vector-borne Chagas disease has undergone resurgence due mainly to diminished triatomine control in many endemic municipalities. Although the majority of Triatominae species occurs in the Americas, species belonging to the genus Linshcosteus occur in India, and species belonging to the Triatoma rubrofasciata complex have been also identified in Africa, the Middle East, South-East Asia, and in the Western Pacific. Not all of Triatominae species have been found to be infected with Trypanosoma cruzi, but the possibility of establishing vector transmission to areas where Chagas disease was previously non-endemic has increased with global population mobility. Additionally, the worldwide distribution of triatomines is concerning, as they are able to enter in contact and harbor other pathogens, leading us to wonder if they would have competence and capacity to transmit them to humans during the bite or after successful blood feeding, spreading other infectious diseases. In this review, we searched the literature for infectious agents transmitted to humans by Triatominae. There are reports suggesting that triatomines may be competent vectors for pathogens such as Serratia marcescens, Bartonella, and Mycobacterium leprae, and that triatomine infection with other microrganisms may interfere with triatomine-T. cruzi interactions, altering their competence and possibly their capacity to transmit Chagas disease.
Collapse
Affiliation(s)
- Caroline Barreto Vieira
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Yanna Reis Praça
- Programa de Pós-Graduação em Ciências Médicas, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil
| | - Kaio Luís da Silva Bentes
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Paula Beatriz Santiago
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Sofia Marcelino Martins Silva
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Gabriel dos Santos Silva
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Flávia Nader Motta
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brazil
| | - Izabela Marques Dourado Bastos
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Jaime Martins de Santana
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
| | - Carla Nunes de Araújo
- Laboratório de Interação Patógeno-Hospedeiro, Instituto de Ciências Biológicas, Departamento de Biologia Celular, Universidade de Brasília, Brasília, Brazil
- Faculdade de Ceilândia, Universidade de Brasília, Brasília, Brazil
| |
Collapse
|
28
|
Bradwell KR, Koparde VN, Matveyev AV, Serrano MG, Alves JMP, Parikh H, Huang B, Lee V, Espinosa-Alvarez O, Ortiz PA, Costa-Martins AG, Teixeira MMG, Buck GA. Genomic comparison of Trypanosoma conorhini and Trypanosoma rangeli to Trypanosoma cruzi strains of high and low virulence. BMC Genomics 2018; 19:770. [PMID: 30355302 PMCID: PMC6201504 DOI: 10.1186/s12864-018-5112-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 09/25/2018] [Indexed: 01/09/2023] Open
Abstract
Background Trypanosoma conorhini and Trypanosoma rangeli, like Trypanosoma cruzi, are kinetoplastid protist parasites of mammals displaying divergent hosts, geographic ranges and lifestyles. Largely nonpathogenic T. rangeli and T. conorhini represent clades that are phylogenetically closely related to the T. cruzi and T. cruzi-like taxa and provide insights into the evolution of pathogenicity in those parasites. T. rangeli, like T. cruzi is endemic in many Latin American countries, whereas T. conorhini is tropicopolitan. T. rangeli and T. conorhini are exclusively extracellular, while T. cruzi has an intracellular stage in the mammalian host. Results Here we provide the first comprehensive sequence analysis of T. rangeli AM80 and T. conorhini 025E, and provide a comparison of their genomes to those of T. cruzi G and T. cruzi CL, respectively members of T. cruzi lineages TcI and TcVI. We report de novo assembled genome sequences of the low-virulent T. cruzi G, T. rangeli AM80, and T. conorhini 025E ranging from ~ 21–25 Mbp, with ~ 10,000 to 13,000 genes, and for the highly virulent and hybrid T. cruzi CL we present a ~ 65 Mbp in-house assembled haplotyped genome with ~ 12,500 genes per haplotype. Single copy orthologs of the two T. cruzi strains exhibited ~ 97% amino acid identity, and ~ 78% identity to proteins of T. rangeli or T. conorhini. Proteins of the latter two organisms exhibited ~ 84% identity. T. cruzi CL exhibited the highest heterozygosity. T. rangeli and T. conorhini displayed greater metabolic capabilities for utilization of complex carbohydrates, and contained fewer retrotransposons and multigene family copies, i.e. trans-sialidases, mucins, DGF-1, and MASP, compared to T. cruzi. Conclusions Our analyses of the T. rangeli and T. conorhini genomes closely reflected their phylogenetic proximity to the T. cruzi clade, and were largely consistent with their divergent life cycles. Our results provide a greater context for understanding the life cycles, host range expansion, immunity evasion, and pathogenesis of these trypanosomatids. Electronic supplementary material The online version of this article (10.1186/s12864-018-5112-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katie R Bradwell
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Present address: Institute for Genome Sciences, University of Maryland, Baltimore, MD, USA
| | - Vishal N Koparde
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | - Andrey V Matveyev
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Myrna G Serrano
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - João M P Alves
- Department of Parasitology, ICB, University of São Paulo, São Paulo, SP, Brazil
| | - Hardik Parikh
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Bernice Huang
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA.,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| | - Vladimir Lee
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA
| | | | - Paola A Ortiz
- Department of Parasitology, ICB, University of São Paulo, São Paulo, SP, Brazil
| | | | - Marta M G Teixeira
- Department of Parasitology, ICB, University of São Paulo, São Paulo, SP, Brazil
| | - Gregory A Buck
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA, USA. .,Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
29
|
Favila-Ruiz G, Jiménez-Cortés JG, Córdoba-Aguilar A, Salazar-Schettino PM, Gutiérrez-Cabrera AE, Pérez-Torres A, De Fuentes-Vicente JA, Vences-Blanco MO, Bucio-Torres MI, Flores-Villegas AL, Cabrera-Bravo M. Effects of Trypanosoma cruzi on the phenoloxidase and prophenoloxidase activity in the vector Meccus pallidipennis (Hemiptera: Reduviidae). Parasit Vectors 2018; 11:434. [PMID: 30053904 PMCID: PMC6062883 DOI: 10.1186/s13071-018-3016-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 07/16/2018] [Indexed: 12/03/2022] Open
Abstract
Background Triatomine insects are vectors of Trypanosoma cruzi, the causal agent of Chagas disease. The insect-parasite interaction has been studied in relation to the transmission and prevalence of this disease. For most triatomines, however, several crucial aspects of the insect immune response are still unknown. For example, only for Rhodnius prolixus and Triatoma infestans has the activity of phenoloxidase (PO) and its zymogen prophenoloxidase (proPO) been reported in relation to the hemolymph and anterior midgut (AM). The aim of this study was to gain insight into the immune response to T. cruzi infection of an important triatomine in Mexico, Meccus pallidipennis. Methods Parasites were quantified in the rectal contents of infected M. pallidipennis groups. We examined some key factors in disease transmission, including the systemic (hemolymph) and local (gut) immune response. Results Parasites were present in the rectal contents at 4 days post-infection (pi) and reached their maximum density on day 7 pi. At 7 and 9 days pi mainly metacyclic trypomastigotes occurred. Compared to the control, the infected insects exhibited diminished PO activity in the hemolymph on days 9, 16 and 20 pi, and in the AM only on day 9. Additionally, infected insects displayed lower proPO activity in the hemolymph on day 1, but greater activity in the AM on day 28. Conclusions The parasite strain originating from M. pallidipennis rapidly colonized the rectum of nymphs of this triatomine and developed high numbers of metacyclic trypomastigotes. Neither the changes of concentrations of PO and proPO in the hemolymph nor in the AM correlated with the changes in the population of T. cruzi. Electronic supplementary material The online version of this article (10.1186/s13071-018-3016-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guadalupe Favila-Ruiz
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - J Guillermo Jiménez-Cortés
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Alex Córdoba-Aguilar
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. P. 70-275, Circuito Exterior, 04510, Coyoacán, Ciudad de México, México
| | - Paz María Salazar-Schettino
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Ana E Gutiérrez-Cabrera
- CONACYT-Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Avenida Universidad 655, Col. Santa María Ahuacatitlán, Cerrada Los Pinos y Caminera, CP 62100, Cuernavaca, Morelos, México
| | - Armando Pérez-Torres
- Departamento de Biología Celular y Tisular; Facultad de Medicina, UNAM, 04510, Ciudad de México, México
| | | | - Mauro O Vences-Blanco
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Apdo. P. 70-275, Circuito Exterior, 04510, Coyoacán, Ciudad de México, México
| | - Martha I Bucio-Torres
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - A Laura Flores-Villegas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| | - Margarita Cabrera-Bravo
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México.
| |
Collapse
|
30
|
de Fuentes-Vicente JA, Gutiérrez-Cabrera AE, Flores-Villegas AL, Lowenberger C, Benelli G, Salazar-Schettino PM, Córdoba-Aguilar A. What makes an effective Chagas disease vector? Factors underlying Trypanosoma cruzi-triatomine interactions. Acta Trop 2018; 183:23-31. [PMID: 29625091 DOI: 10.1016/j.actatropica.2018.04.008] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/13/2018] [Accepted: 04/01/2018] [Indexed: 12/31/2022]
Abstract
The Chagas disease is caused by the parasite Trypanosoma cruzi, which infect blood-feeding triatomine bugs to finally reach mammal hosts. Chagas disease is endemic in Latin America, and is ranked among the 13 neglected tropical diseases worldwide. Currently, an estimate of 7 million people is infected by T. cruzi, leading to about 22 000 deaths per year throughout the Americas. As occurs with other vectors, a major question towards control programs is what makes a susceptible bug. In this review, we focus on findings linked to insect gut structure and microbiota, immunity, genetics, blood sources, abiotic factors (with special reference to ambient temperature and altitude) to understand the interactions occurring between T. cruzi and triatomine bugs, under a co-evolutionary scenario. These factors lead to varying fitness benefits and costs for bugs, explaining why infection in the insect takes place and how it varies in time and space. Our analysis highlights that major factors are gut components and microbiota, blood sources and temperature. Although their close interaction has never been clarified, knowledge reviewed here may help to boost the success of triatomine control programs, reducing the use of insecticides.
Collapse
|
31
|
Blakely BN, Hanson SF, Romero A. Survival and Transstadial Persistence of Trypanosoma cruzi in the bed bug (Hemiptera: Cimicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2018; 55:742-746. [PMID: 29381783 DOI: 10.1093/jme/tjx252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Indexed: 06/07/2023]
Abstract
Bed bug populations are increasing around the world at an alarming rate and have become a major public health concern. The appearance of bed bug populations in areas where Chagas disease is endemic raises questions about the role of these insects in the transmission of Trypanosoma cruzi, the etiological agent of the disease. In a series of laboratory evaluations, bed bug adults and nymphs were experimentally fed with T. cruzi-infected blood to assess the ability of T. cruzi to survive inside the bed bug and throughout the insect's molting process. Live T. cruzi were observed in gut contents of experimentally infected bed bug adults via light microscopy and the identity of the parasite was confirmed via polymerase chain reaction analysis. T. cruzi persisted at least 97-d postinfection in adult bed bugs. Nymphal stage bed bugs that were infected with T. cruzi maintained the parasite after molting, indicating that transstadial passage of T. cruzi in bed bugs took place. This report provides further evidence of acquisition, maintenance, and for the first time, transstadial persistence of T. cruzi in bed bugs.
Collapse
Affiliation(s)
- Brittny N Blakely
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM
| | - Stephen F Hanson
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM
| | - Alvaro Romero
- Department of Entomology, Plant Pathology and Weed Science, New Mexico State University, Las Cruces, NM
| |
Collapse
|
32
|
Cunha C, Oliveira A, Firmino T, Tenório D, Pereira G, Carvalho L, Santos B, Correia M, Fontes A. Biomedical applications of glyconanoparticles based on quantum dots. Biochim Biophys Acta Gen Subj 2018; 1862:427-439. [DOI: 10.1016/j.bbagen.2017.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/01/2017] [Accepted: 11/05/2017] [Indexed: 01/07/2023]
|
33
|
Dworak ES, Araújo SMD, Gomes ML, Massago M, Ferreira ÉC, Toledo MJDO. Sympatry influence in the interaction of Trypanosoma cruzi with triatomine. Rev Soc Bras Med Trop 2017; 50:629-637. [PMID: 29160509 DOI: 10.1590/0037-8682-0219-2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/24/2017] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Trypanosoma cruzi, the etiologic agent of Chagas disease, is widely distributed in nature, circulating between triatomine bugs and sylvatic mammals, and has large genetic diversity. Both the vector species and the genetic lineages of T. cruzi present a varied geographical distribution. This study aimed to verify the influence of sympatry in the interaction of T. cruzi with triatomines. Methods: The behavior of the strains PR2256 (T. cruzi II) and AM14 (T. cruzi IV) was studied in Triatoma sordida (TS) and Rhodnius robustus (RR). Eleven fifth-stage nymphs were fed by artificial xenodiagnosis with 5.6 × 103 blood trypomastigotes/0.1mL of each T. cruzi strain. Every 20 days, their excreta were examined for up to 100 days, and every 30 days, the intestinal content was examined for up to 120 days, by parasitological (fresh examination and differential count with Giemsa-stained smears) and molecular (PCR) methods. Rates of infectivity, metacyclogenesis and mortality, and mean number of parasites per insect and of excreted parasites were determined. RESULTS Sympatric groups RR+AM14 and TS+PR2256 showed higher values of the four parameters, except for mortality rate, which was higher (27.3%) in the TS+AM14 group. General infectivity was 72.7%, which was mainly proven by PCR, showing the following decreasing order: RR+AM14 (100%), TS+PR2256 (81.8%), RR+PR2256 (72.7%) and TS+AM14 (36.4%). CONCLUSIONS Our working hypothesis was confirmed once higher infectivity and vector capacity (flagellate production and elimination of infective metacyclic forms) were recorded in the groups that contained sympatric T. cruzi lineages and triatomine species.
Collapse
Affiliation(s)
- Elaine Schultz Dworak
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Silvana Marques de Araújo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil.,Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Mônica Lúcia Gomes
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil.,Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Miyoko Massago
- Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Érika Cristina Ferreira
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil.,Departamento de Estatística, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - Max Jean de Ornelas Toledo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil.,Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
34
|
Al-Alkawi H, Lange AB, Orchard I. Cloning, localization, and physiological effects of sulfakinin in the kissing bug, Rhodnius prolixus. Peptides 2017; 98:15-22. [PMID: 28024903 DOI: 10.1016/j.peptides.2016.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 11/25/2022]
Abstract
Sulfakinins (SKs) are a family of multifunctional neuropeptides that have been shown to have myotropic activity on muscles of the digestive system and to function as feeding satiety factors. Here, we confirm via cloning the presence of two sulfakinins (Rhopr-SK-1 and Rhopr-SK-2) in Rhodnius prolixus. Reverse transcriptase quantitative PCR demonstrates that the Rhopr-SK transcript is highly expressed in the central nervous system (CNS) of unfed fifth-instar R. prolixus. Fluorescent in situ hybridization shows transcript expression only in neurons in the brain. Immunohistochemical staining of SK-like peptides was observed in the same neurons in the brain and in processes extending throughout the CNS, as well as over the posterior midgut and anterior hindgut. Rhopr-SK-1 (sulfated form) induces contractions of the hindgut in a dose-dependent manner. Injection Rhopr-SK-1 (sulfated form) significantly decreases the overall weight of the blood meal consumed, suggesting SK's role as a satiety factor in R. prolixus.
Collapse
Affiliation(s)
- Hussain Al-Alkawi
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
| | - Angela B Lange
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| | - Ian Orchard
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
| |
Collapse
|
35
|
Moreira OC, Verly T, Finamore-Araujo P, Gomes SAO, Lopes CM, de Sousa DM, Azevedo LR, da Mota FF, d’Avila-Levy CM, Santos-Mallet JR, Britto C. Development of conventional and real-time multiplex PCR-based assays for estimation of natural infection rates and Trypanosoma cruzi load in triatomine vectors. Parasit Vectors 2017; 10:404. [PMID: 28851417 PMCID: PMC5576278 DOI: 10.1186/s13071-017-2343-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 08/22/2017] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Chagas disease is a complex anthropozoonosis with distinct domestic and sylvatic mammal species acting as potential reservoirs. The diversity of vector species and their habitats are among the factors that hinder the control of the disease. Control programs periodically monitor the prevalence of T. cruzi infection in insect bugs through microscopical observation of diluted feces. However, microscopy presents limited sensitivity in samples with low parasite numbers, difficulties in examining all evolutionary stages of the insect and may in turn be limited to differentiate T. cruzi from other morphologically similar trypanosomatids. Here, we report two highly sensitive and accurate methodologies to infer T. cruzi infection rates and to quantify parasite load in the gut of field-collected triatomines. METHODS Triatomines were manually collected in the period 2011-2012 and 2014-2015, in domestic, peridomestic or sylvatic habitats in rural areas of 26 municipalities, encompassing three distinct Brazilian biomes: Caatinga, Cerrado and Atlantic Rainforest. Following morphological and taxonomical identification, the search for flagellated protozoa was performed by optical microscopy. A conventional PCR targeting T. cruzi kDNA and a TaqMan qPCR directed to the parasite nuclear satellite DNA (SAT) were developed, both in multiplex, with the triatomine 12S subunit ribosomal RNA gene, used as internal amplification control. Both methods were used for detection (kDNA-PCR) and parasite load quantification (SAT-DNA-qPCR), to investigate T. cruzi infection in captured triatomines. RESULTS The combined methods were assayed on a panel of 205 field-collected triatomine samples. Diagnostic analysis revealed 21% positivity for the kDNA-PCR, whereas microscopic examination enabled identification of T. cruzi in only 7.0% of the PCR-positive samples. Negative PCR results were confirmed by the absence of T. cruzi flagellates using microscopy. Caatinga biome yielded the highest T. cruzi infection rate (60%), followed by the Atlantic Rainforest and Cerrado with 7.1 and 6.1%, respectively. In addition, a wide range distribution of parasite load, varying from 8.05 × 10-2 to 6.31 × 1010 was observed with a median of 2.29 × 103 T. cruzi/intestine units. When parasite load was analyzed by triatomine species, a significantly higher median was found for Panstrongylus lutzi in comparison with Triatoma brasiliensis. CONCLUSIONS Our results demonstrate highly sensitive PCR-based methodologies to monitor T. cruzi infection in triatomines. In addition, the qPCR assay offers the possibility of further evaluation parasite load, as a promising biomarker of the vectorial capacity of triatomines in Chagas disease endemic areas.
Collapse
Affiliation(s)
- Otacilio C. Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Thaiane Verly
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Paula Finamore-Araujo
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Suzete A. O. Gomes
- Laboratório de Biodiversidade de Parasitas e Vetores, Universidade Federal Fluminense/UFF, Rio de Janeiro, Niterói Brazil
| | - Catarina M. Lopes
- Laboratório Interdisciplinar de Vigilância Entomológica de Diptera e Hemiptera, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Danielle M. de Sousa
- Laboratório Interdisciplinar de Vigilância Entomológica de Diptera e Hemiptera, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Lívia R. Azevedo
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Fabio F. da Mota
- Laboratório de Biologia Computacional e Sistemas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Claudia M. d’Avila-Levy
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Jacenir R. Santos-Mallet
- Laboratório Interdisciplinar de Vigilância Entomológica de Diptera e Hemiptera, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Constança Britto
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| |
Collapse
|
36
|
Ospina-Rozo B, Forero-Shelton M, Molina J. Structure and postembryonic development of the intersegmental nodules in the non-muscular joints of the antennae in Rhodnius prolixus. ARTHROPOD STRUCTURE & DEVELOPMENT 2017; 46:287-296. [PMID: 27998742 DOI: 10.1016/j.asd.2016.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 12/12/2016] [Indexed: 06/06/2023]
Abstract
The antennae of Insecta consist of two basal segments and the distal annulated flagellum lacking intrinsic muscles. Non-muscular joints are important to preserve the flexibility and structure of the long heteropteran antennae which bear an intersegmental nodule on each non-muscular joint. Little is known about their properties or function. Here we characterize the structure and postembryonic development of the non-muscular joints of Rhodnius prolixus antennae. Using Scanning Electron Microscopy, we tracked the changes in shape and size of both intersegmental nodules during the course of the hemimetabolous insect life cycle. Using Atomic Force Microscopy, we established a qualitative correlation between the topography of the surface and the rigidity of the joint between pedicel and flagellum. Our results confirmed the presence of two sub-articulations on each non-muscular joint. Also, the two intersegmental nodules have different origins: the one between the two flagellar segments (intraflagelloid) is a sclerite already present from the early nymph, while the nodule between pedicel and flagellum (prebasiflagellite) originates by gradual separation of the proximal end of the basiflagellum during postembryonic development. Various changes occur in the non-muscular joints and segments of the antenna during the life cycle of R. prolixus.
Collapse
Affiliation(s)
- Bibiana Ospina-Rozo
- CIMPAT Laboratory, Biological Sciences Department, Universidad de los Andes Cra 1 No 18 A - 12, Bogotá, Colombia.
| | - Manu Forero-Shelton
- Biophysics Group, Physics Department, Universidad de los Andes Cra 1 No 18 A - 12, Bogotá, Colombia.
| | - Jorge Molina
- CIMPAT Laboratory, Biological Sciences Department, Universidad de los Andes Cra 1 No 18 A - 12, Bogotá, 111711, Colombia.
| |
Collapse
|
37
|
Azambuja P, Garcia ES, Waniek PJ, Vieira CS, Figueiredo MB, Gonzalez MS, Mello CB, Castro DP, Ratcliffe NA. Rhodnius prolixus: from physiology by Wigglesworth to recent studies of immune system modulation by Trypanosoma cruzi and Trypanosoma rangeli. JOURNAL OF INSECT PHYSIOLOGY 2017; 97:45-65. [PMID: 27866813 DOI: 10.1016/j.jinsphys.2016.11.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 11/04/2016] [Accepted: 11/16/2016] [Indexed: 06/06/2023]
Abstract
This review is dedicated to the memory of Professor Sir Vincent B. Wigglesworth (VW) in recognition of his many pioneering contributions to insect physiology which, even today, form the basis of modern-day research in this field. Insects not only make vital contributions to our everyday lives by their roles in pollination, balancing eco-systems and provision of honey and silk products, but they are also outstanding models for studying the pathogenicity of microorganisms and the functioning of innate immunity in humans. In this overview, the immune system of the triatomine bug, Rhodnius prolixus, is considered which is most appropriate to this dedication as this insect species was the favourite subject of VW's research. Herein are described recent developments in knowledge of the functioning of the R. prolixus immune system. Thus, the roles of the cellular defences, such as phagocytosis and nodule formation, as well as the role of eicosanoids, ecdysone, antimicrobial peptides, reactive oxygen and nitrogen radicals, and the gut microbiota in the immune response of R. prolixus are described. The details of many of these were unknown to VW although his work gives indications of his awareness of the importance to R. prolixus of cellular immunity, antibacterial activity, prophenoloxidase and the gut microbiota. This description of R. prolixus immunity forms a backdrop to studies on the interaction of the parasitic flagellates, Trypanosoma cruzi and Trypanosoma rangeli, with the host defences of this important insect vector. These parasites remarkably utilize different strategies to avoid/modulate the triatomine immune response in order to survive in the extremely hostile host environments present in the vector gut and haemocoel. Much recent information has also been gleaned on the remarkable diversity of the immune system in the R. prolixus gut and its interaction with trypanosome parasites. This new data is reviewed and gaps in our knowledge of R. prolixus immunity are identified as subjects for future endeavours. Finally, the publication of the T. cruzi, T. rangeli and R. prolixus genomes, together with the use of modern molecular techniques, should lead to the enhanced identification of the determinants of infection derived from both the vector and the parasites which, in turn, could form targets for new molecular-based control strategies.
Collapse
Affiliation(s)
- P Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - E S Garcia
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - P J Waniek
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - C S Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M B Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - M S Gonzalez
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - C B Mello
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - D P Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil; Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - N A Ratcliffe
- Laboratório de Biologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil; Department of Biosciences, College of Science, Swansea University, Singleton Park, Swansea, Wales, United Kingdom.
| |
Collapse
|
38
|
Díaz S, Villavicencio B, Correia N, Costa J, Haag KL. Triatomine bugs, their microbiota and Trypanosoma cruzi: asymmetric responses of bacteria to an infected blood meal. Parasit Vectors 2016; 9:636. [PMID: 27938415 PMCID: PMC5148865 DOI: 10.1186/s13071-016-1926-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/01/2016] [Indexed: 12/11/2022] Open
Abstract
Background Triatomine bugs (Hemiptera: Reduviidae) are vectors of the flagellate Trypanosoma cruzi, the causative agent of Chagas disease. The study of triatomine gut microbiota has gained relevance in the last years due to its possible role in vector competence and prospective use in control strategies. The objective of this study is to examine changes in the gut microbiota composition of triatomines in response to a T. cruzi-infected blood meal and identifying key factors determining those changes. Results We sampled colony-reared individuals from six triatomine vectors (Panstrongylus megistus, Rhodnius prolixus, Triatoma brasiliensis, T. infestans, T. juazeirensis and T. sherlocki) comparing experimentally T. cruzi strain 0354-challenged and non-challenged insects. The microbiota of gut and gonad tissues was characterized using high throughput sequencing of region V3-V4 of bacterial 16S rRNA gene. The triatomine microbiota had a low intra-individual diversity, and a high inter-individual variation within the same host species. Arsenophonous appeared as the dominant triatomine bacterial symbiont in our study (59% of the total 16S coverage), but there were significant differences in the distribution of bacterial genera among vectors. In Rhodnius prolixus the dominant symbiont was Pectobacterium. Conclusions Trypanosoma cruzi-challenge significantly affects microbiota composition, with challenged vectors harbouring a significantly more diverse bacterial community, both in the gut and the gonads. Our results show that blood-feeding with T. cruzi epimastigotes strongly affects microbiota composition in a species-specific manner. We suggest that triatomine-adapted enterobacteria such as Arsenophonus could be used as stable vectors for genetic transformation of triatomine bugs and control of Chagas disease. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1926-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sebastián Díaz
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bianca Villavicencio
- Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Nathália Correia
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jane Costa
- Laboratório de Biodiversidade Entomológica, Instituto Oswaldo Cruz-Fiocruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karen L Haag
- Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. .,Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
39
|
Sangenito LS, d'Avila-Levy CM, Branquinha MH, Santos ALS. Nelfinavir and lopinavir impair Trypanosoma cruzi trypomastigote infection in mammalian host cells and show anti-amastigote activity. Int J Antimicrob Agents 2016; 48:703-711. [PMID: 27838277 DOI: 10.1016/j.ijantimicag.2016.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 09/08/2016] [Accepted: 09/15/2016] [Indexed: 02/08/2023]
Abstract
There is an urgent need to implement new strategies and to search for new chemotherapeutic targets to combat Chagas' disease. In this context, repositioning of clinically approved drugs appears as a viable tool to combat this and several other neglected pathologies. An example is the use of aspartic peptidase inhibitors (PIs) currently applied in human immunodeficiency virus (HIV) treatment against different infectious agents. Therefore, the main objective of this work was to verify the effects of the HIV-PIs nelfinavir and lopinavir against Trypanosoma cruzi using in vitro models of infection. Cytotoxicity assays with LLC-MK2 epithelial cells and RAW macrophages allowed an evaluation of the effects of HIV-PIs on the interaction between trypomastigotes and these cells as well as the survival of intracellular amastigotes. Pre-treatment of trypomastigotes with nelfinavir and lopinavir inhibited the association index with LLC-MK2 cells and RAW macrophages in a dose- and time-dependent manner. In addition, nelfinavir and lopinavir also significantly reduced the number of intracellular amastigotes in both mammalian cell lineages, particularly when administered in daily doses. Both compounds had no effect on nitric oxide production in infected RAW macrophages. These results open the possibility for the use of HIV-PIs as a tangible alternative in the treatment of Chagas' disease. However, the main mechanism of action of nelfinavir and lopinavir has yet to be elucidated, and more studies using in vivo models must be conducted.
Collapse
Affiliation(s)
- Leandro S Sangenito
- Departamento de Microbiologia Geral, Laboratório de Investigação de Peptidases, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Claudia M d'Avila-Levy
- Laboratório de Estudos Integrados em Protozoologia, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Marta H Branquinha
- Departamento de Microbiologia Geral, Laboratório de Investigação de Peptidases, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil.
| | - André L S Santos
- Departamento de Microbiologia Geral, Laboratório de Investigação de Peptidases, Instituto de Microbiologia Paulo de Góes (IMPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Programa de Pós-Graduação em Bioquímica, Instituto de Química, UFRJ, Rio de Janeiro, Brazil.
| |
Collapse
|
40
|
Triflumuron Effects on the Physiology and Reproduction of Rhodnius prolixus Adult Females. BIOMED RESEARCH INTERNATIONAL 2016; 2016:8603140. [PMID: 27822479 PMCID: PMC5086386 DOI: 10.1155/2016/8603140] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 09/18/2016] [Indexed: 11/17/2022]
Abstract
We evaluated the efficacy of the growth regulator triflumuron (TFM) in inducing mortality and disrupting both oviposition and egg hatching in Rhodnius prolixus adult females. TFM was administered via feeding, topically or by continuous contact with impregnated surfaces. Feeding resulted in mild biological effects compared with topical and impregnated surfaces. One day after treatment, the highest mortality levels were observed with topical surface and 30 days later both topical and impregnated surfaces induced higher mortalities than feeding. Oral treatment inhibited oviposition even at lower doses, and hatching of eggs deposited by treated females was similarly affected by the three delivery modes. Topical treatment of eggs deposited by nontreated females significantly reduced hatching. However, treatment per contact of eggs oviposited by untreated females did not disrupt eclosion. Additionally, oral treatment increased the number of immature oocytes per female, and topical treatment reduced the mean size of oocytes. TFM also affected carcass chitin content, diuresis, and innate immunity of treated insects. These results suggest that TFM acts as a potent growth inhibitor of R. prolixus adult females and has the potential to be used in integrated vector control programs against hematophagous triatomine species.
Collapse
|
41
|
Seco-Hidalgo V, De Pablos LM, Osuna A. Transcriptional and phenotypical heterogeneity of Trypanosoma cruzi cell populations. Open Biol 2016; 5:150190. [PMID: 26674416 PMCID: PMC4703061 DOI: 10.1098/rsob.150190] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Trypanosoma cruzi has a complex life cycle comprising pools of cell populations which circulate among humans, vectors, sylvatic reservoirs and domestic animals. Recent experimental evidence has demonstrated the importance of clonal variations for parasite population dynamics, survival and evolution. By limiting dilution assays, we have isolated seven isogenic clonal cell lines derived from the Pan4 strain of T. cruzi. Applying different molecular techniques, we have been able to provide a comprehensive characterization of the expression heterogeneity in the mucin-associated surface protein (MASP) gene family, where all the clonal isogenic populations were transcriptionally different. Hierarchical cluster analysis and sequence comparison among different MASP cDNA libraries showed that, despite the great variability in MASP expression, some members of the transcriptome (including MASP pseudogenes) are conserved, not only in the life-cycle stages but also among different strains of T. cruzi. Finally, other important aspects for the parasite, such as growth, spontaneous metacyclogenesis or excretion of different catabolites, were also compared among the clones, demonstrating that T. cruzi populations of cells are also phenotypically heterogeneous. Although the evolutionary strategy that sustains the MASP expression polymorphism remains unknown, we suggest that MASP clonal variability and phenotypic heterogeneities found in this study might provide an advantage, allowing a rapid response to environmental pressure or changes during the life cycle of T. cruzi.
Collapse
Affiliation(s)
- Víctor Seco-Hidalgo
- Biochemistry and Molecular Parasitology Research Group, Department of Parasitology, University of Granada, Campus de Fuentenueva, Granada, Spain
| | - Luis Miguel De Pablos
- Biochemistry and Molecular Parasitology Research Group, Department of Parasitology, University of Granada, Campus de Fuentenueva, Granada, Spain Centre for Immunology and Infection (CII), Biology Department, University of York, York, UK
| | - Antonio Osuna
- Biochemistry and Molecular Parasitology Research Group, Department of Parasitology, University of Granada, Campus de Fuentenueva, Granada, Spain
| |
Collapse
|
42
|
de Araújo CAC, Mayer C, Waniek PJ, Azambuja P, Jansen AM. Differentiation of Trypanosoma cruzi I (TcI) and T. cruzi II (TcII) genotypes using genes encoding serine carboxypeptidases. Parasitol Res 2016; 115:4211-4219. [DOI: 10.1007/s00436-016-5198-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 07/13/2016] [Indexed: 12/30/2022]
|
43
|
Gutiérrez-Cabrera AE, Córdoba-Aguilar A, Zenteno E, Lowenberger C, Espinoza B. Origin, evolution and function of the hemipteran perimicrovillar membrane with emphasis on Reduviidae that transmit Chagas disease. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:279-291. [PMID: 26639621 DOI: 10.1017/s0007485315000929] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The peritrophic matrix is a chitin-protein structure that envelops the food bolus in the midgut of the majority of insects, but is absent in some groups which have, instead, an unusual extra-cellular lipoprotein membrane named the perimicrovillar membrane. The presence of the perimicrovillar membrane (PMM) allows these insects to exploit restricted ecological niches during all life stages. It is found only in some members of the superorder Paraneoptera and many of these species are of medical and economic importance. In this review we present an overview of the midgut and the digestive system of insects with an emphasis on the order Paraneoptera and differences found across phylogenetic groups. We discuss the importance of the PMM in Hemiptera and the apparent conservation of this structure among hemipteran groups, suggesting that the basic mechanism of PMM production is the same for different hemipteran species. We propose that the PMM is intimately involved in the interaction with parasites and as such should be a target for biological and chemical control of hemipteran insects of economic and medical importance.
Collapse
Affiliation(s)
- A E Gutiérrez-Cabrera
- Departamento de Inmunología,Instituto de Investigaciones Biomedicas,Universidad Nacional Autónoma de México,Apdo. 70228,Circuito Exterior,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| | - A Córdoba-Aguilar
- Departamento de Ecología Evolutiva,Instituto de Ecología,Universidad Nacional Autónoma de México,Apdo. P. 70-275,Circuito Exterior,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,Mexico
| | - E Zenteno
- Departamento de Bioquímica,Facultad de Medicina,Universidad Nacional Autónoma de México,Ciudad Universitaria,04510 D.F.,Mexico
| | - C Lowenberger
- Department of Biological Sciences,Simon Fraser University,Burnaby, B.C., V5A 1S6,Canada
| | - B Espinoza
- Departamento de Inmunología,Instituto de Investigaciones Biomedicas,Universidad Nacional Autónoma de México,Apdo. 70228,Circuito Exterior,Ciudad Universitaria,04510,Coyoacán,Distrito Federal,México
| |
Collapse
|
44
|
Vieira CS, Waniek PJ, Castro DP, Mattos DP, Moreira OC, Azambuja P. Impact of Trypanosoma cruzi on antimicrobial peptide gene expression and activity in the fat body and midgut of Rhodnius prolixus. Parasit Vectors 2016; 9:119. [PMID: 26931761 PMCID: PMC4774030 DOI: 10.1186/s13071-016-1398-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 02/20/2016] [Indexed: 11/16/2022] Open
Abstract
Background Rhodnius prolixus is a major vector of Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. In natural habitats, these insects are in contact with a variety of bacteria, fungi, virus and parasites that they acquire from both their environments and the blood of their hosts. Microorganism ingestion may trigger the synthesis of humoral immune factors, including antimicrobial peptides (AMPs). The objective of this study was to compare the expression levels of AMPs (defensins and prolixicin) in the different midgut compartments and the fat body of R. prolixus infected with different T. cruzi strains. The T. cruzi Dm 28c clone (TcI) successfully develops whereas Y strain (TcII) does not complete its life- cycle in R. prolixus. The relative AMP gene expressions were evaluated in the insect midgut and fat body infected on different days with the T. cruzi Dm 28c clone and the Y strain. The influence of the antibacterial activity on the intestinal microbiota was taken into account. Methods The presence of T. cruzi in the midgut of R. prolixus was analysed by optical microscope. The relative expression of the antimicrobial peptides encoding genes defensin (defA, defB, defC) and prolixicin (prol) was quantified by RT-qPCR. The antimicrobial activity of the AMPs against Staphylococcus aureus, Escherichia coli and Serratia marcescens were evaluated in vitro using turbidimetric tests with haemolymph, anterior and posterior midgut samples. Midgut bacteria were quantified using colony forming unit (CFU) assays and real time quantitative polymerase chain reaction (RT-qPCR). Results Our results showed that the infection of R. prolixus by the two different T. cruzi strains exhibited different temporal AMP induction profiles in the anterior and posterior midgut. Insects infected with T. cruzi Dm 28c exhibited an increase in defC and prol transcripts and a simultaneous reduction in the midgut cultivable bacteria population, Serratia marcescens and Rhodococcus rhodnii. In contrast, the T. cruzi Y strain neither induced AMP gene expression in the gut nor reduced the number of colony formation units in the anterior midgut. Beside the induction of a local immune response in the midgut after feeding R. prolixus with T. cruzi, a simultaneous systemic response was also detected in the fat body. Conclusions R. prolixus AMP gene expressions and the cultivable midgut bacterial microbiota were modulated in distinct patterns, which depend on the T. cruzi genotype used for infection. Electronic supplementary material The online version of this article (doi:10.1186/s13071-016-1398-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- C S Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - P J Waniek
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - D P Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - D P Mattos
- Laboratório deBiologia de Insetos, Universidade Federal Fluminense, Niterói, RJ, Brazil.
| | - O C Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - P Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil. .,Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
45
|
Dias FDA, Guerra B, Vieira LR, Perdomo HD, Gandara ACP, do Amaral RJV, Vollú RE, Gomes SAO, Lara FA, Sorgine MHF, Medei E, de Oliveira PL, Salmon D. Monitoring of the Parasite Load in the Digestive Tract of Rhodnius prolixus by Combined qPCR Analysis and Imaging Techniques Provides New Insights into the Trypanosome Life Cycle. PLoS Negl Trop Dis 2015; 9:e0004186. [PMID: 26496442 PMCID: PMC4619730 DOI: 10.1371/journal.pntd.0004186] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 10/01/2015] [Indexed: 01/12/2023] Open
Abstract
Background Here we report the monitoring of the digestive tract colonization of Rhodnius prolixus by Trypanosoma cruzi using an accurate determination of the parasite load by qPCR coupled with fluorescence and bioluminescence imaging (BLI). These complementary methods revealed critical steps necessary for the parasite population to colonize the insect gut and establish vector infection. Methodology/Principal Findings qPCR analysis of the parasite load in the insect gut showed several limitations due mainly to the presence of digestive-derived products that are thought to degrade DNA and inhibit further the PCR reaction. We developed a real-time PCR strategy targeting the T. cruzi repetitive satellite DNA sequence using as internal standard for normalization, an exogenous heterologous DNA spiked into insect samples extract, to precisely quantify the parasite load in each segment of the insect gut (anterior midgut, AM, posterior midgut, PM, and hindgut, H). Using combined fluorescence microscopy and BLI imaging as well as qPCR analysis, we showed that during their journey through the insect digestive tract, most of the parasites are lysed in the AM during the first 24 hours independently of the gut microbiota. During this short period, live parasites move through the PM to establish the onset of infection. At days 3–4 post-infection (p.i.), the parasite population begins to colonize the H to reach a climax at day 7 p.i., which is maintained during the next two weeks. Remarkably, the fluctuation of the parasite number in H remains relatively stable over the two weeks after refeeding, while the populations residing in the AM and PM increases slightly and probably constitutes the reservoirs of dividing epimastigotes. Conclusions/Significance These data show that a tuned dynamic control of the population operates in the insect gut to maintain an equilibrium between non-dividing infective trypomastigote forms and dividing epimastigote forms of the parasite, which is crucial for vector competence. Although the key aspects of the T. cruzi life cycle were described more than one century ago, the development and interactions of T. cruzi with its vector are poorly characterized. By dissection of different compartments of the triatomine gut (prototype Rhodnius prolixus) (i.e., AM, PM and H) at regular time intervals, we evaluated trypanosome development within the insect using an accurate qPCR assay. qPCR analysis of trypanosomal colonization and clearance dynamics in real-time were confirmed in vivo using both fluorescence and bioluminescence imaging, which revealed massive parasite lysis during the first 24 hours post-feeding (p.f.). After one week, the parasite succeeded in establishing a resident population in each compartment of the gut, albeit at varying levels. From one week after the onset of infection in the AM and PM, some resident forms agglomerated into rosettes, clustering in close association with the vector tissue and constituting potential parasite reservoirs of the bug. For the first time, we have described a methodology to accurately quantify parasites in the insect gut that would be a useful tool for evaluating the impact of RNAi silencing of insect genes during the course of infection by T. cruzi.
Collapse
Affiliation(s)
- Felipe de Almeida Dias
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Barbara Guerra
- Centro Nacional de Biologia Estrutural e Bioimagem—CENABIO, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Larissa Rezende Vieira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hugo Diego Perdomo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Caroline Paiva Gandara
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Renata Estebanez Vollú
- Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Flavio Alves Lara
- Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marcos Henrique Ferreira Sorgine
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Emiliano Medei
- Centro Nacional de Biologia Estrutural e Bioimagem—CENABIO, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Lagerblad de Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brazil
| | - Didier Salmon
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
46
|
LaDeau SL, Allan BF, Leisnham PT, Levy MZ. The ecological foundations of transmission potential and vector-borne disease in urban landscapes. Funct Ecol 2015; 29:889-901. [PMID: 26549921 PMCID: PMC4631442 DOI: 10.1111/1365-2435.12487] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Urban transmission of arthropod-vectored disease has increased in recent decades. Understanding and managing transmission potential in urban landscapes requires integration of sociological and ecological processes that regulate vector population dynamics, feeding behavior, and vector-pathogen interactions in these unique ecosystems. Vectorial capacity is a key metric for generating predictive understanding about transmission potential in systems with obligate vector transmission. This review evaluates how urban conditions, specifically habitat suitability and local temperature regimes, and the heterogeneity of urban landscapes can influence the biologically-relevant parameters that define vectorial capacity: vector density, survivorship, biting rate, extrinsic incubation period, and vector competence.Urban landscapes represent unique mosaics of habitat. Incidence of vector-borne disease in urban host populations is rarely, if ever, evenly distributed across an urban area. The persistence and quality of vector habitat can vary significantly across socio-economic boundaries to influence vector species composition and abundance, often generating socio-economically distinct gradients of transmission potential across neighborhoods.Urban regions often experience unique temperature regimes, broadly termed urban heat islands (UHI). Arthropod vectors are ectothermic organisms and their growth, survival, and behavior are highly sensitive to environmental temperatures. Vector response to UHI conditions is dependent on regional temperature profiles relative to the vector's thermal performance range. In temperate climates UHI can facilitate increased vector development rates while having countervailing influence on survival and feeding behavior. Understanding how urban heat island (UHI) conditions alter thermal and moisture constraints across the vector life cycle to influence transmission processes is an important direction for both empirical and modeling research.There remain persistent gaps in understanding of vital rates and drivers in mosquito-vectored disease systems, and vast holes in understanding for other arthropod vectored diseases. Empirical studies are needed to better understand the physiological constraints and socio-ecological processes that generate heterogeneity in critical transmission parameters, including vector survival and fitness. Likewise, laboratory experiments and transmission models must evaluate vector response to realistic field conditions, including variability in sociological and environmental conditions.
Collapse
Affiliation(s)
| | - Brian F. Allan
- Department of Entomology, University of Illinois, Urbana, IL, USA
| | - Paul T. Leisnham
- Concentration in Ecosystem Health and Natural Resource Management, Department of Environmental Science & Technology, University of Maryland, College Park, MD, USA
| | - Michael Z. Levy
- Department of Biostatistics & Epidemiology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
47
|
Escalante ME, Gomez D, Silvera LA, Sánchez G, Venegas J. Detection of high percentage of Trypanosoma cruzi infection, the etiologic agent of Chagas disease, in wild populations of Colombian Caribbean triatomines. Acta Parasitol 2015. [PMID: 26204001 DOI: 10.1515/ap-2015-0044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In Colombia it is estimated that about 900,000 persons are infected with T. cruzi. There are 25 triatomine species and 5 of them have been reported infected with T. cruzi in the Colombian Caribbean region. In order to obtain more information about the triatomine populations in this region, 89 wild triatomines were collected from four Colombian Departments. The most frequent specie collected was Rhodnius pallescens (65%), followed by Rhodnius prolixus (20%), Panstrongylus geniculatus (10.1%) and Triatoma dimidiata (1%), found in Bolivar, Córdoba, Atlántico/Sucre, and Bolívar Departments, respectively. The majority of triatomines (95.5%) were captured in the arboreal ecotope and 76.4% were found infected with T. cruzi. Interestingly, some of these triatomine species were captured in Departments in which they had not previously been reported and also new finding of triatomine species infected with T. cruzi. These results are relevant, because they can be consequence of a continued geographical expansion of this parasite, not only in the Colombian Caribbean region, but even in all Latin America. The information presented here will contribute in the surveillance and control strategies of the vectors infected with T. cruzi that circulate in four department of Colombian Caribbean region in order to interrupt the transmission to human dwelling.
Collapse
|
48
|
Costa J, Araújo CAC, Freitas CAV, Borges-Pereira J. Are Members of the Triatoma brasiliensis (Hemiptera, Reduviidae) Species Complex Able to Alter the Biology and Virulence of a Trypanosoma cruzi Strain? NEOTROPICAL ENTOMOLOGY 2015; 44:186-193. [PMID: 26013138 DOI: 10.1007/s13744-015-0271-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, transmitted to humans and mammals by blood-sucking hemipteran insects belonging to the Triatominae subfamily. The two main genotypes of T. cruzi (TcI and TcII) differ in many characteristics concerning their genetic profile. Despite the extensive literature on vectors and the etiologic agent, several interactive aspects between these two elements of Chagas disease are still waiting to be further clarified. Here, biological and histological features resulting from the interaction between Albino Swiss mice and T. cruzi isolate PB913 after passages through vectors of the Triatoma brasiliensis species complex were evaluated. Comparing the four members of the T. brasiliensis species complex-Triatoma brasiliensis brasiliensis Neiva, Triatoma brasiliensis macromelasoma Galvão, Triatoma melanica Neiva & Lent, and Triatoma juazeirensis Costa & Felix-no significant differences in parasitemia of the infected mice were observed. At 20 days post-infection, the highest number of parasites was observed in the group of mice that were infected with parasites obtained from T. b. macromelasoma. Tropism of the parasites to different organs such as heart, bladder, and skeletal muscles followed by inflammatory cell infiltrates was observed with quantitative and qualitative differences. Even though the four members of the T. brasiliensis species complex differ in their geographical distribution, morphology, biology, ecology, and genetics, no significant influence on the parasitemia of the T. cruzi PB913 isolate was detected. After evaluation of the tissue samples, a higher pathogenicity of parasites obtained from T. b. brasiliensis was noticeable.
Collapse
Affiliation(s)
- J Costa
- Lab de Biodiversidade Entomológica, Instituto Oswaldo Cruz-IOC/FIOCRUZ, Av. Brasil 4365, Rio de Janeiro, RJ, Brasil
| | | | | | | |
Collapse
|
49
|
Vieira CS, Mattos DP, Waniek PJ, Santangelo JM, Figueiredo MB, Gumiel M, da Mota FF, Castro DP, Garcia ES, Azambuja P. Rhodnius prolixus interaction with Trypanosoma rangeli: modulation of the immune system and microbiota population. Parasit Vectors 2015; 8:135. [PMID: 25888720 PMCID: PMC4350287 DOI: 10.1186/s13071-015-0736-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/13/2015] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Trypanosoma rangeli is a protozoan that infects a variety of mammalian hosts, including humans. Its main insect vector is Rhodnius prolixus and is found in several Latin American countries. The R. prolixus vector competence depends on the T. rangeli strain and the molecular interactions, as well as the insect's immune responses in the gut and haemocoel. This work focuses on the modulation of the humoral immune responses of the midgut of R. prolixus infected with T. rangeli Macias strain, considering the influence of the parasite on the intestinal microbiota. METHODS The population density of T. rangeli Macias strain was analysed in different R. prolixus midgut compartments in long and short-term experiments. Cultivable and non-cultivable midgut bacteria were investigated by colony forming unit (CFU) assays and by 454 pyrosequencing of the 16S rRNA gene, respectively. The modulation of R. prolixus immune responses was studied by analysis of the antimicrobial activity in vitro against different bacteria using turbidimetric tests, the abundance of mRNAs encoding antimicrobial peptides (AMPs) defensin (DefA, DefB, DefC), prolixicin (Prol) and lysozymes (LysA, LysB) by RT-PCR and analysis of the phenoloxidase (PO) activity. RESULTS Our results showed that T. rangeli successfully colonized R. prolixus midgut altering the microbiota population and the immune responses as follows: 1 - reduced cultivable midgut bacteria; 2 - decreased the number of sequences of the Enterococcaceae but increased those of the Burkholderiaceae family; the families Nocardiaceae, Enterobacteriaceae and Mycobacteriaceae encountered in control and infected insects remained the same; 3 - enhanced midgut antibacterial activities against Serratia marcescens and Staphylococcus aureus; 4 - down-regulated LysB and Prol mRNA levels; altered DefB, DefC and LysA depending on the infection (short and long-term); 5 - decreased PO activity. CONCLUSION Our findings suggest that T. rangeli Macias strain modulates R. prolixus immune system and modifies the natural microbiota composition.
Collapse
Affiliation(s)
- Cecilia S Vieira
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - Débora P Mattos
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - Peter J Waniek
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - Jayme M Santangelo
- Departamento de Ciências Ambientais, Instituto de Florestas, Universidade Federal Rural do Rio de Janeiro (UFRRJ), Seropédica, RJ, Brazil.
| | - Marcela B Figueiredo
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - Marcia Gumiel
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil.
| | - Fabio F da Mota
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil. .,Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - Daniele P Castro
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil. .,Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - Eloi S Garcia
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil. .,Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| | - Patrícia Azambuja
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/FIOCRUZ), Rio de Janeiro, RJ, Brazil. .,Departamento de Entomologia Molecular, Instituto Nacional de Entomologia Molecular (INCT-EM), Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
50
|
A Kazal-type inhibitor is modulated by Trypanosoma cruzi to control microbiota inside the anterior midgut of Rhodnius prolixus. Biochimie 2015; 112:41-8. [PMID: 25731714 DOI: 10.1016/j.biochi.2015.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 02/19/2015] [Indexed: 01/20/2023]
Abstract
The triatomine insect, Rhodnius prolixus, is a vector of Trypanosoma cruzi, a protozoan parasite that causes Chagas disease. The parasite must overcome immune response and microbiota to develop inside the midgut of triatomines. In this study, we expressed, purified and characterized a Kazal-type inhibitor from the midgut of R. prolixus, named RpTI, which may be involved in microbiota - T. cruzi interactions. The qPCR showed that the RpTI transcript was primarily expressed in tissues from the intestinal tract and that it was upregulated in the anterior midgut after T. cruzi infection. A 315-bp cDNA fragment encoding the mature protein was cloned into the pPIC9 vector and expressed in Pichia pastoris system. Recombinant RpTI (rRpTI) was purified on a trypsin-Sepharose column and had a molecular mass of 11.5 kDa as determined by SDS-PAGE analysis. This protein inhibited trypsin (Ki = 0.42 nM), whereas serine proteases from the coagulation cascade were not inhibited. Moreover, trypanocidal assays revealed that rRpTI did not interfere in the viability of T. cruzi trypomastigotes. The RpTI transcript was also knocked down by RNA interference prior to infection of R. prolixus with T. cruzi. The amount of T. cruzi in the anterior midgut was significantly lower in RpTI knockdown insects compared to the non-silenced groups. We also verified that the bacterial load is higher in the anterior midgut of silenced and infected R. prolixus compared to non-silenced and infected insects. Our results suggest that T. cruzi infection increases the expression of RpTI to mediate microbiota modulation and is important for parasite immediately after infection with R. prolixus.
Collapse
|