1
|
Wang JY, Fan NN, Yuan Y, Bass C, Siemann E, Ji XY, Jiang JX, Wan NF. Plant defense metabolites influence the interaction between an insect herbivore and an entomovirus. Curr Biol 2024; 34:5758-5768.e5. [PMID: 39577425 DOI: 10.1016/j.cub.2024.10.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/04/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024]
Abstract
The tri-trophic interaction of plants, insect herbivores, and entomoviruses is an important topic in ecology and pest control. The susceptibility of insect herbivores to entomoviruses (e.g., nucleopolyhedroviruses) is influenced by host plants; however, the role of plant secondary metabolites in determining such susceptibility is poorly understood. Metabolomic analyses of Brassica oleracea, Glycine max, and Ipomoea aquatica plants, which differ in how they affect the susceptibility of Spodoptera exigua to nucleopolyhedroviruses among 14 plants, suggested that the plant secondary metabolites genistein, kaempferol, quercitrin, and coumarin play a role in influencing nucleopolyhedroviruses susceptibility. Subsequently, transcriptomic analysis of caterpillars, treated with nucleopolyhedroviruses alone or with one of these four phenolics, identified four genes (CYP340K4, CXE18, GSTe, and GSTe1) that were significantly downregulated by the phenolics. Functional characterization of these genes suggested that their downregulation significantly increased larval sensitivity to nucleopolyhedroviruses and altered aspects of the immune response. Our findings provide new insight into the role of plant defense metabolites in influencing the interactions between insect herbivores and entomopathogens and identify plant secondary metabolites as potential synergists of viral agents for the control of agricultural pests.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China
| | - Neng-Neng Fan
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China
| | - Yuan Yuan
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China
| | - Chris Bass
- Centre for Ecology and Conservation, University of Exeter, Penryn, Cornwall TR10 9WT, UK
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Xiang-Yun Ji
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China.
| | - Jie-Xian Jiang
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China.
| | - Nian-Feng Wan
- Eco-environmental Protection Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Ministry of Agriculture and Rural Affairs Key Laboratory of Low-carbon Green Agriculture in South eastern China, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy of East China University of Science and Technology, Shanghai 201403, China; Institute of Pesticides & Pharmaceuticals, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
2
|
Muchoney ND, Watanabe AM, Teglas MB, Smilanich AM. Dose-dependent dynamics of densovirus infection in two nymphalid butterfly species utilizing native or exotic host plants. J Invertebr Pathol 2024; 206:108176. [PMID: 39159850 DOI: 10.1016/j.jip.2024.108176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/21/2024]
Abstract
Insects are attacked by a diverse range of microbial pathogens in the wild. In herbivorous species, larval host plants frequently play a critical role in mediating susceptibility to infection. Characterizing such plant-mediated effects on herbivore-pathogen interactions can provide insight into patterns of infection across wild populations. In this study, we investigated the effects of host plant use by two North American butterflies, Euphydryas phaeton (Nymphalidae) and Anartia jatrophae (Nymphalidae), on entomopathogen infection across a range of three doses. Both of these herbivores recently incorporated the same exotic plant, Plantago lanceolata (Plantaginaceae), into their host range and are naturally infected by the same entomopathogen, Junonia coenia densovirus (Parvoviridae), in wild populations. We performed two factorial experiments in which E. phaeton and A. jatrophae were reared on either P. lanceolata or a native host plant [Chelone glabra (Plantaginaceae) for E. phaeton; Bacopa monnieri (Plantaginaceae) for A. jatrophae] and inoculated with either a low, medium, or high dose of the virus. In E. phaeton, the outcomes of infection were highly dose-dependent, with inoculation with higher viral doses resulting in faster time to death and greater mortality. However, neither survival nor postmortem viral burdens varied depending upon the host plant that was consumed. In contrast, host plant use had a strong effect on viral burdens in A. jatrophae, with consumption of the exotic plant appearing to enhance host resistance to infection. Together, these results illustrate the variable influences of host plant use on herbivore resistance to infection, highlighting the importance of investigating plant-herbivore relationships within a tritrophic framework.
Collapse
Affiliation(s)
- Nadya D Muchoney
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno 1664 N. Virginia Street MS 0314, Reno, NV, 89557, USA; Department of Biology, University of Nevada, Reno 1664 N. Virginia Street MS 0314, Reno, NV, 89557, USA.
| | - Amy M Watanabe
- Department of Biology, University of Nevada, Reno 1664 N. Virginia Street MS 0314, Reno, NV, 89557, USA.
| | - Mike B Teglas
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno 1664 N. Virginia Street MS 0314, Reno, NV, 89557, USA; Department of Agriculture, Veterinary and Rangeland Sciences, University of Nevada, Reno 1664 N. Virginia Street MS 0202, Reno, NV, 89557, USA.
| | - Angela M Smilanich
- Program in Ecology, Evolution, and Conservation Biology, University of Nevada, Reno 1664 N. Virginia Street MS 0314, Reno, NV, 89557, USA; Department of Biology, University of Nevada, Reno 1664 N. Virginia Street MS 0314, Reno, NV, 89557, USA.
| |
Collapse
|
3
|
Mason CJ, Peiffer M, Hoover K, Felton G. Tomato Chemical Defenses Intensify Corn Earworm (Helicoverpa zea) Mortality from Opportunistic Bacterial Pathogens. J Chem Ecol 2023; 49:313-324. [PMID: 36964896 DOI: 10.1007/s10886-023-01420-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/21/2023] [Accepted: 03/13/2023] [Indexed: 03/26/2023]
Abstract
Insect herbivores face multiple challenges to their ability to grow and reproduce. Plants can produce a series of defenses that disrupt and damage the herbivore digestive system, which are heightened upon injury by insect feeding. Additionally, insects face threats from virulent microorganisms that can incur their own set of potential costs to hosts. Microorganisms that invade through the digestive system may function in concert with defenses generated by plants, creating combined assailments on host insects. In our study, we evaluated how tomato defenses interact with an enteric bacterial isolate, Serratia marcescens, in the corn earworm (Helicoverpa zea). We performed bioassays using different tomato cultivars that were induced by methyl jasmonate and larvae orally inoculated with a S. marcescens isolate. Untreated corn earworm larval mortality was low on constitutive tomato, while larvae inoculated with S. marcescens exhibited > 50% mortality within 5 days. Induction treatments elevated both control mortality (~ 45%) and in combination with S. marcescens (> 95%). Larvae also died faster when encountering induced defenses and Serratia. Using a tomato mutant, foliar polyphenol oxidase activity likely had stronger impacts on S. marcescens-mediated larval mortality. Induction treatments also elevated the number of bacterial colony-forming units in the hemolymph of larvae inoculated with Serratia. Larval mortality by S. marcescens was low (< 10%) on artificial diets. Our results demonstrate that plant chemical defenses enhance larval mortality from an opportunistic gut microbe. We propose that the combined damage from both the plant and microbial agent overwhelm the herbivore to increase mortality rates and expedite host death.
Collapse
Affiliation(s)
- Charles J Mason
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA.
- Tropical Pest Genetics and Molecular Biology Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Research Center, Agricultural Research Service, USDA, 64 Nowelo Street, Hilo, HI, 96720, USA.
| | - Michelle Peiffer
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| | - Kelli Hoover
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| | - Gary Felton
- 501 ASI Building Department of Entomology, The Pennsylvania State University, University Park, PA, 16823, USA
| |
Collapse
|
4
|
Han Y, Taylor EB, Luthe D. Maize Endochitinase Expression in Response to Fall Armyworm Herbivory. J Chem Ecol 2021; 47:689-706. [PMID: 34056671 DOI: 10.1007/s10886-021-01284-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 04/21/2021] [Accepted: 05/19/2021] [Indexed: 12/23/2022]
Abstract
A large percentage of crop loss is due to insect damage, especially caterpillar damage. Plant chitinases are considered excellent candidates to combat these insects since they can degrade chitin in peritrophic matrix (PM), an important protective structure in caterpillar midgut. Compared to chemical insecticides, chitinases could improve host plant resistance and be both economically and environmentally advantageous. The focus of this research was to find chitinase candidates that could improve plant resistance by effectively limiting caterpillar damage. Five classes of endochitinase (I-V) genes were characterized in the maize genome, and we isolated and cloned four chitinase genes (chitinase A, chitinase B, chitinase I, and PRm3) present in two maize (Zea mays L.) inbred lines Mp708 and Tx601, with different levels of resistance to caterpillar pests. We also investigated the expression of these maize chitinases in response to fall armyworm (Spodoptera frugiperda, FAW) attack. The results indicated that both chitinase transcript abundance and enzymatic activity increased in response to FAW feeding and mechanical wounding. Furthermore, chitinases retained activity inside the caterpillar midgut and enzymatic activity was detected in the food bolus and frass. When examined under scanning electron microscopy, PMs from Tx601-fed caterpillars showed structural damage when compared to diet controls. Analysis of chitinase transcript abundance after caterpillar feeding and proteomic analysis of maize leaf trichomes in the two inbreds implicated chitinase PRm3 found in Tx601 as a potential insecticidal protein.
Collapse
Affiliation(s)
- Yang Han
- The Pennsylvania State University, Plant Science, University Park, PA, USA
| | - Erin B Taylor
- Department of Physiology and Biophysics, The University of Mississippi Medical Center, Jackson, MS, 39216, USA
| | - Dawn Luthe
- The Pennsylvania State University, Plant Science, University Park, PA, USA.
| |
Collapse
|
5
|
Physical and Chemical Barriers in the Larval Midgut Confer Developmental Resistance to Virus Infection in Drosophila. Viruses 2021; 13:v13050894. [PMID: 34065985 PMCID: PMC8151258 DOI: 10.3390/v13050894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 01/23/2023] Open
Abstract
Insects can become lethally infected by the oral intake of a number of insect-specific viruses. Virus infection commonly occurs in larvae, given their active feeding behaviour; however, older larvae often become resistant to oral viral infections. To investigate mechanisms that contribute to resistance throughout the larval development, we orally challenged Drosophila larvae at different stages of their development with Drosophila C virus (DCV, Dicistroviridae). Here, we showed that DCV-induced mortality is highest when infection initiates early in larval development and decreases the later in development the infection occurs. We then evaluated the peritrophic matrix as an antiviral barrier within the gut using a Crystallin-deficient fly line (Crys-/-), whose PM is weakened and becomes more permeable to DCV-sized particles as the larva ages. This phenotype correlated with increasing mortality the later in development oral challenge occurred. Lastly, we tested in vitro the infectivity of DCV after incubation at pH conditions that may occur in the midgut. DCV virions were stable in a pH range between 3.0 and 10.5, but their infectivity decreased at least 100-fold below (1.0) and above (12.0) this range. We did not observe such acidic conditions in recently hatched larvae. We hypothesise that, in Drosophila larvae, the PM is essential for containing ingested virions separated from the gut epithelium, while highly acidic conditions inactivate the majority of the virions as they transit.
Collapse
|
6
|
Abstract
In nature, insects face a constant threat of infection by numerous exogeneous viruses, and their intestinal tracts are the predominant ports of entry. Insects can acquire these viruses orally during either blood feeding by hematophagous insects or sap sucking and foliage feeding by insect herbivores. However, the insect intestinal tract forms several physical and immunological barriers to defend against viral invasion, including cell intrinsic antiviral immunity, the peritrophic matrix and the mucin layer, and local symbiotic microorganisms. Whether an infection can be successfully established in the intestinal tract depends on the complex interactions between viruses and those barriers. In this review, we summarize recent progress on virus-intestinal tract interplay in insects, in which various underlying mechanisms derived from nutritional status, dynamics of symbiotic microorganisms, and virus-encoded components play intricate roles in the regulation of virus invasion in the intestinal tract, either directly or indirectly. Expected final online publication date for the Annual Review of Virology, Volume 8 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Enhao Ma
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Yibin Zhu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; .,Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| | - Ziwen Liu
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Taiyun Wei
- Vector-Borne Virus Research Center, Fujian Province Key Laboratory of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Penghua Wang
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | - Gong Cheng
- Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing 100084, China; .,Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518000, China.,Institute of Pathogenic Organisms, Shenzhen Center for Disease Control and Prevention, Shenzhen, Guangdong 518055, China
| |
Collapse
|
7
|
Qin D, Wang G, Dong Z, Xia Q, Zhao P. Comparative Fecal Metabolomes of Silkworms Being Fed Mulberry Leaf and Artificial Diet. INSECTS 2020; 11:E851. [PMID: 33266201 PMCID: PMC7759890 DOI: 10.3390/insects11120851] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 11/19/2020] [Accepted: 11/25/2020] [Indexed: 02/03/2023]
Abstract
Metabonomics accurately monitors the precise metabolic responses to various dietary patterns. Metabolic profiling allows simultaneous measurement of various fecal metabolites whose concentrations may be affected by food intake. In this study, we analyzed the fecal metabolomes of silkworm (Bombyx mori) larvae reared on fresh mulberry leaves and artificial diets. 57 differentially expressed metabolites were identified by gas chromatography-mass spectrometry. Of these, 39 were up-regulated and 18 were downregulated in the mulberry leaf meal group. Most of the amino acids, carbohydrates and lipids associated with physical development and silk protein biosynthesis were enriched in silkworms reared on mulberry leaves. In contrast, the urea, citric acid, D-pinitol, D-(+)-cellobiose and N-acetyl glucosamine levels were relatively higher in the silkworm feeding on the artificial diets. The findings of this study help clarify the association between diet and metabolic profiling.
Collapse
Affiliation(s)
- DaoYuan Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (D.Q.); (G.W.); (Z.D.); (Q.X.)
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - GenHong Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (D.Q.); (G.W.); (Z.D.); (Q.X.)
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - ZhaoMing Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (D.Q.); (G.W.); (Z.D.); (Q.X.)
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - QingYou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (D.Q.); (G.W.); (Z.D.); (Q.X.)
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, China; (D.Q.); (G.W.); (Z.D.); (Q.X.)
- Biological Science Research Center, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
8
|
Wang S, Wang P. Functional redundancy of structural proteins of the peritrophic membrane in Trichoplusia ni. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 125:103456. [PMID: 32814147 DOI: 10.1016/j.ibmb.2020.103456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The peritrophic membrane (or peritrophic matrix) (PM) in insects is formed by binding of PM proteins with multiple chitin binding domains (CBDs) to chitin fibrils. Multi-CBD chitin binding proteins (CBPs) and the insect intestinal mucin (IIM) are major PM structural proteins. To understand the biochemical and physiological role of IIM in structural formation and physiological function of the PM, Trichoplusia ni mutant strains lacking IIM were generated by CRISPR/Cas9 mutagenesis. The mutant T. ni larvae were confirmed to lack IIM, but PM formation was observed as in wild type larvae and lacking IIM in the PM did not result in changes of protease activities in the larval midgut. Larval growth and development of the mutant strains were similar to the wild type strain on artificial diet and cabbage leaves, but had a decreased survival in the 5th instar. The larvae of the mutant strains with the PM formed without IIM did not have a change of susceptibility to the infection of the baculovirus AcMNPV and the Bacillus thuringiensis (Bt) formulation Dipel, to the toxicity of the Bt toxins Cry1Ac and Cry2Ab and the chemical insecticide sodium aluminofluoride. Treatment of the mutant T. ni larvae with Calcofluor reduced the larval susceptibility to the toxicity of Bt Cry1Ac, as similarly observed in the wild type larvae. Overall, in the mutant T. ni larvae, the PM was formed without IIM and the lacking of IIM in the PM did not drastically impact the performance of larvae on diet or cabbage leaves under the laboratory conditions.
Collapse
Affiliation(s)
- Shaohua Wang
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Ping Wang
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA.
| |
Collapse
|
9
|
Wang JY, Zhang H, Siemann E, Ji XY, Chen YJ, Wang Y, Jiang JX, Wan NF. Immunity of an insect herbivore to an entomovirus is affected by different host plants. PEST MANAGEMENT SCIENCE 2020; 76:1004-1010. [PMID: 31489764 DOI: 10.1002/ps.5609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Interactions between herbivorous insects and entomoviruses may depend on host plant, perhaps mediated through changes in herbivore innate immunity. RESULTS Caterpillars (Spodoptera exigua) fed Glycine max had high viral loads and low melanization rates together with low melanization enzyme [PO, DDC, TH] activities and gene expressions. Caterpillars fed Ipomoea aquatica had low viral loads and high melanization, gene activities and gene expressions while those fed Brassica oleracea or artificial diet had intermediate levels of each. Melanization rates were negatively correlated with viral loads and positively correlated with activity and expression of each of the three enzymes. Some diet effects on enzymes were constitutive because the same diets led to low (G. max) or high (I. aquatica) melanization related gene activities and expressions without infection. CONCLUSION Diet influences the interactions between insect herbivores and viruses by shaping the innate immune response both at the onset of infection and afterwards as viral loads accumulate over a period of days. In addition, diets that lead to low viral loads are associated with high activities and gene expressions of a variety of melanization related enzymes suggesting a common causative mechanism. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin-Yan Wang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Hao Zhang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Evan Siemann
- Department of Biosciences, Rice University, Houston, TX, USA
| | - Xiang-Yun Ji
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Yi-Juan Chen
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Yi Wang
- Laboratory of Ecology and Evolutionary Biology, Yunnan University, Kunming, China
| | - Jie-Xian Jiang
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| | - Nian-Feng Wan
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Protected Horticultural Technology, Shanghai Engineering Research Centre of Low-carbon Agriculture, Shanghai, China
| |
Collapse
|
10
|
Chen Y, Guo L, Wan N, Ji X, Zhang H, Jiang J. Transcriptomic analysis of the interactions between the Spodoptera exigua midgut and nucleopolyhedrovirus. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 163:241-253. [PMID: 31973864 DOI: 10.1016/j.pestbp.2019.11.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 11/21/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Spodoptera exigua nucleopolyhedrovirus (SeNPV) has been successfully applied as a bioinsecticide against S. exigua, one of the most devastating pests worldwide. However, due to limited information, the molecular mechanisms underlying interactions between S. exigua and SeNPV remain to be elucidated. In this study, RNA-Seq and differentially expressed gene (DEG) analysis of the S. exigua larva midgut were performed to explore molecular responses to SeNPV infection. A total of 1785 DEGs, including 935 upregulated and 850 downregulated genes, were identified in the midgut of SeNPV-infected S. exigua larvae. Ultrastructural observations showed that after SeNPV infection, the peritrophic matrix (PM) became a loose and highly porous surface with many clear ruptures; these changes were most likely associated with upregulation of chitin deacetylases. In addition, 124 putative innate immunity-related DEGs were identified and divided into several groups, including pattern recognition proteins, signaling pathways, signal modulation, antimicrobial peptides and detoxification. Interestingly, upregulation of some pattern recognition proteins, induction of the JAK/STAT signaling pathway and promotion of REPAT synthesis might be the main innate immunity responses occurring in the S. exigua larva midgut after SeNPV infection. According to quantitative real-time PCR, the expression profiles of 19 random DEGs were consistent with those obtained by RNA-Seq. These findings provide important basic information for understanding the molecular mechanisms of SeNPV invasion and the anti-SeNPV responses of the S. exigua midgut, promoting the utility of SeNPV as a bioinsecticide for the effective control of S. exigua and related pests.
Collapse
Affiliation(s)
- Yijuan Chen
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China
| | - Ling Guo
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China
| | - Nianfeng Wan
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China
| | - Xiangyun Ji
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China..
| | - Hao Zhang
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China..
| | - Jiexian Jiang
- Ecological Control of Pests Lab, Ecoenvironment and Plant Protect Research Institute, Shanghai Academy of Agriculture Science, 1000 Jin qi Road, Shanghai 201403, PR China..
| |
Collapse
|
11
|
Erlandson MA, Toprak U, Hegedus DD. Role of the peritrophic matrix in insect-pathogen interactions. JOURNAL OF INSECT PHYSIOLOGY 2019; 117:103894. [PMID: 31175854 DOI: 10.1016/j.jinsphys.2019.103894] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/27/2019] [Accepted: 06/05/2019] [Indexed: 05/12/2023]
Abstract
The peritrophic matrix (PM) is an acellular chitin and glycoprotein layer that lines the invertebrate midgut. The PM has long been considered a physical as well as a biochemical barrier, protecting the midgut epithelium from abrasive food particles, digestive enzymes and pathogens infectious per os. This short review will focus on the latter function, as a barrier to pathogens infectious per os. We focus on the evidence confirming the role of the PM as protective barrier against pathogenic microorganisms of insects, mainly bacteria and viruses, as well as the evolution of a variety of mechanisms used by pathogens to overcome the PM barrier.
Collapse
Affiliation(s)
- Martin A Erlandson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada; Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Umut Toprak
- Molecular Entomology Laboratory, Faculty of Agriculture, Ankara University, Ankara, Turkey
| | - Dwayne D Hegedus
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, Saskatchewan, Canada; Department of Food and Bioproduct Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
12
|
Chen E, Kolosov D, O'Donnell MJ, Erlandson MA, McNeil JN, Donly C. The Effect of Diet on Midgut and Resulting Changes in Infectiousness of AcMNPV Baculovirus in the Cabbage Looper, Trichoplusia ni. Front Physiol 2018; 9:1348. [PMID: 30337878 PMCID: PMC6180168 DOI: 10.3389/fphys.2018.01348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/06/2018] [Indexed: 01/08/2023] Open
Abstract
Insecticide resistance has been reported in many important agricultural pests, and alternative management methods are required. Baculoviruses qualify as an effective, yet environmentally benign, biocontrol agent but their efficacy against generalist herbivores may be influenced by diet. However, few studies have investigated the tritrophic interactions of plant, pest, and pathogen from both a gene expression and physiological perspective. Here we use microscopy and transcriptomics to examine how diet affects the structure of peritrophic matrix (PM) in Trichoplusia ni larvae and consequently their susceptibility to the baculovirus, AcMNPV. Larvae raised on potato leaves had lower transcript levels for chitinase and chitin deacetylase genes, and possessed a thicker and more multi-layered PM than those raised on cabbage or artificial diet, which could contribute to their significantly lower susceptibility to the baculovirus. The consequences of these changes underline the importance of considering dietary influences on pathogen susceptibility in pest management strategies.
Collapse
Affiliation(s)
- Elizabeth Chen
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, University of Western Ontario, London, ON, Canada
| | - Dennis Kolosov
- Department of Biology, McMaster University, Hamilton, ON, Canada
| | | | - Martin A Erlandson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Jeremy N McNeil
- Department of Biology, University of Western Ontario, London, ON, Canada
| | - Cam Donly
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada.,Department of Biology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
13
|
Shikano I, McCarthy E, Hayes-Plazolles N, Slavicek JM, Hoover K. Jasmonic acid-induced plant defenses delay caterpillar developmental resistance to a baculovirus: Slow-growth, high-mortality hypothesis in plant-insect-pathogen interactions. J Invertebr Pathol 2018; 158:16-23. [PMID: 30189196 DOI: 10.1016/j.jip.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/22/2018] [Accepted: 09/01/2018] [Indexed: 11/26/2022]
Abstract
Plants damaged by herbivore feeding can induce defensive responses that reduce herbivore growth. The slow-growth, high-mortality hypothesis postulates that these non-lethal plant defenses prolong the herbivore's period of susceptibility to natural enemies, such as predators and parasitoids. While many juvenile animals increase their disease resistance as they grow, direct tests of the slow-growth, high-mortality hypothesis in the context of plant-herbivore-pathogen interactions are lacking. Caterpillars increase their resistance to lethal baculoviruses as they develop within and across instars, a phenomenon termed developmental resistance. Progression of developmental resistance can occur through age-related increases in systemic immune functioning and/or midgut-based resistance. Here, we examined the slow-growth, high-mortality hypothesis in the context of developmental resistance of caterpillars to baculoviruses. Intra-stadial (within-instar) developmental resistance of the fall armyworm, Spodoptera frugiperda, to an oral inoculum of the baculovirus SfMNPV increased more rapidly with age when larvae were fed on non-induced foliage than foliage that was induced by jasmonic acid (a phytohormone that up-regulates plant anti-herbivore defenses). The degree of developmental resistance observed was attributable to larval weight at the time of virus inoculation. Thus, slower growth on induced plants prolonged the window of larval susceptibility to the baculovirus. Developmental resistance on induced and non-induced plants was absent when budded virus was injected intrahemocoelically bypassing the midgut, suggesting that developmental resistance was gut-based. Addition of fluorescent brightener, which weakens midgut-based resistance mechanisms to oral virus challenge, abolished developmental resistance. These results highlight the impact of plant defenses on herbivore growth rate and consequences for disease risk.
Collapse
Affiliation(s)
- Ikkei Shikano
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | | | | - Kelli Hoover
- Department of Entomology and Center for Chemical Ecology, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
14
|
Herbivore-Induced Defenses in Tomato Plants Enhance the Lethality of the Entomopathogenic Bacterium, Bacillus thuringiensis var. kurstaki. J Chem Ecol 2018; 44:947-956. [PMID: 29980959 DOI: 10.1007/s10886-018-0987-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/22/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
Plants can influence the effectiveness of microbial insecticides through numerous mechanisms. One of these mechanisms is the oxidation of plant phenolics by plant enzymes, such as polyphenol oxidases (PPO) and peroxidases (POD). These reactions generate a variety of products and intermediates that play important roles in resistance against herbivores. Oxidation of the catecholic phenolic compound chlorogenic acid by PPO enhances the lethality of the insect-killing bacterial pathogen, Bacillus thuringiensis var. kurstaki (Bt) to the polyphagous caterpillar, Helicoverpa zea. Since herbivore feeding damage often triggers the induction of higher activities of oxidative enzymes in plant tissues, here we hypothesized that the induction of plant defenses would enhance the lethality of Bt on those plants. We found that the lethality of a commercial formulation of Bt (Dipel® PRO DF) on tomato plants was higher if it was applied to plants that were induced by H. zea feeding or induced by the phytohormone jasmonic acid. Higher proportions of H. zea larvae killed by Bt were strongly correlated with higher levels of PPO activity in the leaflet tissue. Higher POD activity was only weakly associated with higher levels of Bt-induced mortality. While plant-mediated variation in entomopathogen lethality is well known, our findings demonstrate that plants can induce defensive responses that work in concert with a microbial insecticide/entomopathogen to protect against insect herbivores.
Collapse
|
15
|
Palmer-Young EC, Tozkar CÖ, Schwarz RS, Chen Y, Irwin RE, Adler LS, Evans JD. Nectar and Pollen Phytochemicals Stimulate Honey Bee (Hymenoptera: Apidae) Immunity to Viral Infection. JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1959-1972. [PMID: 28981688 DOI: 10.1093/jee/tox193] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Indexed: 05/10/2023]
Affiliation(s)
| | - Cansu Ö Tozkar
- Bee Research Lab, Agricultural Research Service, US Department of Agriculture, Beltsville, MD
| | - Ryan S Schwarz
- Bee Research Lab, Agricultural Research Service, US Department of Agriculture, Beltsville, MD
| | - Yanping Chen
- Bee Research Lab, Agricultural Research Service, US Department of Agriculture, Beltsville, MD
| | - Rebecca E Irwin
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695
| | - Lynn S Adler
- Department of Biology, University of Massachusetts, Amherst, MA
| | - Jay D Evans
- Bee Research Lab, Agricultural Research Service, US Department of Agriculture, Beltsville, MD
| |
Collapse
|
16
|
Shikano I. Evolutionary Ecology of Multitrophic Interactions between Plants, Insect Herbivores and Entomopathogens. J Chem Ecol 2017; 43:586-598. [DOI: 10.1007/s10886-017-0850-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 05/06/2017] [Accepted: 05/15/2017] [Indexed: 02/07/2023]
|
17
|
Plant-mediated effects on an insect-pathogen interaction vary with intraspecific genetic variation in plant defences. Oecologia 2017; 183:1121-1134. [PMID: 28144733 DOI: 10.1007/s00442-017-3826-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/20/2017] [Indexed: 01/21/2023]
Abstract
Baculoviruses are food-borne microbial pathogens that are ingested by insects on contaminated foliage. Oxidation of plant-derived phenolics, activated by insect feeding, can directly interfere with infections in the gut. Since phenolic oxidation is an important component of plant resistance against insects, baculoviruses are suggested to be incompatible with plant defences. However, plants among and within species invest differently in a myriad of chemical and physical defences. Therefore, we hypothesized that among eight soybean genotypes, some genotypes would be able to maintain both high resistance against an insect pest and high efficacy of a baculovirus. Soybean constitutive (non-induced) and jasmonic acid (JA)-induced (anti-herbivore response) resistance was measured against the fall armyworm Spodoptera frugiperda (weight gain, leaf consumption and utilization). Indicators of phenolic oxidation were measured as foliar phenolic content and peroxidase activity. Levels of armyworm mortality inflicted by baculovirus (SfMNPV) did not vary among soybean genotypes when the virus was ingested with non-induced foliage. Ingestion of the virus on JA-induced foliage reduced armyworm mortality, relative to non-induced foliage, on some soybean genotypes. Baculovirus efficacy was lower when ingested with foliage that contained higher phenolic content and defensive properties that reduced armyworm weight gain and leaf utilization. However, soybean genotypes that defended the plant by reducing consumption rate and strongly deterred feeding upon JA-induction did not reduce baculovirus efficacy, indicating that these defences may be more compatible with baculoviruses to maximize plant protection. Differential compatibility of defence traits with the third trophic level highlights an important cost/trade-off associated with plant defence strategies.
Collapse
|
18
|
Wu K, Yang B, Huang W, Dobens L, Song H, Ling E. Gut immunity in Lepidopteran insects. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 64:65-74. [PMID: 26872544 DOI: 10.1016/j.dci.2016.02.010] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 02/06/2016] [Accepted: 02/06/2016] [Indexed: 06/05/2023]
Abstract
Lepidopteran insects constitute one of the largest fractions of animals on earth, but are considered pests in their relationship with man. Key to the success of this order of insects is its ability to digest food and absorb nutrition, which takes place in the midgut. Because environmental microorganisms can easily enter Lepidopteran guts during feeding, the innate immune response guards against pathogenic bacteria, virus and microsporidia that can be devoured with food. Gut immune responses are complicated by both resident gut microbiota and the surrounding peritrophic membrane and are distinct from immune responses in the body cavity, which depend on the function of the fat body and hemocytes. Due to their relevance to agricultural production, studies of Lepidopteran insect midgut and immunity are receiving more attention, and here we summarize gut structures and functions, and discuss how these confer immunity against different microorganisms. It is expected that increased knowledge of Lepidopteran gut immunity may be utilized for pest biological control in the future.
Collapse
Affiliation(s)
- Kai Wu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Bing Yang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wuren Huang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China
| | - Leonard Dobens
- School of Biological Sciences, University of Missouri-Kansas City, 5007 Rockhill Road, Kansas City, MO 64110, USA
| | - Hongsheng Song
- College of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
19
|
Thuong KV, Tuan VV, Li W, Sorgeloos P, Bossier P, Nauwynck H. Per os infectivity of white spot syndrome virus (WSSV) in white-legged shrimp (Litopenaeus vannamei) and role of peritrophic membrane. Vet Res 2016; 47:39. [PMID: 26925835 PMCID: PMC4772295 DOI: 10.1186/s13567-016-0321-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 02/09/2016] [Indexed: 11/10/2022] Open
Abstract
As earlier observations on peroral infectivity of WSSV in white-legged shrimp are conflicting, here, a standardized peroral intubation technique was used to examine (i) the role of the physical composition of the viral inoculum and (ii) the barrier function of the PM. In a first experiment, the infectivity of a WSSV stock was compared by determining the SID50 by intramuscular injection, peroral inoculation or via feeding. The following titers were obtained: 108.77 SID50/g by intramuscular injection, 101.23 SID50/g by peroral inoculation and 100.73 SID50/g by feeding. These results demonstrated that 107.54–108.03 infectious virus is needed to infect shrimp by peroral inoculation and via feeding. Next, it was examined if damage of the PM may increase the susceptibility for WSSV by peroral route. The infectivity of a virus stock was tested upon peroral inoculation of shrimp with and without removal of the PM and compared with the infectivity upon intramuscular inoculation. The virus titers obtained upon intramuscular injection and peroral inoculation of shrimp with and without PM were 108.63, 101.13 and 101.53 SID50/mL, respectively. This experiment confirmed the need of 107.1–107.5 infectious virus to infect shrimp via peroral route and showed that the removal of the PM slightly but not significantly (p > 0.05) facilitated the infection of shrimp. This study indicated that WSSV contaminated feed is poorly infectious via peroral route, whereas it is highly infectious when injected into shrimp. The PM plays a minor role as internal barrier of shrimp against WSSV infection.
Collapse
Affiliation(s)
- Khuong Van Thuong
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium. .,Research institute for Aquaculture number 1, Dinhbang, Tuson, Bacninh, Vietnam.
| | - Vo Van Tuan
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Wenfeng Li
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| | - Patrick Sorgeloos
- Laboratory of Aquaculture, Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Rozier 44, 9000, Ghent, Belgium.
| | - Peter Bossier
- Laboratory of Aquaculture, Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Rozier 44, 9000, Ghent, Belgium.
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium.
| |
Collapse
|
20
|
Shikano I, Oak MC, Halpert‐Scanderbeg O, Cory JS. Trade‐offs between transgenerational transfer of nutritional stress tolerance and immune priming. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12422] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Ikkei Shikano
- Department of Biological Sciences Simon Fraser University Burnaby BC V5A1S6 Canada
| | - Miranda C. Oak
- Department of Biological Sciences Simon Fraser University Burnaby BC V5A1S6 Canada
| | | | - Jenny S. Cory
- Department of Biological Sciences Simon Fraser University Burnaby BC V5A1S6 Canada
| |
Collapse
|
21
|
Bernal A, Simón O, Williams T, Caballero P. Stage-specific insecticidal characteristics of a nucleopolyhedrovirus isolate from Chrysodeixis chalcites enhanced by optical brighteners. PEST MANAGEMENT SCIENCE 2014; 70:798-804. [PMID: 23893929 DOI: 10.1002/ps.3617] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/17/2013] [Accepted: 07/26/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND Chrysodeixis chalcites is a major noctuid pest of banana crops in the Canary Islands. The stage-specific susceptibility of this pest to C. chalcites single nucleopolyhedrovirus (ChchSNPV-TF1) was determined, as well as the effect of selected optical brighteners as enhancers of primary infection. RESULTS Susceptibility to ChchSNPV-TF1 occlusion bodies (OBs) decreased as larval stage increased; second instars (L2) were 10,000-fold more susceptible than sixth instars (L6). Virus speed of kill was 42 h faster in L2 than in L6 . OB production increased in late instars; L6 larvae produced 23-fold more OBs than L4 . Addition of 10 mg mL(-1) Tinopal enhanced OB pathogenicity by 4.43- to 397-fold depending on instar, whereas 10 µL mL(-1) Leucophor resulted in potentiation of OB pathogenicity from 1.46- to 143-fold. Mean time to death decreased by 14 to 26 h when larvae consumed OBs in mixtures with 10 mg mL(-1) Tinopal, or 10 µL mL(-1) Leucophor, although in these treatments OB yields were reduced by up to 8.5-fold (Tinopal) or up to 3.8-fold (Leucophor). CONCLUSION These results have clear applications for the use of ChchSNPV-TF1 as a biological insecticide in control programs against C. chalcites in the Canary Islands.
Collapse
Affiliation(s)
- Alexandra Bernal
- Instituto de Agrobiotecnología, CSIC-Gobierno de Navarra, Mutilva Baja, Spain
| | | | | | | |
Collapse
|
22
|
Gómez Valderrama J, Villamizar L. Baculovirus: Hospederos y especificidad. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2013. [DOI: 10.15446/rev.colomb.biote.v15n2.41273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
23
|
Sun S, Cheng Z, Fan J, Cheng X, Pang Y. The utility of camptothecin as a synergist of Bacillus thuringiensis var. kurstaki and nucleopolyhedroviruses against Trichoplusia ni and Spodoptera exigua. JOURNAL OF ECONOMIC ENTOMOLOGY 2012; 105:1164-1170. [PMID: 22928294 DOI: 10.1603/ec12014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
We studied the effect of combining microbial pesticides with camptothecin (CPT) on the mortality of two lepidopteran insects: Trichoplusia ni (Hübner) and Spodoptera exigua (Hübner). CPT is an alkaloid that is often used as an anticancer agent. Here, CPT was evaluated as a microbial pesticide synergist of Bacillus thuringiensis (Bt) and insect baculovirus. The toxicity of CPT and its synergistic effects on two microbial pesticides were studied using the diet overlay method. Bioassay results showed that CPT significantly enhances the toxicity of Bt variety kurstaki to S. exigua and T ni. In addition, CPT strongly enhanced the infectivity of Autographa californica (Speyer) multinucleocapsid nucleopolyhedrovirus (AcMNPV) and S. exigua nucleopolyhedrovirus (SeMNPV). Using light microscopy, we found that CPT disrupts the peritrophic membrane of T. ni larvae and severely affects the structure of the midgut, resulting in an abnormal gut lumen morphology. We speculate that CPT increases toxicity by affecting the permeability of the peritrophic membrane.
Collapse
Affiliation(s)
- Shifeng Sun
- State Key Laboratory of Biocontrol, College of Life Sciences, Sun Yat-sen University, No. 135 XingangXi Road, Guangzhou, Guangdong 510275, People's Republic of China
| | | | | | | | | |
Collapse
|
24
|
Barbehenn RV, Peter Constabel C. Tannins in plant-herbivore interactions. PHYTOCHEMISTRY 2011; 72:1551-65. [PMID: 21354580 DOI: 10.1016/j.phytochem.2011.01.040] [Citation(s) in RCA: 397] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Revised: 01/26/2011] [Accepted: 01/31/2011] [Indexed: 05/07/2023]
Abstract
Tannins are the most abundant secondary metabolites made by plants, commonly ranging from 5% to 10% dry weight of tree leaves. Tannins can defend leaves against insect herbivores by deterrence and/or toxicity. Contrary to early theories, tannins have no effect on protein digestion in insect herbivores. By contrast, in vertebrate herbivores tannins can decrease protein digestion. Tannins are especially prone to oxidize in insects with high pH guts, forming semiquinone radicals and quinones, as well as other reactive oxygen species. Tannin toxicity in insects is thought to result from the production of high levels of reactive oxygen species. Tannin structure has an important effect on biochemical activity. Ellagitannins oxidize much more readily than do gallotannins, which are more oxidatively active than most condensed tannins. The ability of insects to tolerate ingested tannins comes from a variety of biochemical and physical defenses in their guts, including surfactants, high pH, antioxidants, and a protective peritrophic envelope that lines the midgut. Most work on the ecological roles of tannins has been correlative, e.g., searching for negative associations between tannins and insect performance. A greater emphasis on manipulative experiments that control tannin levels is required to make further progress on the defensive functions of tannins. Recent advances in the use of molecular methods has permitted the production of tannin-overproducing transgenic plants and a better understanding of tannin biosynthetic pathways. Many research areas remain in need of further work, including the effects of different tannin types on different types of insects (e.g., caterpillars, grasshoppers, sap-sucking insects).
Collapse
Affiliation(s)
- Raymond V Barbehenn
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | | |
Collapse
|
25
|
The effect of food limitation on immunity factors and disease resistance in the western tent caterpillar. Oecologia 2011; 167:647-55. [PMID: 21625983 DOI: 10.1007/s00442-011-2023-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2011] [Accepted: 04/20/2011] [Indexed: 01/15/2023]
Abstract
Epizootics of nucleopolyhedrovirus characterize declines of cyclic populations of western tent caterpillars, Malacosoma pluviale californicum. In field populations, infection can be apparently lacking in one generation and high in the next. This may suggest an increase in the susceptibility to infection of larvae at peak density or the triggering of a vertically transmitted virus. Here, we test the hypothesis that reduced food availability, as may occur during population outbreaks of tent caterpillars, influences the immunocompetence of larvae and increases their susceptibility to viral infection. We compared immunity factors, hemolymph phenoloxidase and hemocyte numbers, and the susceptibility to nucleopolyhedroviral infection of fifth instar larvae that were fully or partially fed as fourth instars. To determine if maternal or transgenerational influences occurred, we also determined the susceptibility of the offspring of the treated parents to viral infection. Food limitation significantly reduced larval survival, development rate, larval and pupal mass, moth fecundity and levels of hemolymph phenoloxidase, but not the numbers of hemocytes. Neither the food-reduced larvae nor their offspring were more susceptible to viral infection and were possibly even less susceptible at intermediate viral doses. Food reduction did not activate latent or covert viral infection of larvae as might be expected as a response to stress. We conclude that reducing the food intake of fourth instar larvae to an extent that had measurable and realistic impacts on their life history characteristics was not translated into increased susceptibility to viral infection.
Collapse
|
26
|
Sandre SL, Tammaru T, Hokkanen HMT. Pathogen resistance in the moth Orgyia antiqua: direct influence of host plant dominates over the effects of individual condition. BULLETIN OF ENTOMOLOGICAL RESEARCH 2011; 101:107-114. [PMID: 20626929 DOI: 10.1017/s0007485310000258] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The role of pathogens in insect ecology is widely appreciated but remains insufficiently explored. Specifically, there is little understanding about the sources of the variation in the outcome of insect-pathogen interactions. This study addresses the extent to which immune traits of larvae and pupae of the moth Orgyia antiqua L. (Lepidoptera: Lymantriidae) depend on the host plant species and individual condition of the insects. The two host plants, Salix myrsinifolia Salisb. and S. viminalis L., were chosen because they differ in the concentration of phenolic glycosides, harmful to most polyphagous insects. Individual condition was assumed to be reflected in body weight and development time, and was manipulated by rearing larvae either singly or in groups of four. The resistance traits recorded were survival and time to death after fungal infection in the larval stage and the efficiency of encapsulating a nylon implant by the pupae. The survival of the infected larvae was mainly determined by the species of the host plant. Encapsulation response was not associated with the resistance to the pathogen, suggesting that the host plant affected the pathogen rather than the immune system of the insect. Interestingly, the host plant supporting better larval growth led to inferior resistance to the pathogen, indicating a trade-off between different aspects of host plant quality.
Collapse
Affiliation(s)
- S-L Sandre
- Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, Vanemuise 46, 51014, Tartu, Estonia.
| | | | | |
Collapse
|
27
|
McNeil J, Cox-Foster D, Slavicek J, Hoover K. Contributions of immune responses to developmental resistance in Lymantria dispar challenged with baculovirus. JOURNAL OF INSECT PHYSIOLOGY 2010; 56:1167-1177. [PMID: 20350551 DOI: 10.1016/j.jinsphys.2010.03.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2010] [Revised: 03/11/2010] [Accepted: 03/15/2010] [Indexed: 05/29/2023]
Abstract
How the innate immune system functions to defend insects from viruses is an emerging field of study. We examined the impact of melanized encapsulation, a component of innate immunity that integrates both cellular and humoral immune responses, on the success of the baculovirus Lymantria dispar multiple nucleocapsid nucleopolyhedrovirus (LdMNPV) in its host L. dispar. L. dispar exhibits midgut-based and systemic, age-dependent resistance to LdMNPV within the fourth instar; the LD(50) in newly molted larvae is approximately 18-fold lower than in mid-instar larvae (48-72h post-molt). We examined the role of the immune system in systemic resistance by measuring differences in hemocyte immunoresponsiveness to foreign targets, hemolymph phenoloxidase (PO) and FAD-glucose dehydrogenase (GLD) activities, and melanization of infected tissue culture cells. Mid-instar larvae showed a higher degree of hemocyte immunoresponsiveness, greater potential PO activity (pro-PO) at the time the virus is escaping the midgut to enter the hemocoel (72h post-inoculation), greater GLD activity, and more targeted melanization of infected tissue, which correlate with reduced viral success in the host. These findings support the hypothesis that innate immune responses can play an important role in anti-viral defenses against baculoviruses and that the success of these defenses can be age-dependent.
Collapse
Affiliation(s)
- James McNeil
- Department of Entomology, The Pennsylvania State University, 501 ASI, University Park, PA 16802, USA
| | | | | | | |
Collapse
|
28
|
Hoover K, Humphries MA, Gendron AR, Slavicek JM. Impact of viral enhancin genes on potency of Lymantria dispar multiple nucleopolyhedrovirus in L. dispar following disruption of the peritrophic matrix. J Invertebr Pathol 2010; 104:150-2. [DOI: 10.1016/j.jip.2010.02.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 02/11/2010] [Accepted: 02/23/2010] [Indexed: 11/27/2022]
|
29
|
McNeil J, Cox-Foster D, Gardner M, Slavicek J, Thiem S, Hoover K. Pathogenesis of Lymantria dispar multiple nucleopolyhedrovirus in L. dispar and mechanisms of developmental resistance. J Gen Virol 2010; 91:1590-600. [DOI: 10.1099/vir.0.018952-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
30
|
Indirect plant-mediated effects on insect immunity and disease resistance in a tritrophic system. Basic Appl Ecol 2010. [DOI: 10.1016/j.baae.2009.06.008] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
31
|
Bacillus thuringiensis bel protein enhances the toxicity of Cry1Ac protein to Helicoverpa armigera larvae by degrading insect intestinal mucin. Appl Environ Microbiol 2009; 75:5237-43. [PMID: 19542344 DOI: 10.1128/aem.00532-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacillus thuringiensis has been used as a bioinsecticide to control agricultural insects. Bacillus cereus group genomes were found to have a Bacillus enhancin-like (bel) gene, encoding a peptide with 20 to 30% identity to viral enhancin protein, which can enhance viral infection by degradation of the peritrophic matrix (PM) of the insect midgut. In this study, the bel gene was found to have an activity similar to that of the viral enhancin gene. A bel knockout mutant was constructed by using a plasmid-free B. thuringiensis derivative, BMB171. The 50% lethal concentrations of this mutant plus the cry1Ac insecticidal protein gene were about 5.8-fold higher than those of the BMB171 strain. When purified Bel was mixed with the Cry1Ac protein and fed to Helicoverpa armigera larvae, 3 mug/ml Cry1Ac alone induced 34.2% mortality. Meanwhile, the mortality rate rose to 74.4% when the same amount of Cry1Ac was mixed with 0.8 mug/ml of Bel. Microscopic observation showed a significant disruption detected on the midgut PM of H. armigera larvae after they were fed Bel. In vitro degradation assays showed that Bel digested the intestinal mucin (IIM) of Trichoplusia ni and H. armigera larvae to various degrading products, similar to findings for viral enhancin. These results imply Bel toxicity enhancement depends on the destruction of midgut PM and IIM, similar to the case with viral enhancin. This discovery showed that Bel has the potential to enhance insecticidal activity of B. thuringiensis-based biopesticides and transgenic crops.
Collapse
|
32
|
Barbehenn RV, Jaros A, Lee G, Mozola C, Weir Q, Salminen JP. Tree resistance to Lymantria dispar caterpillars: importance and limitations of foliar tannin composition. Oecologia 2009; 159:777-88. [PMID: 19148684 DOI: 10.1007/s00442-008-1268-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Accepted: 12/04/2008] [Indexed: 11/29/2022]
Abstract
The ability of foliar tannins to increase plant resistance to herbivores is potentially determined by the composition of the tannins; hydrolyzable tannins are much more active as prooxidants in the guts of caterpillars than are condensed tannins. By manipulating the tannin compositions of two contrasting tree species, this work examined: (1) whether increased levels of hydrolyzable tannins increase the resistance of red oak (Quercus rubra L.), a tree with low resistance that produces mainly condensed tannins, and (2) whether increased levels of condensed tannins decrease the resistance of sugar maple (Acer saccharum Marsh.), a tree with relatively high resistance that produces high levels of hydrolyzable tannins. As expected, when Lymantria dispar L. caterpillars ingested oak leaves coated with hydrolyzable tannins, levels of hydrolyzable tannin oxidation increased in their midgut contents. However, increased tannin oxidation had no significant impact on oxidative stress in the surrounding midgut tissues. Although growth efficiencies were decreased by hydrolyzable tannins, growth rates remained unchanged, suggesting that additional hydrolyzable tannins are not sufficient to increase the resistance of oak. In larvae on condensed tannin-coated maple, no antioxidant effects were observed in the midgut, and levels of tannin oxidation remained high. Consequently, neither oxidative stress in midgut tissues nor larval performance were significantly affected by high levels of condensed tannins. Post hoc comparisons of physiological mechanisms related to tree resistance revealed that maple produced not only higher levels of oxidative stress in the midgut lumen and midgut tissues of L. dispar, but also decreased protein utilization efficiency compared with oak. Our results suggest that high levels of hydrolyzable tannins are important for producing oxidative stress, but increased tree resistance to caterpillars may require additional factors, such as those that produce nutritional stress.
Collapse
Affiliation(s)
- Raymond V Barbehenn
- Departments of Molecular, Cellular and Developmental Biology and Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| | | | | | | | | | | |
Collapse
|