1
|
Ongaratto S, Pinto K, Manica-Berto R, da Silva Gonçalves R, Nörnberg SD, Bernardi D, Nava DE. Different Protein Sources of Larval Diet on the Rearing of Anastrepha fraterculus (Diptera: Tephritidae): Biological and Nutritional Analyses. NEOTROPICAL ENTOMOLOGY 2024; 53:1031-1044. [PMID: 39141218 DOI: 10.1007/s13744-024-01190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/10/2024] [Indexed: 08/15/2024]
Abstract
Anastrepha fraterculus (Diptera: Tephritidae) is considered an important pest in Neotropical countries. The laboratory rearing of this species should reproduce conditions in nature; thus, special attention is required to the nutritional quality of diets for larval development. Protein components (wheat germ) are costly and account for most production costs in lab insect rearing. In this sense, this work aimed to identify ingredients to replace wheat germ, without compromising diet quality for the lab rearing of A. fraterculus. We tested diets composed of whole rice flour, corn flour, and a mixture of whole wheat flour + soybean flour as substitutes for wheat germ as well as a raw wheat germ diet, considered the control. The protein sources used in the larval diet influenced the biological performance of both the larval and adult stages of A. fraterculus during six generations. The diet containing corn flour and wheat germ showed similar results in the different developmental parameters. The diet with rice flour also provided adequate biological development for A. fraterculus throughout its life cycle and was nutritionally similar to the control. As it is local product, rice flour can replace wheat germ (costly imported product) in artificial diets for A. fraterculus, reducing production costs by roughly 30% without compromising the biological and nutritional parameters of the insects. Faced with this, the rice flour can be considered suitable for the mass rearing of A. fraterculus in the laboratory.
Collapse
Affiliation(s)
| | - Karina Pinto
- Lab de Entomologia, Embrapa Clima Temperado, Pelotas, RS, Brazil
| | | | | | | | | | - Dori Edson Nava
- Lab de Entomologia, Embrapa Clima Temperado, Pelotas, RS, Brazil
| |
Collapse
|
2
|
Balampekou EI, Koveos DS, Kapranas A, Menexes GC, Kouloussis NA. The Roles of Mating, Age, and Diet in Starvation Resistance in Bactrocera oleae (Olive Fruit Fly). INSECTS 2023; 14:841. [PMID: 37999040 PMCID: PMC10672083 DOI: 10.3390/insects14110841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/12/2023] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The olive fruit fly (Bactrocera oleae (Rossi) (Diptera: Tephritidae)), although a pest of major economic importance for the olive industry, has not been sufficiently studied with respect to the factors affecting its survival resistance to food deprivation. In the present study, we examined the effect of the interaction between mating status (virgin/mated), age class (11-20/21-30/31-40/41-50), and diet quality (protein plus sugar or only sugar) on starvation resistance in B. oleae under constant laboratory conditions. We conducted a total of 16 treatments (2 × 4 × 2 = 16) for each gender. Our results showed that starvation resistance in B. oleae did not differ significantly between females and males. The main conclusions of our study regarding mating status, age, and diet indicated that mated adults showed much less starvation resistance compared to virgins, younger adults endured longer, and the adults fed a restricted diet endured longer than those fed a full diet. A three-way interaction between mating status, diet, and age class was also identified and was the same for both genders. The interaction between mating status, age class, and diet also had a significant influence on starvation resistance in both sexes.
Collapse
Affiliation(s)
| | | | | | | | - Nikos A. Kouloussis
- School of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.I.B.); (D.S.K.); (A.K.); (G.C.M.)
| |
Collapse
|
3
|
Goane L, Salgueiro J, Medina Pereyra P, Arce OEA, Ruiz MJ, Nussenbaum AL, Segura DF, Vera MT. Antibiotic treatment reduces fecundity and nutrient content in females of Anastrepha fraterculus (Diptera: Tephritidae) in a diet dependent way. JOURNAL OF INSECT PHYSIOLOGY 2022; 139:104396. [PMID: 35447135 DOI: 10.1016/j.jinsphys.2022.104396] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/11/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Insect microbiota, particularly, gut bacteria has recently gained especial attention in Tephritidae fruit flies, being Enterobacteriaceae the predominant bacterial group. This bacterial group has been postulated to contribute to the fitness of fruit flies through several life-history traits. Particularly in Anastrepha fraterculus, removal of Enterobacteria from male gut via antibiotic treatment impaired their mating behavior. Because the impact of gut bacteria on female reproduction was not yet addressed, we here analysed the effect of antibiotic treatment on female fecundity and nutritional status, and further explored the role of bacteria under different dietary regimes. The removal of culturable Enterobacteria from the gut of females was associated to a reduction in fecundity as well as in the protein and lipid reserves. However, fecundity reduction depended on the dietary regime; being more pronounced when females fed a poor diet. Our results suggest that nutrient reserves of females are determined, at least to some extent, by intestinal bacteria (particularly Enterobacteria). The effect of antibiotics on fecundity could be explained, thus, as a consequence of a poorer nutritional status in antibiotic-treated females compared to control females. Our results contribute to understand the interaction between gut bacteria and Tephritidae fruit flies. Considering the relevance of this insect as fruit pest and the widespread use of the sterile insect technique to control them, these findings may lead to practical applications, such as development of efficient mass rearing protocols of A. fraterculus that supplement the adult diet with probiotics.
Collapse
Affiliation(s)
- Lucía Goane
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| | - Julieta Salgueiro
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret" (IGEAF), Centro de Investigación en Ciencias Veterinarias y Agronómicas- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | | | - Osvaldo E A Arce
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - M Josefina Ruiz
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Ana L Nussenbaum
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret" (IGEAF), Centro de Investigación en Ciencias Veterinarias y Agronómicas- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Diego F Segura
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Laboratorio de Insectos de Importancia Agronómica, Instituto de Genética "E.A. Favret" (IGEAF), Centro de Investigación en Ciencias Veterinarias y Agronómicas- Instituto Nacional de Tecnología Agropecuaria, Instituto de Agrobiotecnología y Biología Molecular - Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - M Teresa Vera
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
4
|
Bachmann GE, Devescovi F, Nussenbaum AL, Milla FH, Shelly TE, Cladera JL, Fernández PC, Vera MT, Segura DF. Mate choice confers direct benefits to females of Anastrepha fraterculus (Diptera: Tephritidae). PLoS One 2019; 14:e0214698. [PMID: 31199808 PMCID: PMC6568381 DOI: 10.1371/journal.pone.0214698] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/30/2019] [Indexed: 11/19/2022] Open
Abstract
Exposure to plant compounds and analogues of juvenile hormone (JH) increase male mating success in several species of tephritid fruit flies. Most of these species exhibit a lek mating system, characterized by active female choice. Although the pattern of enhanced male mating success is evident, few studies have investigated what benefits, if any, females gain via choice of exposed males in the lek mating system. In the South American fruit fly, Anastrepha fraterculus, females mate preferentially with males that were exposed to volatiles released by guava fruit or treated with methoprene (a JH analogue). Here, we tested the hypothesis that female choice confers direct fitness benefits in terms of fecundity and fertility. We first carried out mate choice experiments presenting females with males treated and non-treated with guava volatiles or, alternatively, treated and non-treated with methoprene. After we confirmed female preference for treated males, we compared the fecundity and fertility between females mated with treated males and non-treated ones. We found that A. fraterculus females that mated with males exposed to guava volatiles showed higher fecundity than females mated to non-exposed males. On the other hand, females that mated methoprene-treated males showed no evidence of direct benefits. Our findings represent the first evidence of a direct benefit associated to female preference for males that were exposed to host fruit odors in tephritid fruit flies. Differences between the two treatments are discussed in evolutionary and pest management terms.
Collapse
Affiliation(s)
- Guillermo E. Bachmann
- Instituto de Genética “E.A. Favret”, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Francisco Devescovi
- Instituto de Genética “E.A. Favret”, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana L. Nussenbaum
- Instituto de Genética “E.A. Favret”, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| | - Fabián H. Milla
- Instituto de Genética “E.A. Favret”, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
| | - Todd E. Shelly
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Waimanalo, Hawaii, United States of America
| | - Jorge L. Cladera
- Instituto de Genética “E.A. Favret”, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
| | - Patricia C. Fernández
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Estacíon Experimental Agropecuaria Delta del Paraná, Instituto Nacional de Tecnología Agropecuaria, Campana, Buenos Aires, Argentina
| | - María T. Vera
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Agronomía y Zootecnia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Tucumán, Argentina
| | - Diego F. Segura
- Instituto de Genética “E.A. Favret”, Instituto Nacional de Tecnología Agropecuaria, Hurlingham, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
5
|
Goane L, Pereyra PM, Castro F, Ruiz MJ, Juárez ML, Segura DF, Vera MT. Yeast derivatives and wheat germ in the adult diet modulates fecundity in a tephritid pest. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:178-190. [PMID: 29784067 DOI: 10.1017/s0007485318000305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anastrepha fraterculus (Wiedemann), a pest of great economic importance in South America, needs urgently to be controlled by environmentally friendly methods such as the sterile insect technique for which mass rearing of insects is required. Because oogenesis takes place during the adult stage, mass-rearing facilities should provide the females a diet that maximizes egg production at the lowest cost. Accordingly, we investigated the effect of artificial protein sources in the adult diet (yeast derivatives of different cost but with similar amino acids profiles, and the addition of wheat germ) on fecundity. Additionally, we evaluated different ratios of yeast derivatives or wheat germ on ovary maturation, fecundity, and fertility as well as their association with the nutrient content of females. Females fed hydrolyzed yeast and yeast extract attained the highest fecundity level, and those fed brewer's yeast the lowest. Reducing the amount of hydrolyzed yeast, an expensive protein source, in the diet negatively affected fecundity and ovary maturation. Increasing the amount of brewer's yeast, a low-cost protein source, did not favor fecundity. The addition of wheat germ in the adult diet improved fecundity regardless of the yeast derivate considered. Percentage of egg hatch was not affected by the diet. Nutrient content of A. fraterculus females varied according to the adult diet provided and mating status. Our findings provide novel baseline information to understand the role of nutrition on reproductive performance of A. fraterculus females and are discussed in the context of resource allocation. They also provide valuable advances in the search for cost-effective adult diets at fruit fly mass rearing facilities.
Collapse
Affiliation(s)
- L Goane
- Facultad de Agronomía y Zootecnia,Cátedra de Terapéutica Vegetal (CTV),Universidad Nacional de Tucumán,Tucumán,Argentina
| | - P M Pereyra
- Instituto de Fisiología Animal, Fundación Miguel Lillo,Tucumán,Argentina
| | - F Castro
- Instituto de Fisiología Animal, Fundación Miguel Lillo,Tucumán,Argentina
| | - M J Ruiz
- Facultad de Agronomía y Zootecnia,Cátedra de Terapéutica Vegetal (CTV),Universidad Nacional de Tucumán,Tucumán,Argentina
| | - M L Juárez
- Facultad de Agronomía y Zootecnia,Cátedra de Terapéutica Vegetal (CTV),Universidad Nacional de Tucumán,Tucumán,Argentina
| | - D F Segura
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires,Argentina
| | - M T Vera
- Facultad de Agronomía y Zootecnia,Cátedra de Terapéutica Vegetal (CTV),Universidad Nacional de Tucumán,Tucumán,Argentina
| |
Collapse
|
6
|
Rendon D, Walton V, Tait G, Buser J, Lemos Souza I, Wallingford A, Loeb G, Lee J. Interactions among morphotype, nutrition, and temperature impact fitness of an invasive fly. Ecol Evol 2019; 9:2615-2628. [PMID: 31061698 PMCID: PMC6493778 DOI: 10.1002/ece3.4928] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 01/02/2023] Open
Abstract
Invasive animals depend on finding a balanced nutritional intake to colonize, survive, and reproduce in new environments. This can be especially challenging during situations of fluctuating cold temperatures and food scarcity, but phenotypic plasticity may offer an adaptive advantage during these periods. We examined how lifespan, fecundity, pre‐oviposition periods, and body nutrient contents were affected by dietary protein and carbohydrate (P:C) ratios at variable low temperatures in two morphs (winter morphs WM and summer morphs SM) of an invasive fly, Drosophila suzukii. The experimental conditions simulated early spring after overwintering and autumn, crucial periods for survival. At lower temperatures, post‐overwintering WM lived longer on carbohydrate‐only diets and had higher fecundity on low‐protein diets, but there was no difference in lifespan or fecundity among diets for SM. As temperatures increased, low‐protein diets resulted in higher fecundity without compromising lifespan, while high‐protein diets reduced lifespan and fecundity for both WM and SM. Both SM and WM receiving high‐protein diets had lower sugar, lipid, and glycogen (but similar protein) body contents compared to flies receiving low‐protein and carbohydrate‐only diets. This suggests that flies spend energy excreting excess dietary protein, thereby affecting lifespan and fecundity. Despite having to recover from nutrient depletion after an overwintering period, WM exhibited longer lifespan and higher fecundity than SM in favorable diets and temperatures. WM exposed to favorable low‐protein diet had higher body sugar, lipid, and protein body contents than SM, which is possibly linked to better performance. Although protein is essential for oogenesis, WM and SM flies receiving low‐protein diets did not have shorter pre‐oviposition periods compared to flies on carbohydrate‐only diets. Finding adequate carbohydrate sources to compensate protein intake is essential for the successful persistence of D. suzukii WM and SM populations during suboptimal temperatures.
Collapse
Affiliation(s)
- Dalila Rendon
- Department of Horticulture Oregon State University Corvallis Oregon
| | - Vaughn Walton
- Department of Horticulture Oregon State University Corvallis Oregon
| | - Gabriella Tait
- Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige Italy
| | - Jessica Buser
- Department of Horticulture Oregon State University Corvallis Oregon
| | | | - Anna Wallingford
- Department of Entomology Cornell University Geneva New York.,University of New Hampshire, Cooperative Extension Durham New Hampshire
| | - Greg Loeb
- Department of Entomology Cornell University Geneva New York
| | - Jana Lee
- USDA ARS Horticultural Crops Research Unit Corvallis Oregon
| |
Collapse
|
7
|
Malod K, Archer CR, Hunt J, Nicolson SW, Weldon CW. Effects of macronutrient intake on the lifespan and fecundity of the marula fruit fly, Ceratitis cosyra (Tephritidae): Extreme lifespan in a host specialist. Ecol Evol 2017; 7:9808-9817. [PMID: 29188010 PMCID: PMC5696426 DOI: 10.1002/ece3.3543] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 11/09/2022] Open
Abstract
In insects, lifespan and reproduction are strongly associated with nutrition. The ratio and amount of nutrients individuals consume affect their life expectancy and reproductive investment. The geometric framework (GF) enables us to explore how animals regulate their intake of multiple nutrients simultaneously and determine how these nutrients interact to affect life-history traits of interest. Studies using the GF on host-generalist tephritid flies have highlighted trade-offs between longevity and reproductive effort in females, mediated by the protein-to-carbohydrate (P:C) ratio that individuals consume. Here, we tested how P and C intake affect lifespan (LS) in both sexes, and female lifetime (LEP), and daily (DEP) egg production, in Ceratitis cosyra, a host-specialist tephritid fly. We then determined the P:C ratio that C. cosyra defends when offered a choice of foods. Female LS was optimized at a 0:1 P:C ratio, whereas to maximize their fecundity, females needed to consume a higher P:C ratio (LEP = 1:6 P:C; DEP = 1:2.5 P:C). In males, LS was also optimized at a low P:C ratio of 1:10. However, when given the opportunity to regulate their intake, both sexes actively defended a 1:3 P:C ratio, which is closer to the target for DEP than either LS or LEP. Our results show that female C. cosyra experienced a moderate trade-off between LS and fecundity. Moreover, the diets that maximized expression of LEP and DEP were of lower P:C ratio than those required for optimal expression of these traits in host-generalist tephritids or other generalist insects.
Collapse
Affiliation(s)
- Kevin Malod
- Department of Zoology and Entomology University of Pretoria Hatfield South Africa
| | - C Ruth Archer
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Cornwall UK
| | - John Hunt
- Centre for Ecology and Conservation College of Life and Environmental Sciences University of Exeter Cornwall UK.,School of Science and Health Western Sydney University Penrith NSW Australia
| | - Susan W Nicolson
- Department of Zoology and Entomology University of Pretoria Hatfield South Africa
| | - Christopher W Weldon
- Department of Zoology and Entomology University of Pretoria Hatfield South Africa
| |
Collapse
|
8
|
Nestel D, Papadopoulos NT, Pascacio-Villafán C, Righini N, Altuzar-Molina AR, Aluja M. Resource allocation and compensation during development in holometabolous insects. JOURNAL OF INSECT PHYSIOLOGY 2016; 95:78-88. [PMID: 27650504 DOI: 10.1016/j.jinsphys.2016.09.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 06/06/2023]
Abstract
We provide an extensive review on current knowledge and future research paths on the topic of resource allocation and compensation during development in holometabolous insects, emphasizing the role of resource management during development, and how compensatory mechanisms may be acting to remediate nutritional deficiencies carried over from earlier stages of development. We first review resource allocation in "open" and "closed" developmental stages and then move on to the topic of modelling resource allocation and its trade-offs. In doing so, we review novel methodological developments such as response-surface methods and mixture experiments as well as nutritional geometry. We also dwell on the fascinating topic of compensatory physiology and behavior. We finish by discussing future research paths, among them the emerging field of nutrigenomics and gut microbiome, which will shed light into the yet poorly understood role of the symbiotic microbiota in nutrient compensation or assimilation.
Collapse
Affiliation(s)
- David Nestel
- Institute of Plant Protection, Dept. of Entomology, ARO, The Volcani Ctr., Beit Dagan 50250, Israel.
| | - Nikos T Papadopoulos
- Laboratory of Entomology and Agricultural Zoology, Dept. of Agriculture Crop Production and Rural Environment, University of Thessaly, N. Ionia, Volos, Greece
| | - Carlos Pascacio-Villafán
- Instituto de Ecología, A.C., Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, 91070 Xalapa, Veracruz, Mexico
| | - Nicoletta Righini
- Instituto de Ecología, A.C., Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, 91070 Xalapa, Veracruz, Mexico
| | - Alma R Altuzar-Molina
- Instituto de Ecología, A.C., Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, 91070 Xalapa, Veracruz, Mexico
| | - Martín Aluja
- Instituto de Ecología, A.C., Clúster Científico y Tecnológico BioMimic®, Red de Manejo Biorracional de Plagas y Vectores, 91070 Xalapa, Veracruz, Mexico
| |
Collapse
|
9
|
Rezende VB, Congrains C, Lima ALA, Campanini EB, Nakamura AM, Oliveira JLD, Chahad-Ehlers S, Junior IS, Alves de Brito R. Head Transcriptomes of Two Closely Related Species of Fruit Flies of the Anastrepha fraterculus Group Reveals Divergent Genes in Species with Extensive Gene Flow. G3 (BETHESDA, MD.) 2016; 6:3283-3295. [PMID: 27558666 PMCID: PMC5068948 DOI: 10.1534/g3.116.030486] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 08/10/2016] [Indexed: 11/18/2022]
Abstract
Several fruit flies species of the Anastrepha fraterculus group are of great economic importance for the damage they cause to a variety of fleshy fruits. Some species in this group have diverged recently, with evidence of introgression, showing similar morphological attributes that render their identification difficult, reinforcing the relevance of identifying new molecular markers that may differentiate species. We investigated genes expressed in head tissues from two closely related species: A. obliqua and A. fraterculus, aiming to identify fixed single nucleotide polymorphisms (SNPs) and highly differentiated transcripts, which, considering that these species still experience some level of gene flow, could indicate potential candidate genes involved in their differentiation process. We generated multiple libraries from head tissues of these two species, at different reproductive stages, for both sexes. Our analyses indicate that the de novo transcriptome assemblies are fairly complete. We also produced a hybrid assembly to map each species' reads, and identified 67,470 SNPs in A. fraterculus, 39,252 in A. obliqua, and 6386 that were common to both species. We identified 164 highly differentiated unigenes that had a mean interspecific index ([Formula: see text]) of at least 0.94. We selected unigenes that had Ka/Ks higher than 0.5, or had at least three or more highly differentiated SNPs as potential candidate genes for species differentiation. Among these candidates, we identified proteases, regulators of redox homeostasis, and an odorant-binding protein (Obp99c), among other genes. The head transcriptomes described here enabled the identification of thousands of genes hitherto unavailable for these species, and generated a set of candidate genes that are potentially important to genetically identify species and understand the speciation process in the presence of gene flow of A. obliqua and A. fraterculus.
Collapse
Affiliation(s)
- Victor Borges Rezende
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - Carlos Congrains
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - André Luís A Lima
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - Emeline Boni Campanini
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - Aline Minali Nakamura
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - Janaína Lima de Oliveira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - Samira Chahad-Ehlers
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - Iderval Sobrinho Junior
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| | - Reinaldo Alves de Brito
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
10
|
Cladera JL, Vilardi JC, Juri M, Paulin LE, Giardini MC, Gómez Cendra PV, Segura DF, Lanzavecchia SB. Genetics and biology of Anastrepha fraterculus: research supporting the use of the sterile insect technique (SIT) to control this pest in Argentina. BMC Genet 2014; 15 Suppl 2:S12. [PMID: 25471175 PMCID: PMC4255781 DOI: 10.1186/1471-2156-15-s2-s12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Two species of true fruit flies (taxonomic family Tephritidae) are considered pests of fruit and vegetable production in Argentina: the cosmopolitan Mediterranean fruit fly (Ceratitis capitata Wiedemann) and the new world South American fruit fly (Anastrepha fraterculus Wiedemann). The distribution of these two species in Argentina overlaps north of the capital, Buenos Aires. Regarding the control of these two pests, the varied geographical fruit producing regions in Argentina are in different fly control situations. One part is under a programme using the sterile insect technique (SIT) for the eradication of C. capitata, because A. fraterculus is not present in this area. The application of the SIT to control C. capitata north of the present line with the possibility of A. fraterculus occupying the niche left vacant by C. capitata becomes a cause of much concern. Only initial steps have been taken to investigate the genetics and biology of A. fraterculus. Consequently, only fragmentary information has been recorded in the literature regarding the use of SIT to control this species. For these reasons, the research to develop a SIT protocol to control A. fraterculus is greatly needed. In recent years, research groups have been building a network in Argentina in order to address particular aspects of the development of the SIT for Anastrepha fraterculus. The problems being addressed by these groups include improvement of artificial diets, facilitation of insect mass rearing, radiation doses and conditions for insect sterilisation, basic knowledge supporting the development of males-only strains, reduction of male maturation time to facilitate releases, identification and isolation of chemical communication signals, and a good deal of population genetic studies. This paper is the product of a concerted effort to gather all this knowledge scattered in numerous and often hard-to-access reports and papers and summarize their basic conclusions in a single publication.
Collapse
|
11
|
Sohal RS, Forster MJ. Caloric restriction and the aging process: a critique. Free Radic Biol Med 2014; 73:366-82. [PMID: 24941891 PMCID: PMC4111977 DOI: 10.1016/j.freeradbiomed.2014.05.015] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 05/16/2014] [Accepted: 05/17/2014] [Indexed: 01/06/2023]
Abstract
The main objective of this review is to provide an appraisal of the current status of the relationship between energy intake and the life span of animals. The concept that a reduction in food intake, or caloric restriction (CR), retards the aging process, delays the age-associated decline in physiological fitness, and extends the life span of organisms of diverse phylogenetic groups is one of the leading paradigms in gerontology. However, emerging evidence disputes some of the primary tenets of this conception. One disparity is that the CR-related increase in longevity is not universal and may not even be shared among different strains of the same species. A further misgiving is that the control animals, fed ad libitum (AL), become overweight and prone to early onset of diseases and death, and thus may not be the ideal control animals for studies concerned with comparisons of longevity. Reexamination of body weight and longevity data from a study involving over 60,000 mice and rats, conducted by a National Institute on Aging-sponsored project, suggests that CR-related increase in life span of specific genotypes is directly related to the gain in body weight under the AL feeding regimen. Additionally, CR in mammals and "dietary restriction" in organisms such as Drosophila are dissimilar phenomena, albeit they are often presented to be the very same. The latter involves a reduction in yeast rather than caloric intake, which is inconsistent with the notion of a common, conserved mechanism of CR action in different species. Although specific mechanisms by which CR affects longevity are not well understood, existing evidence supports the view that CR increases the life span of those particular genotypes that develop energy imbalance owing to AL feeding. In such groups, CR lowers body temperature, rate of metabolism, and oxidant production and retards the age-related pro-oxidizing shift in the redox state.
Collapse
Affiliation(s)
- Rajindar S Sohal
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
| | - Michael J Forster
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
12
|
Ahmed AM. Mosquito autogeny in Aedes caspius (Diptera: Culicidae): alterations of larval nourishments reservation upon bacterial infection. INSECT SCIENCE 2013; 20:472-484. [PMID: 23955943 DOI: 10.1111/j.1744-7917.2012.01544.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/23/2012] [Indexed: 06/02/2023]
Abstract
The present study recorded mosquito autogeny for the first time amongst Aedes caspius species in the Eastern region of Saudi Arabia. Laboratory rearing showed an obligatory autogenous species of Ae. caspius since it foregoes blood feeding during its first ovarian cycle, even in the presence of the hosts (CD mouse), but produces its second egg batch only if ingested a blood meal. Both morphological and molecular identification confirmed that both autogenous and anautogenous strains belong to the same species of Ae. caspius. Data from biochemical analysis showed significant 2, 1.6, and 1.4 folds higher total carbohydrates, proteins, and lipids reserves respectively in the fourth larval instar of the autogenous strain compared to that of the anautogenous ones. In addition, exposing the fourth larval instars of autogenous strain to the infection stress by the mosquito larvicidal bacterium, Bacillus thuringiensis var kurstaki has significantly reduced total carbohydrates, proteins and lipids reserves by 29%, 35%, and 46%, respectively, at 12 h postinfection compared to those of uninfected ones. These reductions in nourishment reserves were more pronounced at 24 h postinfection in the case of proteins and lipids, but not carbohydrates. These results may indicate that bacterial infection is a health stress that significantly reduced nourishments reservation, which may interrupt the success of adult autogeny. However, the impact of infection-induced decline in larval nourishments reservation on successful adult autogeny is still to be investigated.
Collapse
Affiliation(s)
- Ashraf M Ahmed
- Zoology Department, College of Science, King Saud University, Saudi Arabia.
| |
Collapse
|
13
|
Liendo MC, Devescovi F, Bachmann GE, Utgés ME, Abraham S, Vera MT, Lanzavecchia SB, Bouvet JP, Gómez-Cendra P, Hendrichs J, Teal PEA, Cladera JL, Segura DF. Precocious sexual signalling and mating in Anastrepha fraterculus (Diptera: Tephritidae) sterile males achieved through juvenile hormone treatment and protein supplements. BULLETIN OF ENTOMOLOGICAL RESEARCH 2013; 103:1-13. [PMID: 22929968 DOI: 10.1017/s0007485312000442] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sexual maturation of Anastrepha fraterculus is a long process. Methoprene (a mimic of juvenile hormone) considerably reduces the time for sexual maturation in males. However, in other Anastrepha species, this effect depends on protein intake at the adult stage. Here, we evaluated the mating competitiveness of sterile laboratory males and females that were treated with methoprene (either the pupal or adult stage) and were kept under different regimes of adult food, which varied in the protein source and the sugar:protein ratio. Experiments were carried out under semi-natural conditions, where laboratory flies competed over copulations with sexually mature wild flies. Sterile, methoprene-treated males that reached sexual maturity earlier (six days old), displayed the same lekking behaviour, attractiveness to females and mating competitiveness as mature wild males. This effect depended on protein intake. Diets containing sugar and hydrolyzed yeast allowed sterile males to compete with wild males (even at a low concentration of protein), while brewer´s yeast failed to do so even at a higher concentration. Sugar only fed males were unable to achieve significant numbers of copulations. Methoprene did not increase the readiness to mate of six-day-old sterile females. Long pre-copulatory periods create an additional cost to the management of fruit fly pests through the sterile insect technique (SIT). Our findings suggest that methoprene treatment will increase SIT effectiveness against A. fraterculus when coupled with a diet fortified with protein. Additionally, methoprene acts as a physiological sexing method, allowing the release of mature males and immature females and hence increasing SIT efficiency.
Collapse
Affiliation(s)
- M C Liendo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|