1
|
Hu K, Li W, Zhang W, Yuan K, Gong C, Shu Y, Yu Y, Shan C, Gao Y, Zhang X, Yu H, Shi W, Liu G. Diltiazem disrupts Ca 2+-homeostasis and exerts immunotoxic effects on a marine bivalve mollusc, the blood clam (Tegillarca granosa). MARINE POLLUTION BULLETIN 2025; 217:118055. [PMID: 40300553 DOI: 10.1016/j.marpolbul.2025.118055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/01/2025]
Abstract
The prevalence of pharmaceutical residues like diltiazem in environments raises concerns over their potential threat to non-target organisms. While the immune system poses as a potential target, little is known about the immunotoxicity of diltiazem to aquatic species such as bivalve molluscs. In this study, the binding affinity of diltiazem to the calcium channels of several aquatic species was evaluated by molecular docking. Taking blood clam as a representative, the impacts of diltiazem on Ca2+-homeostasis and immune parameters were also assessed. Our results illustrated diltiazem exhibit a high binding affinity to calcium channels of representative aquatic species. Moreover, Ca2+-homeostasis in the haemocytes of blood clam was significantly disrupted by 4-week exposure to diltiazem. Additionally, apart from exhibiting significantly lower survival rates upon pathogenic challenge, diltiazem-exposed blood clams also suffered markedly impaired immune-related hematic parameters and lower levels of immune factors. Furthermore, diltiazem exposure generally altered the expression of key Ca2+-homeostasis and immune-related genes. Collectively, our data suggest that diltiazem at environmentally relevant concentrations could severely undermine the immunity of blood clam by disrupting Ca2+-homeostasis. Given the high binding affinities of diltiazem to calcium channels of diverse aquatic species and the critical role of Ca2+-homeostasis, the far-reaching impacts of diltiazem pollution on non-target aquatic species warrant closer attention and monitoring.
Collapse
Affiliation(s)
- Kaiwen Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Weifeng Li
- College of Marine Sciences, Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Beibu Gulf University, Qinzhou 535011, PR China
| | - Weixia Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Kuankuan Yuan
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Chenxin Gong
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yang Shu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yingying Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Conghui Shan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yan Gao
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Xunyi Zhang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Haibin Yu
- Zhejiang Mariculture Research Institute, Sino-Thai Joint Laboratory of Marine Technology, Wenzhou 325000, PR China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
2
|
Li Z, Bao X, Liu X, Wang Y, Zhu X, Zhang Y, Wang Z, Maslennikov S, Whiteside M, Wang W, Xu X, Li B, Luo Q, Li Y, Wang S, Hu B, Yang J. Transcriptome analysis provides preliminary insights into the response of Sepia esculenta to high salinity stress. AGRICULTURE COMMUNICATIONS 2024; 2:100064. [DOI: 10.1016/j.agrcom.2024.100064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Li L, Chang J, Xu Z, Chu L, Zhang J, Xing Q, Bao Z. Functional allocation of Mitogen-activated protein kinases (MAPKs) unveils thermotolerance in scallop Argopecten irradians irradians. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106750. [PMID: 39293275 DOI: 10.1016/j.marenvres.2024.106750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Global warming has significantly impacted agriculture, particularly in animal husbandry and aquaculture industry. Rising ocean temperatures due to global warming are severely affecting shellfish production, necessitating an understanding of how shellfish cope with thermal stress. The mitogen-activated protein kinases (MAPK) signaling pathway plays a crucial role in cell growth, differentiation, adaptation to environmental stress, inflammatory response, and managing high temperature stress. To investigate the function of MAPKs in bay scallops, a comparative genomics and bioinformatics approach identified three MAPK genes: AiERK, Aip38, and AiJNK. Structural and phylogenetic analyses of these proteins were conducted to determine their evolutionary relationships. Spatiotemporal expression patterns were examined at different developmental stages and in various tissues of healthy adult scallops. Additionally, the expression regulation of these genes was studied in selected tissues (hemocyte, gill, heart, mantle) following exposure to high temperatures (32 °C) for different durations (0 h, 6 h, 12 h, 24 h, 3 d, 6 d, 10 d). The spatiotemporal expressions of AiMAPKs were ubiquitous, with significant increases in AiERK expression observed at the umbo larval stage (3.09-fold), while Aip38 and AiJNK were identified as potential maternal effect genes. In adult scallops, different gene expression patterns of AiMAPKs were observed across eight tissues, with high expressions in the foot and gill, and lower expressions in the striated muscle. Following high temperature stress, AiMAPKs expressions in the gill and mantle were mainly up-regulated, while in the hemocyte, they were primarily down-regulated. These findings indicate time- and tissue-dependent expression patterns with functional allocation in response to different thermal durations. This study enhances our understanding of the function and evolution of AiMAPKs genes in shellfish and provides a theoretical basis for elucidating the energy regulation mechanism of bay scallops in response to high temperature stress.
Collapse
Affiliation(s)
- Linshu Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Jiaxi Chang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zhaosong Xu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Longfei Chu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Junhao Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Qiang Xing
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| |
Collapse
|
4
|
Ter Ü, Ertürk Gürkan S, Gürkan M, Kunili IE, Aksoy E. Pathological and oxidative stress responses of Mytilus galloprovincialis to Vibrio mediterranei infection: An in vivo challenge. FISH & SHELLFISH IMMUNOLOGY 2024; 154:109889. [PMID: 39250984 DOI: 10.1016/j.fsi.2024.109889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Since the identification of Vibrio mediterranei as a causative agent in mass mortalities of pen shells across the Mediterranean, elucidating its pathogenicity, virulence, and interactions with other bivalves has gained importance. While the cellular and immune responses of bivalves to various Vibrio species have been extensively studied, the infectious characteristics of this Vibrio species, particularly in the context of pen shell outbreaks, remain unclear for other bivalves. Therefore, to evaluate its pathogenicity, we investigated the histological and oxidative effects on the Mediterranean mussel (Mytilus galloprovincialis), a key species in aquaculture. Two distinct infection setups were established: one involving the inoculation of seawater with the bacterial isolate and another involving direct injection of the bacteria into the mussels. After a 24-h exposure period, histological evaluations were conducted on the mantle, gill, and digestive gland tissues of the mussels. Additionally, measurements of superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), and lipid peroxidation levels were performed in the gill and digestive gland tissues. Oxidative responses were significantly elevated in both infection setups compared to the control group, with the directly injected samples exhibiting the highest oxidative responses (p < 0.05). Histological findings indicated that tissue-specific responses to host-pathogen interactions were consistent under both infection conditions. Notable observations included intense hemocytic infiltration in tissues, epithelial hyperplasia, and vacuolization in the gills, as well as focal necrotic areas in the digestive gland. The findings of this study indicate that V. mediterranei, a relatively novel pathogen, can provoke significant acute immune responses and tissue-level reactions in M. galloprovincialis, a species that is both widely distributed and vital to the food chain. These insights into the potential susceptibility of mussels underscore the need for further comprehensive research and inform the development of effective management strategies.
Collapse
Affiliation(s)
- Ümmügülsüm Ter
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| | - Selin Ertürk Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey.
| | - Mert Gürkan
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| | - Ibrahim Ender Kunili
- Çanakkale Onsekiz Mart University, Faculty of Marine Science and Technology, Department of Fishing and Processing Technology, Çanakkale, Turkey
| | - Emircan Aksoy
- Çanakkale Onsekiz Mart University, Faculty of Science, Department of Biology, Çanakkale, Turkey
| |
Collapse
|
5
|
Wang X, Qu X, Lu X, Chen M, Ning J, Liu H, Liu G, Xu X, Zhang X, Yu K, Xu H, Liu B, Wang C. Characterization of TRAF genes and their responses to Vibrio anguillarum challenge in Argopecten scallops. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108675. [PMID: 36906048 DOI: 10.1016/j.fsi.2023.108675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/27/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
The tumor necrosis factor receptor-related factor (TRAF) family has been reported to be involved in many immune pathways, such as TNFR, TLR, NLR, and RLR in animals. However, little is known about the roles of TRAF genes in the innate immune of Argopecten scallops. In this study, we first identified five TRAF genes, including TRAF2, TRAF3, TRAF4, TRAF6 and TRAF7, but not TRAF1 and TRAF5, from both the bay scallop A. irradians (Air) and the Peruvian scallop A. purpuratus (Apu). The phylogenetic analysis showed that the TRAF genes in Argopecten scallops (AiTRAF) belong to the branch of molluscan TRAF family, which lacks TRAF1 and TRAF5. Since TRAF6 is a key bridge factor in the tumor necrosis factor superfamily and plays an important role in innate and adaptive immunity, we cloned the ORFs of the TRAF6 gene in both A. irradians and A. purpuratus, as well as in two reciprocal hybrids (Aip for the hybrid Air × Apu and Api for the hybrid Apu × Air). Differences in conformational and post-translational modification resulted from the variation in amino acid sequences may cause differences in activity among them. Analysis of conserved motifs and protein structural domains revealed that AiTRAF contains typical structural domains similar to those of other mollusks and has the same conserved motifs. Tissue expression of TRAF in Argopecten scallops challenged by Vibrio anguillarum was examined by qRT-PCR. The results showed that AiTRAF were higher in gill and hepatopancreas. When challenged by Vibrio anguillarum, the expression of AiTRAF was significantly increased compared with the control group, indicating that AiTRAF may play an important role in the immunity of scallops. In addition, the expression of TRAF was higher in Api and Aip than in Air when challenged by Vibrio anguillarum, suggesting that TRAF may have contributed to the high resistance of Api and Aip to Vibrio anguillarum. The results of this study may provide new insights into the evolution and function of TRAF genes in bivalves and ultimately benefit scallop breeding.
Collapse
Affiliation(s)
- Xia Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xiaoxu Qu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Xia Lu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Min Chen
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Junhao Ning
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China
| | - Haijun Liu
- Yantai Spring-Sea AquaSeed, Co., Ltd., Yantai, 264006, China
| | - Guilong Liu
- Yantai Spring-Sea AquaSeed, Co., Ltd., Yantai, 264006, China
| | - Xin Xu
- Yantai Spring-Sea AquaSeed, Co., Ltd., Yantai, 264006, China
| | - Xiaotong Zhang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - Kai Yu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China
| | - He Xu
- Jiangsu Baoyuan Biotechnology Co., Ltd., Lianyungang, 222144, China; Jiangsu Haitai MariTech Co., Ltd., Lianyungang, 222144, China
| | - Bo Liu
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China.
| | - Chunde Wang
- College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong, 266109, China; Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong, 264003, China.
| |
Collapse
|
6
|
Bao X, Li Y, Liu X, Feng Y, Xu X, Sun G, Wang W, Li B, Li Z, Yang J. Effect of acute Cu exposure on immune response mechanisms of golden cuttlefish (Sepia esculenta). FISH & SHELLFISH IMMUNOLOGY 2022; 130:252-260. [PMID: 36122637 DOI: 10.1016/j.fsi.2022.09.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 06/15/2023]
Abstract
Sepia esculenta is a common economic cephalopod that has received extensive attention due to the tender meat, rich protein content and certain medicinal value thereof. Over the past decade, multiple industries have discharged waste into the ocean in large quantities, thereby significantly increasing the concentration of heavy metals in the ocean. Copper (Cu) is a common heavy metal in the ocean. The increase of Cu content will affect numerous biological processes such as immunity and metabolism of marine organisms. High concentrations of Cu may inhibit S. esculenta growth, development, swimming, and other processes, which would significantly affect its culture. In this research, transcriptome analysis is used to initially explore Cu-exposed S. esculenta larval immune response mechanisms. And compared to control group with normally growing larvae, 2056 differentially expressed genes (DEGs) are identified in experimental group with Cu-exposed larvae. The results of DEGs functional enrichment analyses including GO and KEGG indicate that Cu exposure might promote inflammatory and innate immune responses in cuttlefish larvae. Then, 10 key genes that might regulate larval immunity are identified using a comprehensive analysis that combines protein-protein interaction (PPI) network and KEGG functional enrichment analyses, of which three genes with the highest number of protein interactions or involve in more KEGG signaling pathways are identified as hub genes that might significantly affect larval immune response processes. Comprehensive analysis of PPI network and KEGG signaling pathway are used for the first time to explore Cu-exposed S. esculenta larval immune response mechanisms. Our results preliminarily reveal immune response mechanisms of cephalopods exposed to heavy metals and provide valuable resources for further understanding mollusk immunity.
Collapse
Affiliation(s)
- Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Yan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Bin Li
- School of Agriculture, Ludong University, Yantai, 264025, China; Yantai Haiyu Marine Science and Technology Co. Ltd., Yantai, 264004, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China.
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
7
|
Bao X, Wang W, Chen X, Feng Y, Xu X, Sun G, Li B, Liu X, Li Z, Yang J. Exploration of immune response mechanisms in cadmium and copper co-exposed juvenile golden cuttlefish ( Sepia esculenta) based on transcriptome profiling. Front Immunol 2022; 13:963931. [PMID: 36211441 PMCID: PMC9538352 DOI: 10.3389/fimmu.2022.963931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/01/2022] [Indexed: 11/23/2022] Open
Abstract
Sepia esculenta is a popular economic cephalopod with high yield, delicious meat, and rich nutrition. With the rapid development of heavy industry and medical industry, a large amount of waste has been released into the ocean recklessly in recent years, inducing a significant increase in the content of heavy metals, especially cadmium (Cd) and copper (Cu), in the ocean. This phenomenon significantly affects the growth and development of S. esculenta, causing a serious blow to its artificial breeding. In this study, transcriptome analysis is used to initially explore immune response mechanisms of Cd and Cu co-exposed juvenile S. esculenta. The results show that 1,088 differentially expressed genes (DEGs) are identified. And DEGs functional enrichment analysis results suggests that co-exposure may promote inflammatory and innate immune responses in juvenile S. esculenta. Fifteen key genes that might regulate the immunity of S. esculenta are identified using protein-protein interaction (PPI) network and KEGG enrichment analyses, of which the three genes with the highest number of interactions or involve in more KEGG pathways are identified as hub genes that might significantly affect the immune response processes. Comprehensive analysis of PPI network and KEGG signaling pathway is used for the first time to explore co-exposed S. esculenta juvenile immune response processes. Our results preliminarily reveal immune response mechanisms of cephalopods exposed to heavy metals and provide a valuable resource for further understanding of mollusk immunity.
Collapse
Affiliation(s)
- Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Xipan Chen
- School of Agriculture, Ludong University, Yantai, China
| | - Yanwei Feng
- School of Agriculture, Ludong University, Yantai, China
| | - Xiaohui Xu
- School of Agriculture, Ludong University, Yantai, China
| | - Guohua Sun
- School of Agriculture, Ludong University, Yantai, China
| | - Bin Li
- School of Agriculture, Ludong University, Yantai, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Zan Li
- School of Agriculture, Ludong University, Yantai, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, China
| |
Collapse
|
8
|
Ericson JA, Venter L, Welford MRV, Kumanan K, Alfaro AC, Ragg NLC. Effects of seawater temperature and acute Vibriosp. challenge on the haemolymph immune and metabolic responses of adult mussels (Perna canaliculus). FISH & SHELLFISH IMMUNOLOGY 2022; 128:664-675. [PMID: 35981703 DOI: 10.1016/j.fsi.2022.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/31/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
The New Zealand Greenshell™ mussel (Perna canaliculus) is an endemic bivalve species with cultural importance, that is harvested recreationally and commercially. However, production is currently hampered by increasing incidences of summer mortality in farmed and wild populations. While the causative factors for these mortality events are still unknown, it is believed that increasing seawater temperatures and pathogen loads are potentially at play. To improve our understanding of these processes, challenge experiments were conducted to investigate the combined effects of increased seawater temperature and Vibrio infection on the immune and metabolic responses of adult mussels. Biomarkers that measure the physiological response of mussels to multiple-stressors can be utilised to study resilience in a changing environment, and support efforts to strengthen biosecurity management. Mussels acclimated to two temperatures (16 °C and 24 °C) were injected with either autoclaved, filtered seawater (control) or Vibriosp. DO1 (infected). Then, haemolymph was sampled 24 h post-injection and analysed to quantify haemocyte immune responses (via flow-cytometry), antioxidant capacity (measured electrochemically) and metabolic responses (via gas chromatography-mass spectrometry) to bacterial infection. Both seawater temperature and injection type significantly influenced the immune and metabolite status of mussels. A lack of interaction effects between temperature and injection type indicated that the effects of Vibrio sp. 24 h post-infection were similar between seawater temperatures. Infected mussels had a higher proportion of dead haemocytes and lower overall haemocyte counts than uninfected controls. The proportion of haemocytes showing evidence of apoptosis was higher in mussels held at 24 °C compared with those held at 16 °C. The proportion of haemocytes producing reactive oxygen species did not differ between temperatures or injection treatments. Mussels held at 24 °C exhibited elevated levels of metabolites linked to the glycolysis pathway to support energy production. The saccharopin-lysine pathway metabolites were also increased in these mussels, indicating the role of lysine metabolism. A decrease in metabolic activity (decreases in BCAAs, GABA, urea cycle metabolites, oxidative stress metabolites) was largely seen in mussels injected with Vibrio sp. Itaconate increased as seen in previous studies, suggesting that antimicrobial activity may have been activated in infected mussels. This study highlights the complex nature of immune and metabolic responses in mussels exposed to multiple stressors and gives an insight into Vibrio sp. infection mechanisms at different seawater temperatures.
Collapse
Affiliation(s)
| | - Leonie Venter
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Mena R V Welford
- School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Karthiga Kumanan
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand; Centre for Sustainable Tropical Fisheries and Aquaculture, College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Andrea C Alfaro
- Aquaculture Biotechnology Research Group, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand.
| | - Norman L C Ragg
- Cawthron Institute, Private Bag 2, Nelson, 7042, New Zealand
| |
Collapse
|
9
|
Tang Y, Han Y, Zhang W, Yu Y, Huang L, Zhou W, Shi W, Tian D, Liu G. Bisphenol A and microplastics weaken the antimicrobial ability of blood clams by disrupting humoral immune responses and suppressing hemocyte chemotactic activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119497. [PMID: 35594997 DOI: 10.1016/j.envpol.2022.119497] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/10/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Robust antimicrobial capability is crucial for marine organisms survival in complex ocean environments. Although the detrimental impacts of emergent pollutants on cellular immune response of marine bivalve mollusks were increasingly documented, the effects of bisphenol A (BPA) and microplastics (MPs) on humoral immune response and hemocyte chemotactic activity remain unclear. Therefore, in this study, the toxicities of BPA and MPs, alone or in combination, to the antimicrobial ability, humoral immune response, and hemocyte chemotactic activity were investigated in the blood clam Tegillarca granosa. Our data demonstrated that exposure of blood clams to BPA, MPs, and BPA-MPs for 2 weeks lead to significant reductions in their survival rates upon pathogenic bacterial challenge, indicating evident impairment of antimicrobial ability. Compared to control, the plasma of pollutant-incubated blood clams exhibited significantly less antimicrobial activity against the growth of V. harveyi, suggesting significant reduction in humoral immune effectors including defensin, lysozyme (LZM), and lectin. Moreover, hemocytes migration across the polycarbonate membrane to the serum containing chamber was markedly arrested by 2-week exposure to BPA, MPs, and BPA-MPs, suggesting a hampered chemotactic activity. In addition, the intracellular contents of ROS and protein carbonyl in hemocytes were markedly induced whereas the expression levels of key genes from the MAPK and actin cytoskeleton regulation pathways were significantly suppressed upon exposure. In this study, it was also found that BPA-MP coexposure was significantly more toxic than single exposures. In summary, our findings revealed that exposure to the pollutants tested possibly impair the antimicrobial ability of blood clam through (1) reducing the inhibitory effect of plasma on bacterial growth, the contents of humoral immune effectors, and the chemotactic activity of hemocytes, (2) interrupting IL-17 activation of MAPK signal pathway, (3) inducing intracellular ROS, elevating protein carbonylation levels, and disrupting actin cytoskeleton regulation in hemocytes.
Collapse
Affiliation(s)
- Yu Tang
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yu Han
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Weixia Zhang
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Yihan Yu
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Lin Huang
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Weishang Zhou
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Wei Shi
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Dandan Tian
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Guangxu Liu
- Institute Or Laboratory of Origin: College of Animal Sciences, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
10
|
Cao R, Liu Y, Wang Q, Yang D, Liu H, Ran W, Qu Y, Zhao J. Seawater Acidification Reduced the Resistance of Crassostrea gigas to Vibrio splendidus Challenge: An Energy Metabolism Perspective. Front Physiol 2018; 9:880. [PMID: 30050457 PMCID: PMC6052255 DOI: 10.3389/fphys.2018.00880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/19/2018] [Indexed: 11/13/2022] Open
Abstract
Negative physiological impacts induced by exposure to acidified seawater might sensitize marine organisms to future environmental stressors, such as disease outbreak. The goal of this study was to evaluate if ocean acidification (OA) could reduce the resistance capability of the Pacific oyster (Crassostrea gigas) to Vibrio splendidus challenge from an energy metabolism perspective. In this study, the Pacific oyster was exposed to OA (pH 7.6) for 28 days and then challenged by V. splendidus for another 72 h. Antioxidative responses, lipid peroxidation, metabolic (energy sensors, aerobic metabolism, and anaerobic metabolism) gene expression, glycolytic enzyme activity, and the content of energy reserves (glycogen and protein) were investigated to evaluate the environmental risk of pathogen infection under the condition of OA. Our results demonstrated that following the exposure to seawater acidification, oysters exhibited an energy modulation with slight inhibition of aerobic energy metabolism, stimulation of anaerobic metabolism, and increased glycolytic enzyme activity. However, the energy modulation ability and antioxidative regulation of oysters exposed to seawater acidification may be overwhelmed by a subsequent pathogen challenge, resulting in increased oxidative damage, decreased aerobic metabolism, stimulated anaerobic metabolism, and decreased energy reserves. Overall, although anaerobic metabolism was initiated to partially compensate for inhibited aerobic energy metabolism, increased oxidative damage combined with depleted energy reserves suggested that oysters were in an unsustainable bioenergetic state and were thereby incapable of supporting long-term population viability under conditions of seawater acidification and a pathogen challenge from V. splendidus.
Collapse
Affiliation(s)
- Ruiwen Cao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongliang Liu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Qing Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Dinglong Yang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Hui Liu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Wen Ran
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Qu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| |
Collapse
|
11
|
Rivera-Ingraham GA, Lignot JH. Osmoregulation, bioenergetics and oxidative stress in coastal marine invertebrates: raising the questions for future research. ACTA ACUST UNITED AC 2018; 220:1749-1760. [PMID: 28515169 DOI: 10.1242/jeb.135624] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Osmoregulation is by no means an energetically cheap process, and its costs have been extensively quantified in terms of respiration and aerobic metabolism. Common products of mitochondrial activity are reactive oxygen and nitrogen species, which may cause oxidative stress by degrading key cell components, while playing essential roles in cell homeostasis. Given the delicate equilibrium between pro- and antioxidants in fueling acclimation responses, the need for a thorough understanding of the relationship between salinity-induced oxidative stress and osmoregulation arises as an important issue, especially in the context of global changes and anthropogenic impacts on coastal habitats. This is especially urgent for intertidal/estuarine organisms, which may be subject to drastic salinity and habitat changes, leading to redox imbalance. How do osmoregulation strategies determine energy expenditure, and how do these processes affect organisms in terms of oxidative stress? What mechanisms are used to cope with salinity-induced oxidative stress? This Commentary aims to highlight the main gaps in our knowledge, covering all levels of organization. From an energy-redox perspective, we discuss the link between environmental salinity changes and physiological responses at different levels of biological organization. Future studies should seek to provide a detailed understanding of the relationship between osmoregulatory strategies and redox metabolism, thereby informing conservation physiologists and allowing them to tackle the new challenges imposed by global climate change.
Collapse
Affiliation(s)
| | - Jehan-Hervé Lignot
- UMR 9190 MARBEC, Université de Montpellier, Place Eugène Bataillon, Montpellier 34095, France
| |
Collapse
|
12
|
Ben Cheikh Y, Travers MA, Le Foll F. Infection dynamics of a V. splendidus strain pathogenic to Mytilus edulis: In vivo and in vitro interactions with hemocytes. FISH & SHELLFISH IMMUNOLOGY 2017; 70:515-523. [PMID: 28935598 DOI: 10.1016/j.fsi.2017.09.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/10/2017] [Accepted: 09/15/2017] [Indexed: 06/07/2023]
Abstract
The pathogenic strain V. splendidus 10/068 1T1 has previously been reported for its virulence to the blue mussel and for its capacity to alter immune responses. In this study, we expanded the knowledge on hemocyte-pathogen interactions by using in vitro and in vivo assays. V. splendidus 10/068 1T1 severely inhibited cell adhesion and acidic vacuole formation unlike the innocuous phylogenetically related V. splendidus 12/056 M24T1 which had no effect on these cell functions. Furthermore, the virulent bacteria decreased hemocyte viability (59% of viability after 24 h). Infection dynamics were explored by using a model based on water tank cohabitation with septic mussels infected by GFP-tagged V. splendidus 10/068 1T1. Experimental infections were successfully produced (16.6% and 45% mortalities in 3 days and 6 days). The amount of GFP Vibrio in seawater decreased during the experiment suggesting its horizontal transfer from diseased animals to healthy ones. At the same time periods, bacteria were detected in hemocytes and in various organs and caused necrosis especially in gills. Total hemocyte count and viability were affected. Taken together, our results indicate that the pathogen V. splendidus 10/068 1T1 colonizes its host both by bypassing external defense barriers and impairing hemocyte defense activities.
Collapse
Affiliation(s)
- Yosra Ben Cheikh
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Aquatic Biomonitoring, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France.
| | - Marie-Agnès Travers
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins Avenue de Mus de Loup, 17390 La Tremblade, France
| | - Frank Le Foll
- UMR-I 02 INERIS-URCA-ULH SEBIO / Environmental Stresses and Aquatic Biomonitoring, FR CNRS 3730 Scale, Université Le Havre Normandie, F-76063, Le Havre Cedex, France
| |
Collapse
|
13
|
Ciacci C, Manti A, Canonico B, Campana R, Camisassi G, Baffone W, Canesi L. Responses of Mytilus galloprovincialis hemocytes to environmental strains of Vibrio parahaemolyticus, Vibrio alginolyticus, Vibrio vulnificus. FISH & SHELLFISH IMMUNOLOGY 2017; 65:80-87. [PMID: 28390964 DOI: 10.1016/j.fsi.2017.04.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 03/28/2017] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
Marine bivalves are exposed to different types of bacteria in the surrounding waters, in particular of the Vibrio genus. In the hemocytes of the mussel Mytilus spp. immune responses to different vibrios have been largely characterized. However, little information is available on the hemocyte responses to human pathogenic vibrios commonly detected in coastal waters and bivalve tissues that are involved in seafood-borne diseases. In this work, functional parameters of the hemocytes from the Mediterranean mussel M. galloprovincialis were evaluated in response to in vitro challenge with different vibrios isolated from environmental samples of the Adriatic sea (Italy): V. parahaemolyticus Conero, V. alginolyticus 1513 and V. vulnificus 509. V. parahaemolyticus ATCC 43996 was used for comparison. At the 50:1 bacteria hemocyte ratio, only V. parahaemolyticus strains induced significant lysosomal membrane destabilisation. Stimulation of extracellular lysozyme release, total ROS, O2- and NO production were observed, although to different extents and with distinct time courses for different vibrios, V. vulnificus 509 in particular. Further comparisons between V. parahaemolyticus Conero and V. vulnificus 509 showed that only the latter induced dysregulation of the phosphorylation state of p38 MAP Kinase and apoptotic processes. The results indicate that mussel hemocytes can mount an efficient immune response towards V. parahaemolyticus and V. alginolyticus strains, whereas V. vulnificus 509 may affect the hemocyte function. This is the first report on immune responses of mussels to local environmental isolates of human pathogenic vibrios. These data reinforce the hypothesis that Mytilus hemocytes show specific responses to different vibrio species and strains.
Collapse
Affiliation(s)
- C Ciacci
- Department of Biomolecular Science (DISB), University of Urbino "Carlo Bo", Urbino, Italy
| | - A Manti
- Department of Biomolecular Science (DISB), University of Urbino "Carlo Bo", Urbino, Italy
| | - B Canonico
- Department of Biomolecular Science (DISB), University of Urbino "Carlo Bo", Urbino, Italy
| | - R Campana
- Department of Biomolecular Science (DISB), University of Urbino "Carlo Bo", Urbino, Italy
| | - G Camisassi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Italy
| | - W Baffone
- Department of Biomolecular Science (DISB), University of Urbino "Carlo Bo", Urbino, Italy
| | - L Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Italy.
| |
Collapse
|
14
|
Abnave P, Muracciole X, Ghigo E. Macrophages in Invertebrates: From Insects and Crustaceans to Marine Bivalves. Results Probl Cell Differ 2017; 62:147-158. [PMID: 28455708 DOI: 10.1007/978-3-319-54090-0_6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Macrophages are critical components of the antimicrobial response. The recent explosion of knowledge on the evolutionary, genetic, and biochemical aspects of the interaction between macrophages and microbes has renewed scientific interest in macrophages. The conservation of immune components or mechanisms between organisms during the evolutionary process allows us to elucidate antimicrobial mechanisms or discover new immune functions through the study of basal-branching organisms, such as invertebrates. As a result, immunity in non-vertebrates has attracted the attention of researchers in the last few decades. In this review, we summarize what is presently known about macrophage-like cells in various invertebrate species.
Collapse
Affiliation(s)
- Prasad Abnave
- URMITE, CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin, 13385, Marseille Cedex 05, France.,Department of Zoology, University of Oxford, Tinbergen Building, South Parks Road, OX1 3PS, Oxford, UK
| | - Xavier Muracciole
- URMITE, CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin, 13385, Marseille Cedex 05, France.,Department of Radiotherapy Oncology, CHU La Timone, Assistance Publique-Hopitaux Marseille, Marseille, France
| | - Eric Ghigo
- URMITE, CNRS UMR 7278, IRD198, INSERM U1095, APHM, Institut Hospitalier Universitaire Méditerranée-Infection, Aix-Marseille Université, 19-21 Bd Jean Moulin, 13385, Marseille Cedex 05, France.
| |
Collapse
|
15
|
Canesi L, Ciacci C, Fabbri R, Balbi T, Salis A, Damonte G, Cortese K, Caratto V, Monopoli MP, Dawson K, Bergami E, Corsi I. Interactions of cationic polystyrene nanoparticles with marine bivalve hemocytes in a physiological environment: Role of soluble hemolymph proteins. ENVIRONMENTAL RESEARCH 2016; 150:73-81. [PMID: 27257827 DOI: 10.1016/j.envres.2016.05.045] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/17/2016] [Accepted: 05/25/2016] [Indexed: 05/18/2023]
Abstract
The bivalve Mytilus galloprovincialis has proven as a suitable model invertebrate for evaluating the potential impact of nanoparticles (NPs) in the marine environment. In particular, in mussels, the immune system represents a sensitive target for different types of NPs. In environmental conditions, both NP intrinsic properties and those of the receiving medium will affect particle behavior and consequent bioavailability/uptake/toxicity. However, the evaluation of the biological effects of NPs requires additional understanding of how, once within the organism, NPs interact at the molecular level with cells in a physiological environment. In mammalian systems, different NPs associate with serum soluble components, organized into a "protein corona", which affects particle interactions with target cells. However, no information is available so far on the interactions of NPs with biological fluids of aquatic organisms. In this work, the influence of hemolymph serum (HS) on the in vitro effects of amino modified polystyrene NPs (PS-NH2) on Mytilus hemocytes was investigated. Hemocytes were incubated with PS-NH2 suspensions in HS (1, 5 and 50µg/mL) and the results were compared with those obtained in ASW medium. Cell functional parameters (lysosomal membrane stability, oxyradical production, phagocytosis) were evaluated, and morphological changes were investigated by TEM. The activation state of the signalling components involved in Mytilus immune response (p38 MAPK and PKC) was determined. The results show that in the presence of HS, PS-NH2 increased cellular damage and ROS production with respect to ASW medium. The effects were apparently mediated by disregulation of p38 MAPK signalling. The formation of a PS-NH2-protein corona in HS was investigated by centrifugation, and 1D- gel electrophoresis and nano-HPLC-ESI-MS/MS. The results identified the Putative C1q domain containing protein (MgC1q6) as the only component of the PS-NH2 hard protein corona in Mytilus hemolymph. These data represent the first evidence for the formation of a NP bio-corona in aquatic organisms and underline the importance of the recognizable biological identity of NPs in physiological exposure medium when testing their potential impact environmental model organisms. Although the results obtained in vitro do not entirely reflect a realistic exposure scenario and the more complex formation of a bio-corona that is likely to occur in vivo, these data will contribute to a better understanding of the effects of NPs in marine invertebrates.
Collapse
Affiliation(s)
- Laura Canesi
- Dept. of Earth, Environmental and Life Sciences - DISTAV, University of Genoa, Italy.
| | - Caterina Ciacci
- Dept. of Biomolecular Sciences - DIBS, University of Urbino, Italy
| | - Rita Fabbri
- Dept. of Earth, Environmental and Life Sciences - DISTAV, University of Genoa, Italy
| | - Teresa Balbi
- Dept. of Earth, Environmental and Life Sciences - DISTAV, University of Genoa, Italy
| | - Annalisa Salis
- Centre of Excellence for Biomedical Research - CEBR, University of Genoa, Italy
| | - Gianluca Damonte
- Centre of Excellence for Biomedical Research - CEBR, University of Genoa, Italy
| | - Katia Cortese
- Department of Experimental Medicine - DIMES, University of Genoa, Italy
| | - Valentina Caratto
- Dept. of Earth, Environmental and Life Sciences - DISTAV, University of Genoa, Italy
| | - Marco P Monopoli
- Centre for BioNanoInteractions, School of Chemistry and Chemical Biology, University College Dublin, Ireland; Department of Pharmaceutical and Medical Chemistry, Royal College of Surgeons, 123 St. Stephen Green, Dublin, Ireland
| | - Kenneth Dawson
- Centre for BioNanoInteractions, School of Chemistry and Chemical Biology, University College Dublin, Ireland
| | - Elisa Bergami
- Dept. of Physical, Earth and Environmental Sciences, University of Siena, Italy
| | - Ilaria Corsi
- Dept. of Physical, Earth and Environmental Sciences, University of Siena, Italy
| |
Collapse
|
16
|
Hasan I, Gerdol M, Fujii Y, Rajia S, Koide Y, Yamamoto D, Kawsar SMA, Ozeki Y. cDNA and Gene Structure of MytiLec-1, A Bacteriostatic R-Type Lectin from the Mediterranean Mussel (Mytilus galloprovincialis). Mar Drugs 2016; 14:md14050092. [PMID: 27187419 PMCID: PMC4882566 DOI: 10.3390/md14050092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 04/21/2016] [Accepted: 04/28/2016] [Indexed: 02/06/2023] Open
Abstract
MytiLec is an α-d-galactose-binding lectin with a unique primary structure isolated from the Mediterranean mussel (Mytilus galloprovincialis). The lectin adopts a β-trefoil fold that is also found in the B-sub-unit of ricin and other ricin-type (R-type) lectins. We are introducing MytiLec(-1) and its two variants (MytiLec-2 and -3), which both possess an additional pore-forming aerolysin-like domain, as members of a novel multi-genic “mytilectin family” in bivalve mollusks. Based on the full length mRNA sequence (911 bps), it was possible to elucidate the coding sequence of MytiLec-1, which displays an extended open reading frame (ORF) at the 5′ end of the sequence, confirmed both at the mRNA and at the genomic DNA sequence level. While this extension could potentially produce a polypeptide significantly longer than previously reported, this has not been confirmed yet at the protein level. MytiLec-1 was revealed to be encoded by a gene consisting of two exons and a single intron. The first exon comprised the 5′UTR and the initial ATG codon and it was possible to detect a putative promoter region immediately ahead of the transcription start site in the MytiLec-1 genomic locus. The remaining part of the MytiLec-1 coding sequence (including the three sub-domains, the 3′UTR and the poly-A signal) was included in the second exon. The bacteriostatic activity of MytiLec-1 was determined by the agglutination of both Gram-positive and Gram-negative bacteria, which was reversed by the co-presence of α-galactoside. Altogether, these data support the classification of MytiLec-1 as a member of the novel mytilectin family and suggest that this lectin may play an important role as a pattern recognition receptor in the innate immunity of mussels.
Collapse
Affiliation(s)
- Imtiaj Hasan
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Rajshahi, Rajshahi 6205, Bangladesh.
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, Trieste 34127, Italy.
| | - Yuki Fujii
- Department of Pharmacy, Faculty of Pharmaceutical Science, Nagasaki International University, 2825-7 Huis Ten Bosch, Sasebo, Nagasaki 859-3298, Japan.
| | - Sultana Rajia
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
- Department of Natural Science, Varendra University, Rajshahi 6204, Bangladesh.
| | - Yasuhiro Koide
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| | - Daiki Yamamoto
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| | - Sarkar M A Kawsar
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
- Department of Chemistry, Faculty of Sciences, University of Chittagong, Chittagong 4331, Bangladesh.
| | - Yasuhiro Ozeki
- Department of Life and Environmental System Science, Graduate School of NanoBio Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama 236-0027, Japan.
| |
Collapse
|
17
|
Ben Cheikh Y, Travers MA, Morga B, Godfrin Y, Rioult D, Le Foll F. First evidence for a Vibrio strain pathogenic to Mytilus edulis altering hemocyte immune capacities. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 57:107-119. [PMID: 26719026 DOI: 10.1016/j.dci.2015.12.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 06/05/2023]
Abstract
Bacterial isolates were obtained from mortality events affecting Mytilus edulis and reported by professionals in 2010-2013 or from mussel microflora. Experimental infections allowed the selection of two isolates affiliated to Vibrio splendidus/Vibrio hemicentroti type strains: a virulent 10/068 1T1 (76.6% and 90% mortalities in 24 h and 96 h) and an innocuous 12/056 M24T1 (0% and 23.3% in 24 h and 96 h). These two strains were GFP-tagged and validated for their growth characteristics and virulence as genuine models for exposure. Then, host cellular immune responses to the microbial invaders were assessed. In the presence of the virulent strain, hemocyte motility was instantaneously enhanced but markedly slowed down after 2 h exposure. By contrast, hemocyte velocity increased in the presence of the innocuous 12/056 M24T1. At the same time interval, 10/068 1T1 invaded hemocytes and was more rapidly internalized than the innocuous strain. Extracellular products (ECPs) prepared from 10/068 1T1 cultures significantly inhibited phagocytic activity while 12/056 M24T1 ECPs had no effect. Furthermore, the pathogenic strain and its ECPs inhibited oxidative burst unlike 12/056 M24T1 strain/ECPs which enhanced ROS production. Taken together, our results suggest that the mussel pathogen 10/068 1T1 may escape immune response by altering hemocytes functions.
Collapse
Affiliation(s)
- Yosra Ben Cheikh
- Laboratory of Ecotoxicology- Aquatic Environments, UMR-I 02, SEBIO, University of Le Havre, F-76063, Le Havre Cedex, France
| | - Marie-Agnès Travers
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| | - Benjamin Morga
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| | - Yoann Godfrin
- Ifremer, SG2M-LGPMM, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue de Mus de Loup, 17390, La Tremblade, France
| | - Damien Rioult
- Laboratory of Ecotoxicology- Aquatic Environments, UMR-I 02, SEBIO, University of Reims Champagne Ardenne, Campus Moulin de la House, F-51100, Reims, France
| | - Frank Le Foll
- Laboratory of Ecotoxicology- Aquatic Environments, UMR-I 02, SEBIO, University of Le Havre, F-76063, Le Havre Cedex, France.
| |
Collapse
|
18
|
Natalotto A, Sureda A, Maisano M, Spanò N, Mauceri A, Deudero S. Biomarkers of environmental stress in gills of Pinna nobilis (Linnaeus 1758) from Balearic Island. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 122:9-16. [PMID: 26164723 DOI: 10.1016/j.ecoenv.2015.06.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 06/23/2015] [Accepted: 06/24/2015] [Indexed: 06/04/2023]
Abstract
UNLABELLED In aquatic environments, bivalve molluscs are used as sentinel species for environmental biomonitoring. In this study Pinna nobilis specimens, the biggest Mediterranean bivalve, were collected in the Magaluf bay (Mallorca), a touristic location and in a pristine area of the Cabrera National Park as the control location. Histological and histochemical analysis in gills of specimens sampled from Magaluf exhibited evident tissue alterations with high presence of haemocytes. Lower acetylcholinesterase (AChE) activity and protein expression were also found in the gills of specimens collected from Magaluf compared with the control area. The determination of antioxidant enzyme activities, such as superoxide dismutase, catalase, glutathione peroxidase and glutathione reductase, showed a higher activities of these antioxidant enzymes and total glutathione content in samples from Magaluf bay than in Cabrera. In conclusion, the present study demonstrated that human activities result in morphological tissue alterations and a reduced AChE activity in gills of P. nobilis. Moreover, these stressful environmental conditions induced an adaptive response in P. nobilis as evidenced by increased antioxidant defences and a decreased AChE activity. CAPSULE The human activities induce oxidative stress in P. nobilis as evidenced by increased antioxidant defences and a decreased acetylcholinesterase activity.
Collapse
Affiliation(s)
- Antonino Natalotto
- Biological and Environmental Sciences Department, University of Messina, Viale Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Antoni Sureda
- Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, Ctra. Valldemossa, km 7.5, E-07122 Palma de Mallorca, Spain; CIBEROBN: Fisiopatología de la Obesidad y la Nutrición, Instituto de Salud Carlos III (ISCIII), Spain.
| | - Maria Maisano
- Biological and Environmental Sciences Department, University of Messina, Viale Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Nunziacarla Spanò
- Biological and Environmental Sciences Department, University of Messina, Viale Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Angela Mauceri
- Biological and Environmental Sciences Department, University of Messina, Viale Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Salud Deudero
- Centro Oceanográfico de Baleares, Instituto Español de Oceanografía, Moll de Ponent s/n, 07015 Palma, Spain
| |
Collapse
|
19
|
Pezzati E, Canesi L, Damonte G, Salis A, Marsano F, Grande C, Vezzulli L, Pruzzo C. Susceptibility ofVibrio aestuarianus 01/032 to the antibacterial activity ofMytilushaemolymph: identification of a serum opsonin involved in mannose-sensitive interactions. Environ Microbiol 2015; 17:4271-9. [DOI: 10.1111/1462-2920.12750] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 12/05/2014] [Accepted: 12/11/2014] [Indexed: 01/19/2023]
Affiliation(s)
- Elisabetta Pezzati
- Department of Hearth, Environmental and Life Sciences (DISTAV); University of Genova; Corso Europa 26 16132 Genova Italy
| | - Laura Canesi
- Department of Hearth, Environmental and Life Sciences (DISTAV); University of Genova; Corso Europa 26 16132 Genova Italy
| | - Gianluca Damonte
- Department of Experimental Medicine (DIMES); University of Genova; Viale Benedetto XV 1 16132 Genova Italy
- Center of Excellence for Biomedical Research; University of Genova; Viale Benedetto XV 1 16132 Genova Italy
| | - Annalisa Salis
- Department of Hearth, Environmental and Life Sciences (DISTAV); University of Genova; Corso Europa 26 16132 Genova Italy
| | - Francesco Marsano
- Department of Sciences and Technological Innovation (DiSIT); University of Piemonte Orientale ‘A. Avogadro’; V.le T. Michel 11 15121 Alessandria Italy
| | - Chiara Grande
- Department of Hearth, Environmental and Life Sciences (DISTAV); University of Genova; Corso Europa 26 16132 Genova Italy
| | - Luigi Vezzulli
- Department of Hearth, Environmental and Life Sciences (DISTAV); University of Genova; Corso Europa 26 16132 Genova Italy
| | - Carla Pruzzo
- Department of Hearth, Environmental and Life Sciences (DISTAV); University of Genova; Corso Europa 26 16132 Genova Italy
| |
Collapse
|
20
|
Bianchi VA, Castro JM, Rocchetta I, Nahabedian DE, Conforti V, Luquet CM. Long-term feeding with Euglena gracilis cells modulates immune responses, oxidative balance and metabolic condition in Diplodon chilensis (Mollusca, Bivalvia, Hyriidae) exposed to living Escherichia coli. FISH & SHELLFISH IMMUNOLOGY 2015; 42:367-378. [PMID: 25463294 DOI: 10.1016/j.fsi.2014.11.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 06/04/2023]
Abstract
We evaluated the modulating effect of long-term feeding with lyophilized Euglena gracilis cells on immune response, oxidative balance and metabolic condition of the freshwater mussel Diplodon chilensis. Mussels, previously fed with Scenedesmus vacuolatus (SV) or E. gracilis (EG) for 90 days, were challenged with an environmentally relevant concentration of Escherichia coli in water for 5 days, under feeding or starvation conditions. EG diet increased overall phagocytic activity and tissue hemocyte accumulation (gill and mantle), and favored hemocyte viability upon E. coli challenge. Tissular hemocyte accumulation, and humoral bacteriolytic activity and protein content were similarly stimulated by EG and E. coli, with no further effect when both stimuli were combined. Both, E. coli challenge and EG diet reduced gill bacteriolytic activity with respect to nonchallenged SV mussels, while no effect was observed in challenged EG mussels. Gill and digestive gland protein contents, along with digestive gland bacteriolytic activity were higher in EG than in SV mussels. Both SV and EG mussels showed increased gill mass upon E. coli challenge, while digestive gland mass was increased by bacterial challenge only in SV mussels. Bacterial challenge produced no effect on humoral reactive oxygen species levels of both groups. Total oxyradical scavenging capacity levels was reduced in challenged SV mussels but remained unaffected in EG ones. In general, EG diet decreased glutathione S-transferase and catalase activities in gill and digestive gland, compared with SV diet; but increased enzyme activity was evident in challenged mussels of both groups. Gill and digestive gland lipid peroxidation levels were higher in EG than in SV mussels but E. coli challenge had stronger effect on SV mussels. Adductor muscle RNA:DNA ratio was higher in EG mussels than in SV ones, and increased upon E. coli challenge in mussels of both groups. E. gracilis can be suggested as a nutritional and protective diet complement suitable for filtering bivalves. However, our results obtained from starved mussels show that starvation periods after supplying this diet should be avoided, since these could revert part of the acquired benefits and/or exacerbate detrimental effects.
Collapse
Affiliation(s)
- Virginia A Bianchi
- Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo) - CEAN, Ruta Provincial N° 61, Km 3, CCP 7, Junín de los Andes, 8371 Neuquén, Argentina.
| | - Juan M Castro
- Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo) - CEAN, Ruta Provincial N° 61, Km 3, CCP 7, Junín de los Andes, 8371 Neuquén, Argentina
| | - Iara Rocchetta
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia, 1917 Buenos Aires, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires, Argentina; Department of Functional Ecology, Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Daniel E Nahabedian
- IBBEA, Instituto de CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Visitación Conforti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia, 1917 Buenos Aires, Argentina; IBBEA, Instituto de CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires, Argentina; Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab. II, Ciudad Universitaria, 1428 Buenos Aires, Argentina
| | - Carlos M Luquet
- Laboratorio de Ecotoxicología Acuática, INIBIOMA (CONICET-UNCo) - CEAN, Ruta Provincial N° 61, Km 3, CCP 7, Junín de los Andes, 8371 Neuquén, Argentina
| |
Collapse
|
21
|
Canesi L. Pro-oxidant and antioxidant processes in aquatic invertebrates. Ann N Y Acad Sci 2014; 1340:1-7. [DOI: 10.1111/nyas.12560] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Laura Canesi
- Department of Earth; Environment and Life Sciences (DISTAV); University of Genoa; Genoa Italy
| |
Collapse
|
22
|
Mosca F, Lanni L, Cargini D, Narcisi V, Bianco I, Tiscar PG. Variability of the hemocyte parameters of cultivated mussel Mytilus galloprovincialis (Lmk 1819) in Sabaudia (Latina, Italy) coastal lagoon. MARINE ENVIRONMENTAL RESEARCH 2013; 92:215-223. [PMID: 24140014 DOI: 10.1016/j.marenvres.2013.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 09/23/2013] [Accepted: 09/27/2013] [Indexed: 06/02/2023]
Abstract
The Sabaudia's lake consists of a protected coastal lagoon, located in the central Italy, historically characterized by recurrent mortality events of marine fauna during warmer months. A field study was monthly conducted on mussels Mytilus galloprovincialis cultivated inside the lagoon, measuring hemocyte parameters as total circulating count (THC), viability (HV), spreading and oxidative response to in vitro phagocytosis stimulation. A depression of the immune response was observed during the spring season, as indicated by higher values of hemocyte circularity and lower luminescence levels related to respiratory burst, also associated to modulation of THC and HV. The water temperature and the oxygen concentration appeared as the major environmental factors having influence on the phagocytosis activity. Therefore, the hemocyte variations have been intended as early danger signal to evaluate the immunodepression induced by the environmental stressors which could reveal in advance the development of critical situations for mussel survival.
Collapse
Affiliation(s)
- Francesco Mosca
- Facoltà di Medicina Veterinaria, Piazza A. Moro 45, 64100 Teramo, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Balbi T, Fabbri R, Cortese K, Smerilli A, Ciacci C, Grande C, Vezzulli L, Pruzzo C, Canesi L. Interactions between Mytilus galloprovincialis hemocytes and the bivalve pathogens Vibrio aestuarianus 01/032 and Vibrio splendidus LGP32. FISH & SHELLFISH IMMUNOLOGY 2013; 35:1906-1915. [PMID: 24080469 DOI: 10.1016/j.fsi.2013.09.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/16/2013] [Accepted: 09/19/2013] [Indexed: 06/02/2023]
Abstract
Marine bivalves can accumulate large numbers of bacteria, in particular Vibrio species, whose persistence in bivalve tissues largely depends on their sensitivity to the bactericidal activity of circulating hemocytes and hemolymph soluble factors. The interactions between vibrios and hemolymph have been investigated, in particular in bivalve species susceptible to infection by certain Vibrio spp. and strains. In this work, the effects of two bivalve pathogens, Vibrio splendidus LGP32 (V.s.) and Vibrio aestuarianus 01/032 (V.a.), isolated from oyster mortality outbreaks, on the hemocytes of Mytilus galloprovincialis were investigated. In vitro, V.s., but not V.a., induced a dramatic decrease in lysosomal membrane stability-LMS in the hemocytes; both vibrios induced a moderate lysozyme release, with V.s. > V.a.. The V.s.-induced decrease in LMS was mediated by activation of PI-3Kinase, as shown by use of different kinase inhibitors. TEM analysis showed rapid internalization of both vibrios; however, V.s. lead to cellular and lysosomal damage and was able to survive within the hemocytes, whereas significant killing of V.a. was observed. In vivo, in mussels challenged with either vibrio and sampled at 6, 24 and 96 h post-injection, transient decreases in hemocyte LMS and progressive increases in serum lysozyme activity were observed, with V.s. > V.a.. Moreover, whereas V.a. was efficiently cleared from hemolymph, V.s. showed significant growth, that was maximal at 24 h p.i. when lowest LMS values were recorded in the hemocytes. Both vibrios also induced significant decreases in LMS in the digestive gland, again with V.s. > V.a.. The results indicate distinct interactions between mussel hemocytes and the two vibrio strains tested. The effects of V.s. may be due to the capacity of this strain to interfere with the signaling pathways involved in hemocyte function, thus escaping the bactericidal activity of the host cell, as observed for certain mammalian pathogens. Although V.s. is considered not pathogenic to Mytilus, this vibrio strain can affect the lysosomal function at the cellular and tissue level, thus leading to stressful conditions.
Collapse
Affiliation(s)
- T Balbi
- DISTAV, Dipartimento di Scienze della Terra, dell'Ambiente e della Vita, Università di Genova, Corso Europa 26, 16132 Genova, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Sureda A, Natalotto A, Alvarez E, Deudero S. Increased antioxidant response and capability to produce ROS in hemocytes of Pinna nobilis L. exposed to anthropogenic activity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 181:321-324. [PMID: 23871388 DOI: 10.1016/j.envpol.2013.06.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 05/30/2013] [Accepted: 06/15/2013] [Indexed: 06/02/2023]
Abstract
Environmental pollutants exert immunotoxical effects on aquatic organisms. The aim was to determine the antioxidant response, markers of oxidative damage and reactive oxygen species production in hemocytes of Pinna nobilis, the largest endemic bivalve in the Mediterranean Sea, under anthropogenic pressure. P. nobilis individuals were collected from two locations along Mallorca Island waters attending to different degree of human impact and the hemocytes were obtained. Specimens from the impacted area showed increased activities of the antioxidant enzymes - catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase -, myeloperoxidase activity and reduced glutathione levels. No differences in oxidative damage markers - malondiahdehyde and carbonyl index - were evidenced between the pristine and polluted areas. Hemocytes from the polluted area presented increased capability to generate reactive oxygen species and nitrite/nitrate when activated. In conclusion, the human activities primed hemocytes for oxidative burst and increased the antioxidant mechanism without evidence of oxidative damage.
Collapse
Affiliation(s)
- Antoni Sureda
- Grup de Nutrició Comunitària i Estrès Oxidatiu (IUNICS), Universitat de les Illes Balears, 07122 Palma, Spain.
| | | | | | | |
Collapse
|
25
|
Tanguy M, McKenna P, Gauthier-Clerc S, Pellerin J, Danger JM, Siah A. Functional and molecular responses in Mytilus edulis hemocytes exposed to bacteria, Vibrio splendidus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2013; 39:419-429. [PMID: 23228459 DOI: 10.1016/j.dci.2012.10.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 10/05/2012] [Accepted: 10/05/2012] [Indexed: 06/01/2023]
Abstract
This study aims at examining the morphological, functional and molecular responses of Mytilus edulis hemocytes exposed to different strains of Gram-negative bacteria Vibrio splendidus (a virulent strain V. splendidus LGP32, V. splendidus LGP32 Δvsm without metalloprotease and an environmental type strain V. splendidus 7SHRW) at a 1:3 ratio for 2, 4, and 6 h. Our data showed that hemocytes could have a discriminative capacity towards microorganisms. Both V. splendidus LGP32 strains had an effect on hemocyte adhesion, phagocytosis abilities and oxidative burst, whereas the environmental strain 7SHRW induced weak and delayed hemocyte responses. At a molecular level, differential levels of candidate transcripts were measured in M. edulis hemocytes exposed to V. splendidus LGP32-GFP and 7SHRW. Mainly, a down-regulation of defensin was recorded in hemocytes exposed to V. splendidus LGP32. A significant up-regulation of lysozyme and proteasome 26S was observed at 2 h followed by a down-regulation at 4 and 6 h of exposure to the LGP32 strain. Similarly, SOD and GPx genes were up-regulated 2 h post-exposure to LGP32 strain and their expressions decreased after 4 and 6 h post-exposure. Further analysis is however needed in a near future to relate the transcript level variations with the physiological process.
Collapse
Affiliation(s)
- Marion Tanguy
- Laboratory of Ecotoxicology, University of Le Havre, 25 rue Philippe Lebon, BP540, 76058 Le Havre, France
| | | | | | | | | | | |
Collapse
|
26
|
Mosca F, Narcisi V, Calzetta A, Gioia L, Finoia MG, Latini M, Tiscar PG. Effects of high temperature and exposure to air on mussel (Mytilus galloprovincialis, Lmk 1819) hemocyte phagocytosis: modulation of spreading and oxidative response. Tissue Cell 2013; 45:198-203. [PMID: 23375726 DOI: 10.1016/j.tice.2012.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 12/13/2022]
Abstract
Hemocytes are a critical component of the mussel defense system and the present study aims at investigating their spreading and oxidative properties during phagocytosis under in vivo experimental stress conditions. The spreading ability was measured by an automated cell analyzer on the basis of the circularity, a parameter corresponding to the hemocyte roundness. The oxidative activity was investigated by micromethod assay, measuring the respiratory burst as expression of the fluorescence generated by the oxidation of specific probe. Following the application of high temperature and exposure to air, there was evidence of negative modulation of spreading and oxidative response, as revealed by a cell roundness increase and fluorescence generation decrease. Therefore, the fall of respiratory burst appeared as matched with the inhibition of hemocyte morphological activation, suggesting a potential depression of the phagocytosis process and confirming the application of the circularity parameter as potential stress marker, both in experimental and field studies.
Collapse
Affiliation(s)
- Francesco Mosca
- Dipartimento di Scienze Biomediche Comparate, Università degli Studi di Teramo, Piazza Aldo Moro 45, 64100 Teramo, Italy
| | | | | | | | | | | | | |
Collapse
|
27
|
Kwok A, Lyons BP, Hodges NJ, Bean TP. Cryopreservation and storage of mussel (Mytilus spp.) haemocytes for latent analysis by the Comet assay. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2013; 750:86-91. [DOI: 10.1016/j.mrgentox.2012.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 08/17/2012] [Accepted: 09/26/2012] [Indexed: 11/25/2022]
|
28
|
Haemozoin induces early cytokine-mediated lysozyme release from human monocytes through p38 MAPK- and NF-kappaB-dependent mechanisms. PLoS One 2012; 7:e39497. [PMID: 22724024 PMCID: PMC3377659 DOI: 10.1371/journal.pone.0039497] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 05/22/2012] [Indexed: 11/19/2022] Open
Abstract
Malarial pigment (natural haemozoin, HZ) is a ferriprotoporphyrin IX crystal produced by Plasmodium parasites after haemoglobin catabolism. HZ-fed human monocytes are functionally compromised, releasing increased amounts of pro-inflammatory molecules, including cytokines, chemokines and cytokine-related proteolytic enzyme Matrix Metalloproteinase-9 (MMP-9), whose role in complicated malaria has been recently suggested. In a previous work HZ was shown to induce through TNFalpha production the release of monocytic lysozyme, an enzyme stored in gelatinase granules with MMP-9. Here, the underlying mechanisms were investigated. Results showed that HZ lipid moiety promoted early but not late lysozyme release. HZ-dependent lysozyme induction was abrogated by anti-TNFalpha/IL-1beta/MIP-1alpha blocking antibodies and mimicked by recombinant cytokines. Moreover, HZ early activated either p38 MAPK or NF-kappaB pathways by inducing: p38 MAPK phosphorylation; cytosolic I-kappaBalpha phosphorylation and degradation; NF-kappaB nuclear translocation and DNA-binding. Inhibition of both routes through selected molecules (SB203580, quercetin, artemisinin, parthenolide) prevented HZ-dependent lysozyme release. These data suggest that HZ-triggered overproduction of TNFalpha, IL-1beta and MIP-1alpha mediates induction of lysozyme release from human monocytes through activation of p38 MAPK and NF-kappaB pathways, providing new evidence on mechanisms underlying the HZ-enhanced monocyte degranulation in falciparum malaria and the potential role for lysozyme as a new affordable marker in severe malaria.
Collapse
|
29
|
Ramos MartíNez JI, González-Riopedre M, Barcia R. Role of protein kinases C (PKC) in the relationship between the neuroendocrine and immune systems in marine mussels: The model ofMytilus galloprovincialisLamark (1819). ACTA ACUST UNITED AC 2012. [DOI: 10.1080/11250003.2011.600729] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Ciacci C, Barmo C, Fabbri R, Canonico B, Gallo G, Canesi L. Immunomodulation in Mytilus galloprovincialis by non-toxic doses of hexavalent chromium. FISH & SHELLFISH IMMUNOLOGY 2011; 31:1026-1033. [PMID: 21925273 DOI: 10.1016/j.fsi.2011.09.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/18/2011] [Accepted: 09/06/2011] [Indexed: 05/31/2023]
Abstract
In aquatic organisms, the immune function can be affected by exposure to environmental pollutants, including heavy metals. In vertebrate systems, different forms of Cr have been shown induce either immunostimulatory or immunosuppressive processes. Hexavalent Cr, Cr(VI), is an important contaminant released from both domestic and industrial effluents, and the predominant chemical form of the metal in aquatic ecosystems. In this work, the in vitro and in vivo effects of Cr(VI) on immune parameters of the marine bivalve Mytilus galloprovincialis were evaluated. Hemocyte incubation with different concentrations of Cr(VI) (0.1-1-10-100 μM) induced a dose-dependent decrease in lysosomal membrane stability (LMS). Decreases in extracellular lysozyme release and phagocytic activity were also observed, with stronger effects at lower metal concentrations. On the other hand, in these conditions, Cr(VI) stimulated extracellular superoxide production and nitrite accumulation. The effects of Cr(VI) were also evaluated in mussels exposed to the metal (0.1-1-10 μg L(-1), corresponding to nanomolar concentrations) for 96 h. Decreases in hemocyte LMS values and in serum lysozyme activity were observed with increasing metal concentrations. Decreased phagocytic activity and increased NO production were recorded, with stronger effects at lower concentrations. In these conditions, decreased Total Hemocyte Counts (THC), but no necrotic/apoptotic processes were observed. Moreover, Cr(VI) at both 0.1 and 1 μg L(-1) seemed to induce significant changes in transcription of immune genes (lysozyme, Mytilin C, Myticin B, defensin, MgC1q), of the serotonin receptor (5-HTR) and of the stress protein HSP70, whereas that of the anti-apoptotic gene p53 was unaffected. Overall, the results indicate that exposure to non-toxic, environmentally relevant concentrations of Cr(VI) can modulate functional and molecular immune parameters in M. galloprovincialis.
Collapse
Affiliation(s)
- C Ciacci
- DISUAN, Dipartimento di Scienze dell'Uomo, dell'Ambiente e della Natura, Università Carlo Bo di Urbino, Italy
| | | | | | | | | | | |
Collapse
|
31
|
Venier P, Varotto L, Rosani U, Millino C, Celegato B, Bernante F, Lanfranchi G, Novoa B, Roch P, Figueras A, Pallavicini A. Insights into the innate immunity of the Mediterranean mussel Mytilus galloprovincialis. BMC Genomics 2011; 12:69. [PMID: 21269501 PMCID: PMC3039611 DOI: 10.1186/1471-2164-12-69] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 01/26/2011] [Indexed: 11/15/2022] Open
Abstract
Background Sessile bivalves of the genus Mytilus are suspension feeders relatively tolerant to a wide range of environmental changes, used as sentinels in ecotoxicological investigations and marketed worldwide as seafood. Mortality events caused by infective agents and parasites apparently occur less in mussels than in other bivalves but the molecular basis of such evidence is unknown. The arrangement of Mytibase, interactive catalogue of 7,112 transcripts of M. galloprovincialis, offered us the opportunity to look for gene sequences relevant to the host defences, in particular the innate immunity related genes. Results We have explored and described the Mytibase sequence clusters and singletons having a putative role in recognition, intracellular signalling, and neutralization of potential pathogens in M. galloprovincialis. Automatically assisted searches of protein signatures and manually cured sequence analysis confirmed the molecular diversity of recognition/effector molecules such as the antimicrobial peptides and many carbohydrate binding proteins. Molecular motifs identifying complement C1q, C-type lectins and fibrinogen-like transcripts emerged as the most abundant in the Mytibase collection whereas, conversely, sequence motifs denoting the regulatory cytokine MIF and cytokine-related transcripts represent singular and unexpected findings. Using a cross-search strategy, 1,820 putatively immune-related sequences were selected to design oligonucleotide probes and define a species-specific Immunochip (DNA microarray). The Immunochip performance was tested with hemolymph RNAs from mussels injected with Vibrio splendidus at 3 and 48 hours post-treatment. A total of 143 and 262 differentially expressed genes exemplify the early and late hemocyte response of the Vibrio-challenged mussels, respectively, with AMP trends confirmed by qPCR and clear modulation of interrelated signalling pathways. Conclusions The Mytibase collection is rich in gene transcripts modulated in response to antigenic stimuli and represents an interesting window for looking at the mussel immunome (transcriptomes mediating the mussel response to non-self or abnormal antigens). On this basis, we have defined a new microarray platform, a mussel Immunochip, as a flexible tool for the experimental validation of immune-candidate sequences, and tested its performance on Vibrio-activated mussel hemocytes. The microarray platform and related expression data can be regarded as a step forward in the study of the adaptive response of the Mytilus species to an evolving microbial world.
Collapse
Affiliation(s)
- Paola Venier
- Department of Biology, University of Padova, Via U, Bassi, 58/B, 35121 Padova, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Canesi L, Barmo C, Fabbri R, Ciacci C, Vergani L, Roch P, Gallo G. Effects of vibrio challenge on digestive gland biomarkers and antioxidant gene expression in Mytilus galloprovincialis. Comp Biochem Physiol C Toxicol Pharmacol 2010; 152:399-406. [PMID: 20601119 DOI: 10.1016/j.cbpc.2010.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/21/2010] [Accepted: 06/23/2010] [Indexed: 11/28/2022]
Abstract
In bivalve molluscs, responses to bacterial infection have been largely characterized in terms of both functional responses and gene expression in the immune cells, the hemocytes. The effects of bacterial challenge at the tissue level, where bacterial infection may cause stressful conditions, have not been so far specifically investigated. Biomarkers are widely utilised to evaluate the health status of bivalves, from the molecular to the organism level, in response to both natural and anthropogenic stressors. In this work, the effects of in vivo challenge with heat-killed vibrio species, Vibrio splendidus LGP32 and Vibrio anguillarum (ATCC19264), on different biomarkers in the digestive gland of the marine bivalve Mytilus galloprovincialis were investigated. Mussels were injected with either vibrio and tissues sampled at 3, 6 and 24 h post injection (p.i.). Lysosomal biomarkers, such as lysosomal membrane stability (LMS) and lipofuscin accumulation, as well as specific activities of antioxidant enzymes (catalase and glutathione transferase-GST) were evaluated. Moreover, the expression of antioxidant molecules (catalase, GST-pi and metallothioneins MT10 and MT20) was determined by quantitative RT-PCR. Both V. splendidus and V. anguillarum significantly affected all parameters measured, to a different extent and at different times p.i. Interestingly, whereas both vibrios induced lysosomal membrane destabilisation and increases in the activities of antioxidant enzymes, distinct responses were observed in terms of lysosomal lipofuscin accumulation and expression of antioxidant molecules. In particular, V. splendidus induced a general increase in the transcription of antioxidant genes, indicating that Mytilus digestive gland can mount an efficient antioxidant response towards this vibrio species. On the other hand, a general down-regulation or no effect was observed with V. anguillarum. The lack of this response was reflected in stronger oxidative stress conditions in the digestive gland of mussels challenged with V. anguillarum, as indicated by higher levels of lysosomal lipofuscin observed at longer times p.i. Overall, these data indicate that lysosomal and oxidative stress biomarkers could be usefully applied in order to monitor early changes in the health status of bivalves induced by bacteria. Moreover, the results support the hypothesis that host responses to bacteria may be taken into account when interpreting biomarker data in ecotoxicological studies.
Collapse
Affiliation(s)
- Laura Canesi
- Dipartimento di Biologia, Università di Genova, Italy.
| | | | | | | | | | | | | |
Collapse
|