1
|
Carneiro L, Leroy B, Capinha C, Bradshaw CJA, Bertolino S, Catford JA, Camacho-Cervantes M, Bojko J, Klippel G, Kumschick S, Pincheira-Donoso D, Tonkin JD, Fath BD, South J, Manfrini E, Dallas T, Courchamp F. Typology of the ecological impacts of biological invasions. Trends Ecol Evol 2025:S0169-5347(25)00073-4. [PMID: 40280812 DOI: 10.1016/j.tree.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 03/03/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Biological invasions alter ecosystems by disrupting ecological processes that can degrade biodiversity, harm human health, and cause massive economic burdens. Existing frameworks to classify the ecological impacts either miss many types of impact or conflate mechanisms (causes) with the impacts themselves (consequences). We propose a comprehensive typology of 19 types of ecological impact across six levels of ecological organisation. This allows more accurate diagnosis of the cause of impact and can help triage management options to tackle each impact-mechanism combination. We integrated the typology with broad ecological concepts such as energy, mass, and information flow and storage. By highlighting cascading effects across multiple levels, this typology provides a clearer framework for documenting, and communicating invasion impacts, thereby improving management and research.
Collapse
Affiliation(s)
- Laís Carneiro
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Société Evolution, 91190, Gif-sur-Yvette, France.
| | - Boris Leroy
- Laboratoire de Biologie des Organismes et des Écosystèmes Aquatiques-BOREA, Muséum national d'Histoire naturelle (MNHN), SU, CNRS, IRD, UA, F-75005 Paris, France
| | - César Capinha
- Centro de Estudos Geográficos, Instituto de Geografia e Ordenamento do Território, Universidade de Lisboa, Rua Branca Edmée Marques, Lisboa, Portugal; Laboratório Associado Terra, Lisboa, Portugal
| | - Corey J A Bradshaw
- Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia; Australian Research Council Centre of Excellence for Indigenous and Environmental Histories and Futures, Cairns, Queensland, Australia
| | - Sandro Bertolino
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Jane A Catford
- Department of Geography, King's College London, 40 Aldwych, London, WC2B 4BG, UK; Fenner School of Environment & Society, The Australian National University, Canberra, Australian Capital Territory 2600, Australia
| | - Morelia Camacho-Cervantes
- Invasive Species Ecology Lab, Institute of Marine Sciences & Limnology, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Jamie Bojko
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK
| | - Gabriel Klippel
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Société Evolution, 91190, Gif-sur-Yvette, France
| | - Sabrina Kumschick
- Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, South Africa; Kirstenbosch Research Centre, South African National Biodiversity Institute, Cape Town, South Africa
| | | | - Jonathan D Tonkin
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand; Te Pūnaha Matatini Centre of Research Excellence, University of Canterbury, Christchurch, New Zealand
| | - Brian D Fath
- Department of Biological Sciences, Towson University, Towson, MD, USA; Advancing Systems Analysis Program, International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Josie South
- Water@Leeds, School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS29JT, UK; South African Institute for Aquatic Biodiversity, Somerset Street, Makhanda, 6140, South Africa
| | - Eléna Manfrini
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Société Evolution, 91190, Gif-sur-Yvette, France; Laboratoire de Biologie des Organismes et des Écosystèmes Aquatiques-BOREA, Muséum national d'Histoire naturelle (MNHN), SU, CNRS, IRD, UA, F-75005 Paris, France
| | - Tad Dallas
- Biological Sciences, University of South Carolina, Columbia, SC, USA
| | - Franck Courchamp
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Société Evolution, 91190, Gif-sur-Yvette, France
| |
Collapse
|
2
|
Dyczko D, Szymański DM, Szymański D, Kupczak M, Kolenda K. First European record of Rickettsia bellii in Amblyomma rotundatum from Rhinella marina imported to Poland. EXPERIMENTAL & APPLIED ACAROLOGY 2025; 94:43. [PMID: 40072629 DOI: 10.1007/s10493-025-01007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/12/2025] [Indexed: 03/14/2025]
Abstract
This study reports on the first documented case of Amblyomma rotundatum ticks, a species typically found in the Americas, parasitising an imported toad in Poland. A total of 12 ticks were collected from a single Rhinella marina toad. These ticks were identified as female specimens of A. rotundatum using an examination of morphological characteristics and a molecular analysis. Polymerase chain reaction testing revealed that 75.0% (9/12) of these females were positive for Rickettsia spp. Sequencing of positive samples confirmed the presence of R. bellii. However, no DNA evidence of Borrelia spp. and Anaplasma spp. was detected in the tested ticks. Nevertheless, given the limited number of tick specimens collected from a single host, further research is required to elucidate the pathogen profile of a tick species. This finding represents the second European report of A. rotundatum associated with exported animals, underscoring the importance of vigilance in monitoring the potential spread of ticks and tick-borne pathogens through the global wildlife trade.
Collapse
Affiliation(s)
- Dagmara Dyczko
- Department of Microbial Ecology and Acaroentomology, Faculty of Biological Sciences, University of Wrocław, Przybyszewskiego 63/77, Wrocław, 51-148, Poland.
| | | | | | - Maciej Kupczak
- Wystawa Egzotycznych Zwierząt Bezkręgowych Owady i Spółka, Jana Pawła II 28, Pietrzykowice, 34-326, Poland
| | - Krzysztof Kolenda
- Amphibian Biology Group, Department of Evolutionary Biology and Conservation of Vertebrates, Faculty of Biological Sciences, University of Wrocław, Sienkiewicza 21, Wrocław, 50-335, Poland
| |
Collapse
|
3
|
Dvoretsky AG, Dvoretsky VG. Symbionts of Red King Crab from the Sea of Okhotsk: A Review of Russian Studies. BIOLOGY 2025; 14:148. [PMID: 40001916 PMCID: PMC11851991 DOI: 10.3390/biology14020148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
The red king crab, Paralithodes camtscaticus, is a commercially significant crustacean that supports lucrative fisheries in Russia, the USA, and Norway. The western Kamchatka shelf, located in the Sea of Okhotsk, is home to one of the most important populations of the red king crab. In this study, we have conducted a review of the symbionts associated with P. camtscaticus in the waters off the Kamchatka Peninsula. A total of 42 symbiotic species belonging to 14 different phyla were identified in association with the red king crab. Out of these, 14 species were found to be parasitic to the red king crab, while the remaining 28 were either commensal or epibiont in nature. The taxa with the highest number of associated species included ciliates (11), crustaceans (8), and acanthocephalans (4). Our study found that red king crabs suffering from shell disease exhibited a more diverse symbiotic fauna and higher infestation indices as compared to healthy crabs, which were found to be free from parasites. Dangerous symbionts, such as dinoflagellates Hematodinium sp. and rhizocephalan barnacles Briarosaccus callosus, had low incidence rates, indicating that the red king crab population in the Sea of Okhotsk is in good condition with respect to population abundance, health, and recruitment and is not being adversely impacted by symbiotic organisms.
Collapse
Affiliation(s)
- Alexander G. Dvoretsky
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Murmansk 183038, Russia
| | - Vladimir G. Dvoretsky
- Murmansk Marine Biological Institute of the Russian Academy of Sciences (MMBI RAS), Murmansk 183038, Russia
| |
Collapse
|
4
|
Dong X, Meng F, Zhou C, Li J, Hu T, Wang Y, Wang G, Luo J, Li X, Liu S, Huang J, Shi W. Enormous diversity of RNA viruses in economic crustaceans. mSystems 2024; 9:e0101624. [PMID: 39329483 PMCID: PMC11494968 DOI: 10.1128/msystems.01016-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/28/2024] Open
Abstract
Crustaceans are important food sources worldwide and possess significant ecological status in the marine ecosystem. However, our understanding of the diversity and evolution of RNA viruses in crustaceans, especially in economic crustaceans, is still limited. Here, 106 batches of economic crustaceans including 13 species were collected from 24 locations in China during 2016-2021. We identified 90 RNA viruses, 69 of which were divergent from the known viruses. Viral transcripts were assigned to 18 different viral families/clades and three unclassified groups. Among the identified viruses, five were double-stranded RNA viruses, 74 were positive-sense single-stranded RNA (+ssRNA) viruses, nine were negative-sense single-stranded RNA (-ssRNA) viruses, and two belonged to an unclassified RNA virus group. Phylogenetic analyses showed that crustacean viruses were often clustered with viruses identified from invertebrates. Remarkably, most crustacean viruses were closely related to those from different host species along the same food chain or ecological aquatic niche. In addition, the genome structures of the newly discovered picornaviruses exhibited remarkable diversity. Our study significantly expands the diversity of viruses in important economic crustaceans and provides essential data for the risk assessment of the pathogens spreading in the global aquaculture industry. IMPORTANCE The study delves into the largely uncharted territory of RNA viruses in crustaceans, which are not only vital for global food supply but also play a pivotal role in marine ecosystems. Focusing on economic crustaceans, the research uncovers 90 RNA viruses, with 69 being potentially new to science, highlighting the vast unknown viral diversity within these marine organisms. The findings reveal that these viruses are often related to those found in other invertebrates and tend to share close relationships with viruses from species within the same food web or habitat. This suggests that viruses may move between different marine species more frequently than previously thought. The discovery of such a wide variety of viruses, particularly the diverse genome structures of newly identified picornaviruses, is a significant leap forward in understanding the crustacean virology. This knowledge is crucial for managing disease risks in aquaculture and maintaining the balance of marine ecosystems.
Collapse
Affiliation(s)
- Xuan Dong
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Fanzeng Meng
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Chengyan Zhou
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Juan Li
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Tao Hu
- Key Laboratory of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Ji'nan, China
| | - Yiting Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Guohao Wang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Jingfei Luo
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Xuan Li
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Shufang Liu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
| | - Jie Huang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center; Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs; Qingdao Key Laboratory of Mariculture Epidemiology and Biosecurity, Qingdao, China
- Network of Aquaculture Centres in Asia-Pacific, Bangkok, Thailand
| | - Weifeng Shi
- Shanghai Institute of Virology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Petersen JM, Burgess AL, van Oers MM, Herniou EA, Bojko J. Nudiviruses in free-living and parasitic arthropods: evolutionary taxonomy. Trends Parasitol 2024; 40:744-762. [PMID: 39019701 DOI: 10.1016/j.pt.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/19/2024]
Abstract
The nudiviruses (family: Nudiviridae) are large double-stranded DNA (dsDNA) viruses that infect insects and crustaceans, and have most recently been identified from ectoparasitic members (fleas and lice). This virus family was created in 2014 and has since been expanded via the discovery of multiple novel viral candidates or accepted members, sparking the need for a new taxonomic and evolutionary overview. Using current information (including data from public databases), we construct a new comprehensive phylogeny, encompassing 49 different nudiviruses. We use this novel phylogeny to propose a new taxonomic structure of the Nudiviridae by suggesting two new viral genera (Zetanudivirus and Etanudivirus), from ectoparasitic lice. We detail novel emerging relationships between nudiviruses and their hosts, considering their evolutionary history and ecological role.
Collapse
Affiliation(s)
- Jirka Manuel Petersen
- Laboratory of Virology, Wageningen University and Research, 6708, PB, Wageningen, The Netherlands; Institut de Recherche sur la Biologie de l'Insecte, UMR7261 CNRS - Université de Tours, 37200 Tours, France.
| | - Amy L Burgess
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK; National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University and Research, 6708, PB, Wageningen, The Netherlands
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR7261 CNRS - Université de Tours, 37200 Tours, France
| | - Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK; National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
6
|
Warren DA, Burgess AL, Prati S, Bacela-Spychalska K, S J Rogers M, Bojko J. Histopathological screening of Pontogammarus robustoides (Amphipoda), an invader on route to the United Kingdom. J Invertebr Pathol 2023; 200:107970. [PMID: 37422088 DOI: 10.1016/j.jip.2023.107970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 07/01/2023] [Accepted: 07/05/2023] [Indexed: 07/10/2023]
Abstract
Biological invasions may act as conduits for pathogen introduction. To determine which invasive non-native species pose the biggest threat, we must first determine the symbionts (pathogens, parasites, commensals, mutualists) they carry, via pathological surveys that can be conducted in multiple ways (i.e., molecular, pathological, and histological). Whole animal histopathology allows for the observation of pathogenic agents (virus to Metazoa), based on their pathological effect upon host tissue. Where the technique cannot accurately predict pathogen taxonomy, it does highlight pathogen groups of importance. This study provides a histopathological survey of Pontogammarus robustoides (invasive amphipod in Europe) as a baseline for symbiont groups that may translocate to other areas/hosts in future invasions. Pontogammarus robustoides (n = 1,141) collected throughout Poland (seven sites), were noted to include a total of 13 symbiotic groups: a putative gut epithelia virus (overall prevalence = 0.6%), a putative hepatopancreatic cytoplasmic virus (1.4%), a hepatopancreatic bacilliform virus (15.7%), systemic bacteria (0.7%), fouling ciliates (62.0%), gut gregarines (39.5%), hepatopancreatic gregarines (0.4%), haplosporidians (0.4%), muscle infecting microsporidians (6.4%), digeneans (3.5%), external rotifers (3.0%), an endoparasitic arthropod (putatively: Isopoda) (0.1%), and Gregarines with putative microsporidian infections (1.4%). Parasite assemblages partially differed across collection sites. Co-infection patterns revealed strong positive and negative associations between five parasites. Microsporidians were common across sites and could easily spread to other areas following the invasion of P. robustoides. By providing this initial histopathological survey, we hope to provide a concise list of symbiont groups for risk-assessment in the case of a novel invasion by this highly invasive amphipod.
Collapse
Affiliation(s)
- Daniel A Warren
- Animal and Plant Health Agency, Sand Hutton, York YO41 1LZ, England
| | - Amy L Burgess
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom; School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom
| | - Sebastian Prati
- Aquatic Ecology and Centre for Water and Environmental Research, University of Duisburg-Essen, Universitaetsstr. 5, 45141 Essen, Germany
| | - Karolina Bacela-Spychalska
- Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology & Environmental Protection, University of Łódź, 90-237 Łódź, Poland
| | - Martin S J Rogers
- Artifical Intelligence Laboratory, British Antarctic Survey, Cambridge CB3 0ET, UK
| | - Jamie Bojko
- National Horizons Centre, Teesside University, Darlington DL1 1HG, United Kingdom; School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, United Kingdom.
| |
Collapse
|
7
|
Stratton CE, Kabalan BA, Bolds SA, Reisinger LS, Behringer DC, Bojko J. Cambaraspora faxoni n. sp. (Microsporidia: Glugeida) from native and invasive crayfish in the USA and a novel host of Cambaraspora floridanus. J Invertebr Pathol 2023:107949. [PMID: 37276936 DOI: 10.1016/j.jip.2023.107949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Crayfishes are among the most widely introduced freshwater taxa and can have extensive ecological impacts. Knowledge of the parasites crayfish harbor is limited, yet co-invasion of parasites is a significant risk associated with invasions. In this study, we describe a novel microsporidium, Cambaraspora faxoni n. sp. (Glugeida: Tuzetiidae), from two crayfish hosts in the Midwest USA, Faxonius virilis and Faxonius rusticus. We also expand the known host range of Cambaraspora floridanus to include Procambarus spiculifer. Cambaraspora faxoni infects muscle and heart tissue of F. rusticus and develops within a sporophorous vesicle. The mature spore measures 3.22 ± 0.14 μm in length and 1.45 ± 0.13 μm in width, with 8-9 turns of the polar filament. SSU sequencing indicates the isolates from F. virilis and F. rusticus were identical (100%) and 93.49% similar to C. floridanus, supporting the erection of a new species within the Cambaraspora genus. The novel parasite was discovered within the native range of F. rusticus (Ohio, USA) and within a native congeneric (F. virilis) in the invasive range of F. rusticus (Wisconsin, USA). Faxonius virilis is invasive in other regions. This new parasite could have been introduced to Wisconsin with F. rusticus or it may be a generalist species with a broad distribution. In either case, this parasite infects two crayfish species that have been widely introduced to new drainages throughout North America and could have future effects on invasion dynamics or impacts.
Collapse
Affiliation(s)
- Cheyenne E Stratton
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA.
| | - Bana A Kabalan
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA
| | - Sara A Bolds
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA
| | - Lindsey S Reisinger
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA
| | - Donald C Behringer
- Fisheries and Aquatic Sciences, University of Florida, Gainesville, Florida, 32653, USA; Emerging Pathogens Institute, University of Florida, Gainesville, Florida, 32611, USA
| | - Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK; National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
8
|
Bojko J, Frizzera A, Vázquez N, Taylor G, Rand V, Cremonte F. Comparative genomics for Agmasoma sp. (Microsporidia) parasitising invasive Carcinus aestuarii and Carcinus maenas in Argentina. J Invertebr Pathol 2023; 198:107908. [PMID: 36878425 DOI: 10.1016/j.jip.2023.107908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 02/25/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Carcinus spp. are global aquatic invaders and carriers of several parasites, including a taxonomically unrecognised microsporidian recently observed from Argentina. We provide genome drafts for two parasite isolates, one from Carcinus maenas and one from Carcinus aestuarii, and use multi-gene phylogenetics and genome comparison methods to outline their similarities. Their SSU genes are 100 % similar and other genes have an average similarity of 99.31 %. We informally name the parasite Agmasoma carcini, terming the isolates Ac. var. aestuarii and Ac. var. maenas, following the wealth of genomic data available for each. This study follows on from Frizzera et al. (2021), where this parasite was first histologically identified.
Collapse
Affiliation(s)
- Jamie Bojko
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK; School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK.
| | - Antonella Frizzera
- Laboratorio de Parasitología, Instituto de Biología de Organismos Marinos (CCT CONICET-CENPAT), Boulevard Brown 2915, U9120ACF Puerto Madryn, Argentina
| | - Nuria Vázquez
- Laboratorio de Parasitología, Instituto de Biología de Organismos Marinos (CCT CONICET-CENPAT), Boulevard Brown 2915, U9120ACF Puerto Madryn, Argentina
| | - Gillian Taylor
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK; School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
| | - Vikki Rand
- National Horizons Centre, Teesside University, Darlington DL1 1HG, UK; School of Health and Life Sciences, Teesside University, Middlesbrough TS1 3BX, UK
| | - Florencia Cremonte
- Laboratorio de Parasitología, Instituto de Biología de Organismos Marinos (CCT CONICET-CENPAT), Boulevard Brown 2915, U9120ACF Puerto Madryn, Argentina
| |
Collapse
|
9
|
Sarabeev V, Balbuena J, Jarosiewicz A, Voronova N, Sueiro R, Leiro J, Ovcharenko M. Disentangling the determinants of symbiotic species richness in native and invasive gammarids (Crustacea, Amphipoda) of the Baltic region. Int J Parasitol 2023; 53:305-316. [PMID: 37004736 DOI: 10.1016/j.ijpara.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/04/2023] [Accepted: 02/21/2023] [Indexed: 04/03/2023]
Abstract
Dispersal of alien species is a global problem threatening native biodiversity. Co-introduction of non-native parasites and pathogens adds to the severity of this threat, but this indirect impact has received less attention. To shed light on the key factors determining the richness of microorganisms in native and invasive host species, we compared symbiotic (parasitic and epibiotic) communities of gammarids across different habitats and localities along the Baltic coast of Poland. Seven gammarid species, two native and five invasive, were sampled from 16 freshwater and brackish localities. Sixty symbiotic species of microorganisms of nine phyla were identified. This taxonomically diverse species assemblage of symbionts allowed us to assess the effect of host translocation and regional ecological determinants driving assembly richness in the gammarid hosts. Our results revealed that (i) the current assemblages of symbionts of gammarid hosts in the Baltic region are formed by native and co-introduced species; (ii) species richness of the symbiotic community was higher in the native Gammarus pulex than in the invasive hosts, probably reflecting a process of species loss by invasive gammarids in the new area and the distinct habitat conditions occupied by G. pulex and invasive hosts; (iii) both host species and locality were key drivers shaping assembly composition of symbionts, whereas habitat condition (freshwater versus brackish) was a stronger determinant of communities than geographic distance; (iv) the dispersion patterns of the individual species richness of symbiotic communities were best described by Poisson distributions; in the case of an invasive host, the dispersion of the rich species diversity may switch to a right-skewed negative binomial distribution, suggesting a host-mediated regulation process. We believe this is the first analysis of the symbiotic species richness in native and invasive gammarid hosts in European waters based on original field data and a broad range of taxonomic groups including Microsporidia, Choanozoa, Ciliophora, Apicomplexa, Platyhelminthes, Nematoda, Nematomorha, Acanthocephala and Rotifera, to document the patterns of species composition and distribution.
Collapse
|
10
|
Chinchio E, Romeo C, Crotta M, Ferrari N. Knowledge gaps in invasive species infections: Alien mammals of European Union concern as a case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157448. [PMID: 35863572 DOI: 10.1016/j.scitotenv.2022.157448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/21/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Invasive Alien Species (IAS), i.e. species introduced by humans outside their natural geographic range, may act as host or vectors of pathogens of both human and animal health relevance. Although it has been recognized that IAS should deserve more attention from a public and animal health perspective, data on the pathogens hosted by these species are not systematically collected and this prevents accurate assessments of IAS-specific risks of disease transmission. To support the future development of disease risk assessments, we systematically reviewed the scientific literature related to the pathogens of the eleven mammal species included in the European list of IAS of concern to gain insight in the amount and quality of data available. Data were analyzed to assess the current knowledge on the pathogens harbored by mammal IAS in natural conditions, through the identification of the main factors associated with research intensity on IAS pathogens and with the IAS observed pathogen species richness, the estimation of the true pathogen species richness for each IAS, and a meta-analysis of prevalence for the pathogens of health relevance. While the review confirmed that mammal IAS harbor pathogens of human and animal health relevance such as rabies virus, West Nile Virus, Borrelia burgdorferi and Mycobacterium bovis, results also highlighted strong information gaps and biases in research on IAS pathogens. In addition, the analyses showed an underestimation of the number of pathogens harbored by these species and the existence of high levels of uncertainty in the prevalence of the pathogens of health significance identified. These results highlight the need towards more efforts in making the available information on IAS pathogens accessible and systematically collected in order to provide data for future investigations and risk assessments, as well as the need of relying on alternative sources of information to assess IAS disease risk, like expert opinions.
Collapse
Affiliation(s)
- Eleonora Chinchio
- Department of Veterinary Medicine and Animal Sciences, Universitá degli Studi di Milano, via dell'Universitá 6, Lodi, Italy.
| | - Claudia Romeo
- Department of Veterinary Medicine and Animal Sciences, Universitá degli Studi di Milano, via dell'Universitá 6, Lodi, Italy
| | - Matteo Crotta
- Veterinary Epidemiology, Economics and Public Health Group, WOAH Collaborating Centre for Risk Analysis and Modelling, The Royal Veterinary College, Hawkshead Lane, North Mymms, AL9 7TA Hatfield, UK
| | - Nicola Ferrari
- Department of Veterinary Medicine and Animal Sciences, Universitá degli Studi di Milano, via dell'Universitá 6, Lodi, Italy
| |
Collapse
|
11
|
Gallagher CA, Hervé-Claude LP, Cruz-Martinez L, Stephen C. Understanding Community Perceptions of the St. Kitts’ “Monkey Problem” by Adapting Harm Reduction Concepts and Methods. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.904797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Wicked problems in One Health are associated with dynamicity and uncertainty that require experts, authorities and community members to reach for innovative means of collective inquiry, and collaborative interventions to address the deep social issues at the root of interspecies problems. In this study we explore the value of harm reduction concepts to understand a hundreds of year old issue, the St. Kitts’ “monkey problem,” which involves the invasive African green monkey (Chlorocebus sabaeus) as the cause of deleterious effects on agriculture, but concurrent positive effects on tourism and biomedical research. The harm reduction approach, a systems and settings-based approach with decades of success in public health, can serve as a framework to produce action on persistent societal problems. Harm reduction concepts and methods and participatory epidemiology were used to uncover local perceptions about human-monkey interactions and “meet people where they are” by asking the research question: Are there commonalities in perceptions and values linked to the St. Kitts’ “monkey problem” that are shared across diverse representatives of society that can act as a common starting place to launch collaborative responses to this invasive species? Through a series of focus group activities and interviews we found that the Kittitian “monkey problem” is a contentious and dichotomous problem pervasive in most of society that has no single stakeholders nor one solution. Harm reduction helped to map the island’s human-monkey system and elucidated an entry point toward tackling this problem through the identification of shared values, and also provided a model for incremental gains that may be achieved. Likening the St. Kitts “monkey problem” to a wicked problem enabled stakeholders to seek more options to manage the problem rather than to conclusively solve it. Frequently mentioned shared values including the protection of farmer crops and backyard harvests likely represent strong entry points to this problem and a jumping-off point to begin collective action toward future improvements.
Collapse
|
12
|
Brian JI, Reynolds SA, Aldridge DC. Parasitism dramatically alters the ecosystem services provided by freshwater mussels. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joshua I. Brian
- Aquatic Ecology Group, The David Attenborough Building, Department of Zoology University of Cambridge Cambridge United Kingdom
| | - Sam A. Reynolds
- Aquatic Ecology Group, The David Attenborough Building, Department of Zoology University of Cambridge Cambridge United Kingdom
| | - David C. Aldridge
- Aquatic Ecology Group, The David Attenborough Building, Department of Zoology University of Cambridge Cambridge United Kingdom
- BioRISC, St Catharine’s College Cambridge UK
| |
Collapse
|
13
|
Warren DA, Burgess AL, Karemera F, Bacela-Spychalska K, Stentiford GD, Bojko J. Histopathological survey for parasite groups in Gammarus varsoviensis (Amphipoda). DISEASES OF AQUATIC ORGANISMS 2022; 149:47-51. [PMID: 35510820 DOI: 10.3354/dao03658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Invasive non-native amphipods (Crustacea) are becoming a model system in which to explore the impact and diversity of invasive parasites-parasites that are carried along an invasion route with their hosts. Gammarus varsoviensis is a freshwater amphipod species that has a recently explored invasion history. We provide a histopathological survey for a putatively invasive non-native population of this amphipod, identifying 8 symbiotic groups: Acanthocephala, Rotifera, Digenea, ciliated protozoa, Haplosporidia, Microsporidia, 'Candidatus Aquirickettsiella', and a putative nudivirus, at various prevalence. Our survey indicates that the parasites have no sex bias and that each has the potential to be carried in either sex along an invasion route. We discuss the pathology and prevalence of the above symbiotic groups and whether those that are parasitic may pose a risk if G. varsoviensis were to carry them to novel locations.
Collapse
Affiliation(s)
- Daniel A Warren
- Department of Biosciences, Swansea University, Swansea SA2 8PP, UK
| | | | | | | | | | | |
Collapse
|
14
|
Bojko J, Burgess AL, Allain TW, Ross EP, Pharo D, Kreuze JF, Behringer DC. Pathology and genetic connectedness of the mangrove crab (Aratus pisonii) – a foundation for understanding mangrove disease ecology. ANIMAL DISEASES 2022. [DOI: 10.1186/s44149-022-00039-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractMangrove forests are productive ecosystems, acting as a sink for CO2, a habitat for a diverse array of terrestrial and marine species, and as a natural barrier to coastline erosion. The species that reside within mangrove ecosystems have important roles to play, including litter decomposition and the recycling of nutrients. Crustacea are important detritivores in such ecosystems and understanding their limitations (i.e. disease) is an important endeavour when considering the larger ecological services provided.Histology and metagenomics were used to identify viral (Nudiviridae, Alphaflexiviridae), bacterial (Paracoccus sp., 'Candidatus Gracilibacteria sp.’, and Pseudoalteromonas sp.), protozoan, fungal, and metazoan diversity that compose the symbiome of the mangrove crab, Aratus pisonii. The symbiotic groups were observed at varying prevalence under histology: nudivirus (6.5%), putative gut epithelial virus (3.2%), ciliated protozoa (35.5%), gonad fungus (3.2%), gill ectoparasitic metazoan (6.5%). Metagenomic analysis of one specimen exhibiting a nudivirus infection provided the complete host mitochondrial genome (15,642 bp), nudivirus genome (108,981 bp), and the genome of a Cassava common mosaic virus isolate (6387 bp). Our phylogenetic analyses group the novel nudivirus with the Gammanudivirus and protein similarity searches indicate that Carcinus maenas nudivrius is the most similar to the new isolate. The mitochondrial genome were used to mine short fragments used in population genetic studies to gauge an idea of diversity in this host species across the USA, Caribbean, and central and southern America.This study report several new symbionts based on their pathology, taxonomy, and genomics (where available) and discuss what effect they may have on the crab population. The role of mangrove crabs from a OneHealth perspective were explored, since their pathobiome includes cassava-infecting viruses. Finally, given that this species is abundant in mangrove forests and now boasts a well-described pathogen profile, we posit that A. pisonii is a valuable model system for understanding mangrove disease ecology.
Collapse
|
15
|
Abstract
Around 57.1% of microsporidia occupy aquatic environments, excluding a further 25.7% that utilise both terrestrial and aquatic systems. The aquatic microsporidia therefore compose the most diverse elements of the Microsporidia phylum, boasting unique structural features, variable transmission pathways, and significant ecological influence. From deep oceans to tropical rivers, these parasites are present in most aquatic environments and have been shown to infect hosts from across the Protozoa and Animalia. The consequences of infection range from mortality to intricate behavioural change, and their presence in aquatic communities often alters the overall functioning of the ecosystem.In this chapter, we explore aquatic microsporidian diversity from the perspective of aquatic animal health. Examples of microsporidian parasitism of importance to an aquacultural ('One Health') context and ecosystem context are focussed upon. These include infection of commercially important penaeid shrimp by Enterocytozoon hepatopenaei and interesting hyperparasitic microsporidians of wild host groups.Out of ~1500 suggested microsporidian species, 202 have been adequately taxonomically described using a combination of ultrastructural and genetic techniques from aquatic and semi-aquatic hosts. These species are our primary focus, and we suggest that the remaining diversity have additional genetic or morphological data collected to formalise their underlying systematics.
Collapse
Affiliation(s)
- Jamie Bojko
- School of Health and Life Sciences, Teesside University, Middlesbrough, UK.
- National Horizons Centre, Teesside University, Darlington, UK.
| | - Grant D Stentiford
- Centre for Environment, Fisheries and Aquaculture Science, Weymouth, Dorset, UK
| |
Collapse
|
16
|
Warburton EM, Blanar CA. Life in the margins: host-parasite relationships in ecological edges. Parasitol Res 2021; 120:3965-3977. [PMID: 34694518 DOI: 10.1007/s00436-021-07355-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022]
Abstract
Transitional zones, such as edge habitat, are key landscapes for investigating biodiversity. "Soft edges" are permeable corridors that hosts can cross, while "hard edges" are impermeable borders that hosts cannot pass. Although pathogen transmission in the context of edges is vital to species conservation, drivers of host-parasite relationships in ecological edges remain poorly understood. Thus, we defined a framework for testing hypotheses of host-parasite interactions in hard and soft edges by (1) characterizing hard and soft edges from both the host and parasite perspectives, (2) predicting the types of parasites that would be successful in each type of edge, and (3) applying our framework to species invasion fronts as an example of host-parasite relationships in a soft edge. Generally, we posited that parasites in soft edges are more likely to be negatively affected by habitat fragmentation than their hosts because they occupy higher trophic levels but parasite transmission would benefit from increased host connectivity. Parasites along hard edges, however, are at higher risk of local extinction due to host population perturbations with limited opportunity for parasite recolonization. We then used these characteristics to predict functional traits that would lead to parasite success along soft and hard edges. Finally, we applied our framework to invasive species fronts to highlight predictions regarding host connectivity and parasite traits in soft edges. We anticipate that our work will promote a more complete discussion of habitat connectivity using a common framework and stimulate empirical research into host-parasite relationships within ecological edges and transitional zones.
Collapse
Affiliation(s)
- Elizabeth M Warburton
- Center for the Ecology of Infectious Diseases, Odum School of Ecology, University of Georgia, Athens, GA, 30606, USA.
| | - Christopher A Blanar
- Department of Biological Sciences, Halmos College of Arts and Sciences, Nova Southeastern University, Davie, FL, 33314, USA
| |
Collapse
|
17
|
Foster R, Peeler E, Bojko J, Clark PF, Morritt D, Roy HE, Stebbing P, Tidbury HJ, Wood LE, Bass D. Pathogens co-transported with invasive non-native aquatic species: implications for risk analysis and legislation. NEOBIOTA 2021. [DOI: 10.3897/neobiota..71358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Invasive Non-Native Species (INNS) can co-transport externally and internally other organisms including viruses, bacteria and other eukaryotes (including metazoan parasites), collectively referred to as the symbiome. These symbiotic organisms include pathogens, a small minority of which are subject to surveillance and regulatory control, but most of which are currently unscrutinized and/or unknown. These putatively pathogenetic symbionts can potentially pose diverse risks to other species, with implications for increased epidemiological risk to agriculture and aquaculture, wildlife/ecosystems, and human health (zoonotic diseases). The risks and impacts arising from co-transported known pathogens and other symbionts of unknown pathogenic virulence, remain largely unexplored, unlegislated, and difficult to identify and quantify. Here, we propose a workflow using PubMed and Google Scholar to systematically search existing literature to determine any known and potential pathogens of aquatic INNS. This workflow acts as a prerequisite for assessing the nature and risk posed by co-transported pathogens of INNS; of which a better understanding is necessary to inform policy and INNS risk assessments. Addressing this evidence gap will be instrumental to devise an appropriate set of statutory responsibilities with respect to these symbionts, and to underpin new and more effective legislative processes relating to the disease screening and risk assessment of INNS.
Collapse
|
18
|
Foster R, Peeler E, Bojko J, Clark PF, Morritt D, Roy HE, Stebbing P, Tidbury HJ, Wood LE, Bass D. Pathogens co-transported with invasive non-native aquatic species: implications for risk analysis and legislation. NEOBIOTA 2021. [DOI: 10.3897/neobiota.69.71358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Invasive Non-Native Species (INNS) can co-transport externally and internally other organisms including viruses, bacteria and other eukaryotes (including metazoan parasites), collectively referred to as the symbiome. These symbiotic organisms include pathogens, a small minority of which are subject to surveillance and regulatory control, but most of which are currently unscrutinized and/or unknown. These putatively pathogenetic symbionts can potentially pose diverse risks to other species, with implications for increased epidemiological risk to agriculture and aquaculture, wildlife/ecosystems, and human health (zoonotic diseases). The risks and impacts arising from co-transported known pathogens and other symbionts of unknown pathogenic virulence, remain largely unexplored, unlegislated, and difficult to identify and quantify. Here, we propose a workflow using PubMed and Google Scholar to systematically search existing literature to determine any known and potential pathogens of aquatic INNS. This workflow acts as a prerequisite for assessing the nature and risk posed by co-transported pathogens of INNS; of which a better understanding is necessary to inform policy and INNS risk assessments. Addressing this evidence gap will be instrumental to devise an appropriate set of statutory responsibilities with respect to these symbionts, and to underpin new and more effective legislative processes relating to the disease screening and risk assessment of INNS.
Collapse
|
19
|
Panopeispora mellora n. gen. n. sp. (microsporidia) infecting Say's crab (Dyspanopeus sayi) from the Atlantic shoreline of Canada. J Invertebr Pathol 2021; 184:107652. [PMID: 34358554 DOI: 10.1016/j.jip.2021.107652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/22/2022]
Abstract
Say's mud crab, Dyspanopeus sayi (Brachyura: Panopeidae) is a native shallow subtidal and inter-tidal inhabitant of the Atlantic coastline of North America and an invasive species in the Mediterranean and Black Seas. Little is known about the microparasites of this host and the broader Panopeidae. We describe a novel microsporidian parasite infecting the musculature of D. sayi from Malagash, Nova Scotia (Canada), at a prevalence of 7%. Histopathology and molecular diagnostics were used to describe pathology and parasite phylogenetics, respectively. Based on SSU rDNA gene sequencing we propose that the microsporidian requires establishment of a new genus (Panopeispora n. gen.) and species (Panopeispora mellora n. sp.), due to significant differences to closest known taxa (e.g. Facilispora margolisi [81% similarity] and Thelohania butleri [80% similarity]), residing in Clade V of the Microsporidia. Archived, wax-embedded histological material was re-processed for transmission electron microscopy to obtain preliminary details of its intracellular development cycle and ultrastructure within the host musculature. The discovery of this pathogen is discussed with relevance to microsporidian taxonomy and the potential for achieving ultrastructural data from archived material.
Collapse
|
20
|
Shchapova E, Nazarova A, Vasilyeva U, Gurkov A, Ostyak A, Mutin A, Adelshin R, Belkova N, Timofeyev M. Cellular Immune Response of an Endemic Lake Baikal Amphipod to Indigenous Pseudomonas sp. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:463-471. [PMID: 34076776 DOI: 10.1007/s10126-021-10039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Studies of invertebrates have shown that the internal environment of crustaceans is not always sterile in normal conditions, and in many species, it can be populated by microorganisms even in the absence of any visible pathological processes in the body. This observation raises the question of whether genetically modified indigenous hemolymph microorganisms can be used for biotechnological purposes inside the crustacean either as local producers of some compounds or as sensors to physiological parameters. In this study, we tested the ability of the bacteria isolated from the hemolymph of the amphipod Eulimnogammarus verrucosus to hide from the cellular immune response of the host as the most important feature for their potential long-term application in vivo. 16S rDNA amplicon sequencing revealed five common bacterial genera in all analyzed samples of the amphipod hemolymph, among which Pseudomonas is most easily subjected to genome modification and, thus, the most prospective for biotechnological application. Cultivation of Pseudomonas gave us a number of strains undoubtedly derived from the amphipod hemolymph, and one of them (belonging to the Pseudomonas fluorescens group) was chosen for further tests. The primary culture of amphipod hemocytes was used to analyze the immunogenicity of the strain and showed a pronounced reaction of the immune cells to a high amount of the bacteria within six hours. This result indicates that modulation of cellular immune response to metabolically active bacterial cells is not mandatory for the survival and wide distribution of these microorganisms in the hemolymph of numerous amphipod individuals.
Collapse
Affiliation(s)
| | | | | | - Anton Gurkov
- Irkutsk State University, Irkutsk, Russia
- Baikal Research Centre, Irkutsk, Russia
| | - Alexander Ostyak
- Irkutsk Anti-Plague Research Institute of Siberia and Far East, Irkutsk, Russia
| | | | - Renat Adelshin
- Irkutsk State University, Irkutsk, Russia
- Irkutsk Anti-Plague Research Institute of Siberia and Far East, Irkutsk, Russia
| | - Natalia Belkova
- Scientific Centre for Family Health and Human Reproduction Problems, Irkutsk, Russia
| | - Maxim Timofeyev
- Irkutsk State University, Irkutsk, Russia.
- Baikal Research Centre, Irkutsk, Russia.
| |
Collapse
|
21
|
Patterns of infection in a native and an invasive crayfish across the UK. J Invertebr Pathol 2021; 184:107595. [PMID: 33878331 DOI: 10.1016/j.jip.2021.107595] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/17/2021] [Accepted: 04/12/2021] [Indexed: 11/23/2022]
Abstract
Invasive crayfish and the introduction of non-native diseases pose a significant risk for the conservation of endangered, white-clawed crayfish (Austropotamobius pallipes). Continued pollution of waterways is also of concern for native species and may be linked with crayfish disease dynamics. We explore whether crayfish species or environmental quality are predictors of infection presence and prevalence in native A. pallipes and invasive signal crayfish (Pacifastacus leniusculus). We use a seven-year dataset of histology records, and a field survey comparing the presence and prevalence of infectious agents in three isolated A. pallipes populations; three isolated P. leniusculus populations, and three populations where the two species had overlapped in the past. We note a lower diversity of parasites (Simpson's Index) in P. leniusculus ('Pacifastacus leniusculus Bacilliform Virus' - PlBV) (n = 1 parasite) relative to native A. pallipes (n = 4 parasites), which host Thelohania contejeani, 'Austropotamobius pallipes bacilliform virus' (ApBV), Psorospermium haeckeli and Branchiobdella astaci, at the sites studied. The infectious group present in both species was an intranuclear bacilliform virus of the hepatopancreas. The prevalence of A. astaci in A. pallipes populations was higher in more polluted water bodies, which may reflect an effect of water quality, or may be due to increased chance of transmission from nearby P. leniusculus, a species commonly found in poor quality habitats.
Collapse
|
22
|
Quiles A, Rigaud T, Wattier RA, Grabowski M, Bacela Spychalska K. Wide geographic distribution of overlooked parasites: Rare Microsporidia in Gammarus balcanicus, a species complex with a high rate of endemism. Int J Parasitol Parasites Wildl 2021; 14:121-129. [PMID: 33604238 PMCID: PMC7876520 DOI: 10.1016/j.ijppaw.2021.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 11/24/2022]
Abstract
Parasites and other symbionts deeply influence host organisms, and no living organism can be considered to have evolved independent of its symbionts. The first step towards understanding symbiotic influences upon host organisms is a strong supporting knowledge of parasite/symbiont diversity. Parasites of freshwater amphipods are diverse, with Microsporidia being a major group. These intracellular parasites impact gammarid fitness in different ways, ranging from reduced fitness to increased fecundity. Many Microsporidia have been recorded using molecular data, with multiple taxa pending formal taxonomic description. While some parasites are common, others are known only through sporadic records of single infections. In this study, we focus on rare/sporadic microsporidian infections within Gammarus balcanicus, a host species complex with a high level of endemism. In addition to enriching our knowledge on Microsporidia parasite diversity in amphipod hosts, we test whether these symbionts are specific to G. balcanicus or if they are the same taxa infecting other gammarid species. Of 2231 hosts from 87 sites, we catalogued 29 sequences of "rare" Microsporidia clustering into 19 haplogroups. These haplogroups cluster into 11 lineages: four pre-described taxa (Cucumispora roeselum, C. ornata, C. dikerogammari and Enterocytospora artemiae) and seven 'Molecular Operational Taxonomic Units', which are known from previously published studies to infect other European amphipod species. Our study significantly widens the geographic range of these Microsporidia and expands the known spectrum of hosts infected. Our results suggest that these parasites are ancient infections of European gammarids. For some host-parasite systems, we hypothesize that the common parasite ancestors that infected the hosts' common ancestors, diversified alongside host diversification. For others, we observe Microsporidia taxa with wide host ranges that do not follow host phylogeny.
Collapse
Affiliation(s)
- Adrien Quiles
- Université Bourgogne Franche-Comté, Laboratoire Biogéosciences, UMR CNRS 6282, 6 Boulevard Gabriel, 21000 Dijon, France
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Thierry Rigaud
- Université Bourgogne Franche-Comté, Laboratoire Biogéosciences, UMR CNRS 6282, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Rémi A. Wattier
- Université Bourgogne Franche-Comté, Laboratoire Biogéosciences, UMR CNRS 6282, 6 Boulevard Gabriel, 21000 Dijon, France
| | - Michal Grabowski
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| | - Karolina Bacela Spychalska
- Department of Invertebrate Zoology and Hydrobiology, University of Lodz, 12/16 Banacha Street, 90-237, Lodz, Poland
| |
Collapse
|