1
|
Reddick I, Celis G, Pal S, Nguyen JTV, Saraswathi D, Garai K, Narayanaswami V. Conformational features of guinea pig apolipoprotein E offer insights into functioning of human apolipoprotein E. Arch Biochem Biophys 2025; 769:110421. [PMID: 40221014 DOI: 10.1016/j.abb.2025.110421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/03/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Apolipoprotein (apo) E is a major cholesterol transport protein in the plasma and brain of humans, with the APOE ε4 allele (coding for R112) associated with a higher risk for cardiovascular and Alzheimer's diseases (CVD and AD, respectively) compared to APOE ε3 (coding for C112). The molecular basis underlying the link between APOE ε4 and CVD/AD is poorly understood. Here apoE from Cavia porcellus (guinea pig, GP), which is 72 % identical to human apoE4 but lacking residues 193-197 and 246-252, a feature noted in all hystricomorph apoE, was used as a model to understand the role of apoE4. Western blot with anti-human apoE antibody revealed cross reactivity with bacterially expressed recombinant GP apoE. GP apoE solubilized phospholipids far more efficiently than apoE3/E4 but promoted macrophage cholesterol efflux to a similar extent. The overall secondary structure and tetrameric organization of GP apoE were broadly similar to those of apoE3/E4. Guanidine HCl-induced denaturation revealed a biphasic unfolding pattern indicative of a two-domain architecture for GP apoE. Hydrogen-deuterium exchange coupled to mass spectrometry of GP apoE revealed mixed EX1/EX2 kinetics similar to that noted for apoE4, with peak broadening indicative of the presence of partially folded intermediate states. Limited proteolysis reveals more resistance to cleavage compared to apoE3/E4. Taken together, the findings suggest that the CT domain modulates the lipid-binding ability of apoE and attenuates the overall dynamics of the protein, which bears direct relevance in regulation of lipoprotein metabolism with implications in amyloid-related neurodegeneration.
Collapse
Affiliation(s)
- Issac Reddick
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840, USA
| | - George Celis
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840, USA
| | - Sudip Pal
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally, Hyderabad, 500019, India
| | - J Truc-Vy Nguyen
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840, USA
| | - Deepa Saraswathi
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally, Hyderabad, 500019, India
| | - Kanchan Garai
- Tata Institute of Fundamental Research Hyderabad, 36/P, Gopanpally Village, Serilingampally, Hyderabad, 500019, India.
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250 Bellflower Boulevard, Long Beach, CA, 90840, USA.
| |
Collapse
|
2
|
Tripathi N, Saudrais F, Rysak M, Pieri L, Pin S, Roma G, Renault JP, Boulard Y. Exploring the Interaction of Human α-Synuclein with Polyethylene Nanoplastics: Insights from Computational Modeling and Experimental Corroboration. Biomacromolecules 2025; 26:1476-1497. [PMID: 39441179 DOI: 10.1021/acs.biomac.4c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Plastics, particularly microplastics (MPs) and nanoplastics (NP), have become major environmental and health concerns due to their high chemical stability. The highly hydrophobic plastics enter living organisms through reversible interactions with biomolecules, forming biocoronas. Following recent reports on plastics breaching the blood-brain barrier, the binding behavior of human α-synuclein (hαSn) with polyethylene-based (PE) plastics was evaluated by using molecular dynamics simulations and experimental methods. The results provided three important findings: (i) hαSn transitions from an open helical to a compact conformation, enhancing intramolecular interactions, (ii) nonoxidized PE NPs (NPnonox) rapidly adsorb hαSn, as supported by experimental data from dynamic light scattering and adsorption isotherms, altering its structure, and (iii) the oxidized NP (NPox) failed to capture hαSn. These interactions were dominated by the N-terminal domain of hαSn, with major contributions from hydrophobic amino acids. These findings raise concerns about the potential pharmacological effects of NP-protein interactions on human health.
Collapse
Affiliation(s)
- Neha Tripathi
- CEA, CNRS, NIMBE, Université Paris-Saclay, Gif Sur Yvette 91191, France
| | - Florent Saudrais
- CEA, CNRS, NIMBE, Université Paris-Saclay, Gif Sur Yvette 91191, France
| | - Mona Rysak
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Laura Pieri
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - Serge Pin
- CEA, CNRS, NIMBE, Université Paris-Saclay, Gif Sur Yvette 91191, France
| | - Guido Roma
- CEA, Service de Recherches en Corrosion et Comportement des Matériaux (SRMP), Université Paris-Saclay, Gif sur Yvette 91191, France
| | | | - Yves Boulard
- CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, Gif-sur-Yvette 91198, France
| |
Collapse
|
3
|
Zhang Y, Chen X, Li X, Yan B, Zhang N, Tao Y, Jiao X, Huang J, Zhang H, Fan D. Enzymatically deamidated pork myofibrillar protein can form thermo-reversible gels. Int J Biol Macromol 2025; 290:139039. [PMID: 39710023 DOI: 10.1016/j.ijbiomac.2024.139039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/25/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
By using protein-glutaminase (PG) deamidation, thermo-reversible gel of pork myofibrillar protein (PMP) can be prepared. This study aims to reveal the connection between PMP thermo-reversible gel and the coiled-coil. The research explores how the water-holding capacity and reversibility of these gels improve with increased deamidation time. At a deamidation duration of 4 h, the gel strength reaches its peak. Moreover, PG deamidation significantly enhances the α-helix content to over 60 %. This change boosts the likelihood of α-helix interactions while increasing coiled helix content. Notably, the interference experiment of trifluoroethanol suggests that a high concentration of coiled coils is essential for imparting reversible properties to the deamidated myofibrillar protein gel. This research contributes to the advancement of protein micro-modification in the custom manufacturing of muscle protein-based soft meal products.
Collapse
Affiliation(s)
- Yanyun Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xingwei Li
- Wuxi COFCO Engineering & Technology Co., Ltd., China
| | - Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Nana Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuan Tao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xidong Jiao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jianlian Huang
- Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Ministry of Agriculture and Rural Affairs, Xiamen 361022, China; Fujian Provincial Key Laboratory of Refrigeration and Conditioning Aquatic Products Processing, Xiamen 361022, China; Fujian Anjoyfood Share Co. Ltd., Xiamen 361022, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
4
|
Benedicto VL, Haguar Z, Abdulhasan A, Narayanaswami V. Apolipoprotein E3 Containing Nanodiscs as Vehicles for Transport and Targeted Delivery of Flavonoid Luteolin. ACS OMEGA 2024; 9:2988-2999. [PMID: 38250386 PMCID: PMC10795050 DOI: 10.1021/acsomega.3c09120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Luteolin is a flavonoid that possesses multiple beneficial biological properties, such as anticancer, antioxidant, and anti-inflammatory effects. The objective of this study is to test the hypothesis that luteolin can be transported across a cell via a nanodisc delivery system and delivered to intracellular sites. Luteolin was incorporated into reconstituted high-density lipoprotein complexes made up of apolipoprotein E3 (apoE3) N-terminal domain (apoE3NT) and 1,2-dimystrioyl-sn-glycero-3-phosphocholine. ApoE3NT confers the ability on nanodiscs to traverse the plasma membrane via low-density lipoprotein receptor or scavenger receptor-B1. Physicochemical characterization revealed that the nanodiscs were 17-22 nm in diameter as demonstrated by native polyacrylamide gel electrophoresis and dynamic lightering analysis and ∼660 kDa in size, with a luteolin content of ∼4 luteolin molecules/nanodisc. Luteolin appeared to be embedded in the nonpolar core of nanodiscs, as revealed by fluorescence quenching and polarization analysis and spectroscopic characterization. The presence of luteolin did not affect the ability of apoE3NT to mediate binding and cellular uptake of luteolin containing nanodiscs in macrophages, as inferred from immunofluorescence analysis that revealed apoE- and lipid-related fluorescence as punctate perinuclear vesicles and from flow cytometry studies. Lastly, luteolin appeared to be localized in the nucleus, having escaped the lysosomes following disassembly of the nanodiscs as suggested by fluorescence spectroscopy and microscopy analyses. Taken together, nanodiscs offer the potential to effectively transport luteolin and potentially therapeutic drugs into perinuclear sites in cells, where they can be available to enter the nucleus.
Collapse
Affiliation(s)
| | - Zahraa Haguar
- Department of Chemistry and
Biochemistry, California State University,
Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
| | - Abbas Abdulhasan
- Department of Chemistry and
Biochemistry, California State University,
Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
| | - Vasanthy Narayanaswami
- Department of Chemistry and
Biochemistry, California State University,
Long Beach, 1250 Bellflower Boulevard, Long Beach, California 90840, United States
| |
Collapse
|
5
|
Zhang L, Zhang Y, Wang Y, Chen X. Thermo-reversible gelation of myofibrillar protein: Relationship between coiled-coil and thermal reversibility. Curr Res Food Sci 2023; 7:100611. [PMID: 37860144 PMCID: PMC10582366 DOI: 10.1016/j.crfs.2023.100611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/21/2023] Open
Abstract
Thermo-reversible gel of myofibrillar protein (MP) can be made by tactics of elaborate deamidation using protein-glutaminase (PG), and this work aimed to disclose the link between thermally reversible gelation of MP and the coiled-coil (CC). Enzymatic deamidation fragmented myofibril filaments and triggered structural reassembly to create small-sized aggregates. The coiling and dissociation of CC structure in the myosin tails is the fundamental structural basis of the PG deamidated MP (DMP) in the dynamic evolution of reversible gelation. After specific inhibition of CC assembly by trifluoroethanol (TFE), the thermo-reversible gel ability of DMP was impaired, which confirmed that the dynamic assembly of CC with temperature response played a key role in the thermo-reversible gelation of DMP. The findings may broaden the molecular basis of natural CC reversible gelation and foster advances for the development of new muscle protein products.
Collapse
Affiliation(s)
- Lingying Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yanna Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yue Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xing Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
6
|
Tsai TY, Chen CY, Lin TW, Lin TC, Chiu FL, Shih O, Chang MY, Lin YC, Su AC, Chen CM, Jeng US, Kuo HC, Chang CF, Chen YR. Amyloid modifier SERF1a interacts with polyQ-expanded huntingtin-exon 1 via helical interactions and exacerbates polyQ-induced toxicity. Commun Biol 2023; 6:767. [PMID: 37479809 PMCID: PMC10361993 DOI: 10.1038/s42003-023-05142-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023] Open
Abstract
Abnormal polyglutamine (polyQ) expansion and fibrillization occur in Huntington's disease (HD). Amyloid modifier SERF enhances amyloid formation, but the underlying mechanism is not revealed. Here, the fibrillization and toxicity effect of SERF1a on Htt-exon1 are examined. SERF1a enhances the fibrillization of and interacts with mutant thioredoxin (Trx)-fused Httex1. NMR studies with Htt peptides show that TrxHttex1-39Q interacts with the helical regions in SERF1a and SERF1a preferentially interacts with the N-terminal 17 residues of Htt. Time-course analysis shows that SERF1a induces mutant TrxHttex1 to a single conformation enriched of β-sheet. Co-expression of SERF1a and Httex1-polyQ in neuroblastoma and lentiviral infection of SERF1a in HD-induced polypotent stem cell (iPSC)-derived neurons demonstrates the detrimental effect of SERF1a in HD. Higher level of SERF1a transcript or protein is detected in HD iPSC, transgenic mice, and HD plasma. Overall, this study provides molecular mechanism for SERF1a and mutant Httex1 to facilitate therapeutic development for HD.
Collapse
Affiliation(s)
- Tien-Ying Tsai
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Institute of Biological Chemistry, Academia Sinica, 128, Academia Road, Sec. 2. Nankang, Taipei, 115, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Chun-Yu Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Tien-Wei Lin
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Tien-Chang Lin
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Feng-Lan Chiu
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Ming-Yun Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
| | - Yu-Chun Lin
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - An-Chung Su
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Linkou Chang Gung Memorial Hospital and College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
| | - Hung-Chih Kuo
- Institute of Cellular and Organismic Biology, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Chi-Fon Chang
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, 128, Academia Rd., Sec. 2, Nankang District, Taipei, 115, Taiwan.
| |
Collapse
|
7
|
Marino V, Cortivo GD, Dell'Orco D. Ionic displacement of Ca 2+ by Pb 2+ in calmodulin is affected by arrhythmia-associated mutations. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119490. [PMID: 37201768 DOI: 10.1016/j.bbamcr.2023.119490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/14/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Lead is a highly toxic metal that severely perturbs physiological processes even at sub-micromolar levels, often by disrupting the Ca2+ signaling pathways. Recently, Pb2+-associated cardiac toxicity has emerged, with potential involvement of both the ubiquitous Ca2+ sensor protein calmodulin (CaM) and ryanodine receptors. In this work, we explored the hypothesis that Pb2+ contributes to the pathological phenotype of CaM variants associated with congenital arrhythmias. We performed a thorough spectroscopic and computational characterization of CaM conformational switches in the co-presence of Pb2+ and four missense mutations associated with congenital arrhythmias, namely N53I, N97S, E104A and F141L, and analyzed their effects on the recognition of a target peptide of RyR2. When bound to any of the CaM variants, Pb2+ is difficult to displace even under equimolar Ca2+ concentrations, thus locking all CaM variants in a specific conformation, which exhibits characteristics of coiled-coil assemblies. All arrhythmia-associated variants appear to be more susceptible to Pb2+ than WT CaM, as the conformational transition towards the coiled-coil conformation occurs at lower Pb2+, regardless of the presence of Ca2+, with altered cooperativity. The presence of arrhythmia-associated mutations specifically alters the cation coordination of CaM variants, in some cases involving allosteric communication between the EF-hands in the two domains. Finally, while wild type CaM increases the affinity for the RyR2 target in the presence of Pb2+, no specific pattern could be detected for all other variants, ruling out a synergistic effect of Pb2+ and mutations in the recognition process.
Collapse
Affiliation(s)
- Valerio Marino
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy
| | - Giuditta Dal Cortivo
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy
| | - Daniele Dell'Orco
- Department of Neurosciences, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, I-37134 Verona, Italy.
| |
Collapse
|
8
|
Zhang L, Chen X, Wang Y, Xu X, Zhou P. Myofibrillar protein can form a thermo-reversible gel through elaborate deamidation using protein-glutaminase. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3118-3128. [PMID: 36268675 DOI: 10.1002/jsfa.12287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Novel thermo-reversible hydrogels that undergo gelation in feedback to external stimuli have numerous applications in the food, biomedical, and functional materials fields. Muscle myofibrillar protein (MP) has long been known for thermally irreversible gelation. Once the reversible gelation of MP is achieved, its scope for research and application will expand. RESULTS The work reported here achieved, for the first time, a thermo-reversible MP gelation by elaborate deamidation using protein glutaminase (PG). The protein concentration and PG reaction time within windows of 1.0-2.5% and 8 h or 12 h were observed to be vital for creating thermo-reversible gels. The gel strength increased with protein concentration. The gel displayed a perforated lamellar microstructure, which resulted in a high water-holding capacity. The rheological results revealed the thermo-reversibility of the gel was robust for up to five cycles of heating and cooling. The thermally reversible gelation is closely related to the reversible assembly between individual α-helix and helical coiled coil. Hydrophobic interactions proved to be predominantly involved in the formation and stabilization of the gel network structure. CONCLUSION This work increases the scope of research into the thermo-responsive behavior of MP-based gel. It can foster advances in research into the applications of muscle proteins and into the use of PG as a novel ingredient in the food industry. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Lingying Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yue Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xinglian Xu
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Peng Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
9
|
Burdick JP, Basi RS, Burns KS, Weers PMM. The role of C-terminal ionic residues in self-association of apolipoprotein A-I. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184098. [PMID: 36481181 PMCID: PMC11433772 DOI: 10.1016/j.bbamem.2022.184098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/12/2022]
Abstract
Apolipoprotein A-I (apoA-I) is the main protein of high-density lipoprotein and is comprised of a helical bundle domain and a C-terminal (CT) domain encompassing the last ~65 amino acid residues of the 243-residue protein. The CT domain contains three putative helices (helix 8, 9, and 10) and is critical for initiating lipid binding and harbors sites that mediate self-association of the lipid-free protein. Three lysine residues reside in helix-8 (K195, 206, 208), and three in helix-10 (K226, 238, 239). To determine the role of each CT lysine residue in apoA-I self-association, single, double and triple lysine to glutamine mutants were engineered via site-directed mutagenesis. Circular dichroism and chemical denaturation analysis revealed all mutants retained their structural integrity. Chemical crosslinking and size-exclusion chromatography showed a small effect on self-association when helix-8 lysine residues were changed into glutamine. In contrast, mutation of the three helix-10 lysine residues resulted in a predominantly monomeric protein and K226 was identified as a critical residue. When helix-10 glutamate residues 223, 234, or 235 were substituted with glutamine, reduced self-association was observed similar to that of the helix-10 lysine variants, suggesting ionic interactions between these residues. Thus, helix-10 is a critical part of apoA-I mediating self-association, and disruption of ionic interactions changes apoA-I from an oligomeric state into a monomer. Since the helix-10 triple mutant solubilized phospholipid vesicles at higher rates compared to wild-type apoA-I, this indicates monomeric apoA-I is more potent in lipid binding, presumably because helix-10 is fully accessible to interact with lipids.
Collapse
Affiliation(s)
- John P Burdick
- Department of Chemistry and Biochemistry, California State University Long Beach, CA 90840, USA
| | - Rohin S Basi
- Department of Chemistry and Biochemistry, California State University Long Beach, CA 90840, USA
| | - Kaitlyn S Burns
- Department of Chemistry and Biochemistry, California State University Long Beach, CA 90840, USA
| | - Paul M M Weers
- Department of Chemistry and Biochemistry, California State University Long Beach, CA 90840, USA.
| |
Collapse
|
10
|
Xu D, Chen X, Li Y, Chen Z, Xu W, Wang X, Lv Y, Wang Z, Wu M, Liu G, Wang J. Reconfigurable Peptide Analogs of Apolipoprotein A-I Reveal Tunable Features of Nanodisc Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1262-1276. [PMID: 36626237 DOI: 10.1021/acs.langmuir.2c03082] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanodisc (ND)-forming membrane scaffold proteins or peptides developed from apolipoprotein A-I (apoA-I) have led to considerable promise in structural biology and therapeutic applications. However, the rationale and regularity characteristics in peptide sequence design remain inconclusive. Here, we proposed a consensus-based normalization approach through the reversed engineering of apoA-IΔ1-45 to design reconfigurable apoA-I peptide analogs (APAs) for tunable ND assembly. We present extensive morphological validations and computational simulation analyses on divergent APA-NDs that are generated by our method. Fifteen divergent APAs were generated accordingly to study the assembly machinery of NDs. We show that APA designs exhibit multifactorial influence in terms of varying APA tandem repeats, sequence composition, and lipid-to-APA ratio to form tunable diameters of NDs. There is a strong positive correlation between DMPC-to-APA ratios and ND diameters. Longer APA with more tandem repeats tends to yield higher particle size homogeneity. Our results also suggest proline is a dispensable residue for the APA-ND formation. Interestingly, proline-rich substitution not only provides an inward-bending effect in forming smaller NDs but also induces the cumulative chain flexibility that enables larger ND formation at higher lipid ratios. Additionally, proline-tryptophan residues in APAs play a dominant role in forming larger NDs. Molecular simulation shows that enriched basic and acidic residues in APAs evoke abundant hydrogen-bond and salt bridge networks to reinforce the structural stability of APA-NDs. Together, our findings provide a rational basis for understanding APA design. The proposed model could be extended to other apolipoproteins for desired ND engineering.
Collapse
Affiliation(s)
- Daiyun Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Xu Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Yongxiao Li
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Zhidong Chen
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Wanting Xu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Xinpei Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Yonghui Lv
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Zhe Wang
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen518033, China
| | - Meiying Wu
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen361102, China
| | - Junqing Wang
- School of Pharmaceutical Sciences, Shenzhen Campus of Sun Yat-sen University, Shenzhen518107, China
| |
Collapse
|
11
|
Horn JVC, Kakutani LM, Narayanaswami V, Weers PMM. Insights into the C-terminal domain of apolipoprotein E from chimera studies with apolipophorin III. Mol Cell Biochem 2023; 478:173-183. [PMID: 35763125 PMCID: PMC11479662 DOI: 10.1007/s11010-022-04497-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 06/01/2022] [Indexed: 01/17/2023]
Abstract
Apolipoprotein E3 (apoE) is a critical cholesterol transport protein in humans and is composed of two domains: a well characterized N-terminal (NT) domain that harbors the low-density lipoprotein LDL receptor, and a less understood C-terminal (CT) domain that is the site of protein oligomerization and initiation of lipid binding. To better understand the domain structure of apoE, the CT domain was fused to apolipophorin III (apoLp-III), a single-domain, monomeric apolipoprotein of insect origin, to yield a chimeric protein, apoLp-III/CT-apoE. Recombinant apoLp-III/CT-apoE maintained an overall helical content similar to that of the parent proteins, while chemical induced unfolding studies indicated that its structural integrity was not compromised. Analysis using 1-anilinonaphthalene-8-sulfonic acid (ANS), a sensitive fluorescent indicator of exposed hydrophobic sites and protein folding, demonstrated that whereas apoLp-III provided few ANS binding sites, apoLp-III/CT-apoE harbored an abundance of ANS binding sites. Thus, this indicated tertiary structure formation in CT-apoE when part of the chimera. Size-exclusion chromatography and chemical crosslinking analysis demonstrated that while apoLp-III is monomeric, the chimeric protein formed large oligomeric complexes, similar to native apoE3. Compared to apoLp-III, the chimera showed a two-fold enhancement in phospholipid vesicle solubilization rates and a significantly improved ability to bind to lipolyzed low-density lipoprotein, preventing the onset of lipoprotein aggregation at concentrations comparable to that of parent CT-apoE. These results confirm that high lipid binding and self-association sites are located in the CT domain of apoE, and that these properties can be transferred to an unrelated apolipoprotein, demonstrating that these properties operate independently from the NT domain.
Collapse
Affiliation(s)
- James V C Horn
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840, USA
| | - Leesa M Kakutani
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840, USA
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840, USA
| | - Paul M M Weers
- Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA, 90840, USA.
| |
Collapse
|
12
|
Russell CM, Schaefer KG, Dixson A, Gray ALH, Pyron RJ, Alves DS, Moore N, Conley EA, Schuck RJ, White TA, Do TD, King GM, Barrera FN. The Candida albicans virulence factor candidalysin polymerizes in solution to form membrane pores and damage epithelial cells. eLife 2022; 11:e75490. [PMID: 36173096 PMCID: PMC9522247 DOI: 10.7554/elife.75490] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Candida albicans causes severe invasive candidiasis. C. albicans infection requires the virulence factor candidalysin (CL) which damages target cell membranes. However, the mechanism that CL uses to permeabilize membranes is unclear. We reveal that CL forms membrane pores using a unique mechanism. Unexpectedly, CL readily assembled into polymers in solution. We propose that the basic structural unit in polymer formation is a CL oligomer, which is sequentially added into a string configuration that can close into a loop. CL loops appear to spontaneously insert into the membrane to become pores. A CL mutation (G4W) inhibited the formation of polymers in solution and prevented pore formation in synthetic lipid systems. Epithelial cell studies showed that G4W CL failed to activate the danger response pathway, a hallmark of the pathogenic effect of CL. These results indicate that CL polymerization in solution is a necessary step for the damage of cellular membranes. Analysis of CL pores by atomic force microscopy revealed co-existence of simple depressions and more complex pores, which are likely formed by CL assembled in an alternate oligomer orientation. We propose that this structural rearrangement represents a maturation mechanism that stabilizes pore formation to achieve more robust cellular damage. To summarize, CL uses a previously unknown mechanism to damage membranes, whereby pre-assembly of CL loops in solution leads to formation of membrane pores. Our investigation not only unravels a new paradigm for the formation of membrane pores, but additionally identifies CL polymerization as a novel therapeutic target to treat candidiasis.
Collapse
Affiliation(s)
- Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Katherine G Schaefer
- Department of Physics and Astronomy, University of MissouriColumbiaUnited States
| | - Andrew Dixson
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Amber LH Gray
- Department of Chemistry, University of TennesseeKnoxvilleUnited States
| | - Robert J Pyron
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Daiane S Alves
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Nicholas Moore
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Elizabeth A Conley
- Department of Physics and Astronomy, University of MissouriColumbiaUnited States
| | - Ryan J Schuck
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| | - Tommi A White
- Department of Biochemistry, University of MissouriColumbiaUnited States
- Electron Microscopy Core, University of MissouriColumbiaUnited States
| | - Thanh D Do
- Department of Chemistry, University of TennesseeKnoxvilleUnited States
| | - Gavin M King
- Department of Physics and Astronomy, University of MissouriColumbiaUnited States
- Department of Biochemistry, University of MissouriColumbiaUnited States
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of TennesseeKnoxvilleUnited States
| |
Collapse
|
13
|
Pei P, Chen L, Fan R, Zhou XR, Feng S, Liu H, Guo Q, Yin H, Zhang Q, Sun F, Peng L, Wei P, He C, Qiao R, Wang Z, Luo SZ. Computer-Aided Design of Lasso-like Self-Assembling Anticancer Peptides with Multiple Functions for Targeted Self-Delivery and Cancer Treatments. ACS NANO 2022; 16:13783-13799. [PMID: 36099446 DOI: 10.1021/acsnano.2c01014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Anticancer peptides are promising drug candidates for cancer treatment, but the short circulation time and low delivery efficiency limit their clinical applications. Herein, we designed several lasso-like self-assembling anticancer peptides (LASAPs) integrated with multiple functions by a computer-aided approach. Among these LASAPs, LASAP1 (CRGDKGPDCGKAFRRFLGALFKALSHLL, 1-9 disulfide bond) was determined to be superior to the others because it can self-assemble into homogeneous nanoparticles and exhibits improved stability in serum. Thus, LASAP1 was chosen for proving the design idea. LASAP1 can self-assemble into nanoparticles displaying iRGD on the surface because of its amphiphilic structure and accumulate to the tumor site after injection because of the EPR effect and iRGD targeting to αVβ3 integrin. The nanoparticles could disassemble in the acidic microenvironment of the solid tumor, and cleaved by the overexpressed hK2, which was secreted by prostate tumor cells, to release the effector peptide PTP-7b (FLGALFKALSHLL), which was further activated by the acidic pH. Therefore, LASAP1 could target the orthotopic prostate tumor in the model mice after intraperitoneal injection and specifically inhibit tumor growth, with low systematic toxicity. Combining the multiple targeting functions, LASAP1 represents a promising design of self-delivery of peptide drugs for targeted cancer treatments.
Collapse
Affiliation(s)
- Pengfei Pei
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Long Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Ruru Fan
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Xi-Rui Zhou
- Division of Metrology in Chemistry, National Institute of Metrology, Beijing 100029, P.R. China
| | - Shan Feng
- School of Life Sciences, Tsinghua University, Beijing 100084, P.R. China
| | - Hangrui Liu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Quanqiang Guo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Huiwei Yin
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Qiang Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Fude Sun
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Liang Peng
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Peng Wei
- School of Traditional Chinese Medicine, School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, P.R. China
| | - Chengzhi He
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Renzhong Qiao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing 100029, P.R. China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P.R. China
| |
Collapse
|
14
|
Berntsson E, Sardis M, Noormägi A, Jarvet J, Roos PM, Tõugu V, Gräslund A, Palumaa P, Wärmländer SKTS. Mercury Ion Binding to Apolipoprotein E Variants ApoE2, ApoE3, and ApoE4: Similar Binding Affinities but Different Structure Induction Effects. ACS OMEGA 2022; 7:28924-28931. [PMID: 36033665 PMCID: PMC9404194 DOI: 10.1021/acsomega.2c02254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Mercury intoxication typically produces more severe outcomes in people with the APOE-ε4 gene, which codes for the ApoE4 variant of apolipoprotein E, compared to individuals with the APOE-ε2 and APOE-ε3 genes. Why the APOE-ε4 allele is a risk factor in mercury exposure remains unknown. One proposed possibility is that the ApoE protein could be involved in clearing of heavy metals, where the ApoE4 protein might perform this task worse than the ApoE2 and ApoE3 variants. Here, we used fluorescence and circular dichroism spectroscopies to characterize the in vitro interactions of the three different ApoE variants with Hg(I) and Hg(II) ions. Hg(I) ions displayed weak binding to all ApoE variants and induced virtually no structural changes. Thus, Hg(I) ions appear to have no biologically relevant interactions with the ApoE protein. Hg(II) ions displayed stronger and very similar binding affinities for all three ApoE isoforms, with K D values of 4.6 μM for ApoE2, 4.9 μM for ApoE3, and 4.3 μM for ApoE4. Binding of Hg(II) ions also induced changes in ApoE superhelicity, that is, altered coil-coil interactions, which might modify the protein function. As these structural changes were most pronounced in the ApoE4 protein, they could be related to the APOE-ε4 gene being a risk factor in mercury toxicity.
Collapse
Affiliation(s)
- Elina Berntsson
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 12618 Tallinn, Estonia
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Merlin Sardis
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 12618 Tallinn, Estonia
| | - Andra Noormägi
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 12618 Tallinn, Estonia
| | - Jüri Jarvet
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
- The
National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Per M. Roos
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
- Department
of Clinical Physiology, Capio Saint Göran
Hospital, 112 19 Stockholm, Sweden
| | - Vello Tõugu
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 12618 Tallinn, Estonia
| | - Astrid Gräslund
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| | - Peep Palumaa
- Department
of Chemistry and Biotechnology, Tallinn
University of Technology, 12618 Tallinn, Estonia
| | - Sebastian K. T. S. Wärmländer
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
- CellPept
Sweden AB, Kvarngatan
10B, 118 47 Stockholm, Sweden
| |
Collapse
|
15
|
Petrosino M, Zuhra K, Kopec J, Hutchin A, Szabo C, Majtan T. H 2S biogenesis by cystathionine beta-synthase: mechanism of inhibition by aminooxyacetic acid and unexpected role of serine. Cell Mol Life Sci 2022; 79:438. [PMID: 35864237 PMCID: PMC9304066 DOI: 10.1007/s00018-022-04479-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 12/19/2022]
Abstract
Cystathionine beta-synthase (CBS) is a pivotal enzyme of the transsulfuration pathway responsible for diverting homocysteine to the biosynthesis of cysteine and production of hydrogen sulfide (H2S). Aberrant upregulation of CBS and overproduction of H2S contribute to pathophysiology of several diseases including cancer and Down syndrome. Therefore, pharmacological CBS inhibition has emerged as a prospective therapeutic approach. Here, we characterized binding and inhibitory mechanism of aminooxyacetic acid (AOAA), the most commonly used CBS inhibitor. We found that AOAA binds CBS tighter than its respective substrates and forms a dead-end PLP-bound intermediate featuring an oxime bond. Surprisingly, serine, but not cysteine, replaced AOAA from CBS and formed an aminoacrylate reaction intermediate, which allowed for the continuation of the catalytic cycle. Indeed, serine rescued and essentially normalized the enzymatic activity of AOAA-inhibited CBS. Cellular studies confirmed that AOAA decreased H2S production and bioenergetics, while additional serine rescued CBS activity, H2S production and mitochondrial function. The crystal structure of AOAA-bound human CBS showed a lack of hydrogen bonding with residues G305 and Y308, found in the serine-bound model. Thus, AOAA-inhibited CBS could be reactivated by serine. This difference may be important in a cellular environment in multiple pathophysiological conditions and may modulate the CBS-inhibitory activity of AOAA. In addition, our results demonstrate additional complexities of using AOAA as a CBS-specific inhibitor of H2S biogenesis and point to the urgent need to develop a potent, selective and specific pharmacological CBS inhibitor.
Collapse
Affiliation(s)
- Maria Petrosino
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musee 18, PER17, 1700, Fribourg, Switzerland
| | - Karim Zuhra
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musee 18, PER17, 1700, Fribourg, Switzerland
| | - Jola Kopec
- Structural Biology Unit, Evotec Ltd, 114 Innovation Drive, Abingdon, OX14 4RZ, UK
| | - Andrew Hutchin
- Structural Biology Unit, Evotec Ltd, 114 Innovation Drive, Abingdon, OX14 4RZ, UK
| | - Csaba Szabo
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musee 18, PER17, 1700, Fribourg, Switzerland
| | - Tomas Majtan
- Department of Pharmacology, Faculty of Science and Medicine, University of Fribourg, Chemin du Musee 18, PER17, 1700, Fribourg, Switzerland.
| |
Collapse
|
16
|
Le Guen Y, Belloy ME, Grenier-Boley B, de Rojas I, Castillo-Morales A, Jansen I, Nicolas A, Bellenguez C, Dalmasso C, Küçükali F, Eger SJ, Rasmussen KL, Thomassen JQ, Deleuze JF, He Z, Napolioni V, Amouyel P, Jessen F, Kehoe PG, van Duijn C, Tsolaki M, Sánchez-Juan P, Sleegers K, Ingelsson M, Rossi G, Hiltunen M, Sims R, van der Flier WM, Ramirez A, Andreassen OA, Frikke-Schmidt R, Williams J, Ruiz A, Lambert JC, Greicius MD, Arosio B, Benussi L, Boland A, Borroni B, Caffarra P, Daian D, Daniele A, Debette S, Dufouil C, Düzel E, Galimberti D, Giedraitis V, Grimmer T, Graff C, Grünblatt E, Hanon O, Hausner L, Heilmann-Heimbach S, Holstege H, Hort J, Jürgen D, Kuulasmaa T, van der Lugt A, Masullo C, Mecocci P, Mehrabian S, de Mendonça A, Moebus S, Nacmias B, Nicolas G, Olaso R, Papenberg G, Parnetti L, Pasquier F, Peters O, Pijnenburg YAL, Popp J, Rainero I, Ramakers I, Riedel-Heller S, Scarmeas N, Scheltens P, Scherbaum N, Schneider A, Seripa D, Soininen H, Solfrizzi V, Spalletta G, Squassina A, van Swieten J, Tegos TJ, Tremolizzo L, Verhey F, Vyhnalek M, Wiltfang J, Boada M, García-González P, Puerta R, Real LM, Álvarez V, Bullido MJ, Clarimon J, García-Alberca JM, Mir P, et alLe Guen Y, Belloy ME, Grenier-Boley B, de Rojas I, Castillo-Morales A, Jansen I, Nicolas A, Bellenguez C, Dalmasso C, Küçükali F, Eger SJ, Rasmussen KL, Thomassen JQ, Deleuze JF, He Z, Napolioni V, Amouyel P, Jessen F, Kehoe PG, van Duijn C, Tsolaki M, Sánchez-Juan P, Sleegers K, Ingelsson M, Rossi G, Hiltunen M, Sims R, van der Flier WM, Ramirez A, Andreassen OA, Frikke-Schmidt R, Williams J, Ruiz A, Lambert JC, Greicius MD, Arosio B, Benussi L, Boland A, Borroni B, Caffarra P, Daian D, Daniele A, Debette S, Dufouil C, Düzel E, Galimberti D, Giedraitis V, Grimmer T, Graff C, Grünblatt E, Hanon O, Hausner L, Heilmann-Heimbach S, Holstege H, Hort J, Jürgen D, Kuulasmaa T, van der Lugt A, Masullo C, Mecocci P, Mehrabian S, de Mendonça A, Moebus S, Nacmias B, Nicolas G, Olaso R, Papenberg G, Parnetti L, Pasquier F, Peters O, Pijnenburg YAL, Popp J, Rainero I, Ramakers I, Riedel-Heller S, Scarmeas N, Scheltens P, Scherbaum N, Schneider A, Seripa D, Soininen H, Solfrizzi V, Spalletta G, Squassina A, van Swieten J, Tegos TJ, Tremolizzo L, Verhey F, Vyhnalek M, Wiltfang J, Boada M, García-González P, Puerta R, Real LM, Álvarez V, Bullido MJ, Clarimon J, García-Alberca JM, Mir P, Moreno F, Pastor P, Piñol-Ripoll G, Molina-Porcel L, Pérez-Tur J, Rodríguez-Rodríguez E, Royo JL, Sánchez-Valle R, Dichgans M, Rujescu D. Association of Rare APOE Missense Variants V236E and R251G With Risk of Alzheimer Disease. JAMA Neurol 2022; 79:652-663. [PMID: 35639372 PMCID: PMC9157381 DOI: 10.1001/jamaneurol.2022.1166] [Show More Authors] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance The APOE ε2 and APOE ε4 alleles are the strongest protective and risk-increasing, respectively, genetic variants for late-onset Alzheimer disease (AD). However, the mechanisms linking APOE to AD-particularly the apoE protein's role in AD pathogenesis and how this is affected by APOE variants-remain poorly understood. Identifying missense variants in addition to APOE ε2 and APOE ε4 could provide critical new insights, but given the low frequency of additional missense variants, AD genetic cohorts have previously been too small to interrogate this question robustly. Objective To determine whether rare missense variants on APOE are associated with AD risk. Design, Setting, and Participants Association with case-control status was tested in a sequenced discovery sample (stage 1) and followed up in several microarray imputed cohorts as well as the UK Biobank whole-exome sequencing resource using a proxy-AD phenotype (stages 2 and 3). This study combined case-control, family-based, population-based, and longitudinal AD-related cohorts that recruited referred and volunteer participants. Stage 1 included 37 409 nonunique participants of European or admixed European ancestry, with 11 868 individuals with AD and 11 934 controls passing analysis inclusion criteria. In stages 2 and 3, 475 473 participants were considered across 8 cohorts, of which 84 513 individuals with AD and proxy-AD and 328 372 controls passed inclusion criteria. Selection criteria were cohort specific, and this study was performed a posteriori on individuals who were genotyped. Among the available genotypes, 76 195 were excluded. All data were retrieved between September 2015 and November 2021 and analyzed between April and November 2021. Main Outcomes and Measures In primary analyses, the AD risk associated with each missense variant was estimated, as appropriate, with either linear mixed-model regression or logistic regression. In secondary analyses, associations were estimated with age at onset using linear mixed-model regression and risk of conversion to AD using competing-risk regression. Results A total of 544 384 participants were analyzed in the primary case-control analysis; 312 476 (57.4%) were female, and the mean (SD; range) age was 64.9 (15.2; 40-110) years. Two missense variants were associated with a 2-fold to 3-fold decreased AD risk: APOE ε4 (R251G) (odds ratio, 0.44; 95% CI, 0.33-0.59; P = 4.7 × 10-8) and APOE ε3 (V236E) (odds ratio, 0.37; 95% CI, 0.25-0.56; P = 1.9 × 10-6). Additionally, the cumulative incidence of AD in carriers of these variants was found to grow more slowly with age compared with noncarriers. Conclusions and Relevance In this genetic association study, a novel variant associated with AD was identified: R251G always coinherited with ε4 on the APOE gene, which mitigates the ε4-associated AD risk. The protective effect of the V236E variant, which is always coinherited with ε3 on the APOE gene, was also confirmed. The location of these variants confirms that the carboxyl-terminal portion of apoE plays an important role in AD pathogenesis. The large risk reductions reported here suggest that protein chemistry and functional assays of these variants should be pursued, as they have the potential to guide drug development targeting APOE.
Collapse
Affiliation(s)
- Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, California.,Institut du Cerveau, Paris Brain Institute, Paris, France
| | - Michael E Belloy
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, California
| | - Benjamin Grenier-Boley
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Itziar de Rojas
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Iris Jansen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije University, Amsterdam, the Netherlands
| | - Aude Nicolas
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Céline Bellenguez
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Carolina Dalmasso
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Estudios en Neurociencias y Sistemas Complejos (ENyS) CONICET-HEC-UNAJ, Universidad Nacional Arturo Jauretche, Florencio Varela, Argentina
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Born-Bunge Institute, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sarah J Eger
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, California
| | - Katrine Laura Rasmussen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jesper Qvist Thomassen
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Zihuai He
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, California.,Quantitative Sciences Unit, Department of Medicine, Stanford University, Palo Alto, California
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Philippe Amouyel
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Patrick G Kehoe
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Cornelia van Duijn
- Department of Epidemiology, ErasmusMC, Rotterdam, the Netherlands.,Nuffield Department of Population Health Oxford University, Oxford, United Kingdom
| | - Magda Tsolaki
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Pascual Sánchez-Juan
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Alzheimer's Centre Reina Sofia-CIEN Foundation, Madrid, Spain
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium.,Laboratory of Neurogenetics, Born-Bunge Institute, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences / Geriatrics, Uppsala University, Uppsala, Sweden.,Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada.,Department of Medicine and Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Giacomina Rossi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Joensuu, Kuopio, Finland
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Alfredo Ramirez
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Cluster of Excellence Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany.,Department of Psychiatry and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, The University of Texas Health Science Center at San Antonio
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Julie Williams
- UKDRI@Cardiff, School of Medicine, Cardiff University, Cardiff, United Kingdom.,Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Agustín Ruiz
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jean-Charles Lambert
- University of Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167-RID-AGE Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Michael D Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, California
| | | | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | - Delphine Daian
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Antonio Daniele
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy.,Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Stéphanie Debette
- University Bordeaux, Inserm, Bordeaux Population Health Research Center, Bordeaux, France.,Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Carole Dufouil
- Inserm, Bordeaux Population Health Research Center, UMR 1219, University of Bordeaux, ISPED, CIC 1401-EC, Université de Bordeaux, Bordeaux, France.,CHU de Bordeaux, Pole santé publique, Bordeaux, France
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences / Geriatrics, Uppsala University, Uppsala, Sweden
| | - Timo Grimmer
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Psychiatry and Psychotherapy, Munich, Germany
| | - Caroline Graff
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland.,Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Olivier Hanon
- Université de Paris, EA 4468, APHP, Hôpital Broca, Paris, France
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute of Mental Health Mannheim, Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine, University Hospital Bonn, Bonn, Germany
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands.,Department of Clinical Genetics, VU University Medical Centre, Amsterdam, the Netherlands
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| | - Deckert Jürgen
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Teemu Kuulasmaa
- Institute of Biomedicine, University of Eastern Finland, Joensuu, Kuopio, Finland
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, ErasmusMC, Rotterdam, the Netherlands
| | - Carlo Masullo
- Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Shima Mehrabian
- Clinic of Neurology, UH Alexandrovska, Medical University Sofia, Sofia, Bulgaria
| | | | - Susanne Moebus
- Institute for Urban Public Health, University Hospital of University Duisburg-Essen, Essen, Germany
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Gael Nicolas
- Normandie Université, UNIROUEN, Inserm U1245 and CHU Rouen, Department of Genetics and CNR-MAJ, Rouen, France
| | - Robert Olaso
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, Evry, France
| | - Goran Papenberg
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Perugia, Italy
| | - Florence Pasquier
- Université de Lille, Inserm 1172, CHU Clinical and Research Memory Research Centre (CMRR) of Distalz, Lille, France
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany.,Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Berlin, Germany
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Julius Popp
- Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland.,Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zurich, Switzerland.,Institute for Regenerative Medicine, University of Zürich, Zurich, Switzerland
| | - Innocenzo Rainero
- Department of Neuroscience "Rita Levi Montalcini," University of Torino, Torino, Italy
| | - Inez Ramakers
- Maastricht University, Department of Psychiatry and Neuropsychologie, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, Leipzig, Germany
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece.,Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Department of Neurology, Columbia University, New York, New York
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - Norbert Scherbaum
- LVR-Hospital Essen, Department of Psychiatry and Psychotherapy, Medical Faculty, University of Duisburg-Essen, Essen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Davide Seripa
- Laboratory for Advanced Hematological Diagnostics, Department of Hematology and Stem Cell Transplant, "Vito Fazzi" Hospital, Lecce, Italy
| | - Hilkka Soininen
- Institute of Clinical Medicine - Neurology, University of Eastern Finland, Kuopio, Finland
| | - Vincenzo Solfrizzi
- Interdisciplinary Department of Medicine, Geriatric Medicine and Memory Unit, University of Bari Aldo Moro, Bari, Italy
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas
| | - Alessio Squassina
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | - Thomas J Tegos
- 1st Department of Neurology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Lucio Tremolizzo
- Neurology, "San Gerardo" Hospital, Monza and University of Milano-Bicocca, Milan, Italy
| | - Frans Verhey
- Maastricht University, Department of Psychiatry and Neuropsychologie, Alzheimer Center Limburg, Maastricht, the Netherlands
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic.,International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany.,Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Mercè Boada
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Pablo García-González
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain.,Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Raquel Puerta
- Research Center and Memory Clinic Fundació ACE, Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Luis M Real
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain.,Depatamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Victoria Álvarez
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - María J Bullido
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Madrid, Spain.,Instituto de Investigacion Sanitaria 'Hospital la Paz' (IdIPaz), Madrid, Spain
| | - Jordi Clarimon
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Neurology, II B Sant Pau, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José María García-Alberca
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - Pablo Mir
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Fermin Moreno
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Department of Neurology, Hospital Universitario Donostia, San Sebastian, Spain.,Neurosciences Area, Instituto Biodonostia, San Sebastian, Spain
| | - Pau Pastor
- Fundació Docència i Recerca MútuaTerrassa, Terrassa, Spain.,Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain.,Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Laura Molina-Porcel
- Neurological Tissue Bank (Biobanc), Hospital Clinic IDIBAPS, Barcelona, Spain.,Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Department, Hospital Clinic, Barcelona, Spain
| | - Jordi Pérez-Tur
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Unitat de Genètica Molecular, Institut de Biomedicina de València-CSIC, Valencia, Spain.,Unidad Mixta de Neurologia Genètica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - Eloy Rodríguez-Rodríguez
- Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Jose Luís Royo
- Depatamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig Maximilian University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dan Rujescu
- Medical University of Vienna, Department of Psychiatry and Psychotherapy, Vienna, Austria
| |
Collapse
|
17
|
Martens YA, Zhao N, Liu CC, Kanekiyo T, Yang AJ, Goate AM, Holtzman DM, Bu G. ApoE Cascade Hypothesis in the pathogenesis of Alzheimer's disease and related dementias. Neuron 2022; 110:1304-1317. [PMID: 35298921 PMCID: PMC9035117 DOI: 10.1016/j.neuron.2022.03.004] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/08/2022] [Accepted: 03/01/2022] [Indexed: 12/21/2022]
Abstract
The ε4 allele of the apolipoprotein E gene (APOE4) is a strong genetic risk factor for Alzheimer's disease (AD) and several other neurodegenerative conditions, including Lewy body dementia (LBD). The three APOE alleles encode protein isoforms that differ from one another only at amino acid positions 112 and 158: apoE2 (C112, C158), apoE3 (C112, R158), and apoE4 (R112, R158). Despite progress, it remains unclear how these small amino acid differences in apoE sequence among the three isoforms lead to profound effects on aging and disease-related pathways. Here, we propose a novel "ApoE Cascade Hypothesis" in AD and age-related cognitive decline, which states that the biochemical and biophysical properties of apoE impact a cascade of events at the cellular and systems levels, ultimately impacting aging-related pathogenic conditions including AD. As such, apoE-targeted therapeutic interventions are predicted to be more effective by addressing the biochemical phase of the cascade.
Collapse
Affiliation(s)
- Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Austin J Yang
- Division of Neuroscience, National Institute on Aging, Bethesda, MD, USA
| | - Alison M Goate
- Ronald M. Loeb Center for Alzheimer's Disease, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
18
|
Kim DI, Han SJ, Lim YB. Unique behaviour of α-helix in bending deformation. Chem Commun (Camb) 2022; 58:4368-4371. [DOI: 10.1039/d2cc00008c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Maximum degree of bending that can be tolerated by the rigid rod-like α-helix remains unknown; however, it should be very difficult or even impossible to make α-helices with varying degrees...
Collapse
|
19
|
Basso LGM, Zeraik AE, Felizatti AP, Costa-Filho AJ. Membranotropic and biological activities of the membrane fusion peptides from SARS-CoV spike glycoprotein: The importance of the complete internal fusion peptide domain. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183697. [PMID: 34274319 PMCID: PMC8280623 DOI: 10.1016/j.bbamem.2021.183697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/10/2021] [Indexed: 11/28/2022]
Abstract
Fusion peptides (FP) are prominent hydrophobic segments of viral fusion proteins that play critical roles in viral entry. FPs interact with and insert into the host lipid membranes, triggering conformational changes in the viral protein that leads to the viral-cell fusion. Multiple membrane-active domains from the severe acute respiratory syndrome (SARS) coronavirus (CoV) spike protein have been reported to act as the functional fusion peptide such as the peptide sequence located between the S1/S2 and S2' cleavage sites (FP1), the S2'-adjacent fusion peptide domain (FP2), and the internal FP sequence (cIFP). Using a combined biophysical approach, we demonstrated that the α-helical coiled-coil-forming internal cIFP displayed the highest membrane fusion and permeabilizing activities along with membrane ordering effect in phosphatidylcholine (PC)/phosphatidylglycerol (PG) unilamellar vesicles compared to the other two N-proximal fusion peptide counterparts. While the FP1 sequence displayed intermediate membranotropic activities, the well-conserved FP2 peptide was substantially less effective in promoting fusion, leakage, and membrane ordering in PC/PG model membranes. Furthermore, Ca2+ did not enhance the FP2-induced lipid mixing activity in PC/phosphatidylserine/cholesterol lipid membranes, despite its strong erythrocyte membrane perturbation. Nonetheless, we found that the three putative SARS-CoV membrane-active fusion peptide sequences here studied altered the physical properties of model and erythrocyte membranes to different extents. The importance of the distinct membranotropic and biological activities of all SARS-CoV fusion peptide domains and the pronounced effect of the internal fusion peptide sequence to the whole spike-mediated membrane fusion process are discussed.
Collapse
Affiliation(s)
- Luis Guilherme Mansor Basso
- Laboratório de Ciências Físicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| | - Ana Eliza Zeraik
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Grupo de Biofísica e Biologia Estrutural "Sérgio Mascarenhas", Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Centro, São Carlos, SP, Brazil
| | - Ana Paula Felizatti
- Laboratório de Produtos Naturais, Departamento de Química, Centro de Ciências Exatas e de Tecnologia, Universidade Federal de São Carlos, Rod. Washington Luiz, Km 235, Monjolinho, 13565905, São Carlos, SP, Brazil; Grupo de Biofísica e Biologia Estrutural "Sérgio Mascarenhas", Instituto de Física de São Carlos, Universidade de São Paulo, Avenida Trabalhador São-carlense, 400, Centro, São Carlos, SP, Brazil
| | - Antonio José Costa-Filho
- Laboratório de Biofísica Molecular, Departamento de Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Avenida Bandeirantes, 3900, 14040-901 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
20
|
Liu CC, Murray ME, Li X, Zhao N, Wang N, Heckman MG, Shue F, Martens Y, Li Y, Raulin AC, Rosenberg CL, Doss SV, Zhao J, Wren MC, Jia L, Ren Y, Ikezu TC, Lu W, Fu Y, Caulfield T, Trottier ZA, Knight J, Chen Y, Linares C, Wang X, Kurti A, Asmann YW, Wszolek ZK, Smith GE, Vemuri P, Kantarci K, Knopman DS, Lowe VJ, Jack CR, Parisi JE, Ferman TJ, Boeve BF, Graff-Radford NR, Petersen RC, Younkin SG, Fryer JD, Wang H, Han X, Frieden C, Dickson DW, Ross OA, Bu G. APOE3-Jacksonville (V236E) variant reduces self-aggregation and risk of dementia. Sci Transl Med 2021; 13:eabc9375. [PMID: 34586832 PMCID: PMC8824726 DOI: 10.1126/scitranslmed.abc9375] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Apolipoprotein E (APOE) genetic variants have been shown to modify Alzheimer’s disease (AD) risk. We previously identified an APOE3 variant (APOE3-V236E), named APOE3-Jacksonville (APOE3-Jac), associated with healthy brain aging and reduced risk for AD and dementia with Lewy bodies (DLB). Herein, we resolved the functional mechanism by which APOE3-Jac reduces APOE aggregation and enhances its lipidation in human brains, as well as in cellular and biochemical assays. Compared to APOE3, expression of APOE3-Jac in astrocytes increases several classes of lipids in the brain including phosphatidylserine, phosphatidylethanolamine, phosphatidic acid, and sulfatide, critical for synaptic functions. Mice expressing APOE3-Jac have reduced amyloid pathology, plaque-associated immune responses, and neuritic dystrophy. The V236E substitution is also sufficient to reduce the aggregation of APOE4, whose gene allele is a major genetic risk factor for AD and DLB. These findings suggest that targeting APOE aggregation might be an effective strategy for treating a subgroup of individuals with AD and DLB.
Collapse
Affiliation(s)
- Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Xia Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Na Wang
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Michael G. Heckman
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, USA
| | - Francis Shue
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yuka Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yonghe Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Sydney V. Doss
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Jing Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Melissa C. Wren
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Lin Jia
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yingxue Ren
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Wenyan Lu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yuan Fu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Thomas Caulfield
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Joshua Knight
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yixing Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Cynthia Linares
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Xue Wang
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, USA
| | - Aishe Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Yan W. Asmann
- Division of Biomedical Statistics and Informatics, Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Glenn E. Smith
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, Minnesota, USA
| | | | - Kejal Kantarci
- Department of Radiology Mayo Clinic, Rochester, Minnesota, USA
| | | | - Val J. Lowe
- Department of Radiology Mayo Clinic, Rochester, Minnesota, USA
| | | | - Joseph E. Parisi
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Tanis J. Ferman
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | - John D. Fryer
- Department of Neuroscience, Mayo Clinic, Scottsdale, AZ 85259, USA
| | - Hu Wang
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Xianlin Han
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229
| | - Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University, St. Louis, MO, USA
| | | | - Owen A. Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
- Department of Clinical Genomics, Mayo Clinic, Jacksonville, Florida, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
21
|
Kothari S, Bala N, Patel AB, Donovan A, Narayanaswami V. The LDL receptor binding domain of apolipoprotein E directs the relative orientation of its C-terminal segment in reconstituted nascent HDL. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2021; 1863:183618. [PMID: 33831404 PMCID: PMC8211829 DOI: 10.1016/j.bbamem.2021.183618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/11/2021] [Accepted: 03/22/2021] [Indexed: 12/24/2022]
Abstract
Apolipoprotein E (apoE) (299 residues) is a highly helical protein that plays a critical role in cholesterol homeostasis. It comprises a four-helix bundle N-terminal (NT) and a C-terminal (CT) domain that can exist in lipid-free and lipid-associated states. In humans, there are two major apoE isoforms, apoE3 and apoE4, which differ in a single residue in the NT domain, with apoE4 strongly increasing risk of Alzheimer's disease (AD) and cardiovascular diseases (CVD). It has been proposed that the CT domain initiates rapid lipid binding, followed by a slower NT domain helix bundle opening and lipid binding to yield discoidal reconstituted high density lipoprotein (rHDL). However, the contribution of the NT domain on the CT domain organization in HDL remains poorly understood. To understand this, we employed Cys-specific cross-linking and spatially-sensitive fluorophores in the NT and CT domains of apoE3 and apoE4, and in isolated CT domain. We noted that the helices in isolated CT domain are oriented parallel to those in the neighboring molecule in rHDL, whereas full length apoE3 and apoE4 adopt either an anti-parallel or hairpin-like organization. It appears that the bulky NT domain determines the spatial organization of its CT domain in rHDL, a finding that has significance for apoE4, which is more susceptible to proteolytic cleavage in AD brains, showing increased accumulation of neurotoxic NT and CT fragments. We envisage that the structural organization of HDL apoE would have profound functional consequences in its ability to regulate cholesterol homeostasis in AD and CVD.
Collapse
Affiliation(s)
- S Kothari
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - N Bala
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14853, USA
| | - A B Patel
- Department of Neuroscience, Novartis Institutes for BioMedical Research, Cambridge, MA 02139, USA
| | - A Donovan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90033, USA
| | - V Narayanaswami
- Department of Chemistry and Biochemistry, 1250 Bellflower Blvd., California State University, Long Beach, Long Beach, CA 90840, USA.
| |
Collapse
|
22
|
Ryan JJ, Bao A, Bell B, Ling C, Jackrel ME. Drivers of Hsp104 potentiation revealed by scanning mutagenesis of the middle domain. Protein Sci 2021; 30:1667-1685. [PMID: 34010483 DOI: 10.1002/pro.4126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/11/2021] [Accepted: 05/18/2021] [Indexed: 01/03/2023]
Abstract
Hsp104, a yeast protein disaggregase, can be potentiated via numerous missense mutations at disparate locations throughout the coiled-coil middle domain (MD). Potentiated Hsp104 variants can counter the toxicity and misfolding of TDP-43, FUS, and α-synuclein, proteins which are implicated in neurodegenerative disorders. However, potentiated MD variants typically exhibit off-target toxicity. Further, it has remained confounding how numerous degenerate mutations confer potentiation, hampering engineering of therapeutic Hsp104 variants. Here, we sought to comprehensively define the key drivers of Hsp104 potentiation. Using scanning mutagenesis, we iteratively studied the effects of modulation at each position in the Hsp104 MD. Screening this library to identify enhanced variants reveals that missense mutations at 26% of positions in the MD yield variants that counter FUS toxicity. Modulation of the helix 2-helix 3/4 MD interface potentiates Hsp104, whereas mutations in the analogous helix 1-2 interface do not. Surprisingly, we find that there is a higher likelihood of enhancing Hsp104 activity against human disease substrates than impairing Hsp104 native function. We find that single mutations can broadly destabilize the MD structure and lead to functional potentiation, suggesting this may be a common mechanism conferring Hsp104 potentiation. Using this approach, we have demonstrated that modulation of the MD can yield engineered variants with decreased off-target effects.
Collapse
Affiliation(s)
- Jeremy J Ryan
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Aaron Bao
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Braxton Bell
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Cendi Ling
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| | - Meredith E Jackrel
- Department of Chemistry, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
23
|
Barnes BE, Jenkins TA, Stein LM, Mathers RT, Wicaksana M, Pasquinelli MA, Savin DA. Synthesis and Characterization of a Leucine-Based Block Co-Polypeptide: The Effect of the Leucine Zipper on Self-Assembly. Biomacromolecules 2020; 21:2463-2472. [PMID: 32378896 DOI: 10.1021/acs.biomac.0c00420] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The self-assembly behavior of an ABC triblock copolypeptide consisting of poly(ethylene oxide-b-(leucine-s-valine)-b-lysine) (PEO-PLV-PK) was examined via dynamic light scattering in dilute aqueous solution. Leucine is a hydrophobic, α-helix forming polypeptide that exhibits a "zipper effect" in coiled-coil dimers. We hypothesize that the specific interaction afforded by the leucine zipper dominates the thermodynamics of self-assembly through the side-by-side ordering of α-helices, which drives vesicle formation in a polymer with only 6 wt % hydrophobic content. Additionally, a multitude of assembly sizes and morphologies were attainable from a single polymer, depending on the solution processing method. Thermodynamic effects of the leucine zipper can be interpreted, in part, from solubility parameters determined from molecular modeling. The combination of synthesis, solvent processing, and computational studies helps to elucidate the thermodynamic effects of this unique assembly motif on classical self-assembly processes.
Collapse
Affiliation(s)
- Brooke E Barnes
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Taylor A Jenkins
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Lauren M Stein
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Robert T Mathers
- Department of Chemistry, The Pennsylvania State University, New Kensington, Pennsylvania 15068, United States
| | - Masita Wicaksana
- William G. Enloe Magnet High School, 128 Clarendon Crescent, Raleigh, North Carolina 27610, United States
| | - Melissa A Pasquinelli
- Fiber and Polymer Science Program, North Carolina State University, Raleigh, North Carolina 27695, United States
| | - Daniel A Savin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
24
|
Tailoring Uptake Efficacy of HSV-1 gD Derived Carrier Peptides. Biomolecules 2020; 10:biom10050721. [PMID: 32384673 PMCID: PMC7277387 DOI: 10.3390/biom10050721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/24/2020] [Accepted: 05/01/2020] [Indexed: 12/25/2022] Open
Abstract
Regions of the Herpes simplex virus-1 (HSV-1) glycoprotein D (gD) were chosen to design carrier peptides based on the known tertiary structure of the virus entry receptor complexes. These complexes consist of the following: HSV-1 gD–nectin-1 and HSV-1 gD–herpesvirus entry mediator (HVEM). Three sets of peptides were synthesised with sequences covering the (i) N-terminal HVEM- and nectin-1 binding region -5–42, (ii) the 181–216 medium region containing nectin-1 binding sequences and (iii) the C-terminal nectin-1 binding region 214–255. The carrier candidates were prepared with acetylated and 5(6)-carboxyfluorescein labelled N-termini. The peptides were chemically characterised and their conformational features in solution were also determined. In vitro internalisation profile and intracellular localisation were evaluated on SH-SY5Y neuroblastoma cells. Peptide originated from the C-terminal region 224–247 of the HSV-1 gD showed remarkable internalisation compared to the other peptides with low to moderate entry. Electronic circular dichroism secondary structure studies of the peptides revealed that the most effectively internalised peptides exhibit high helical propensity at increasing TFE concentrations. We proved that oligopeptides derived from the nectin-1 binding region are promising candidates—with possibility of Lys237Arg and/or Trp241Phe substitutions—for side-reaction free conjugation of bioactive compounds—drugs or gene therapy agents—as cargos.
Collapse
|
25
|
Structural and Biophysical Analyses of Human N-Myc Downstream-Regulated Gene 3 (NDRG3) Protein. Biomolecules 2020; 10:biom10010090. [PMID: 31935861 PMCID: PMC7022630 DOI: 10.3390/biom10010090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 01/07/2023] Open
Abstract
The N-Myc downstream-regulated gene (NDRG) family belongs to the α/β-hydrolase fold and is known to exert various physiologic functions in cell proliferation, differentiation, and hypoxia-induced cancer metabolism. In particular, NDRG3 is closely related to proliferation and migration of prostate cancer cells, and recent studies reported its implication in lactate-triggered hypoxia responses or tumorigenesis. However, the underlying mechanism for the functions of NDRG3 remains unclear. Here, we report the crystal structure of human NDRG3 at 2.2 Å resolution, with six molecules in an asymmetric unit. While NDRG3 adopts the α/β-hydrolase fold, complete substitution of the canonical catalytic triad residues to non-reactive residues and steric hindrance around the pseudo-active site seem to disable the α/β-hydrolase activity. While NDRG3 shares a high similarity to NDRG2 in terms of amino acid sequence and structure, NDRG3 exhibited remarkable structural differences in a flexible loop corresponding to helix α6 of NDRG2 that is responsible for tumor suppression. Thus, this flexible loop region seems to play a distinct role in oncogenic progression induced by NDRG3. Collectively, our studies could provide structural and biophysical insights into the molecular characteristics of NDRG3.
Collapse
|
26
|
Vincenzi M, Mercurio FA, Leone M. About TFE: Old and New Findings. Curr Protein Pept Sci 2019; 20:425-451. [PMID: 30767740 DOI: 10.2174/1389203720666190214152439] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 01/28/2023]
Abstract
The fluorinated alcohol 2,2,2-Trifluoroethanol (TFE) has been implemented for many decades now in conformational studies of proteins and peptides. In peptides, which are often disordered in aqueous solutions, TFE acts as secondary structure stabilizer and primarily induces an α -helical conformation. The exact mechanism through which TFE plays its stabilizing roles is still debated and direct and indirect routes, relying either on straight interaction between TFE and molecules or indirect pathways based on perturbation of solvation sphere, have been proposed. Another still unanswered question is the capacity of TFE to favor in peptides a bioactive or a native-like conformation rather than simply stimulate the raise of secondary structure elements that reflect only the inherent propensity of a specific amino-acid sequence. In protein studies, TFE destroys unique protein tertiary structure and often leads to the formation of non-native secondary structure elements, but, interestingly, gives some hints about early folding intermediates. In this review, we will summarize proposed mechanisms of TFE actions. We will also describe several examples, in which TFE has been successfully used to reveal structural properties of different molecular systems, including antimicrobial and aggregation-prone peptides, as well as globular folded and intrinsically disordered proteins.
Collapse
Affiliation(s)
- Marian Vincenzi
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy
| | - Flavia A Mercurio
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via Mezzocannone 16, 80134 Naples, Italy.,Cirpeb, InterUniversity Research Centre on Bioactive Peptides, University of Naples "Federico II", Via Mezzocannone 16, 80134 Naples, Italy
| |
Collapse
|
27
|
Petrosino M, Pasquo A, Novak L, Toto A, Gianni S, Mantuano E, Veneziano L, Minicozzi V, Pastore A, Puglisi R, Capriotti E, Chiaraluce R, Consalvi V. Characterization of human frataxin missense variants in cancer tissues. Hum Mutat 2019; 40:1400-1413. [PMID: 31074541 PMCID: PMC6744310 DOI: 10.1002/humu.23789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/17/2019] [Accepted: 05/06/2019] [Indexed: 12/19/2022]
Abstract
Human frataxin is an iron-binding protein involved in the mitochondrial iron-sulfur (Fe-S) clusters assembly, a process fundamental for the functional activity of mitochondrial proteins. Decreased level of frataxin expression is associated with the neurodegenerative disease Friedreich ataxia. Defective function of frataxin may cause defects in mitochondria, leading to increased tumorigenesis. Tumor-initiating cells show higher iron uptake, a decrease in iron storage and a reduced Fe-S clusters synthesis and utilization. In this study, we selected, from COSMIC database, the somatic human frataxin missense variants found in cancer tissues p.D104G, p.A107V, p.F109L, p.Y123S, p.S161I, p.W173C, p.S181F, and p.S202F to analyze the effect of the single amino acid substitutions on frataxin structure, function, and stability. The spectral properties, the thermodynamic and the kinetic stability, as well as the molecular dynamics of the frataxin missense variants found in cancer tissues point to local changes confined to the environment of the mutated residues. The global fold of the variants is not altered by the amino acid substitutions; however, some of the variants show a decreased stability and a decreased functional activity in comparison with that of the wild-type protein.
Collapse
Affiliation(s)
- Maria Petrosino
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”. Sapienza University of Rome, Rome, Italy
- Current address: IRCCS Istituto Neurologico Carlo Besta, Milano, Italia
- European Brain Research Institute-Fondazione Rita Levi Montalcini, Roma, Italia
| | - Alessandra Pasquo
- ENEA CR Frascati, Diagnostics and Metrology Laboratory,FSN-TECFIS-DIM, Frascati, Italy
| | - Leonore Novak
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”. Sapienza University of Rome, Rome, Italy
| | - Angelo Toto
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”. Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Stefano Gianni
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”. Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, Rome, Italy
| | - Elide Mantuano
- Institute of Translational Pharmacology, CNR, Rome, Italy
| | | | - Velia Minicozzi
- INFN and Department of Physics, University of Rome Tor Vergata, Rome, Italy
| | - Annalisa Pastore
- The Wohl Institute, King’s College London, London, United Kingdom
| | - Rita Puglisi
- The Wohl Institute, King’s College London, London, United Kingdom
| | - Emidio Capriotti
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Bologna, Italy
| | - Roberta Chiaraluce
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”. Sapienza University of Rome, Rome, Italy
| | - Valerio Consalvi
- Dipartimento di Scienze Biochimiche “A. Rossi Fanelli”. Sapienza University of Rome, Rome, Italy
| |
Collapse
|
28
|
Wang H, Eschweiler J, Cui W, Zhang H, Frieden C, Ruotolo BT, Gross ML. Native Mass Spectrometry, Ion Mobility, Electron-Capture Dissociation, and Modeling Provide Structural Information for Gas-Phase Apolipoprotein E Oligomers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2019; 30:876-885. [PMID: 30887458 PMCID: PMC6504607 DOI: 10.1007/s13361-019-02148-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 05/09/2023]
Abstract
Apolipoprotein E (apoE) is an essential protein in lipid and cholesterol metabolism. Although the three common isoforms in humans differ only at two sites, their consequences in Alzheimer's disease (AD) are dramatically different: only the ε4 allele is a major genetic risk factor for late-onset Alzheimer's disease. The isoforms exist as a mixture of oligomers, primarily tetramer, at low μM concentrations in a lipid-free environment. This self-association is involved in equilibrium with the lipid-free state, and the oligomerization interface overlaps with the lipid-binding region. Elucidation of apoE wild-type (WT) structures at an oligomeric state, however, has not yet been achieved. To address this need, we used native electrospray ionization and mass spectrometry (native MS) coupled with ion mobility (IM) to examine the monomer and tetramer of the three WT isoforms. Although collision-induced unfolding (CIU) cannot distinguish the WT isoforms, the monomeric mutant (MM) of apoE3 shows higher stability when submitted to CIU than the WT monomer. From ion-mobility measurements, we obtained the collision cross section and built a coarse-grained model for the tetramer. Application of electron-capture dissociation (ECD) to the tetramer causes unfolding starting from the C-terminal domain, in good agreement with solution denaturation data, and provides additional support for the C4 symmetry structure of the tetramer.
Collapse
Affiliation(s)
- Hanliu Wang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
- Analytical Research and Development, Pfizer Inc., Chesterfield, MO, 63017, USA
| | - Joseph Eschweiler
- Drug Product Development, Abbvie Inc., North Chicago, IL, 60064, USA
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Weidong Cui
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
- Pivotal Attribute Sciences, Amgen Inc., Cambridge, MA, 02142, USA
| | - Hao Zhang
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA
- Pivotal Attribute Sciences, Amgen Inc., Cambridge, MA, 02142, USA
| | - Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, MO, 63130, USA.
| |
Collapse
|
29
|
Kai-Han T, Abhari D, Narayanaswami V. Conformational analysis of apolipoprotein E3/E4 heteromerization. FEBS J 2019; 286:1986-1998. [PMID: 30802357 PMCID: PMC6733585 DOI: 10.1111/febs.14794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/29/2019] [Accepted: 02/22/2019] [Indexed: 11/26/2022]
Abstract
Apolipoprotein E (apoE) is a 299 residue, exchangeable apolipoprotein that has essential roles in cholesterol homeostasis and reverse cholesterol transport. It is a two-domain protein with the C-terminal (CT) domain mediating protein self-association via helix-helix interactions. In humans, the APOE gene is polymorphic with three common alleles, ε2, ε3, and ε4, occurring in frequencies of ~ 5%, 77%, and 18%, respectively. Heterozygotes expressing apoE3 and apoE4 isoforms, which differ in residue at position 112 in the N-terminal domain (C112 in apoE3 and R112 in apoE4), represent the highest population of ε4 carriers, an allele highly associated with Alzheimer's disease. The objective of this study was to determine if apoE3 and apoE4 have the ability to hybridize to form a heteromer in lipid-free state. Refolding an equimolar mixture of His-apoE3 and FLAG-apoE4 (or vice versa) followed by pull-down and immunoblotting indicated formation of apoE3/apoE4 heteromers. Förster resonance energy transfer between donor fluorophore on one isoform and acceptor on the other, both located in the respective CT domains, revealed a distance of separation of ~ 46 Å between the donor/acceptor pair. Similarly, a quencher placed on one was able to mediate significant quenching of fluorescence emission on the other, indicative of spatial proximity within collisional distance between the two. ApoE3/apoE4 heteromer association was also noted in lipid-associated state in reconstituted lipoprotein particles. The possibility of heteromerization of apoE3/apoE4 bears implications in the potential mitigating role of apoE3 on the folding and physiological behavior of apoE4 and its role in maintaining cholesterol homeostasis.
Collapse
Affiliation(s)
| | | | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, 1250 Bellflower Blvd., California State University Long Beach, Long Beach, CA 90840, USA
| |
Collapse
|
30
|
Fiorillo A, Petrosino M, Ilari A, Pasquo A, Cipollone A, Maggi M, Chiaraluce R, Consalvi V. The phosphoglycerate kinase 1 variants found in carcinoma cells display different catalytic activity and conformational stability compared to the native enzyme. PLoS One 2018; 13:e0199191. [PMID: 29995887 PMCID: PMC6040698 DOI: 10.1371/journal.pone.0199191] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/02/2018] [Indexed: 01/18/2023] Open
Abstract
Cancer cells are able to survive in difficult conditions, reprogramming their metabolism according to their requirements. Under hypoxic conditions they shift from oxidative phosphorylation to aerobic glycolysis, a behavior known as Warburg effect. In the last years, glycolytic enzymes have been identified as potential targets for alternative anticancer therapies. Recently, phosphoglycerate kinase 1 (PGK1), an ubiquitous enzyme expressed in all somatic cells that catalyzes the seventh step of glycolysis which consists of the reversible phosphotransfer reaction from 1,3-bisphosphoglycerate to ADP, has been discovered to be overexpressed in many cancer types. Moreover, several somatic variants of PGK1 have been identified in tumors. In this study we analyzed the effect of the single nucleotide variants found in cancer tissues on the PGK1 structure and function. Our results clearly show that the variants display a decreased catalytic efficiency and/or thermodynamic stability and an altered local tertiary structure, as shown by the solved X-ray structures. The changes in the catalytic properties and in the stability of the PGK1 variants, mainly due to the local changes evidenced by the X-ray structures, suggest also changes in the functional role of PGK to support the biosynthetic need of the growing and proliferating tumour cells.
Collapse
Affiliation(s)
- Annarita Fiorillo
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Maria Petrosino
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Andrea Ilari
- CNR-Institute of Molecular Biology and Pathology, Rome, Italy
| | - Alessandra Pasquo
- ENEA CR Frascati, Diagnostics and Metrology Laboratory, FSN-TECFIS-DIM, Frascati, Italy
| | - Alessandra Cipollone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Maristella Maggi
- Department of Molecular Medicine, Unit of Immunology and General Pathology, University of Pavia, Pavia, Italy
| | - Roberta Chiaraluce
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Valerio Consalvi
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
31
|
Fuentes LA, Beck WHJ, Tsujita M, Weers PMM. Charged Residues in the C-Terminal Domain of Apolipoprotein A-I Modulate Oligomerization. Biochemistry 2018; 57:2200-2210. [PMID: 29578333 DOI: 10.1021/acs.biochem.7b01052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Charged residues of the C-terminal domain of human apolipoprotein A-I (apoA-I) were targeted by site-directed mutagenesis. A series of mutant proteins was engineered in which lysine residues (Lys 195, 206, 208, 226, 238, and 239) or glutamate residues (Glu 234 and 235) were replaced by glutamine. The amino acid substitutions did not result in changes in secondary structure content or protein stability. Cross-linking and size-exclusion chromatography showed that the mutations resulted in reduced self-association, generating a predominantly monomeric apoA-I when five or six lysine residues were substituted. The rate of phosphatidylcholine vesicle solubilization was enhanced for all variants, with approximately a threefold rate enhancement for apoA-I lacking Lys 206, 208, 238, and 239, or Glu 234 and 235. Single or double mutations did not change the ability to protect lipolyzed low density lipoprotein from aggregation, but variants lacking >4 lysine residues were less effective in preventing lipoprotein aggregation. ApoA-I mediated cellular lipid efflux from wild-type mice macrophage foam cells was decreased for the variant with five lysine mutations. However, this protein was more effective in releasing cellular phosphatidylcholine and sphingomyelin from Abca1-null mice macrophage foam cells. This suggests that the mutations caused changes in the interaction with ABCA1 transporters and that membrane microsolubilization was primarily responsible for lipid efflux in cells lacking ABCA1. Taken together, this study indicates that ionic interactions in the C-terminal domain of apoA-I favor self-association and that monomeric apoA-I is more active in solubilizing phospholipid bilayers.
Collapse
Affiliation(s)
- Lukas A Fuentes
- Department of Chemistry and Biochemistry , California State University Long Beach , Long Beach , California 90840 , United States
| | - Wendy H J Beck
- Department of Chemistry and Biochemistry , California State University Long Beach , Long Beach , California 90840 , United States
| | - Maki Tsujita
- Department of Biochemistry , Nagoya City University Graduate School of Medical Sciences , Aichi 467-8601 , Japan
| | - Paul M M Weers
- Department of Chemistry and Biochemistry , California State University Long Beach , Long Beach , California 90840 , United States
| |
Collapse
|
32
|
Zhou XR, Cao Y, Zhang Q, Tian XB, Dong H, Chen L, Luo SZ. Self-assembly nanostructure controlled sustained release, activity and stability of peptide drugs. Int J Pharm 2017. [DOI: 10.1016/j.ijpharm.2017.06.051] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Lek MT, Cruz S, Ibe NU, Beck WHJ, Bielicki JK, Weers PMM, Narayanaswami V. Swapping the N- and C-terminal domains of human apolipoprotein E3 and AI reveals insights into their structure/activity relationship. PLoS One 2017. [PMID: 28644829 PMCID: PMC5482431 DOI: 10.1371/journal.pone.0178346] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Apolipoprotein (apo) E3 and apoAI are exchangeable apolipoproteins that play a dominant role in regulating plasma lipoprotein metabolism. ApoE3 (299 residues) is composed of an N-terminal (NT) domain bearing a 4-helix bundle and a C-terminal (CT) domain bearing a series of amphipathic α-helices. ApoAI (243 residues) also comprises a highly helical NT domain and a less structured CT tail. The objective of this study was to understand their structural and functional role by generating domain swapped chimeras: apoE3-NT/apoAI-CT and apoAI-NT/apoE-CT. The bacterially overexpressed chimeras were purified by affinity chromatography and their identity confirmed by immunoblotting and mass spectrometry. Their α-helical content was comparable to that of the parent proteins. ApoE3-NT/apoAI-CT retained the denaturation profile of apoE3 NT domain, with apoAI CT tail eliciting a relatively unstructured state; its lipid binding ability improved dramatically compared to apoE3 indicative of a significant role of apoAI CT tail in lipid binding interaction. The LDL receptor interaction and ability to promote ABCA1-mediated cholesterol efflux of apoE3-NT/apoAI-CT was comparable to that of apoE3. In contrast, apoAI-NT/apoE-CT elicited an unfolding pattern and lipid binding ability that were similar to that of apoAI. As expected, DMPC/apoAI-NT/apoE-CT discoidal particles did not elicit LDLr binding ability, and promoted SR-B1 mediated cellular uptake of lipids to a limited extent. However, apoAI-NT/apoE-CT displayed an enhanced ability to promote cholesterol efflux compared to apoAI, indicative of a significant role for apoE CT domain in mediating this function. Together, these results indicate that the functional attributes of apoAI and apoE3 can be conferred on each other and that NT-CT domain interactions significantly modulate their structure and function.
Collapse
Affiliation(s)
- Mark T. Lek
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Siobanth Cruz
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Nnejiuwa U. Ibe
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Wendy H. J. Beck
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - John K. Bielicki
- Donner Laboratory, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America
| | - Paul M. M. Weers
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Devineau S, Zargarian L, Renault JP, Pin S. Structure and Function of Adsorbed Hemoglobin on Silica Nanoparticles: Relationship between the Adsorption Process and the Oxygen Binding Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:3241-3252. [PMID: 28263607 DOI: 10.1021/acs.langmuir.6b04281] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The connection between the mechanisms of protein adsorption on nanoparticles and the structural and functional properties of the adsorbed protein often remains unclear. We investigate porcine hemoglobin adsorption on silica nanoparticles, and we analyze the structural and functional modifications of adsorbed hemoglobin by UV-vis spectrophotometry, circular dichroism, and oxygen binding measurement. The structural analysis of adsorbed hemoglobin on silica nanoparticles reveals a significant loss of secondary structure and a preservation of the heme electronic structure. However, adsorbed hemoglobin retains its quaternary structure and exhibits an enhanced oxygen affinity with cooperative binding. Moreover, the structural and functional modifications are fully reversible after complete desorption from silica nanoparticles at pH 8.7. The tunable adsorption and desorption of hemoglobin on SNPs with pH change, and the full control of hemoglobin activity by pH, temperature, and the addition of inorganic phosphate effectors opens the way to an interesting system whereby protein adsorption on nanoparticles can allow for full control over hemoglobin oxygen binding activity. Our results suggest that adsorption of hemoglobin on silica nanoparticles leads to a new structural, functional, and dynamic state with full reversibility in a way that significantly differs from protein denaturation.
Collapse
Affiliation(s)
- Stéphanie Devineau
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Loussiné Zargarian
- LBPA, ENS de Cachan, CNRS, Université Paris-Saclay , 94235 Cachan Cedex, France
| | - Jean Philippe Renault
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette, France
| | - Serge Pin
- LIONS, NIMBE, CEA, CNRS, Université Paris-Saclay , CEA Saclay, 91191 Gif-sur-Yvette, France
| |
Collapse
|
35
|
Single-Nucleotide Polymorphism of PPARγ, a Protein at the Crossroads of Physiological and Pathological Processes. Int J Mol Sci 2017; 18:ijms18020361. [PMID: 28208577 PMCID: PMC5343896 DOI: 10.3390/ijms18020361] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/24/2017] [Accepted: 02/01/2017] [Indexed: 01/28/2023] Open
Abstract
Genome polymorphisms are responsible for phenotypic differences between humans and for individual susceptibility to genetic diseases and therapeutic responses. Non-synonymous single-nucleotide polymorphisms (nsSNPs) lead to protein variants with a change in the amino acid sequence that may affect the structure and/or function of the protein and may be utilized as efficient structural and functional markers of association to complex diseases. This study is focused on nsSNP variants of the ligand binding domain of PPARγ a nuclear receptor in the superfamily of ligand inducible transcription factors that play an important role in regulating lipid metabolism and in several processes ranging from cellular differentiation and development to carcinogenesis. Here we selected nine nsSNPs variants of the PPARγ ligand binding domain, V290M, R357A, R397C, F360L, P467L, Q286P, R288H, E324K, and E460K, expressed in cancer tissues and/or associated with partial lipodystrophy and insulin resistance. The effects of a single amino acid change on the thermodynamic stability of PPARγ, its spectral properties, and molecular dynamics have been investigated. The nsSNPs PPARγ variants show alteration of dynamics and tertiary contacts that impair the correct reciprocal positioning of helices 3 and 12, crucially important for PPARγ functioning.
Collapse
|
36
|
Helical structure, stability, and dynamics in human apolipoprotein E3 and E4 by hydrogen exchange and mass spectrometry. Proc Natl Acad Sci U S A 2017; 114:968-973. [PMID: 28096372 DOI: 10.1073/pnas.1617523114] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Apolipoprotein E (apoE) plays a critical role in cholesterol transport in both peripheral circulation and brain. Human apoE is a polymorphic 299-residue protein in which the less common E4 isoform differs from the major E3 isoform only by a C112R substitution. ApoE4 interacts with lipoprotein particles and with the amyloid-β peptide, and it is associated with increased incidence of cardiovascular and Alzheimer's disease. To understand the structural basis for the differences between apoE3 and E4 functionality, we used hydrogen-deuterium exchange coupled with a fragment separation method and mass spectrometric analysis to compare their secondary structures at near amino acid resolution. We determined the positions, dynamics, and stabilities of the helical segments in these two proteins, in their normal tetrameric state and in mutation-induced monomeric mutants. Consistent with prior X-ray crystallography and NMR results, the N-terminal domain contains four α-helices, 20 to 30 amino acids long. The C-terminal domain is relatively unstructured in the monomeric state but forms an α-helix ∼70 residues long in the self-associated tetrameric state. Helix stabilities are relatively low, 4 kcal/mol to 5 kcal/mol, consistent with flexibility and facile reversible unfolding. Secondary structure in the tetrameric apoE3 and E4 isoforms is similar except that some helical segments in apoE4 spanning residues 12 to 20 and 204 to 210 are unfolded. These conformational differences result from the C112R substitution in the N-terminal helix bundle and likely relate to a reduced ability of apoE4 to form tetramers, thereby increasing the concentration of functional apoE4 monomers, which gives rise to its higher lipid binding compared with apoE3.
Collapse
|
37
|
Fabilane CS, Nguyen PN, Hernandez RV, Nirudodhi S, Duong M, Maier CS, Narayanaswami V. Mechanism of Lipid Binding of Human Apolipoprotein E3 by Hydrogen/Deuterium Exchange/Mass Spectrometry and Fluorescence Polarization. Protein Pept Lett 2016; 23:404-13. [PMID: 26902251 DOI: 10.2174/0929866523666160223122257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Human apolipoprotein E3 (apoE3) is an exchangeable apolipoprotein that plays a critical role in maintaining plasma cholesterol/triglyceride homeostasis. The C-terminal (CT) domain of apoE3 (residues 201-299) is composed of amphipathic α-helices C1: W210-S223, C2: V236-E266, and C3: D271-W276, which play a dominant role in mediating high-affinity lipid binding. OBJECTIVE The objective is to understand the accessibility of the CT domain at the sub-domain level and the mechanistic details regarding lipid-binding interaction. METHODS Hydrogen-deuterium exchange coupled to mass spectrometry (HDX/MS) of recombinant wild type (WT) apoE(201-299), chemical-induced unfolding monitored as changes in fluorescence polarization (FP) of labeled apoE(201-299) bearing a probe at specified sites, and lipid binding studies were carried out. RESULTS HDX/MS revealed that residues towards the C-terminal end of the domain display significantly lower %D uptake compared to those towards the center, suggesting extensive protein-protein interaction in this segment. Functional assays showed that locking apoE(201-299) in an inter-molecular disulfide-bonded state at position 209, 223, 255, or 277 significantly decreases its ability to interact with lipids, especially when tethered towards the ends; this could be restored by reduction. Unfolding studies indicate that the C-terminal end offers less resistance to unfolding compared to the central portion of the domain. CONCLUSION Taken together, our data suggest that two dimers of CT domain are juxtaposed around helix C3 leading to apoE3 tetramerization, and that dissociation to monomeric units is a required step in lipid binding, with helix C3 likely seeking stability via lipid interaction prior to helices C1 or C2.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vasanthy Narayanaswami
- Department of Chemistry & Biochemistry, 1250 Bellflower Blvd, California State University Long Beach, Long Beach, CA 90840, USA.
| |
Collapse
|
38
|
Mercurio FA, Marasco D, Di Natale C, Pirone L, Costantini S, Pedone EM, Leone M. Targeting EphA2-Sam and Its Interactome: Design and Evaluation of Helical Peptides Enriched in Charged Residues. Chembiochem 2016; 17:2179-2188. [DOI: 10.1002/cbic.201600413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Flavia A. Mercurio
- Institute of Biostructures and Bioimaging; National Research Council; Via Mezzocannone 16 80134 Naples Italy
| | - Daniela Marasco
- Institute of Biostructures and Bioimaging; National Research Council; Via Mezzocannone 16 80134 Naples Italy
- Department of Pharmacy; University of Naples “Federico II”; Via Mezzocannone 16 80134 Naples Italy
| | - Concetta Di Natale
- Department of Biology; University of Naples “Federico II”; Via Cinthia 4 80126 Naples Italy
| | - Luciano Pirone
- Institute of Biostructures and Bioimaging; National Research Council; Via Mezzocannone 16 80134 Naples Italy
| | - Susan Costantini
- CROM; IRCCS-Istituto Nazionale Tumori “Fondazione G. Pascale”; Via Mariano Semmola 52 80131 Naples Italy
| | - Emilia M. Pedone
- Institute of Biostructures and Bioimaging; National Research Council; Via Mezzocannone 16 80134 Naples Italy
| | - Marilisa Leone
- Institute of Biostructures and Bioimaging; National Research Council; Via Mezzocannone 16 80134 Naples Italy
| |
Collapse
|
39
|
Lori L, Pasquo A, Lori C, Petrosino M, Chiaraluce R, Tallant C, Knapp S, Consalvi V. Effect of BET Missense Mutations on Bromodomain Function, Inhibitor Binding and Stability. PLoS One 2016; 11:e0159180. [PMID: 27403962 PMCID: PMC4942050 DOI: 10.1371/journal.pone.0159180] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 06/28/2016] [Indexed: 02/03/2023] Open
Abstract
Lysine acetylation is an important epigenetic mark regulating gene transcription and chromatin structure. Acetylated lysine residues are specifically recognized by bromodomains, small protein interaction modules that read these modification in a sequence and acetylation dependent way regulating the recruitment of transcriptional regulators and chromatin remodelling enzymes to acetylated sites in chromatin. Recent studies revealed that bromodomains are highly druggable protein interaction domains resulting in the development of a large number of bromodomain inhibitors. BET bromodomain inhibitors received a lot of attention in the oncology field resulting in the rapid translation of early BET bromodomain inhibitors into clinical studies. Here we investigated the effects of mutations present as polymorphism or found in cancer on BET bromodomain function and stability and the influence of these mutants on inhibitor binding. We found that most BET missense mutations localize to peripheral residues in the two terminal helices. Crystal structures showed that the three dimensional structure is not compromised by these mutations but mutations located in close proximity to the acetyl-lysine binding site modulate acetyl-lysine and inhibitor binding. Most mutations affect significantly protein stability and tertiary structure in solution, suggesting new interactions and an alternative network of protein-protein interconnection as a consequence of single amino acid substitution. To our knowledge this is the first report studying the effect of mutations on bromodomain function and inhibitor binding.
Collapse
Affiliation(s)
- Laura Lori
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | | | - Clorinda Lori
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Maria Petrosino
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Roberta Chiaraluce
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
- * E-mail:
| | - Cynthia Tallant
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Stefan Knapp
- Nuffield Department of Clinical Medicine, Structural Genomics Consortium and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Valerio Consalvi
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
40
|
Rasmussen KK, Frandsen KEH, Boeri Erba E, Pedersen M, Varming AK, Hammer K, Kilstrup M, Thulstrup PW, Blackledge M, Jensen MR, Lo Leggio L. Structural and dynamics studies of a truncated variant of CI repressor from bacteriophage TP901-1. Sci Rep 2016; 6:29574. [PMID: 27403839 PMCID: PMC4941734 DOI: 10.1038/srep29574] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 06/17/2016] [Indexed: 11/28/2022] Open
Abstract
The CI repressor from the temperate bacteriophage TP901-1 consists of two folded domains, an N-terminal helix-turn-helix DNA-binding domain (NTD) and a C-terminal oligomerization domain (CTD), which we here suggest to be further divided into CTD1 and CTD2. Full-length CI is a hexameric protein, whereas a truncated version, CI∆58, forms dimers. We identify the dimerization region of CI∆58 as CTD1 and determine its secondary structure to be helical both within the context of CI∆58 and in isolation. To our knowledge this is the first time that a helical dimerization domain has been found in a phage repressor. We also precisely determine the length of the flexible linker connecting the NTD to the CTD. Using electrophoretic mobility shift assays and native mass spectrometry, we show that CI∆58 interacts with the OL operator site as one dimer bound to both half-sites, and with much higher affinity than the isolated NTD domain thus demonstrating cooperativity between the two DNA binding domains. Finally, using small angle X-ray scattering data and state-of-the-art ensemble selection techniques, we delineate the conformational space sampled by CI∆58 in solution, and we discuss the possible role that the dynamics play in CI-repressor function.
Collapse
Affiliation(s)
- Kim Krighaar Rasmussen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark
| | - Kristian E. H. Frandsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark
| | | | - Margit Pedersen
- Department of Biology, University of Copenhagen, Ole Maaløes vej 5, DK-2200 Copenhagen N, Denmark
| | - Anders K. Varming
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark
| | - Karin Hammer
- Metabolic signalling and regulation, Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Mogens Kilstrup
- Metabolic signalling and regulation, Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Peter W. Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark
| | - Martin Blackledge
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, Grenoble, France
| | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, Copenhagen, Denmark
| |
Collapse
|
41
|
Safina D, Schlitt F, Romeo R, Pflanzner T, Pietrzik CU, Narayanaswami V, Edenhofer F, Faissner A. Low-density lipoprotein receptor-related protein 1 is a novel modulator of radial glia stem cell proliferation, survival, and differentiation. Glia 2016; 64:1363-80. [PMID: 27258849 DOI: 10.1002/glia.23009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 04/19/2016] [Accepted: 05/04/2016] [Indexed: 12/22/2022]
Abstract
The LDL family of receptors and its member low-density lipoprotein receptor-related protein 1 (LRP1) have classically been associated with a modulation of lipoprotein metabolism. Current studies, however, indicate diverse functions for this receptor in various aspects of cellular activities, including cell proliferation, migration, differentiation, and survival. LRP1 is essential for normal neuronal function in the adult CNS, whereas the role of LRP1 in development remained unclear. Previously, we have observed an upregulation of LewisX (LeX) glycosylated LRP1 in the stem cells of the developing cortex and demonstrated its importance for oligodendrocyte differentiation. In the current study, we show that LeX-glycosylated LRP1 is also expressed in the stem cell compartment of the developing spinal cord and has broader functions in the developing CNS. We have investigated the basic properties of LRP1 conditional knockout on the neural stem/progenitor cells (NSPCs) from the cortex and the spinal cord, created by means of Cre-loxp-mediated recombination in vitro. The functional status of LRP1-deficient cells has been studied using proliferation, differentiation, and apoptosis assays. LRP1 deficient NSPCs from both CNS regions demonstrated altered differentiation profiles. Their differentiation capacity toward oligodendrocyte progenitor cells (OPCs), mature oligodendrocytes and neurons was reduced. In contrast, astrocyte differentiation was promoted. Moreover, LRP1 deletion had a negative effect on NSPCs proliferation and survival. Our observations suggest that LRP1 facilitates NSPCs differentiation via interaction with apolipoprotein E (ApoE). Upon ApoE4 stimulation wild type NSPCs generated more oligodendrocytes, but LRP1 knockout cells showed no response. The effect of ApoE seems to be independent of cholesterol uptake, but is rather mediated by downstream MAPK and Akt activation. GLIA 2016 GLIA 2016;64:1363-1380.
Collapse
Affiliation(s)
- Dina Safina
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University, Bochum, D-44780, Germany.,International Graduate School of Neuroscience, Ruhr-University Bochum, Bochum, D-44780, Germany
| | - Frederik Schlitt
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University, Bochum, D-44780, Germany
| | - Ramona Romeo
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University, Bochum, D-44780, Germany
| | - Thorsten Pflanzner
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, D-55099, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, D-55099, Germany
| | - Vasanthy Narayanaswami
- Department of Chemistry and Biochemistry, California State University Long Beach, Long Beach, California, 90840
| | - Frank Edenhofer
- Institute of Anatomy and Cell Biology, University Wuerzburg, Koellikerstraße 6, Wuerzburg, D-97070, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University, Bochum, D-44780, Germany
| |
Collapse
|
42
|
Petrlova J, Hilt S, Budamagunta M, Domingo-Espín J, Voss JC, Lagerstedt JO. Molecular crowding impacts the structure of apolipoprotein A-I with potential implications on in vivo metabolism and function. Biopolymers 2016; 105:683-92. [PMID: 27122373 DOI: 10.1002/bip.22865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 03/14/2016] [Accepted: 04/25/2016] [Indexed: 11/08/2022]
Abstract
The effect molecular crowding, defined as the volume exclusion exerted by one soluble inert molecule upon another soluble molecule, has on the structure and self-interaction of lipid-free apoA-I were explored. The influence of molecular crowding on lipid-free apoA-I oligomerization and internal dynamics has been analyzed using electron paramagnetic resonance (EPR) spectroscopy measurements of nitroxide spin label at selected positions throughout the protein sequence and at varying concentrations of the crowding agent Ficoll-70. The targeted positions include sites previously shown to be sensitive for detecting intermolecular interaction via spin-spin coupling. Circular dichroism was used to study secondary structural changes in lipid-free apoA-I imposed by increasing concentrations of the crowding agent. Crosslinking and SDS-PAGE gel analysis was employed to further characterize the role molecular crowding plays in inducing apoA-I oligomerization. It was concluded that the dynamic apoA-I structure and oligomeric state was altered in the presence of the crowding agent. It was also found that the C-terminal was slightly more sensitive to molecular crowding. Finally, the data described the region around residue 217 in the C-terminal domain of apoA-I as the most sensitive reporter of the crowding-induced self-association of apoA-I. The implications of this behavior to in vivo functionality are discussed. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 683-692, 2016.
Collapse
Affiliation(s)
- Jitka Petrlova
- Department of Experimental Medical Science, Lund University, Lund, S-221 84, Sweden
| | - Silvia Hilt
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, 95616
| | - Madhu Budamagunta
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, 95616
| | - Joan Domingo-Espín
- Department of Experimental Medical Science, Lund University, Lund, S-221 84, Sweden
| | - John C Voss
- Department of Experimental Medical Science, Lund University, Lund, S-221 84, Sweden.,Department of Biochemistry and Molecular Medicine, University of California, Davis, CA, 95616
| | - Jens O Lagerstedt
- Department of Experimental Medical Science, Lund University, Lund, S-221 84, Sweden
| |
Collapse
|
43
|
Marullo R, Kastantin M, Drews LB, Tirrell M. Peptide contour length determines equilibrium secondary structure in protein-analogous micelles. Biopolymers 2016; 99:573-81. [PMID: 23794370 DOI: 10.1002/bip.22217] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/28/2013] [Indexed: 11/10/2022]
Abstract
This work advances bottom-up design of bioinspired materials built from peptide-amphiphiles, which are a class of bioconjugates in which a biofunctional peptide is covalently attached to a hydrophobic moiety that drives self-assembly in aqueous solution. Specifically, this work highlights the importance of peptide contour length in determining the equilibrium secondary structure of the peptide as well as the self-assembled (i.e., micelle) geometry. Peptides used here repeat a seven-amino acid sequence between one and four times to vary peptide contour length while maintaining similar peptide-peptide interactions. Without a hydrophobic tail, these peptides all exhibit a combination of random coil and α-helical structure. Upon self-assembly in the crowded environment of a micellar corona, however, short peptides are prone to β-sheet structure and cylindrical micelle geometry while longer peptides remain helical in spheroidal micelles. The transition to β-sheets in short peptides is rapid, whereby amphiphiles first self-assemble with α-helical peptide structure, then transition to their equilibrium β-sheet structure at a rate that depends on both temperature and ionic strength. These results identify peptide contour length as an important control over equilibrium peptide secondary structure and micelle geometry. Furthermore, the time-dependent nature of the helix-to-sheet transition opens the door for shape-changing bioinspired materials with tunable conversion rates.
Collapse
Affiliation(s)
- Rachel Marullo
- Department of Chemical Engineering, University of California, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
44
|
Abstract
PURPOSE OF REVIEW The review summarizes information pertaining to the preclinical development of new apolipoprotein (apo) E mimetic peptides that stimulate cellular cholesterol efflux. RECENT FINDINGS Small α-helical peptides based on the C-terminal domain of apoE have been developed for therapeutic applications. These peptides stimulate cellular cholesterol efflux via the ATP-binding cassette transporter A1 (ABCA1) with high potency, like native apolipoproteins on a molar basis. This potent activity has been related to the unique ability of these peptides to maintain α-helix structure upon dilution. Recent structure-activity studies improving the safety features of these mimetic peptides have greatly improved their potential for clinical use. These studies have identified structural features of the class A α-helix motif that induce muscle toxicity and hypertriglyceridemia, which may have implications for the design of other HDL mimetic peptides. SUMMARY ABCA1 is an integral membrane protein that plays a central role in biology. Its principal function is to mediate the efflux of cholesterol and phospholipid from cells to extracellular apo, preventing a build-up of excess cholesterol in membranes. This process generates HDL particles that perform a variety of functions to protect against disease. A number of these functions can be viewed as directly or indirectly supporting ABCA1 activity, thus constituting a positive feedback system to optimize cellular lipid efflux responses and disease prevention. Consequently, therapeutic approaches that mimic the activities of apos may prove highly effective to combat disease. One such approach involves the use of peptides. The broad biological relevance of ABCA1 suggests these apo mimetic peptides may be useful for the treatment of a number of diseases, such as atherosclerosis, diabetes, and Alzheimer's disease.
Collapse
Affiliation(s)
- John K Bielicki
- Donner Laboratory, Life Sciences Division, Lawrence Berkeley National Laboratory, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
45
|
Das S, Pal U, Chandra Maiti N. Metal ions provide structural stability and compactness to tetrameric purothionin. RSC Adv 2016. [DOI: 10.1039/c6ra16576a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metal ions impart structural stability to the purothionin tetramer.
Collapse
Affiliation(s)
- Swagata Das
- Structural Biology & Bioinformatics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Uttam Pal
- Structural Biology & Bioinformatics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| | - Nakul Chandra Maiti
- Structural Biology & Bioinformatics Division
- CSIR-Indian Institute of Chemical Biology
- Kolkata 700032
- India
| |
Collapse
|
46
|
Timucin E, Cousido-Siah A, Mitschler A, Podjarny A, Sezerman OU. Probing the roles of two tryptophans surrounding the unique zinc coordination site in lipase family I.5. Proteins 2015; 84:129-42. [DOI: 10.1002/prot.24961] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 10/09/2015] [Accepted: 11/06/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Emel Timucin
- Faculty of Engineering and Natural Sciences, Molecular Biology, Genetics and Bioengineering; Sabanci University; Istanbul 34956 Turkey
| | - Alexandra Cousido-Siah
- Department of Integrative Biology; Institut De Génétique Et De Biologie Moléculaire Et Cellulaire, CNRS, INSERM, UdS; 1 Rue Laurent Fries, 67404 Illkirch Cedex France
| | - André Mitschler
- Department of Integrative Biology; Institut De Génétique Et De Biologie Moléculaire Et Cellulaire, CNRS, INSERM, UdS; 1 Rue Laurent Fries, 67404 Illkirch Cedex France
| | - Alberto Podjarny
- Department of Integrative Biology; Institut De Génétique Et De Biologie Moléculaire Et Cellulaire, CNRS, INSERM, UdS; 1 Rue Laurent Fries, 67404 Illkirch Cedex France
| | - Osman Ugur Sezerman
- Department of Biostatistics and Medical Informatics, School of Medicine; Acibadem University; Atasehir Istanbul 34742 Turkey
| |
Collapse
|
47
|
Chaudhury S, Nordhues BA, Kaur K, Zhang N, De Guzman RN. Nuclear Magnetic Resonance Characterization of the Type III Secretion System Tip Chaperone Protein PcrG of Pseudomonas aeruginosa. Biochemistry 2015; 54:6576-85. [PMID: 26451841 DOI: 10.1021/acs.biochem.5b00664] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Lung infection with Pseudomonas aeruginosa is the leading cause of death among cystic fibrosis patients. To initiate infection, P. aeruginosa assembles a protein nanomachine, the type III secretion system (T3SS), to inject bacterial proteins directly into target host cells. An important regulator of the P. aeruginosa T3SS is the chaperone protein PcrG, which forms a complex with the tip protein, PcrV. In addition to its role as a chaperone to the tip protein, PcrG also regulates protein secretion. PcrG homologues are also important in the T3SS of other pathogens such as Yersinia pestis, the causative agent of bubonic plague. The atomic structure of PcrG or any member of the family of tip protein chaperones is currently unknown. Here, we show by circular dichroism and nuclear magnetic resonance (NMR) spectroscopy that PcrG lacks a tertiary structure. However, it is not completely disordered but contains secondary structures dominated by two long α-helices from residue 16 to 41 and from residue 55 to 76. The helices of PcrG are partially formed, have similar backbone dynamics, and are flexible. NMR titrations show that the entire length of PcrG residues from position 9 to 76 is involved in binding to PcrV. PcrG adds to the growing list of partially folded or unstructured proteins with important roles in type III secretion.
Collapse
Affiliation(s)
- Sukanya Chaudhury
- Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - Bryce A Nordhues
- Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - Kawaljit Kaur
- Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - Na Zhang
- Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| | - Roberto N De Guzman
- Department of Molecular Biosciences, University of Kansas , Lawrence, Kansas 66045, United States
| |
Collapse
|
48
|
Cabral KMS, Raymundo DP, Silva VS, Sampaio LAG, Johanson L, Hill LF, Almeida FCL, Cordeiro Y, Almeida MS. Biophysical Studies on BEX3, the p75NTR-Associated Cell Death Executor, Reveal a High-Order Oligomer with Partially Folded Regions. PLoS One 2015; 10:e0137916. [PMID: 26383250 PMCID: PMC4575080 DOI: 10.1371/journal.pone.0137916] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/23/2015] [Indexed: 12/27/2022] Open
Abstract
BEX3 (Brain Expressed X-linked protein 3) is a member of a mammal-specific placental protein family. Several studies have found the BEX proteins to be associated with neurodegeneration, the cell cycle and cancer. BEX3 has been predicted to be intrinsically disordered and also to represent an intracellular hub for cell signaling. The pro-apoptotic activity of BEX3 in association with a number of additional proteins has been widely supported; however, to the best of our knowledge, very limited data are available on the conformation of any of the members of the BEX family. In this study, we structurally characterized BEX3 using biophysical experimental data. Small angle X-ray scattering and atomic force microscopy revealed that BEX3 forms a specific higher-order oligomer that is consistent with a globular molecule. Solution nuclear magnetic resonance, partial proteinase K digestion, circular dichroism spectroscopy, and fluorescence techniques that were performed on the recombinant protein indicated that the structure of BEX3 is composed of approximately 31% α-helix and 20% β-strand, contains partially folded regions near the N- and C-termini, and a core which is proteolysis-resistant around residues 55-120. The self-oligomerization of BEX3 has been previously reported in cell culture and is consistent with our in vitro data.
Collapse
Affiliation(s)
- Katia M. S. Cabral
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diana P. Raymundo
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Viviane S. Silva
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laura A. G. Sampaio
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Laizes Johanson
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Fernando Hill
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio C. L. Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Yraima Cordeiro
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcius S. Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- Centro Nacional de Biologia Estrutural e Bioimagem (CENABIO), Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
49
|
Chaudhury S, de Azevedo Souza C, Plano GV, De Guzman RN. The LcrG Tip Chaperone Protein of the Yersinia pestis Type III Secretion System Is Partially Folded. J Mol Biol 2015; 427:3096-109. [PMID: 26259880 DOI: 10.1016/j.jmb.2015.07.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 07/31/2015] [Accepted: 07/31/2015] [Indexed: 11/29/2022]
Abstract
The type III secretion system (T3SS) is essential in the pathogenesis of Yersinia pestis, the causative agent of plague. A small protein, LcrG, functions as a chaperone to the tip protein LcrV, and the LcrG-LcrV interaction is important in regulating protein secretion through the T3SS. The atomic structure of the LcrG family is currently unknown. However, because of its predicted helical propensity, many have suggested that the LcrG family forms a coiled-coil structure. Here, we show by NMR and CD spectroscopy that LcrG lacks a tertiary structure and it consists of three partially folded α-helices spanning residues 7-38, 41-46, and 58-73. NMR titrations of LcrG with LcrV show that the entire length of a truncated LcrG (residues 7-73) is involved in binding to LcrV. However, there is regional variation in how LcrG binds to LcrV. The C-terminal region of a truncated LcrG (residues 52-73) shows tight binding interaction with LcrV while the N-terminal region (residues 7-51) shows weaker interaction with LcrV. This suggests that there are at least two binding events when LcrG binds to LcrV. Biological assays and mutagenesis indicate that the C-terminal region of LcrG (residues 52-73) is important in blocking protein secretion through the T3SS. Our results reveal structural and mechanistic insights into the atomic conformation of LcrG and how it binds to LcrV.
Collapse
Affiliation(s)
- Sukanya Chaudhury
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 USA
| | - Clarice de Azevedo Souza
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Roberto N De Guzman
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045 USA.
| |
Collapse
|
50
|
Dong Z, Wang Y, Wang C, Xu H, Guan L, Li Z, Li F. Self-Assembly of the Second Transmembrane Domain of hCtr1 in Micelles and Interaction with Silver Ion. J Phys Chem B 2015; 119:8302-12. [PMID: 26061257 DOI: 10.1021/acs.jpcb.5b03744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Human copper transporter 1 (hCtr1) transports copper and silver by a homotrimer. The protein contains three transmembrane domains in which the second transmembrane domain (TMD2) is a key component lining the central pore of the trimer. The MXXXM motif in the C-terminal end of TMD2 plays a significant role in the function of hCtr1. In this study, we characterized the structure and assembly of isolated TMD2 of hCtr1 in sodium dodecyl sulfate (SDS) micelles and the interaction of the micelle-bound peptide with silver ion using nuclear magnetic resonance, circular dichroism, isothermal titration calorimetry and electrophoresis techniques. We detected the formation of a trimer of the isolated hCtr1-TMD2 in SDS micelles and the binding of the trimer to Ag(I) by a chemical stoichiometry of 3:2 of peptide:Ag(I). We showed that either an intensive pretreatment of the TMD2 peptide by 1,1,1,3,3,3-hexafluoro-2-propanol solvent or a conversion from methionine to leucine in the MXXXM motif changes the aggregation structure of the peptide and decreases the binding affinity by 1 order of magnitude. Our results suggest that the intrinsic interaction of the second transmembrane domain itself may be closely associated with the formation of hCtr1 pore in cellular membranes, and two methionine residues in the MXXXM motif may be important for TMD2 both in the trimeric assembly and in a higher-affinity binding to Ag(I).
Collapse
Affiliation(s)
- Zhe Dong
- †State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, PR China
| | - Yunrui Wang
- †State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, PR China
| | - Chunyu Wang
- †State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, PR China
| | | | - Liping Guan
- †State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, PR China
| | | | - Fei Li
- †State Key Laboratory of Supramolecular Structure and Materials, Jilin University, 2699 Qianjin Avenue, Changchun 130012, PR China
| |
Collapse
|