1
|
Chujo T, Tomizawa K. Mitochondrial tRNA modifications: functions, diseases caused by their loss, and treatment strategies. RNA (NEW YORK, N.Y.) 2025; 31:382-394. [PMID: 39719325 PMCID: PMC11874988 DOI: 10.1261/rna.080257.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/19/2024] [Indexed: 12/26/2024]
Abstract
Mitochondrial tRNA (mt-tRNA) modifications play pivotal roles in decoding and sustaining tRNA stability, thereby enabling the synthesis of essential respiratory complex proteins in mitochondria. Consequently, loss of human mt-tRNA modifications caused by mutations in the mitochondrial or nuclear genome can cause life-threatening mitochondrial diseases such as encephalopathy and cardiomyopathy. In this article, we first provide a comprehensive overview of the functions of mt-tRNA modifications, the responsible modification enzymes, and the diseases caused by the loss of mt-tRNA modifications. We then discuss progress and potential strategies to treat these diseases, including taurine supplementation for MELAS patients, targeted deletion of mtDNA variants, and overexpression of modification-related proteins. Finally, we discuss factors that need to be overcome to cure "mitochondrial tRNA modopathies."
Collapse
Affiliation(s)
- Takeshi Chujo
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Kazuhito Tomizawa
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| |
Collapse
|
2
|
Wilhelm CA, Kaitany K, Kelly A, Yacoub M, Koutmos M. The protein-only RNase Ps, endonucleases that cleave pre-tRNA: Biological relevance, molecular architectures, substrate recognition and specificity, and protein interactomes. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1836. [PMID: 38453211 PMCID: PMC11740979 DOI: 10.1002/wrna.1836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/27/2024] [Accepted: 02/06/2024] [Indexed: 03/09/2024]
Abstract
Protein-only RNase P (PRORP) is an essential enzyme responsible for the 5' maturation of precursor tRNAs (pre-tRNAs). PRORPs are classified into three categories with unique molecular architectures, although all three classes of PRORPs share a mechanism and have similar active sites. Single subunit PRORPs, like those found in plants, have multiple isoforms with different localizations, substrate specificities, and temperature sensitivities. Most recently, Arabidopsis thaliana PRORP2 was shown to interact with TRM1A and B, highlighting a new potential role between these enzymes. Work with At PRORPs led to the development of a ribonuclease that is being used to protect against plant viruses. The mitochondrial RNase P complex, found in metazoans, consists of PRORP, TRMT10C, and SDR5C1, and has also been shown to have substrate specificity, although the cause is unknown. Mutations in mitochondrial tRNA and mitochondrial RNase P have been linked to human disease, highlighting the need to continue understanding this complex. The last class of PRORPs, homologs of Aquifex RNase P (HARPs), is found in thermophilic archaea and bacteria. This most recently discovered type of PRORP forms a large homo-oligomer complex. Although numerous structures of HARPs have been published, it is still unclear how HARPs bind pre-tRNAs and in what ratio. There is also little investigation into the substrate specificity and ideal conditions for HARPs. Moving forward, further work is required to fully characterize each of the three classes of PRORP, the pre-tRNA binding recognition mechanism, the rules of substrate specificity, and how these three distinct classes of PRORP evolved. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
| | - Kipchumba Kaitany
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| | - Abigail Kelly
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew Yacoub
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
| | - Markos Koutmos
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, USA
- Program in Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
3
|
Loguercio Polosa P, Capriglia F, Bruni F. Molecular Investigation of Mitochondrial RNA19 Role in the Pathogenesis of MELAS Disease. Life (Basel) 2023; 13:1863. [PMID: 37763267 PMCID: PMC10532844 DOI: 10.3390/life13091863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
In mammalian mitochondria, the processing of primary RNA transcripts involves a coordinated series of cleavage and modification events, leading to the formation of processing intermediates and mature mt-RNAs. RNA19 is an unusually stable unprocessed precursor, physiologically polyadenylated, which includes the 16S mt-rRNA, the mt-tRNALeuUUR and the mt-ND1 mRNA. These peculiarities, together with the alteration of its steady-state levels in cellular models with defects in mitochondrial function, make RNA19 a potentially important molecule for the physiological regulation of mitochondrial molecular processes as well as for the pathogenesis of mitochondrial diseases. In this work, we quantitatively and qualitatively examined RNA19 in MELAS trans-mitochondrial cybrids carrying the mtDNA 3243A>G transition and displaying a profound mitochondrial translation defect. Through a combination of isokinetic sucrose gradient and RT-qPCR experiments, we found that RNA19 accumulated and co-sedimented with the mitoribosomal large subunit (mt-LSU) in mutant cells. Intriguingly, exogenous expression of the isolated LARS2 C-terminal domain (Cterm), which was shown to rescue defective translation in MELAS cybrids, decreased the levels of mt-LSU-associated RNA19 by relegating it to the pool of free unbound RNAs. Overall, the data reported here support a regulatory role for RNA19 in mitochondrial physiopathological processes, designating this RNA precursor as a possible molecular target in view of therapeutic strategy development.
Collapse
Affiliation(s)
| | | | - Francesco Bruni
- Department of Biosciences, Biotechnologies and Environment, University of Bari ‘Aldo Moro’, 70125 Bari, Italy; (P.L.P.); (F.C.)
| |
Collapse
|
4
|
Ryytty S, Hämäläinen RH. The Mitochondrial m.3243A>G Mutation on the Dish, Lessons from In Vitro Models. Int J Mol Sci 2023; 24:13478. [PMID: 37686280 PMCID: PMC10487608 DOI: 10.3390/ijms241713478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
The m.3243A>G mutation in the tRNA Leu(UUR) gene (MT-TL1) is one of the most common pathogenic point mutations in human mtDNA. Patient symptoms vary widely and the severity of the disease ranges from asymptomatic to lethal. The reason for the high heterogeneity of m.3243A>G-associated disease is still unknown, and the treatment options are limited, with only supportive interventions available. Furthermore, the heteroplasmic nature of the m.3243A>G mutation and lack of specific animal models of mtDNA mutations have challenged the study of m.3243A>G, and, besides patient data, only cell models have been available for studies. The most commonly used cell models are patient derived, such as fibroblasts and induced pluripotent stem cell (iPSC)-derived models, and cybrid models where the mutant DNA is transferred to an acceptor cell. Studies on cell models have revealed cell-type-specific effects of the m.3243A>G mutation and that the tolerance for this mutation varies between cell types and between patients. In this review, we summarize the literature on the effects of m.3243A>G in cell models.
Collapse
Affiliation(s)
| | - Riikka H. Hämäläinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland;
| |
Collapse
|
5
|
Tomoda E, Nagao A, Shirai Y, Asano K, Suzuki T, Battersby B, Suzuki T. Restoration of mitochondrial function through activation of hypomodified tRNAs with pathogenic mutations associated with mitochondrial diseases. Nucleic Acids Res 2023; 51:7563-7579. [PMID: 36928678 PMCID: PMC10415153 DOI: 10.1093/nar/gkad139] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/14/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Mutations in mitochondrial (mt-)tRNAs frequently cause mitochondrial dysfunction. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), and myoclonus epilepsy associated with ragged red fibers (MERRF) are major clinical subgroups of mitochondrial diseases caused by pathogenic point mutations in tRNA genes encoded in mtDNA. We previously reported a severe reduction in the frequency of 5-taurinomethyluridine (τm5U) and its 2-thiouridine derivative (τm5s2U) in the anticodons of mutant mt-tRNAs isolated from the cells of patients with MELAS and MERRF, respectively. The hypomodified tRNAs fail to decode cognate codons efficiently, resulting in defective translation of respiratory chain proteins in mitochondria. To restore the mitochondrial activity of MELAS patient cells, we overexpressed MTO1, a τm5U-modifying enzyme, in patient-derived myoblasts. We used a newly developed primer extension method and showed that MTO1 overexpression almost completely restored the τm5U modification of the MELAS mutant mt-tRNALeu(UUR). An increase in mitochondrial protein synthesis and oxygen consumption rate suggested that the mitochondrial function of MELAS patient cells can be activated by restoring the τm5U of the mutant tRNA. In addition, we confirmed that MTO1 expression restored the τm5s2U of the mutant mt-tRNALys in MERRF patient cells. These findings pave the way for epitranscriptomic therapies for mitochondrial diseases.
Collapse
Affiliation(s)
- Ena Tomoda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Yuki Shirai
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kana Asano
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
RNA modifications in aging-associated cardiovascular diseases. Aging (Albany NY) 2022; 14:8110-8136. [PMID: 36178367 PMCID: PMC9596201 DOI: 10.18632/aging.204311] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 09/17/2022] [Indexed: 11/25/2022]
Abstract
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide that bears an enormous healthcare burden and aging is a major contributing factor to CVDs. Functional gene expression network during aging is regulated by mRNAs transcriptionally and by non-coding RNAs epi-transcriptionally. RNA modifications alter the stability and function of both mRNAs and non-coding RNAs and are involved in differentiation, development, and diseases. Here we review major chemical RNA modifications on mRNAs and non-coding RNAs, including N6-adenosine methylation, N1-adenosine methylation, 5-methylcytidine, pseudouridylation, 2′ -O-ribose-methylation, and N7-methylguanosine, in the aging process with an emphasis on cardiovascular aging. We also summarize the currently available methods to detect RNA modifications and the bioinformatic tools to study RNA modifications. More importantly, we discussed the specific implication of the RNA modifications on mRNAs and non-coding RNAs in the pathogenesis of aging-associated CVDs, including atherosclerosis, hypertension, coronary heart diseases, congestive heart failure, atrial fibrillation, peripheral artery disease, venous insufficiency, and stroke.
Collapse
|
7
|
Yu X, Li S, Ding Y. Maternally transmitted nonsyndromic hearing impairment may be associated with mitochondrial tRNA Ala 5601C>T and tRNA Leu(CUN) 12311T>C mutations. J Clin Lab Anal 2022; 36:e24298. [PMID: 35218233 PMCID: PMC8993639 DOI: 10.1002/jcla.24298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Sequence alternations in mitochondrial genomes, especially in genes encoding mitochondrial tRNA (mt-tRNA), were the important contributors to nonsyndromic hearing loss (NSHL); however, the molecular mechanisms remained largely undetermined. METHODS A maternally transmitted Chinese pedigree with NSHL underwent clinical, genetic, and biochemical assessment. PCR and direct sequence analyses were performed to detect mitochondrial DNA (mtDNA), GJB2, and SLC26A4 gene mutations from matrilineal relatives of this family. Mitochondrial functions including mitochondrial membrane potential (MMP), ATP, and ROS were evaluated in polymononuclear leukocytes (PMNs) derived from three deaf patients and three controls from this pedigree. RESULTS Four of nine matrilineal relatives developed hearing loss at the variable age of onset. Two putative pathogenic mutations, m.5601C>T in tRNAAla and m.12311T>C in tRNALeu(CUN) , were identified via PCR-Sanger sequencing, as well as 34 variants that belonged to mtDNA haplogroup G2b2. Intriguingly, m.5601C>T mutation resided at very conserved nucleotide in the TψC loop of tRNAAla (position 59), while the T-to-C substitution at position 12311 located at position 48 in the variable stem of tRNALeu(CUN) and was believed to alter the aminoacylation and the steady-state level of tRNA. Biochemical analysis revealed the impairment of mitochondrial functions including the significant reductions of ATP and MMP, whereas markedly increased ROS levels were found in PMNs derived from NSHL patients with m.5601C>T and m.12311T>C mutations. However, we did not detect any mutations in GJB2 and SLC26A4 genes. CONCLUSION Our data indicated that mt-tRNAAla m.5601C>T and tRNALeu(CUN) 12311T>C mutations were associated with NSHL.
Collapse
Affiliation(s)
- Xuejiao Yu
- Department of Clinical LaboratoryQuzhou People's Hospitalthe Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhouChina
| | - Sheng Li
- Department of OtolaryngologyQuzhou People's Hospitalthe Quzhou Affiliated Hospital of Wenzhou Medical UniversityQuzhouChina
| | - Yu Ding
- Central LaboratoryHangzhou First People’s HospitalZhejiang University School of MedicineHangzhouChina
| |
Collapse
|
8
|
Karasik A, Wilhelm CA, Fierke CA, Koutmos M. Disease-associated mutations in mitochondrial precursor tRNAs affect binding, m1R9 methylation, and tRNA processing by mtRNase P. RNA (NEW YORK, N.Y.) 2021; 27:420-432. [PMID: 33380464 PMCID: PMC7962481 DOI: 10.1261/rna.077198.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Mitochondrial diseases linked to mutations in mitochondrial (mt) tRNA sequences are common. However, the contributions of these tRNA mutations to the development of diseases is mostly unknown. Mutations may affect interactions with (mt)tRNA maturation enzymes or protein synthesis machinery leading to mitochondrial dysfunction. In human mitochondria, in most cases the first step of tRNA processing is the removal of the 5' leader of precursor tRNAs (pre-tRNA) catalyzed by the three-component enzyme, mtRNase P. Additionally, one component of mtRNase P, mitochondrial RNase P protein 1 (MRPP1), catalyzes methylation of the R9 base in pre-tRNAs. Despite the central role of 5' end processing in mitochondrial tRNA maturation, the link between mtRNase P and diseases is mostly unexplored. Here, we investigate how 11 different human disease-linked mutations in (mt)pre-tRNAIle, (mt)pre-tRNALeu(UUR), and (mt)pre-tRNAMet affect the activities of mtRNase P. We find that several mutations weaken the pre-tRNA binding affinity (KD s are approximately two- to sixfold higher than that of wild-type), while the majority of mutations decrease 5' end processing and methylation activity catalyzed by mtRNase P (up to ∼55% and 90% reduction, respectively). Furthermore, all of the investigated mutations in (mt)pre-tRNALeu(UUR) alter the tRNA fold which contributes to the partial loss of function of mtRNase P. Overall, these results reveal an etiological link between early steps of (mt)tRNA-substrate processing and mitochondrial disease.
Collapse
Affiliation(s)
- Agnes Karasik
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | - Catherine A Wilhelm
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Carol A Fierke
- Department of Chemistry, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109, USA
- Department of Chemistry, Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas 77843, USA
| | - Markos Koutmos
- Department of Chemistry, Program in Biophysics, University of Michigan, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
9
|
Mitochondrial DNA A3243G variant-associated retinopathy: Current perspectives and clinical implications. Surv Ophthalmol 2021; 66:838-855. [PMID: 33610586 DOI: 10.1016/j.survophthal.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022]
Abstract
Cellular function and survival are critically dependent on the proper functionality of the mitochondrion. Neurodegenerative cellular processes including cellular adenosine triphosphate production, intermediary metabolism control, and apoptosis regulation are all mitochondrially mediated. The A to G transition at position 3243 in the mitochondrial MTTL1 gene that encodes for the leucine transfer RNA (m.3243A>G) causes a variety of diseases, including maternally inherited loss of hearing and diabetes syndrome (MIDD), mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes syndrome (MELAS). Ophthalmological findings-including posterior sub-capsular cataract, ptosis, external ophthalmoplegia, and pigmentary retinopathy- have all been associated with the m.3243A>G variant. Pigmentary retinopathy is, however, the most common ocular finding, occurring in 38% to 86% of cases. To date, little is known about the pathogenesis, natural history, and heteroplasmic and phenotypic correlations of m.3243A>G-associated pigmentary retinopathy. We summarize the current understanding of mitochondrial genetics and pathogenesis of some associated diseases. We then review the pathophysiology, histology, clinical features, treatment, and important ocular and systemic phenotypic manifestations of m.3243A>G variant associated retinopathy. Mitochondrial diseases require a multidisciplinary team approach to ensure effective treatment, regular follow-up, and accurate genetic counseling.
Collapse
|
10
|
Erber L, Hoffmann A, Fallmann J, Betat H, Stadler PF, Mörl M. LOTTE-seq (Long hairpin oligonucleotide based tRNA high-throughput sequencing): specific selection of tRNAs with 3'-CCA end for high-throughput sequencing. RNA Biol 2020; 17:23-32. [PMID: 31486704 PMCID: PMC6948972 DOI: 10.1080/15476286.2019.1664250] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
Transfer RNAs belong to the most abundant type of ribonucleic acid in the cell, and detailed investigations revealed correlations between alterations in the tRNA pool composition and certain diseases like breast cancer. However, currently available methods do not sample the entire tRNA pool or lack specificity for tRNAs. A specific disadvantage of such methods is that only full-length tRNAs are analysed, while tRNA fragments or incomplete cDNAs due to RT stops at modified nucleosides are lost. Another drawback in certain approaches is that the tRNA fraction has to be isolated and separated from high molecular weight RNA, resulting in considerable labour costs and loss of material. Based on a hairpin-shaped adapter oligonucleotide selective for tRNA transcripts, we developed a highly specific protocol for efficient and comprehensive high-throughput analysis of tRNAs that combines the benefits of existing methods and eliminates their disadvantages. Due to a 3'-TGG overhang, the adapter is specifically ligated to the tRNA 3'-CCA end. Reverse transcription prior to the ligation of a second adapter allows to include prematurely terminated cDNA products, increasing the number of tRNA reads. This strategy renders this approach a powerful and universal tool to analyse the tRNA pool of cells and organisms under different conditions in health and disease.
Collapse
Affiliation(s)
- Lieselotte Erber
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Anne Hoffmann
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Jörg Fallmann
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| | - Peter F. Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, Leipzig University, Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions, and Leipzig Research Center for Civilization Diseases, Leipzig University, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, Leipzig, Germany
- Facultad de Ciencias, Universidad Nacional de Colombia, Sede Botoga, Colombia
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria
- Department of Theoretical Chemistry of the University of Vienna, Vienna, Austria
| | - Mario Mörl
- Institute for Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
11
|
Florentz C, Giegé R. History of tRNA research in strasbourg. IUBMB Life 2019; 71:1066-1087. [PMID: 31185141 DOI: 10.1002/iub.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/06/2019] [Indexed: 01/03/2023]
Abstract
The tRNA molecules, in addition to translating the genetic code into protein and defining the second genetic code via their aminoacylation by aminoacyl-tRNA synthetases, act in many other cellular functions and dysfunctions. This article, illustrated by personal souvenirs, covers the history of ~60 years tRNA research in Strasbourg. Typical examples point up how the work in Strasbourg was a two-way street, influenced by and at the same time influencing investigators outside of France. All along, research in Strasbourg has nurtured the structural and functional diversity of tRNA. It produced massive sequence and crystallographic data on tRNA and its partners, thereby leading to a deeper physicochemical understanding of tRNA architecture, dynamics, and identity. Moreover, it emphasized the role of nucleoside modifications and in the last two decades, highlighted tRNA idiosyncrasies in plants and organelles, together with cellular and health-focused aspects. The tRNA field benefited from a rich local academic heritage and a strong support by both university and CNRS. Its broad interlinks to the worldwide community of tRNA researchers opens to an exciting future. © 2019 IUBMB Life, 2019 © 2019 IUBMB Life, 71(8):1066-1087, 2019.
Collapse
Affiliation(s)
- Catherine Florentz
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France.,Direction de la Recherche et de la Valorisation, Université de Strasbourg, F-67084, 4 rue Blaise Pascal, Strasbourg, France
| | - Richard Giegé
- Architecture et Réactivité de l'ARN, UPR 9002, Institut de Biologie Moléculaire et Cellulaire, CNRS and Université de Strasbourg, F-67084, 15 rue René Descartes, Strasbourg, France
| |
Collapse
|
12
|
Kwon S, Kim SS, Nebeck HE, Ahn EH. Immortalization of Different Breast Epithelial Cell Types Results in Distinct Mitochondrial Mutagenesis. Int J Mol Sci 2019; 20:E2813. [PMID: 31181796 PMCID: PMC6600575 DOI: 10.3390/ijms20112813] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 06/02/2019] [Indexed: 11/16/2022] Open
Abstract
Different phenotypes of normal cells might influence genetic profiles, epigenetic profiles, and tumorigenicities of their transformed derivatives. In this study, we investigate whether the whole mitochondrial genome of immortalized cells can be attributed to the different phenotypes (stem vs. non-stem) of their normal epithelial cell originators. To accurately determine mutations, we employed Duplex Sequencing, which exhibits the lowest error rates among currently-available DNA sequencing methods. Our results indicate that the vast majority of the observed mutations of the whole mitochondrial DNA occur at low-frequency (rare mutations). The most prevalent rare mutation types are C→T/G→A and A→G/T→C transitions. Frequencies and spectra of homoplasmic point mutations are virtually identical between stem cell-derived immortalized (SV1) cells and non-stem cell-derived immortalized (SV22) cells, verifying that both cell types were derived from the same woman. However, frequencies of rare point mutations are significantly lower in SV1 cells (5.79 × 10-5) than in SV22 cells (1.16 × 10-4). The significantly lower frequencies of rare mutations are aligned with a finding of longer average distances to adjacent mutations in SV1 cells than in SV22 cells. Additionally, the predicted pathogenicity for rare mutations in the mitochondrial tRNA genes tends to be lower (by 2.5-fold) in SV1 cells than in SV22 cells. While four known/confirmed pathogenic mt-tRNA mutations (m.5650 G>A, m.5521 G>A, m.5690 A>G, m.1630 A>G) were identified in SV22 cells, no such mutations were observed in SV1 cells. Our findings suggest that the immortalization of normal cells with stem cell features leads to decreased mitochondrial mutagenesis, particularly in RNA gene regions. The mutation spectra and mutations specific to stem cell-derived immortalized cells (vs. non-stem cell derived) have implications in characterizing the heterogeneity of tumors and understanding the role of mitochondrial mutations in the immortalization and transformation of human cells.
Collapse
Affiliation(s)
- Sujin Kwon
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | - Susan S Kim
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Howard E Nebeck
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
| | - Eun Hyun Ahn
- Department of Pathology, University of Washington, Seattle, WA 98195, USA.
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
13
|
Ding Y, Xia BH, Zhuo GC, Zhang CJ, Leng JH. Premature ovarian insufficiency may be associated with the mutations in mitochondrial tRNA genes. Endocr J 2019; 66:81-88. [PMID: 30404982 DOI: 10.1507/endocrj.ej18-0308] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Premature ovarian insufficiency (POI) is a common endocrine disorder featured by the triad constituting of amenorrhea for at least four months, to date, the molecular pathogenesis of POI is largely undetermined. Despite several investigations have reported an increase in reactive oxygen species (ROS) content in idiopathic POI, the role of mitochondrial DNA (mtDNA) mutations/variants in the progression of POI has not been widely investigated. The current study aimed to explore the association between mt-tRNA mutations/variants and POI; we first used the PCR-Sanger sequencing to detect the mutations/variants in mt-tRNA genes from 50 POI patients and 30 healthy subjects. In addition, we evaluated the mitochondrial functions by using trans-mitochondrial cybrid cells containing these potential pathogenic mt-tRNA mutations. Consequently, five mutations: tRNALeu(UUR) C3303T, tRNAMet A4435G, tRNAGln T4363C, tRNACys G5821A and tRNAThr A15951G were identified. Notably, these mutations occurred at the extremely conserved nucleotides of the corresponding mt-tRNAs and may result the failure in mt-tRNA metabolism and subsequently lead to the impairment in mitochondrial protein synthesis. Furthermore, biochemical and molecular analyses of the cybrid cells containing these mutations showed a significantly lower level of ATP production when compared with the controls, whereas the ROS levels were much higher in POI patients carrying these mt-tRNA mutations, strongly indicated that these mt-tRNA mutations may cause the mitochondrial dysfunction, and play active roles in the progression and pathogensis of POI. Together, this study shaded additional light on the molecular mechanism of POI that was manifestated by mt-tRNA mutations.
Collapse
Affiliation(s)
- Yu Ding
- Central Laboratory, Hangzhou First People's Hospital, Zhejiang University, School of Medicine, Hangzhou, 310006, China
| | - Bo-Hou Xia
- Department of Pharmacy, Hunan Chinese Medical University, Changsha, 410208, China
| | - Guang-Chao Zhuo
- Central Laboratory, Hangzhou First People's Hospital, Zhejiang University, School of Medicine, Hangzhou, 310006, China
| | - Cai-Juan Zhang
- Department of Gynecology and Obstetrics, Hangzhou First People's Hospital, Zhejiang University, School of Medicine, Hangzhou 310006, China
| | - Jian-Hang Leng
- Central Laboratory, Hangzhou First People's Hospital, Zhejiang University, School of Medicine, Hangzhou, 310006, China
| |
Collapse
|
14
|
Analysis of mitochondrial function in human induced pluripotent stem cells from patients with mitochondrial diabetes due to the A3243G mutation. Sci Rep 2018; 8:949. [PMID: 29343702 PMCID: PMC5772054 DOI: 10.1038/s41598-018-19264-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/16/2017] [Indexed: 01/19/2023] Open
Abstract
We previously established human induced pluripotent stem (iPS) cells in two diabetic patients from different families with the mitochondrial A3243G mutation and isolated isogenic iPS cell clones with either undetectable or high levels of the mutation in both patients. In the present study, we analyzed the mitochondrial functions of two mutation-undetectable and two mutation-high clones in each patient through four methods to assess complex I activity, mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production. In the first patient, complex I activity, mitochondrial respiration, and mitochondrial ATP production were decreased in the mutation-high clones compared with the mutation-undetectable clones, and mitochondrial membrane potential was decreased in a mutation-high clone compared with a mutation-undetectable clone. In the second patient, complex I activity was decreased in one mutation-high clone compared with the other clones. The other parameters showed no differences in any clones. In addition, the complex I activity and mitochondrial respiration of the mutation-undetectable clones from both patients were located in the range of those of iPS cells from healthy subjects. The present study suggests that the mitochondrial function of the mutation-undetectable iPS cell clones obtained from two patients with the A3243G mutation is comparable to the control iPS cells.
Collapse
|
15
|
Reinhard L, Sridhara S, Hällberg BM. The MRPP1/MRPP2 complex is a tRNA-maturation platform in human mitochondria. Nucleic Acids Res 2017; 45:12469-12480. [PMID: 29040705 PMCID: PMC5716156 DOI: 10.1093/nar/gkx902] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/25/2017] [Indexed: 11/22/2022] Open
Abstract
Mitochondrial polycistronic transcripts are extensively processed to give rise to functional mRNAs, rRNAs and tRNAs; starting with the release of tRNA elements through 5′-processing by RNase P (MRPP1/2/3-complex) and 3′-processing by RNase Z (ELAC2). Here, we show using in vitro experiments that MRPP1/2 is not only a component of the mitochondrial RNase P but that it retains the tRNA product from the 5′-processing step and significantly enhances the efficiency of ELAC2-catalyzed 3′-processing for 17 of the 22 tRNAs encoded in the human mitochondrial genome. Furthermore, MRPP1/2 retains the tRNA product after ELAC2 processing and presents the nascent tRNA to the mitochondrial CCA-adding enzyme. Thus, in addition to being an essential component of the RNase P reaction, MRPP1/2 serves as a processing platform for several down-stream tRNA maturation steps in human mitochondria. These findings are of fundamental importance for our molecular understanding of disease-related mutations in MRPP1/2, ELAC2 and mitochondrial tRNA genes.
Collapse
Affiliation(s)
- Linda Reinhard
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology (CSSB), DESY-Campus, 22607 Hamburg, Germany
| | - Sagar Sridhara
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology (CSSB), DESY-Campus, 22607 Hamburg, Germany
| | - B Martin Hällberg
- Department of Cell and Molecular Biology, Karolinska Institutet, 17177 Stockholm, Sweden.,Röntgen-Ångström-Cluster, Karolinska Institutet Outstation, Centre for Structural Systems Biology (CSSB), DESY-Campus, 22607 Hamburg, Germany.,European Molecular Biology Laboratory, Hamburg Unit, 22603 Hamburg, Germany
| |
Collapse
|
16
|
Liu Y, Li Y, Zhu C, Tian L, Guan M, Chen Y. Mitochondrial biogenesis dysfunction and metabolic dysfunction from a novel mitochondrial tRNA Met 4467 C>A mutation in a Han Chinese family with maternally inherited hypertension. Sci Rep 2017; 7:3034. [PMID: 28596595 PMCID: PMC5465199 DOI: 10.1038/s41598-017-03303-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 04/13/2017] [Indexed: 11/21/2022] Open
Abstract
To investigate the relationship between mitochondrial DNA (mtDNA) and hypertension as well as the mechanism involved in mitochondrial metabolic dysfunction. We identified a novel tRNAMet C4467A mutation in a Han Chinese family with hypertension. The maternal members presented with increased glucose, total cholesterol, low-density lipoprotein, and serum sodium as well as decreased potassium compared with non-maternal members (P < 0.05). Segregation analysis showed this mutation was maternally inherited. We analyzed lymphocyte cell lines derived from three maternal and three non-maternal family members. Reactive oxygen species production in the mutant cell lines was 114.5% higher compared with that in controls (P < 0.05) while ATP was 26.4% lower. The mitochondrial membrane potential of the mutated cell lines was 26.2% lower than that in controls (P < 0.05). Oxygen consumption rates were decreased in the mutant cell lines (P < 0.05). The activation of caspase-3/7 was 104.1% higher in the mutant cell lines compared with controls (P < 0.05). The expression of voltage-dependent anion channel (VDAC), Bax and apoptosis-inducing factor (AIF) in the mutant cell lines was higher compared with that in controls, with the increased colocalization of VDAC and Bax. Therefore, this mutation contributes to oxidative stress and mitochondrial biogenesis dysfunction, which may be involved in the pathogenesis of hypertension.
Collapse
Affiliation(s)
- Yuqi Liu
- Cardiac department of Chinese PLA General Hospital, Beijing, 100853, China
| | - Yang Li
- Cardiac department of Chinese PLA General Hospital, Beijing, 100853, China
- Institute of Geriatric Cardiology of Chinese PLA General Hospital, Beijing, 100853, China
| | - Chao Zhu
- Cardiac department of Chinese PLA General Hospital, Beijing, 100853, China
| | - Liuyang Tian
- Cardiac department of People's Hospital of Tianjing, Tianjing, 300121, China
| | - Minxin Guan
- Institute of Genetics, Zhejiang University and Department of Genetics, Zhejiang University, School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Yundai Chen
- Cardiac department of Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
17
|
Siira SJ, Shearwood AMJ, Bracken CP, Rackham O, Filipovska A. Defects in RNA metabolism in mitochondrial disease. Int J Biochem Cell Biol 2017; 85:106-113. [PMID: 28189843 DOI: 10.1016/j.biocel.2017.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/25/2017] [Accepted: 02/07/2017] [Indexed: 12/16/2022]
Abstract
The expression of mitochondrially-encoded genes requires the efficient processing of long precursor RNAs at the 5' and 3' ends of tRNAs, a process which, when disrupted, results in disease. Two such mutations reside within mt-tRNALeu(UUR); a m.3243A>G transition, which is the most common cause of MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes), and m.3302A>G which often causes mitochondrial myopathy (MM). We used parallel analysis of RNA ends (PARE) that captures the 5' terminal end of 5'-monophosphorylated mitochondrial RNAs to compare the effects of the m.3243A>G and m.3302A>G mutations on mitochondrial tRNA processing and downstream RNA metabolism. We confirmed previously identified RNA processing defects, identified common internal cleavage sites and new sites unique to the m.3243A>G mutants that do not correspond to transcript ends. These sites occur in regions of predicted RNA secondary structure, or are in close proximity to such regions, and may identify regions of importance to the processing of mtRNAs.
Collapse
Affiliation(s)
- Stefan J Siira
- Harry Perkins Institute of Medical Research and Centre for Medical Research, Level 7 QQ Block, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - Anne-Marie J Shearwood
- Harry Perkins Institute of Medical Research and Centre for Medical Research, Level 7 QQ Block, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia
| | - Cameron P Bracken
- Division of Human Immunology, Centre for Cancer Biology, SA Pathology, Adelaide, SA 5000, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, Level 7 QQ Block, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Molecular Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, Level 7 QQ Block, QEII Medical Centre, 6 Verdun Street, Nedlands, WA 6009, Australia; School of Molecular Sciences, The University of Western Australia, Nedlands, Western Australia 6009, Australia.
| |
Collapse
|
18
|
Tseng MH, Hsia SH, Chi CS, Lin JL, Lin JJ, Lin SH. Exertional rhabdomyolysis, profound lactic acidosis, and acute kidney injury in a young boy: Answers. Pediatr Nephrol 2016; 31:1607-10. [PMID: 26156707 DOI: 10.1007/s00467-015-3150-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 06/10/2015] [Accepted: 06/12/2015] [Indexed: 11/26/2022]
Affiliation(s)
- Min-Hua Tseng
- Division of Nephrology, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China
| | - Shao-Hsuan Hsia
- Division of Pediatric Critical Care and Emergency Medicine, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Ching-Shiang Chi
- Department of Pediatrics, Tungs' Taichung Metroharbor Hospital, Taichung, Taiwan, Republic of China
| | - Ju-Li Lin
- Division of Medical Genetics, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taichung, Taiwan, Republic of China
| | - Jainn-Jim Lin
- Division of Pediatric Critical Care and Emergency Medicine, Department of Pediatrics, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan, Republic of China
| | - Shih-Hua Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan, Republic of China.
- Division of Nephrology, Department of Medicine, Tri-service General Hospital, No. 325 Cheng-Kung Road, Section 2, Neihu 114, Taipei, Taiwan, Republic of China.
| |
Collapse
|
19
|
Van Haute L, Pearce SF, Powell CA, D’Souza AR, Nicholls TJ, Minczuk M. Mitochondrial transcript maturation and its disorders. J Inherit Metab Dis 2015; 38:655-80. [PMID: 26016801 PMCID: PMC4493943 DOI: 10.1007/s10545-015-9859-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 04/27/2015] [Accepted: 04/29/2015] [Indexed: 11/03/2022]
Abstract
Mitochondrial respiratory chain deficiencies exhibit a wide spectrum of clinical presentations owing to defective mitochondrial energy production through oxidative phosphorylation. These defects can be caused by either mutations in the mitochondrial DNA (mtDNA) or mutations in nuclear genes coding for mitochondrially-targeted proteins. The underlying pathomechanisms can affect numerous pathways involved in mitochondrial biology including expression of mtDNA-encoded genes. Expression of the mitochondrial genes is extensively regulated at the post-transcriptional stage and entails nucleolytic cleavage of precursor RNAs, RNA nucleotide modifications, RNA polyadenylation, RNA quality and stability control. These processes ensure proper mitochondrial RNA (mtRNA) function, and are regulated by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes, leading to incorrect maturation of RNAs, are a cause of human mitochondrial disease. Additionally, mutations in mtDNA-encoded genes may also affect RNA maturation and are frequently associated with human disease. We review the current knowledge on a subset of nuclear-encoded genes coding for proteins involved in mitochondrial RNA maturation, for which genetic variants impacting upon mitochondrial pathophysiology have been reported. Also, primary pathological mtDNA mutations with recognised effects upon RNA processing are described.
Collapse
Affiliation(s)
| | - Sarah F. Pearce
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
| | | | - Aaron R. D’Souza
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
| | - Thomas J. Nicholls
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Gothenburg, Sweden
| | - Michal Minczuk
- MRC Mitochondrial Biology Unit, Hills Road, Cambridge, CB2 0XY UK
| |
Collapse
|
20
|
Wende S, Bonin S, Götze O, Betat H, Mörl M. The identity of the discriminator base has an impact on CCA addition. Nucleic Acids Res 2015; 43:5617-29. [PMID: 25958396 PMCID: PMC4477674 DOI: 10.1093/nar/gkv471] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 04/29/2015] [Indexed: 11/13/2022] Open
Abstract
CCA-adding enzymes synthesize and maintain the C-C-A sequence at the tRNA 3'-end, generating the attachment site for amino acids. While tRNAs are the most prominent substrates for this polymerase, CCA additions on non-tRNA transcripts are described as well. To identify general features for substrate requirement, a pool of randomized transcripts was incubated with the human CCA-adding enzyme. Most of the RNAs accepted for CCA addition carry an acceptor stem-like terminal structure, consistent with tRNA as the main substrate group for this enzyme. While these RNAs show no sequence conservation, the position upstream of the CCA end was in most cases represented by an adenosine residue. In tRNA, this position is described as discriminator base, an important identity element for correct aminoacylation. Mutational analysis of the impact of the discriminator identity on CCA addition revealed that purine bases (with a preference for adenosine) are strongly favoured over pyrimidines. Furthermore, depending on the tRNA context, a cytosine discriminator can cause a dramatic number of misincorporations during CCA addition. The data correlate with a high frequency of adenosine residues at the discriminator position observed in vivo. Originally identified as a prominent identity element for aminoacylation, this position represents a likewise important element for efficient and accurate CCA addition.
Collapse
Affiliation(s)
- Sandra Wende
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Sonja Bonin
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Oskar Götze
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Heike Betat
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| | - Mario Mörl
- Institute for Biochemistry, University of Leipzig, Brüderstrasse 34, 04103 Leipzig, Germany
| |
Collapse
|
21
|
Hagen CM, Aidt FH, Havndrup O, Hedley PL, Jensen MK, Kanters JK, Pham TT, Bundgaard H, Christiansen M. Private mitochondrial DNA variants in danish patients with hypertrophic cardiomyopathy. PLoS One 2015; 10:e0124540. [PMID: 25923817 PMCID: PMC4414448 DOI: 10.1371/journal.pone.0124540] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 02/19/2015] [Indexed: 02/02/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic cardiac disease primarily caused by mutations in genes coding for sarcomeric proteins. A molecular-genetic etiology can be established in ~60% of cases. Evolutionarily conserved mitochondrial DNA (mtDNA) haplogroups are susceptibility factors for HCM. Several polymorphic mtDNA variants are associated with a variety of late-onset degenerative diseases and affect mitochondrial function. We examined the role of private, non-haplogroup associated, mitochondrial variants in the etiology of HCM. In 87 Danish HCM patients, full mtDNA sequencing revealed 446 variants. After elimination of 312 (69.9%) non-coding and synonymous variants, a further 109 (24.4%) with a global prevalence > 0.1%, three (0.7%) haplogroup associated and 19 (2.0%) variants with a low predicted in silico likelihood of pathogenicity, three variants: MT-TC: m.5772G>A, MT-TF: m.644A>G, and MT-CYB: m.15024G>A, p.C93Y remained. A detailed analysis of these variants indicated that none of them are likely to cause HCM. In conclusion, private mtDNA mutations are frequent, but they are rarely, if ever, associated with HCM.
Collapse
Affiliation(s)
- Christian M. Hagen
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik H. Aidt
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Ole Havndrup
- Department of Cardiology, Roskilde Hospital, Roskilde, Denmark
| | - Paula L. Hedley
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Morten K. Jensen
- Department of Medicine B, The Heart Center, Rigshospitalet, Copenhagen, Denmark
| | - Jørgen K. Kanters
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tam T. Pham
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
| | - Henning Bundgaard
- Department of Medicine B, The Heart Center, Rigshospitalet, Copenhagen, Denmark
| | - Michael Christiansen
- Department of Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
22
|
Giordano C, Morea V, Perli E, d'Amati G. The phenotypic expression of mitochondrial tRNA-mutations can be modulated by either mitochondrial leucyl-tRNA synthetase or the C-terminal domain thereof. Front Genet 2015; 6:113. [PMID: 25852750 PMCID: PMC4370040 DOI: 10.3389/fgene.2015.00113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/04/2015] [Indexed: 11/23/2022] Open
Abstract
Mutations in mitochondrial (mt) DNA determine important human diseases. The majority of the known pathogenic mutations are located in transfer RNA (tRNA) genes and are responsible for a wide range of currently untreatable disorders. Experimental evidence both in yeast and in human cells has shown that the detrimental effects of mt-tRNA point mutations can be attenuated by increasing the expression of the cognate mt-aminoacyl-tRNA synthetases (aaRSs). In addition, constitutive high levels of isoleucyl-tRNA syntethase have been shown to reduce the penetrance of a homoplasmic mutation in mt-tRNAIle in a small kindred. More recently, we showed that the isolated carboxy-terminal domain of human mt-leucyl tRNA synthetase (LeuRS-Cterm) localizes to mitochondria and ameliorates the energetic defect in transmitochondrial cybrids carrying mutations either in the cognate mt-tRNALeu(UUR) or in the non-cognate mt-tRNAIle gene. Since the mt-LeuRS-Cterm does not possess catalytic activity, its rescuing ability is most likely mediated by a chaperon-like effect, consisting in the stabilization of the tRNA structure altered by the mutation. All together, these observations open potential therapeutic options for mt-tRNA mutations-associated diseases.
Collapse
Affiliation(s)
- Carla Giordano
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome Rome, Italy
| | - Veronica Morea
- National Research Council of Italy, Institute of Molecular Biology and Pathology, Department of Biochemical Sciences, Sapienza University of Rome Rome, Italy
| | - Elena Perli
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome Rome, Italy
| | - Giulia d'Amati
- Department of Radiological, Oncological and Pathological Sciences, Sapienza University of Rome Rome, Italy ; Pasteur Institute-Cenci Bolognetti Foundation Rome, Italy
| |
Collapse
|
23
|
Powell CA, Nicholls TJ, Minczuk M. Nuclear-encoded factors involved in post-transcriptional processing and modification of mitochondrial tRNAs in human disease. Front Genet 2015; 6:79. [PMID: 25806043 PMCID: PMC4354410 DOI: 10.3389/fgene.2015.00079] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 02/16/2015] [Indexed: 11/29/2022] Open
Abstract
The human mitochondrial genome (mtDNA) encodes 22 tRNAs (mt-tRNAs) that are necessary for the intraorganellar translation of the 13 mtDNA-encoded subunits of the mitochondrial respiratory chain complexes. Maturation of mt-tRNAs involves 5′ and 3′ nucleolytic excision from precursor RNAs, as well as extensive post-transcriptional modifications. Recent data suggest that over 7% of all mt-tRNA residues in mammals undergo post-transcriptional modification, with over 30 different modified mt-tRNA positions so far described. These processing and modification steps are necessary for proper mt-tRNA function, and are performed by dedicated, nuclear-encoded enzymes. Recent growing evidence suggests that mutations in these nuclear genes (nDNA), leading to incorrect maturation of mt-tRNAs, are a cause of human mitochondrial disease. Furthermore, mtDNA mutations in mt-tRNA genes, which may also affect mt-tRNA function, processing, and modification, are also frequently associated with human disease. In theory, all pathogenic mt-tRNA variants should be expected to affect only a single process, which is mitochondrial translation, albeit to various extents. However, the clinical manifestations of mitochondrial disorders linked to mutations in mt-tRNAs are extremely heterogeneous, ranging from defects of a single tissue to complex multisystem disorders. This review focuses on the current knowledge of nDNA coding for proteins involved in mt-tRNA maturation that have been linked to human mitochondrial pathologies. We further discuss the possibility that tissue specific regulation of mt-tRNA modifying enzymes could play an important role in the clinical heterogeneity observed for mitochondrial diseases caused by mutations in mt-tRNA genes.
Collapse
Affiliation(s)
- Christopher A Powell
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| | - Thomas J Nicholls
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| | - Michal Minczuk
- Mitochondrial Genetics, Mitochondrial Biology Unit, Medical Research Council, Cambridge, UK
| |
Collapse
|
24
|
Meseguer S, Martínez-Zamora A, García-Arumí E, Andreu AL, Armengod ME. The ROS-sensitive microRNA-9/9* controls the expression of mitochondrial tRNA-modifying enzymes and is involved in the molecular mechanism of MELAS syndrome. Hum Mol Genet 2014; 24:167-84. [PMID: 25149473 DOI: 10.1093/hmg/ddu427] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Mitochondrial dysfunction activates mitochondria-to-nucleus signaling pathways whose components are mostly unknown. Identification of these components is important to understand the molecular mechanisms underlying mitochondrial diseases and to discover putative therapeutic targets. MELAS syndrome is a rare neurodegenerative disease caused by mutations in mitochondrial (mt) DNA affecting mt-tRNA(Leu(UUR)). Patient and cybrid cells exhibit elevated oxidative stress. Moreover, mutant mt-tRNAs(Leu(UUR)) lack the taurine-containing modification normally present at the wobble uridine (U34) of wild-type mt-tRNA(Leu(UUR)), which is considered an etiology of MELAS. However, the molecular mechanism is still unclear. We found that MELAS cybrids exhibit a significant decrease in the steady-state levels of several mt-tRNA-modification enzymes, which is not due to transcriptional regulation. We demonstrated that oxidative stress mediates an NFkB-dependent induction of microRNA-9/9*, which acts as a post-transcriptional negative regulator of the mt-tRNA-modification enzymes GTPBP3, MTO1 and TRMU. Down-regulation of these enzymes by microRNA-9/9* affects the U34 modification status of non-mutant tRNAs and contributes to the MELAS phenotype. Anti-microRNA-9 treatments of MELAS cybrids reverse the phenotype, whereas miR-9 transfection of wild-type cells mimics the effects of siRNA-mediated down-regulation of GTPBP3, MTO1 and TRMU. Our data represent the first evidence that an mt-DNA disease can directly affect microRNA expression. Moreover, we demonstrate that the modification status of mt-tRNAs is dynamic and that cells respond to stress by modulating the expression of mt-tRNA-modifying enzymes. microRNA-9/9* is a crucial player in mitochondria-to-nucleus signaling as it regulates expression of nuclear genes in response to changes in the functional state of mitochondria.
Collapse
Affiliation(s)
- Salvador Meseguer
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Ana Martínez-Zamora
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain
| | - Elena García-Arumí
- Hospital Universitari Vall d'Hebron, Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain Biomedical Research Networking Centre for Rare Diseases (CIBERER) (node U701), Barcelona, Spain and
| | - Antonio L Andreu
- Hospital Universitari Vall d'Hebron, Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona 08035, Spain Biomedical Research Networking Centre for Rare Diseases (CIBERER) (node U701), Barcelona, Spain and
| | - M-Eugenia Armengod
- Laboratory of RNA Modification and Mitochondrial Diseases, Centro de Investigación Príncipe Felipe, Valencia 46012, Spain CIBERER (node U721), Valencia, Spain
| |
Collapse
|
25
|
Blakely EL, Yarham JW, Alston CL, Craig K, Poulton J, Brierley C, Park SM, Dean A, Xuereb JH, Anderson KN, Compston A, Allen C, Sharif S, Enevoldson P, Wilson M, Hammans SR, Turnbull DM, McFarland R, Taylor RW. Pathogenic mitochondrial tRNA point mutations: nine novel mutations affirm their importance as a cause of mitochondrial disease. Hum Mutat 2014; 34:1260-8. [PMID: 23696415 PMCID: PMC3884772 DOI: 10.1002/humu.22358] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/10/2013] [Indexed: 11/26/2022]
Abstract
Mutations in the mitochondrial genome, and in particular the mt-tRNAs, are an important cause of human disease. Accurate classification of the pathogenicity of novel variants is vital to allow accurate genetic counseling for patients and their families. The use of weighted criteria based on functional studies—outlined in a validated pathogenicity scoring system—is therefore invaluable in determining whether novel or rare mt-tRNA variants are pathogenic. Here, we describe the identification of nine novel mt-tRNA variants in nine families, in which the probands presented with a diverse range of clinical phenotypes including mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes, isolated progressive external ophthalmoplegia, epilepsy, deafness and diabetes. Each of the variants identified (m.4289T>C, MT-TI; m.5541C>T, MT-TW; m.5690A>G, MT-TN; m.7451A>T, MT-TS1; m.7554G>A, MT-TD; m.8304G>A, MT-TK; m.12206C>T, MT-TH; m.12317T>C, MT-TL2; m.16023G>A, MT-TP) was present in a different tRNA, with evidence in support of pathogenicity, and where possible, details of mutation transmission documented. Through the application of the pathogenicity scoring system, we have classified six of these variants as “definitely pathogenic” mutations (m.5541C>T, m.5690A>G, m.7451A>T, m.12206C>T, m.12317T>C, and m.16023G>A), whereas the remaining three currently lack sufficient evidence and are therefore classed as ‘possibly pathogenic’ (m.4289T>C, m.7554G>A, and m.8304G>A).
Collapse
Affiliation(s)
- Emma L Blakely
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Multilevel functional and structural defects induced by two pathogenic mitochondrial tRNA mutations. Biochem J 2013; 453:455-65. [PMID: 23631826 DOI: 10.1042/bj20130294] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Point mutations in hmtRNAs (human mitochondrial tRNAs) can cause various disorders, such as CPEO (chronic progressive external ophthalmoplegia) and MM (mitochondrial myopathy). Mitochondrial tRNALeu, especially the UUR codon isoacceptor, is recognized as a hot spot for pathogenic mtDNA point mutations. Thus far, 40 mutations have been reported in hmtRNAsLeu. In the present paper, we describe the wide range of effects of two substitutions found in the TΨC arms of two hmtRNAsLeu isoacceptors. The G52A substitution, corresponding to the pathogenic G12315A mutation in tRNALeu(CUN), and G3283A in tRNALeu(UUR) exhibited structural changes in the outer corner of the tRNA shape as shown by RNase probing. These mutations also induced reductions in aminoacylation, 3'-end processing and base modification processes. The main effects of the A57G substitution, corresponding to mutations A12320G in tRNALeu(CUN) and A3288G in tRNALeu(UUR), were observed on the aminoacylation activity and binding to hmEF-Tu (human mitochondrial elongation factor Tu). These observations suggest that the wide range of effects may amplify the deleterious impact on mitochondrial protein synthesis in vivo. The findings also emphasize that an exact understanding of tRNA dysfunction is critical for the future development of therapies for mitochondrial diseases.
Collapse
|
27
|
Zheng J, Sha-sha G, Xiao-wen T, Yi Z, Min-xin G. Human Mitochondrial tRNA Mutations in Maternally Inherited Deafness. J Otol 2013. [DOI: 10.1016/s1672-2930(13)50006-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
28
|
Pinós T, Melià MJ, Ortiz N, Martinez-Vea A, Raventós-Estellé A, Gallardo E, Hernández-Losa J, Cámara Y, Andreu AL, García-Arumí E. Identification of the novel mutation m.5658T>C in the mitochondrial tRNA(Asn) gene in a patient with myopathy, bilateral ptosis and ophthalmoparesis. Neuromuscul Disord 2013; 23:330-6. [PMID: 23375258 DOI: 10.1016/j.nmd.2013.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 09/25/2012] [Accepted: 01/02/2013] [Indexed: 12/13/2022]
Abstract
We report a heteroplasmic novel mutation m.5658T>C in the mt-tRNA(Asn) gene in a patient who initially presented myopathy, bilateral ptosis and ophthalmoparesis and several years later developed a non-nephrotic proteinuria. The muscle biopsy showed cytochrome c oxidase (COX) negative and ragged red fibers and in the kidney biopsy that was taken in order to identify the causes of non-nephrotic proteinuria, a focal segmental glomerulosclerosis was observed. Using laser capture microdissection we isolated COX negative fibers and COX positive fibers from the muscle of the patient and determined that there was a clear increase in the mutation load in the COX negative muscle fibers. However, the low degree of mutation load found in the renal biopsy of the patient does not allow us to conclude that the m.5658T>C mutation is responsible for focal glomerulosclerosis. Additionally, we hypothesize that the mutated m.5658T nucleotide might be structurally relevant, as it is one of the fifteen nucleotides conserved in all the species analyzed and is situated contiguously to the discriminator base in the 3'end of the mt-tRNA, where the tRNase Z cleaves the 3' trailer sequence during mt-tRNA maturation.
Collapse
Affiliation(s)
- Tomàs Pinós
- Departament de Patología Mitocondrial i Neuromuscular, Hospital Universitari Vall d'Hebron Institut de Recerca, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jing Z, Yan–chun J, Min–Xin G. Mitochondrial tRNA mutations associated with deafness. J Otol 2012. [DOI: 10.1016/s1672-2930(12)50009-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
30
|
Koga Y, Povalko N, Nishioka J, Katayama K, Yatsuga S, Matsuishi T. Molecular pathology of MELAS and l-arginine effects. Biochim Biophys Acta Gen Subj 2012; 1820:608-14. [DOI: 10.1016/j.bbagen.2011.09.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 07/07/2011] [Accepted: 09/07/2011] [Indexed: 11/30/2022]
|
31
|
Zheng J, Ji Y, Guan MX. Mitochondrial tRNA mutations associated with deafness. Mitochondrion 2012; 12:406-13. [PMID: 22538251 DOI: 10.1016/j.mito.2012.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 03/15/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
Abstract
Mitochondrial tRNA mutations are one of the important causes of both syndromic and non-syndromic deafness. Of those, syndromic deafness-associated tRNA mutations such as tRNA(Leu(UUR)) 3243A>G are often present in heteroplasmy, while non-syndromic deafness-associated tRNA mutations including tRNA(Ser(UCN)) 7445A>G often occur in homplasmy or in high levels of heteroplasmy. These tRNA mutations are the primary mutations leading to hearing loss. However, other tRNA mutations such as tRNA(Thr) 15927G>A and tRNA(Ser(UCN)) 7444G>A may act in synergy with the primary mitochondrial DNA mutations, modulating the phenotypic manifestation of the primary mitochondrial DNA mutations. Theses tRNA mutations cause structural and functional alteration. A failure in tRNA metabolism caused by these tRNA mutations impaired mitochondrial translation and respiration, thereby causing mitochondrial dysfunctions responsible for deafness. These data offer valuable information for the early diagnosis, management and treatment of maternally inherited deafness.
Collapse
Affiliation(s)
- Jing Zheng
- Attardi Institute of Mitochondrial Biomedicine, Wenzhou Medical College, Wenzhou, Zhejiang, China
| | | | | |
Collapse
|
32
|
Levinger L, Serjanov D. Pathogenesis-related mutations in the T-loops of human mitochondrial tRNAs affect 3' end processing and tRNA structure. RNA Biol 2012; 9:283-91. [PMID: 22336717 PMCID: PMC3384583 DOI: 10.4161/rna.19025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Numerous mutations in the mitochondrial genome are associated with maternally transmitted diseases and syndromes that affect muscle and other high energy-demand tissues. The mitochondrial genome encodes 13 polypeptides, 2 rRNAs and 22 interspersed tRNAs via long bidirectional polycistronic primary transcripts, requiring precise excision of the tRNAs. Despite making up only ~10% of the mitochondrial genome, tRNA genes harbor most of the pathogenesis-related mutations. tRNase Z endonucleolytically removes the pre-tRNA 3' trailer. The flexible arm of tRNase Z recognizes and binds the elbow (including the T-loop) of pre-tRNA. Pathogenesis-related T-loop mutations in mitochondrial tRNAs could thus affect tRNA structure, reduce tRNase Z binding and 3' processing, and consequently slow mitochondrial protein synthesis. Here we inspect the effects of pathogenesis-related mutations in the T-loops of mitochondrial tRNAs on pre-tRNA structure and tRNase Z processing. Increases in K(M) arising from 59A > G substitutions in mitochondrial tRNA(Gly) and tRNA(Ile) accompany changes in T-loop structure, suggesting impaired substrate binding to enzyme.
Collapse
Affiliation(s)
- Louis Levinger
- York College of The City University of New York, Jamaica, NY, USA.
| | | |
Collapse
|
33
|
Mutations in the mitochondrial tRNA Ser(AGY) gene are associated with deafness, retinal degeneration, myopathy and epilepsy. Eur J Hum Genet 2012; 20:897-904. [PMID: 22378285 DOI: 10.1038/ejhg.2012.44] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Although over 200 pathogenic mitochondrial DNA (mtDNA) mutations have been reported to date, determining the genetic aetiology of many cases of mitochondrial disease is still not straightforward. Here, we describe the investigations undertaken to uncover the underlying molecular defect(s) in two unrelated Caucasian patients with suspected mtDNA disease, who presented with similar symptoms of myopathy, deafness, neurodevelopmental delay, epilepsy, marked fatigue and, in one case, retinal degeneration. Histochemical and biochemical evidence of mitochondrial respiratory chain deficiency was observed in the patient muscle biopsies and both patients were discovered to harbour a novel heteroplasmic mitochondrial tRNA (mt-tRNA)(Ser(AGY)) (MTTS2) mutation (m.12264C>T and m.12261T>C, respectively). Clear segregation of the m.12261T>C mutation with the biochemical defect, as demonstrated by single-fibre radioactive RFLP, confirmed the pathogenicity of this novel variant in patient 2. However, unusually high levels of m.12264C>T mutation within both COX-positive (98.4 ± 1.5%) and COX-deficient (98.2 ± 2.1%) fibres in patient 1 necessitated further functional investigations to prove its pathogenicity. Northern blot analysis demonstrated the detrimental effect of the m.12264C>T mutation on mt-tRNA(Ser(AGY)) stability, ultimately resulting in decreased steady-state levels of fully assembled complexes I and IV, as shown by blue-native polyacrylamide gel electrophoresis. Our findings expand the spectrum of pathogenic mutations associated with the MTTS2 gene and highlight MTTS2 mutations as an important cause of retinal and syndromic auditory impairment.
Collapse
|
34
|
Wolf J, Obermaier-Kusser B, Jacobs M, Milles C, Mörl M, von Pein HD, Grau AJ, Bauer MF. A new mitochondrial point mutation in the transfer RNA(Lys) gene associated with progressive external ophthalmoplegia with impaired respiratory regulation. J Neurol Sci 2012; 316:108-11. [PMID: 22326363 DOI: 10.1016/j.jns.2012.01.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 01/13/2012] [Accepted: 01/20/2012] [Indexed: 11/18/2022]
Abstract
We report a novel heteroplasmic point mutation G8299A in the gene for mitochondrial tRNA(Lys) in a patient with progressive external ophthalmoplegia complicated by recurrent respiratory insufficiency. Biochemical analysis of respiratory chain complexes in muscle homogenate showed a combined complex I and IV deficiency. The transition does not represent a known neutral polymorphism and affects a position in the tRNA acceptor stem which is conserved in primates, leading to a destabilization of this functionally important domain. In vitro analysis of an essential maturation step of the tRNA transcript indicates the probable pathogenicity of this mutation. We hypothesize that there is a causal relationship between the novel G8299A transition and progressive external ophthalmoplegia with recurrent respiratory failure due to a depressed respiratory drive.
Collapse
Affiliation(s)
- Joachim Wolf
- Department of Neurology, Klinikum Ludwigshafen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Suzuki T, Nagao A, Suzuki T. Human Mitochondrial tRNAs: Biogenesis, Function, Structural Aspects, and Diseases. Annu Rev Genet 2011; 45:299-329. [DOI: 10.1146/annurev-genet-110410-132531] [Citation(s) in RCA: 432] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Mitochondria are eukaryotic organelles that generate most of the energy in the cell by oxidative phosphorylation (OXPHOS). Each mitochondrion contains multiple copies of a closed circular double-stranded DNA genome (mtDNA). Human (mammalian) mtDNA encodes 13 essential subunits of the inner membrane complex responsible for OXPHOS. These mRNAs are translated by the mitochondrial protein synthesis machinery, which uses the 22 species of mitochondrial tRNAs (mt tRNAs) encoded by mtDNA. The unique structural features of mt tRNAs distinguish them from cytoplasmic tRNAs bearing the canonical cloverleaf structure. The genes encoding mt tRNAs are highly susceptible to point mutations, which are a primary cause of mitochondrial dysfunction and are associated with a wide range of pathologies. A large number of nuclear factors involved in the biogenesis and function of mt tRNAs have been identified and characterized, including processing endonucleases, tRNA-modifying enzymes, and aminoacyl-tRNA synthetases. These nuclear factors are also targets of pathogenic mutations linked to various diseases, indicating the functional importance of mt tRNAs for mitochondrial activity.
Collapse
Affiliation(s)
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| | - Takeo Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
36
|
Suzuki T, Nagao A, Suzuki T. Human mitochondrial diseases caused by lack of taurine modification in mitochondrial tRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:376-86. [PMID: 21957023 DOI: 10.1002/wrna.65] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondrial DNA mutations that cause mitochondrial dysfunction are responsible for a wide spectrum of human diseases, referred to as mitochondrial diseases. Pathogenic point mutations are found frequently in genes encoding mitochondrial (mt) tRNAs, indicating that impaired functioning of mutant mt tRNAs is the primary cause of mitochondrial dysfunction. Our previous studies revealed the absence of posttranscriptional taurine modification at the anticodon wobble uridine in mutant mt tRNAs isolated from cells derived from patients with two major classes of mitochondrial diseases, MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes) and MERRF (myoclonus epilepsy associated with ragged red fibers). Defective taurine modification of the mutant mt tRNAs results in a deficiency in protein synthesis as the cognate codons of the mutant mt tRNA cannot be decoded. These findings represent the first evidence of a molecular pathogenesis caused by an RNA modification disorder.
Collapse
Affiliation(s)
- Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
37
|
Ballhausen D, Guerry F, Hahn D, Schaller A, Nuoffer JM, Bonafé L, Jeannet PY, Jacquemont S. Mitochondrial tRNA(Leu(UUR)) mutation m.3302A > G presenting as childhood-onset severe myopathy: threshold determination through segregation study. J Inherit Metab Dis 2010; 33 Suppl 3:S219-26. [PMID: 20458543 DOI: 10.1007/s10545-010-9098-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 02/26/2010] [Accepted: 03/31/2010] [Indexed: 10/19/2022]
Abstract
Mitochondrial tRNA(Leu(UUR)) mutation m.3302A > G is associated with respiratory chain complex I deficiency and has been described as a rare cause of mostly adult-onset slowly progressive myopathy. Five families with 11 patients have been described so far; 5 of them died young due to cardiorespiratory failure. Here, we report on a segregation study in a family with an index patient who already presented at the age of 18 months with proximal muscular hypotonia, abnormal fatigability, and lactic acidosis. This early-onset myopathy was rapidly progressive. At 8 years, the patient is wheel-chair bound, requires nocturnal assisted ventilation, and suffers from recurrent respiratory infections. Severe complex I deficiency and nearly homoplasmy for m.3302A > G were found in muscle. We collected blood, hair, buccal swabs and muscle biopsies from asymptomatic adults in this pedigree and determined heteroplasmy levels in these tissues as well as OXPHOS activities in muscle. All participating asymptomatic adults had normal OXPHOS activities. In contrast to earlier reports, we found surprisingly little variation of heteroplasmy levels in different tissues of the same individual. Up to 45% mutation load in muscle and up to 38% mutation load in other tissues were found in non-affected adults. The phenotypic spectrum of tRNA(Leu(UUR)) m.3302A > G mutation seems to be wider than previously described. A threshold of more than 45% heteroplasmy in muscle seems to be necessary to alter complex I activity leading to clinical manifestation. The presented data may be helpful for prognostic considerations and counseling in affected families.
Collapse
Affiliation(s)
- Diana Ballhausen
- Division of Molecular Pediatrics, Centre Hospitalier Universitaire Vaudois, CI 02-35, Av P Decker 2, 1011 Lausanne, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The CCA sequence is conserved at the 3' end of all mature tRNA molecules to function as the site of amino acid attachment. This sequence is acquired and maintained by stepwise nucleotide addition by the ubiquitous CCA enzyme, which is an unusual RNA polymerase that does not use a nucleic acid template for nucleotide addition. Crystal structural work has divided CCA enzymes into two structurally distinct classes, which differ in the mechanism of template-independent nucleotide selection. Recent kinetic work of the class II E. coli CCA enzyme has demonstrated a rapid and uniform rate constant for the chemistry of nucleotide addition at each step of CCA synthesis, although the enzyme uses different determinants to control the rate of each step. Importantly, the kinetic work reveals that, at each step of CCA synthesis, E. coli CCA enzyme has an innate ability to discriminate against tRNA backbone damage. This discrimination suggests the possibility of a previously unrecognized quality control mechanism that would prevent damaged tRNA from CCA maturation and from entering the ribosome machinery of protein synthesis. This quality control is relevant to cellular stress conditions that damage tRNA backbone and predicts a role of CCA addition in stress response.
Collapse
Affiliation(s)
- Ya-Ming Hou
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, BLSB 220, Philadelphia 19107, PA, USA.
| |
Collapse
|
39
|
Horvath R, Kemp JP, Tuppen HAL, Hudson G, Oldfors A, Marie SKN, Moslemi AR, Servidei S, Holme E, Shanske S, Kollberg G, Jayakar P, Pyle A, Marks HM, Holinski-Feder E, Scavina M, Walter MC, Coku J, Günther-Scholz A, Smith PM, McFarland R, Chrzanowska-Lightowlers ZMA, Lightowlers RN, Hirano M, Lochmüller H, Taylor RW, Chinnery PF, Tulinius M, DiMauro S. Molecular basis of infantile reversible cytochrome c oxidase deficiency myopathy. Brain 2009; 132:3165-74. [PMID: 19720722 PMCID: PMC2768660 DOI: 10.1093/brain/awp221] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Childhood-onset mitochondrial encephalomyopathies are usually severe, relentlessly progressive conditions that have a fatal outcome. However, a puzzling infantile disorder, long known as ‘benign cytochrome c oxidase deficiency myopathy’ is an exception because it shows spontaneous recovery if infants survive the first months of life. Current investigations cannot distinguish those with a good prognosis from those with terminal disease, making it very difficult to decide when to continue intensive supportive care. Here we define the principal molecular basis of the disorder by identifying a maternally inherited, homoplasmic m.14674T>C mt-tRNAGlu mutation in 17 patients from 12 families. Our results provide functional evidence for the pathogenicity of the mutation and show that tissue-specific mechanisms downstream of tRNAGlu may explain the spontaneous recovery. This study provides the rationale for a simple genetic test to identify infants with mitochondrial myopathy and good prognosis.
Collapse
Affiliation(s)
- Rita Horvath
- Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Sissler M, Lorber B, Messmer M, Schaller A, Pütz J, Florentz C. Handling mammalian mitochondrial tRNAs and aminoacyl-tRNA synthetases for functional and structural characterization. Methods 2008; 44:176-89. [PMID: 18241799 DOI: 10.1016/j.ymeth.2007.11.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 11/07/2007] [Accepted: 11/07/2007] [Indexed: 10/22/2022] Open
Abstract
The mammalian mitochondrial (mt) genome codes for only 13 proteins, which are essential components in the process of oxidative phosphorylation of ADP into ATP. Synthesis of these proteins relies on a proper mt translation machinery. While 22 tRNAs and 2 rRNAs are also coded by the mt genome, all other factors including the set of aminoacyl-tRNA synthetases (aaRSs) are encoded in the nucleus and imported. Investigation of mammalian mt aminoacylation systems (and mt translation in general) gains more and more interest not only in regard of evolutionary considerations but also with respect to the growing number of diseases linked to mutations in the genes of either mt-tRNAs, synthetases or other factors. Here we report on methodological approaches for biochemical, functional, and structural characterization of human/mammalian mt-tRNAs and aaRSs. Procedures for preparation of native and in vitro transcribed tRNAs are accompanied by recommendations for specific handling of tRNAs incline to structural instability and chemical fragility. Large-scale preparation of mg amounts of highly soluble recombinant synthetases is a prerequisite for structural investigations that requires particular optimizations. Successful examples leading to crystallization of four mt-aaRSs and high-resolution structures are recalled and limitations discussed. Finally, the need for and the state-of-the-art in setting up an in vitro mt translation system are emphasized. Biochemical characterization of a subset of mammalian aminoacylation systems has already revealed a number of unprecedented peculiarities of interest for the study of evolution and forensic research. Further efforts in this field will certainly be rewarded by many exciting discoveries.
Collapse
Affiliation(s)
- Marie Sissler
- Architecture et Réactivité de l'ARN, Université Louis Pasteur de Strasbourg, CNRS, IBMC, 15 rue René Descartes, 67084 Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
41
|
Finsterer J. Genetic, pathogenetic, and phenotypic implications of the mitochondrial A3243G tRNALeu(UUR) mutation. Acta Neurol Scand 2007; 116:1-14. [PMID: 17587249 DOI: 10.1111/j.1600-0404.2007.00836.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Mitochondrial disorders are frequently caused by mutations in mitochondrial genes and usually present as multisystem disease. One of the most frequent mitochondrial mutations is the A3,243G transition in the tRNALeu(UUR) gene. The phenotypic expression of the mutation is variable and comprises syndromic or non-syndromic mitochondrial disorders. Among the syndromic manifestations the mitochondrial encephalopathy, lactacidosis, and stroke-like episode (MELAS) syndrome is the most frequent. In single cases the A3,243G mutation may be associated with maternally inherited diabetes and deafness syndrome, myoclonic epilepsy and ragged-red fibers (MERRF) syndrome, MELAS/MERRF overlap syndrome, maternally inherited Leigh syndrome, chronic external ophthalmoplegia, or Kearns-Sayre syndrome. The wide phenotypic variability of the mutation is explained by the peculiarities of the mitochondrial DNA, such as heteroplasmy and mitotic segregation, resulting in different mutation loads in different tissues and family members. Moreover, there is some evidence that additional mtDNA sequence variations (polymorphisms, haplotypes) influence the phenotype of the A3,243G mutation. This review aims to give an overview on the actual knowledge about the genetic, pathogenetic, and phenotypic implications of the A3,243G mtDNA mutation.
Collapse
Affiliation(s)
- J Finsterer
- Krankenanstalt Rudolfstiftung, Vienna, Austria.
| |
Collapse
|
42
|
Scherer LJ, Frank R, Rossi JJ. Optimization and characterization of tRNA-shRNA expression constructs. Nucleic Acids Res 2007; 35:2620-8. [PMID: 17426139 PMCID: PMC1885648 DOI: 10.1093/nar/gkm103] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2006] [Revised: 01/12/2007] [Accepted: 02/06/2007] [Indexed: 12/05/2022] Open
Abstract
Expression of short hairpin RNAs via the use of PolIII-based transcription systems has proven to be an effective mechanism for triggering RNAi in mammalian cells. The most popular promoters for this purpose are the U6 and H1 promoters since they are easily manipulated for expression of shRNAs with defined start and stop signals. Multiplexing (the use of siRNAs against multiple targets) is one strategy that is being developed by a number of laboratories for the treatment of HIV infection since it increases the likelihood of suppressing the emergence of resistant virus in applications. In this context, the development of alternative small PolIII promoters other than U6 and H1 would be useful. We describe tRNA(Lys3)-shRNA chimeric expression cassettes which produce siRNAs with comparable efficacy and strand selectivity to U6-expressed shRNAs, and show that their activity is consistent with processing by endogenous 3' tRNAse. In addition, our observations suggest general guidelines for expressing effective tRNA-shRNAs with the potential for graded response, to minimize toxicities associated with competition for components of the endogenous RNAi pathway in cells.
Collapse
MESH Headings
- Base Sequence
- Cell Line
- Gene Products, rev/genetics
- Gene Products, tat/genetics
- Genetic Vectors
- HIV-1/genetics
- Humans
- Molecular Sequence Data
- Promoter Regions, Genetic
- RNA Interference
- RNA, Small Interfering/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Untranslated/biosynthesis
- RNA, Untranslated/chemistry
- RNA, Untranslated/metabolism
- rev Gene Products, Human Immunodeficiency Virus
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- Lisa J. Scherer
- Department of Molecular Biology and Division of Hematology & Hematopoietic Cell Transplantation and Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, California 91010, USA
| | - Richard Frank
- Department of Molecular Biology and Division of Hematology & Hematopoietic Cell Transplantation and Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, California 91010, USA
| | - John J. Rossi
- Department of Molecular Biology and Division of Hematology & Hematopoietic Cell Transplantation and Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, 1450 E. Duarte Road, Duarte, California 91010, USA
| |
Collapse
|
43
|
Maniura-Weber K, Helm M, Engemann K, Eckertz S, Möllers M, Schauen M, Hayrapetyan A, von Kleist-Retzow JC, Lightowlers RN, Bindoff LA, Wiesner RJ. Molecular dysfunction associated with the human mitochondrial 3302A>G mutation in the MTTL1 (mt-tRNALeu(UUR)) gene. Nucleic Acids Res 2006; 34:6404-15. [PMID: 17130166 PMCID: PMC1702489 DOI: 10.1093/nar/gkl727] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The gene encoding mt-tRNALeu(UUR), MT-TL1, is a hotspot for pathogenic mtDNA mutations. Amongst the first to be described was the 3302A>G transition which resulted in a substantial accumulation in patient muscle of RNA19, an unprocessed RNA intermediate including mt-16S rRNA, mt-tRNALeu(UUR) and MTND1. We have now been able to further assess the molecular aetiology associated with 3302A>G in transmitochondrial cybrids. Increased steady-state levels of RNA19 was confirmed, although not to the levels previously reported in muscle. This data was consistent with an increase in RNA19 stability. The mutation resulted in decreased mt-tRNALeu(UUR) levels, but its stability was unchanged, consistent with a defect in RNA19 processing responsible for low tRNA levels. A partial defect in aminoacylation was also identified, potentially caused by an alteration in tRNA structure. These deficiencies lead to a severe defect in respiration in the transmitochondrial cybrids, consistent with the profound mitochondrial disorder originally associated with this mutation.
Collapse
Affiliation(s)
- Katharina Maniura-Weber
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
| | - Mark Helm
- Institute of Pharmacy and Molecular Biotechnology, University of HeidelbergIm Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Katrin Engemann
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
| | - Sabrina Eckertz
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
| | - Myriam Möllers
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
| | - Matthias Schauen
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
| | - Armine Hayrapetyan
- Institute of Pharmacy and Molecular Biotechnology, University of HeidelbergIm Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Jürgen-Christoph von Kleist-Retzow
- Center for Molecular Medicine Cologne (CMMC), University of KölnJoseph-Stelzmann-Strasse 52, 50931 Köln, Germany
- Department of Pediatrics, University of KölnKerpener Strasse 62, 50924 Köln, Germany
| | - Robert N. Lightowlers
- School of Neurology, Neurobiology and Psychiatry, Medical School, University of Newcastle upon TyneUK
| | - Laurence A. Bindoff
- Department of Neurology, Institute of Clinical Medicine, Haukeland University Hospital, University of Bergen5021 Bergen, Norway
- To whom correspondence should be addressed. Tel: +49 221 478 3610; Fax: +49 221 478 3538;
| | - Rudolf J. Wiesner
- Institute of Vegetative Physiology, Medical Faculty, University of KölnRobert-Koch-Strasse 39, D-50931 Köln, Germany
- Center for Molecular Medicine Cologne (CMMC), University of KölnJoseph-Stelzmann-Strasse 52, 50931 Köln, Germany
- To whom correspondence should be addressed. Tel: +49 221 478 3610; Fax: +49 221 478 3538;
| |
Collapse
|
44
|
Zareen N, Hopkinson A, Levinger L. Residues in two homology blocks on the amino side of the tRNase Z His domain contribute unexpectedly to pre-tRNA 3' end processing. RNA (NEW YORK, N.Y.) 2006; 12:1104-15. [PMID: 16618969 PMCID: PMC1464858 DOI: 10.1261/rna.4206] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
tRNase Z, which can endonucleolytically remove pre-tRNA 3'-end trailers, possesses the signature His domain (HxHxDH; Motif II) of the beta-lactamase family of metal-dependent hydrolases. Motif II combines with Motifs III-V on its carboxy side to coordinate two divalent metal ions, constituting the catalytic core. The PxKxRN loop and Motif I on the amino side of Motif II have been suggested to modulate tRNase Z activity, including the anti-determinant effect of CCA in mature tRNA. Ala walks through these two homology blocks reveal residues in which the substitutions unexpectedly reduce catalytic efficiency. While substitutions in Motif II can drastically affect k(cat) without affecting k(M), five- to 15-fold increases in k(M) are observed with substitutions in several conserved residues in the PxKxRN loop and Motif I. These increases in k(M) suggest a model for substrate binding. Expressed tRNase Z processes mature tRNA with CCA at the 3' end approximately 80 times less efficiently than a pre-tRNA possessing natural sequence of the 3'-end trailer, due to reduced k(cat) with no effect on k(M), showing the CCA anti-determinant to be a characteristic of this enzyme.
Collapse
Affiliation(s)
- Neela Zareen
- York College of The City University of New York, Jamaica, 11451, USA
| | | | | |
Collapse
|
45
|
Yan H, Zareen N, Levinger L. Naturally occurring mutations in human mitochondrial pre-tRNASer(UCN) can affect the transfer ribonuclease Z cleavage site, processing kinetics, and substrate secondary structure. J Biol Chem 2005; 281:3926-35. [PMID: 16361254 DOI: 10.1074/jbc.m509822200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
tRNAs are transcribed as precursors with a 5' end leader and a 3' end trailer. The 5' end leader is processed by RNase P, and in most organisms in all three kingdoms, transfer ribonuclease (tRNase) Z can endonucleolytically remove the 3' end trailer. Long ((L)) and short ((S)) forms of the tRNase Z gene are present in the human genome. tRNase Z(L) processes a nuclear-encoded pre-tRNA approximately 1600-fold more efficiently than tRNase Z(S) and is predicted to have a strong mitochondrial transport signal. tRNase Z(L) could, thus, process both nuclear- and mitochondrially encoded pre-tRNAs. More than 150 pathogenesis-associated mutations have been found in the mitochondrial genome, most of them in the 22 mitochondrially encoded tRNAs. All the mutations investigated in human mitochondrial tRNA(Ser(UCN)) affect processing efficiency, and some affect the cleavage site and secondary structure. These changes could affect tRNase Z processing of mutant pre-tRNAs, perhaps contributing to mitochondrial disease.
Collapse
Affiliation(s)
- Hua Yan
- York College of The City University of New York, Jamaica, 11451, USA
| | | | | |
Collapse
|
46
|
Möllers M, Maniura-Weber K, Kiseljakovic E, Bust M, Hayrapetyan A, Jaksch M, Helm M, Wiesner RJ, von Kleist-Retzow JC. A new mechanism for mtDNA pathogenesis: impairment of post-transcriptional maturation leads to severe depletion of mitochondrial tRNASer(UCN) caused by T7512C and G7497A point mutations. Nucleic Acids Res 2005; 33:5647-58. [PMID: 16199753 PMCID: PMC1240115 DOI: 10.1093/nar/gki876] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We have studied the consequences of two homoplasmic, pathogenic point mutations (T7512C and G7497A) in the tRNA(Ser(UCN)) gene of mitochondrial (mt) DNA using osteosarcoma cybrids. We identified a severe reduction of tRNA(Ser(UCN)) to levels below 10% of controls for both mutations, resulting in a 40% reduction in mitochondrial protein synthesis rate and in a respiratory chain deficiency resembling that in the patients muscle. Aminoacylation was apparently unaffected. On non-denaturating northern blots we detected an altered electrophoretic mobility for G7497A containing tRNA molecules suggesting a structural impact of this mutation, which was confirmed by structural probing. By comparing in vitro transcribed molecules with native RNA in such gels, we also identified tRNA(Ser(UCN)) being present in two isoforms in vivo, probably corresponding to the nascent, unmodified transcripts co-migrating with the in vitro transcripts and a second, faster moving isoform corresponding to the mature tRNA. In cybrids containing either mutations the unmodified isoforms were severely reduced. We hypothesize that both mutations lead to an impairment of post-transcriptional modification processes, ultimately leading to a preponderance of degradation by nucleases over maturation by modifying enzymes, resulting in severely reduced tRNA(Ser(UCN)) steady state levels. We infer that an increased degradation rate, caused by disturbance of tRNA maturation and, in the case of the G7497A mutant, alteration of tRNA structure, is a new pathogenic mechanism of mt tRNA point mutations.
Collapse
MESH Headings
- Aminoacylation
- Base Sequence
- Cell Line
- Child
- Child, Preschool
- DNA, Mitochondrial/genetics
- Electron Transport Complex I/metabolism
- Electron Transport Complex IV/metabolism
- Humans
- Male
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/metabolism
- Mitochondrial Proteins/biosynthesis
- Molecular Sequence Data
- Point Mutation
- RNA/chemistry
- RNA/genetics
- RNA/metabolism
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA Stability
- RNA, Mitochondrial
- RNA, Transfer, Ser/chemistry
- RNA, Transfer, Ser/genetics
- RNA, Transfer, Ser/metabolism
Collapse
Affiliation(s)
- Myriam Möllers
- Institute of Vegetative Physiology, University of KölnRobert-Koch-Strasse 39, 50931 Köln, Germany
| | - Katharina Maniura-Weber
- Institute of Vegetative Physiology, University of KölnRobert-Koch-Strasse 39, 50931 Köln, Germany
| | - Emina Kiseljakovic
- Institute of Vegetative Physiology, University of KölnRobert-Koch-Strasse 39, 50931 Köln, Germany
- Department of Biochemistry, Medical FacultySarajevo, Cekalusa 90, Bosnia and Herzegovina
| | - Maria Bust
- Institute of Vegetative Physiology, University of KölnRobert-Koch-Strasse 39, 50931 Köln, Germany
| | - Armine Hayrapetyan
- Institute of Pharmacy and Molecular Biotechnology, University of HeidelbergIm Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Michaela Jaksch
- Institute of Clinical Chemistry and Mitochondrial GeneticsKölner Platz 1, 80804 München, Germany
| | - Mark Helm
- Institute of Pharmacy and Molecular Biotechnology, University of HeidelbergIm Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - Rudolf J. Wiesner
- Institute of Vegetative Physiology, University of KölnRobert-Koch-Strasse 39, 50931 Köln, Germany
- Center for Molecular Medicine Cologne (CMMC), University of KölnJoseph-Stelzmann-Strasse 52, 50931 Köln, Germany
- To whom correspondence should be addressed. Tel: +49 221 478 3610; Fax: +49 221 478 3538;
| | - Jürgen-Christoph von Kleist-Retzow
- Center for Molecular Medicine Cologne (CMMC), University of KölnJoseph-Stelzmann-Strasse 52, 50931 Köln, Germany
- Department of Pediatrics, University of KölnKerpener Strasse 62, 50924 Köln, Germany
| |
Collapse
|
47
|
Sangkhathat S, Kusafuka T, Yoneda A, Kuroda S, Tanaka Y, Sakai N, Fukuzawa M. Renal cell carcinoma in a pediatric patient with an inherited mitochondrial mutation. Pediatr Surg Int 2005; 21:745-748. [PMID: 16010549 DOI: 10.1007/s00383-005-1471-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/28/2005] [Indexed: 12/16/2022]
Abstract
Renal cell carcinoma (RCC) is a rare pediatric renal cancer. Recent molecular genetic studies discovered a tumor-specific mutation involving translocation of a transcription factor TFE3 in a subset of pediatric RCC with distinct histopathology. We reported a case of a 2-year-old boy with RCC associated with TFE3 translocation resulting in a PRCC-TFE3 fusion gene. Interestingly, the case carried a maternally inherited mitochondrial DNA (mtDNA) alteration at the position which is usually found in MELAS (Mitochondrial Encephalopathy, Lactic Acidosis, and Stroke-like Episodes) syndrome (A3243G). Although evidence of somatic alterations in mtDNA existed in various cancers, association between inherited mtDNA mutation and pediatric renal cancer has not been reported. Our case provided the first evidence of a co-occurrence between a germ line mutation in mtDNA and the somatic mutation of pediatric RCC. With this information, we speculated a role of mitochondria mutation in the pathogenesis of this cancer.
Collapse
Affiliation(s)
- Surasak Sangkhathat
- Department of Pediatric Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871 Japan
| | | | | | | | | | | | | |
Collapse
|
48
|
Zareen N, Yan H, Hopkinson A, Levinger L. Residues in the conserved His domain of fruit fly tRNase Z that function in catalysis are not involved in substrate recognition or binding. J Mol Biol 2005; 350:189-99. [PMID: 15935379 DOI: 10.1016/j.jmb.2005.04.073] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2005] [Revised: 04/26/2005] [Accepted: 04/27/2005] [Indexed: 11/28/2022]
Abstract
Transfer RNAs are transcribed as precursors with extensions at both the 5' and 3' ends. RNase P removes endonucleolytically the 5' end leader. tRNase Z can remove endonucleolytically the 3' end trailer as a necessary step in tRNA maturation. CCA is not transcriptionally encoded in the tRNAs of eukaryotes, archaebacteria and some bacteria and must be added by a CCA-adding enzyme after removal of the 3' end trailer. tRNase Z is a member of the beta-lactamase family of metal-dependent hydrolases, the signature sequence of which, the conserved histidine cluster (HxHxDH), is essential for activity. Starting with baculovirus-expressed fruit fly tRNase Z, we completed an 18 residue Ala scan of the His cluster to analyze the functional landscape of this critical region. Residues in and around the His cluster fall into three categories based on effects of the substitutions on processing efficiency: substitutions in eight residues have little effect, five substitutions reduce efficiency moderately (approximately 5-50-fold), while substitutions in five conserved residues, one serine, three histidine and one aspartate, severely reduce efficiency (approximately 500-5000-fold). Wild-type and mutant dissociation constants (Kd values), determined using gel shifts, displayed no substantial differences, and were of the same order as kM (2-20 nM). Lower processing efficiencies arising from substitutions in the His domain are almost entirely due to reduced kcat values; conserved, functionally important residues within the His cluster of tRNase Z are thus involved in catalysis, and substrate recognition and binding functions must reside elsewhere in the protein.
Collapse
Affiliation(s)
- Neela Zareen
- York College of The City University of New York, 94-20 Guy R. Brewer Blvd, Jamaica, NY 11451, USA
| | | | | | | |
Collapse
|
49
|
Taanman JW, Llewelyn Williams S. The Human Mitochondrial Genome. OXIDATIVE STRESS AND DISEASE 2005. [DOI: 10.1201/9781420028843.ch3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
50
|
van den Bosch BJC, de Coo IFM, Hendrickx ATM, Busch HFM, de Jong G, Scholte HR, Smeets HJM. Increased risk for cardiorespiratory failure associated with the A3302G mutation in the mitochondrial DNA encoded tRNALeu(UUR) gene. Neuromuscul Disord 2004; 14:683-8. [PMID: 15351426 DOI: 10.1016/j.nmd.2004.06.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2004] [Revised: 05/25/2004] [Accepted: 06/21/2004] [Indexed: 11/25/2022]
Abstract
Screening the mitochondrial DNA of a 64-year-old woman with mitochondrial myopathy revealed 76% of the tRNA(Leu(UUR)) A3302G mutation in muscle. Muscle of her affected son carried 96% mutated mitochondrial DNA. Both patients were biopsied twice, showing isolated complex I deficiency in the son's first biopsy, additional increased (within normal range) complex II + III activities in his second biopsy, combined complex I, II + III deficiency in mothers first biopsy and additional complex IV deficiency in her second biopsy. After a stay in the mountains, the son died of cardiac arrhythmia. The A3302G mutation has been reported before and is associated with mitochondrial myopathy and cardiorespiratory failure. Pathogenesis is explained by abnormal mtRNA processing, which was also reported for the adjacent C3303T mutation associated with cardiomyopathy and/or skeletal myopathy. Our findings suggest that a high mutation load of the A3302G mutation can lead to fatal cardiorespiratory failure, likely triggered by low environmental oxygen pressure and exercise.
Collapse
Affiliation(s)
- B J C van den Bosch
- Department of Genetics and Cell Biology, CARIM, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|