1
|
Kaur H, Sain N, Mohanty D, Salunke DM. Deciphering evolution of immune recognition in antibodies. BMC STRUCTURAL BIOLOGY 2018; 18:19. [PMID: 30563492 PMCID: PMC6299584 DOI: 10.1186/s12900-018-0096-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/14/2018] [Indexed: 11/29/2022]
Abstract
Background Antibody, the primary effector molecule of the immune system, evolves after initial encounter with the antigen from a precursor form to a mature one to effectively deal with the antigen. Antibodies of a lineage diverge through antigen-directed isolated pathways of maturation to exhibit distinct recognition potential. In the context of evolution in immune recognition, diversity of antigen cannot be ignored. While there are reports on antibody lineage, structural perspective with respect to diverse recognition potential in a lineage has never been studied. Hence, it is crucial to evaluate how maturation leads to topological tailoring within a lineage enabling them to interact with significantly distinct antigens. Results A data-driven approach was undertaken for the study. Global experimental mouse and human antibody-antigen complex structures from PDB were compiled into a coherent database of germline-linked antibodies bound with distinct antigens. Structural analysis of all lineages showed variations in CDRs of both H and L chains. Observations of conformational adaptation made from analysis of static structures were further evaluated by characterizing dynamics of interaction in two lineages, mouse VH1–84 and human VH5–51. Sequence and structure analysis of the lineages explained that somatic mutations altered the geometries of individual antibodies with common structural constraints in some CDRs. Additionally, conformational landscape obtained from molecular dynamics simulations revealed that incoming pathogen led to further conformational divergence in the paratope (as observed across datasets) even while maintaining similar overall backbone topology. MM-GB/SA analysis showed binding energies to be in physiological range. Results of the study are coherent with experimental observations. Conclusions The findings of this study highlight basic structural principles shaping the molecular evolution of a lineage for significantly diverse antigens. Antibodies of a lineage follow different developmental pathways while preserving the imprint of the germline. From the study, it can be generalized that structural diversification of the paratope is an outcome of natural selection of a conformation from an available ensemble, which is further optimized for antigen interaction. The study establishes that starting from a common lineage, antibodies can mature to recognize a wide range of antigens. This hypothesis can be further tested and validated experimentally. Electronic supplementary material The online version of this article (10.1186/s12900-018-0096-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Harmeet Kaur
- Regional Centre for Biotechnology, Biotech Science Cluster, Faridabad, Haryana, 121001, India.,Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Neetu Sain
- National Institute of Immunology, New Delhi, Delhi, 110067, India
| | - Debasisa Mohanty
- National Institute of Immunology, New Delhi, Delhi, 110067, India
| | - Dinakar M Salunke
- Regional Centre for Biotechnology, Biotech Science Cluster, Faridabad, Haryana, 121001, India. .,International Centre for Genetic Engineering and Biotechnology, New Delhi, Delhi, 110067, India.
| |
Collapse
|
2
|
Gayda S, Longenecker KL, Judge RA, Swift KM, Manoj S, Linthicum DS, Tetin SY. Three-dimensional structure, binding, and spectroscopic characteristics of the monoclonal antibody 43.1 directed to the carboxyphenyl moiety of fluorescein. Biopolymers 2016; 105:234-43. [PMID: 26756394 DOI: 10.1002/bip.22801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/02/2015] [Accepted: 12/14/2015] [Indexed: 11/07/2022]
Abstract
Unlike other known anti-fluorescein antibodies, the monoclonal antibody 43.1 is directed toward the fluorescein's carboxyl phenyl moiety. It demonstrates a very high affinity (KD ∼ 70 pM) and a fast association rate (kon ∼ 2 × 10(7) M(-1 ) s(-1) ). The three-dimensional structure of the Fab 43.1-fluorescein complex was resolved at 2.4 Å resolution. The antibody binding site is exclusively assembled by the CDR loops. It is comprised of a 14 Å groove-shaped entrance leading to a 9 Å by 7 Å binding pocket. The highly polar binding pocket complementary encloses the fluorescein's carboxyphenyl moiety and tightly fixes it by multiple hydrogen bonds. The fluorescein's xanthene ring is embedded in the more hydrophobic groove and stacked between the side chains of Tyr37L and of Arg99H providing conditions for an excited state electron transfer process. In comparison to fluorescein, the absorption spectrum of the complex in the visible region is shifted to the "red" by 23 nm. The complex demonstrates a very weak fluorescence (Φc = 0.0018) with two short lifetime components: 0.03 ns (47%) and 0.8 ns (24%), which reflects a 99.8% fluorescein emission quenching effect upon complex formation. The antibody 43.1 binds fluorescein with remarkable affinity, fast association rate, and strongly quenches its emission. Therefore, it may present a practical interest in applications such as molecular sensors and switches.
Collapse
Affiliation(s)
- Susan Gayda
- Diagnostics Research, Abbott Diagnostics Division, Abbott Park, IL, 60064
| | - Kenton L Longenecker
- Structural Biology, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL, 60064
| | - Russell A Judge
- Structural Biology, Global Pharmaceutical Research and Development, Abbott Laboratories, Abbott Park, IL, 60064
| | - Kerry M Swift
- Diagnostics Research, Abbott Diagnostics Division, Abbott Park, IL, 60064
| | - Sharmila Manoj
- Diagnostics Research, Abbott Diagnostics Division, Abbott Park, IL, 60064
| | - D Scott Linthicum
- Landcare Research, PO Box 40, Canterbury Agriculture and Science Centre, Gerald Street, Lincoln, New Zealand
| | - Sergey Y Tetin
- Diagnostics Research, Abbott Diagnostics Division, Abbott Park, IL, 60064
| |
Collapse
|
3
|
Finton KAK, Larimore K, Larman HB, Friend D, Correnti C, Rupert PB, Elledge SJ, Greenberg PD, Strong RK. Autoreactivity and exceptional CDR plasticity (but not unusual polyspecificity) hinder elicitation of the anti-HIV antibody 4E10. PLoS Pathog 2013; 9:e1003639. [PMID: 24086134 PMCID: PMC3784475 DOI: 10.1371/journal.ppat.1003639] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Accepted: 08/04/2013] [Indexed: 01/19/2023] Open
Abstract
The broadly-neutralizing anti-HIV antibody 4E10 recognizes an epitope in the membrane-proximal external region of the HIV envelope protein gp41. Previous attempts to elicit 4E10 by vaccination with envelope-derived or reverse-engineered immunogens have failed. It was presumed that the ontogeny of 4E10-equivalent responses was blocked by inherent autoreactivity and exceptional polyreactivity. We generated 4E10 heavy-chain knock-in mice, which displayed significant B cell dysregulation, consistent with recognition of autoantigen/s by 4E10 and the presumption that tolerance mechanisms may hinder the elicitation of 4E10 or 4E10-equivalent responses. Previously proposed candidate 4E10 autoantigens include the mitochondrial lipid cardiolipin and a nuclear splicing factor, 3B3. However, using carefully-controlled assays, 4E10 bound only weakly to cardiolipin-containing liposomes, but also bound negatively-charged, non-cardiolipin-containing liposomes comparably poorly. 4E10/liposome binding was predominantly mediated by electrostatic interactions rather than presumed hydrophobic interactions. The crystal structure of 4E10 free of bound ligands showed a dramatic restructuring of the combining site, occluding the HIV epitope binding site and revealing profound flexibility, but creating an electropositive pocket consistent with non-specific binding of phospholipid headgroups. These results strongly suggested that antigens other than cardiolipin mediate 4E10 autoreactivity. Using a synthetic peptide library spanning the human proteome, we determined that 4E10 displays limited and focused, but unexceptional, polyspecificity. We also identified a novel autoepitope shared by three ER-resident inositol trisphosphate receptors, validated through binding studies and immunohistochemistry. Tissue staining with 4E10 demonstrated reactivity consistent with the type 1 inositol trisphosphate receptor as the most likely candidate autoantigen, but is inconsistent with splicing factor 3B3. These results demonstrate that 4E10 recognition of liposomes competes with MPER recognition and that HIV antigen and autoepitope recognition may be distinct enough to permit eliciting 4E10-like antibodies, evading autoimmunity through directed engineering. However, 4E10 combining site flexibility, exceptional for a highly-matured antibody, may preclude eliciting 4E10 by conventional immunization strategies.
Collapse
Affiliation(s)
- Kathryn A K Finton
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
A Structural Insight into the Molecular Recognition of a (−)-Δ9-Tetrahydrocannabinol and the Development of a Sensitive, One-Step, Homogeneous Immunocomplex-Based Assay for Its Detection. J Mol Biol 2010; 400:803-14. [DOI: 10.1016/j.jmb.2010.05.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/18/2022]
|
5
|
Zimmermann J, Romesberg FE, Brooks CL, Thorpe IF. Molecular description of flexibility in an antibody combining site. J Phys Chem B 2010; 114:7359-70. [PMID: 20455589 PMCID: PMC2892760 DOI: 10.1021/jp906421v] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mature antibodies (Abs) that are exquisitely specific for virtually any foreign molecule may be produced by affinity maturation of naïve (or germline) Abs. However, the finite number of germline Abs available suggests that, in contrast to mature Abs, germline Abs must be broadly polyspecific so that they are able to recognize a wide range of ligands. Thus, affinity maturation must play a role in mediating Ab specificity. One biophysical property that distinguishes polyspecificity from specificity is protein flexibility; a flexible combining site is able to adopt different conformations that recognize different foreign molecules (or antigens), while a rigid combining site is locked into a conformation that is specific for a given antigen. Recent studies (Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 8821-8826) have examined, at the atomic level, the structural properties that mediate changes in flexibility at four stages of affinity maturation in the 4-4-20 Ab. These studies employed molecular dynamics simulations to reveal a network of residue interactions that mediate the flexibility changes accompanying maturation. The flexibility of the Ab combining sites in these molecular systems was originally measured using three-pulse photon echo spectroscopy (3PEPS). The present investigation extends this work by providing a concrete link between structural properties of the Ab molecules and features of the spectroscopic measurements used to characterize their flexibility. Results obtained from the simulations are in good qualitative agreement with the experimental measurements and indicate that the spectroscopic signal is sensitive to protein dynamics distributed throughout the entire combining site. Thus, the simulations provide a molecular-level interpretation of the changes induced by affinity maturation of the Ab. The results suggest that 3PEPS spectroscopy in combination with molecular dynamics simulations can provide a detailed description of protein dynamics and, in this case, how it is evolved for biological function.
Collapse
Affiliation(s)
- Jörg Zimmermann
- Corresponding author. , Phone : (858) 784-7335, Fax : (858) 784-7472. , Phone: (410) 455-5728, Fax: (410) 455-2608
| | | | | | - Ian F. Thorpe
- Corresponding author. , Phone : (858) 784-7335, Fax : (858) 784-7472. , Phone: (410) 455-5728, Fax: (410) 455-2608
| |
Collapse
|
6
|
Agostino M, Sandrin MS, Thompson PE, Yuriev E, Ramsland PA. In silico analysis of antibody-carbohydrate interactions and its application to xenoreactive antibodies. Mol Immunol 2009; 47:233-46. [PMID: 19828202 DOI: 10.1016/j.molimm.2009.09.031] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 09/11/2009] [Accepted: 09/17/2009] [Indexed: 11/26/2022]
Abstract
Antibody-carbohydrate interactions play central roles in stimulating adverse immune reactions. The most familiar example of such a process is the reaction observed in ABO-incompatible blood transfusion and organ transplantation. The ABO blood groups are defined by the presence of specific carbohydrates expressed on the surface of red blood cells. Preformed antibodies in the incompatible recipient (i.e., different blood groups) recognize cells exhibiting host-incompatible ABO system antigens and proceed to initiate lysis of the incompatible cells. Pig-to-human xenotransplantation presents a similar immunological barrier. Antibodies present in humans recognize carbohydrate antigens on the surface of pig organs as foreign and proceed to initiate hyperacute xenograft rejection. The major carbohydrate xenoantigens all bear terminal Gal alpha(1,3)Gal epitopes (or alphaGal). In this study, we have developed and validated a site mapping technique to investigate protein-ligand recognition and applied it to antibody-carbohydrate systems. This site mapping technique involves the use of molecular docking to generate a series of antibody-carbohydrate complexes, followed by analysis of the hydrogen bonding and van der Waals interactions occurring in each complex. The technique was validated by application to a series of antibody-carbohydrate crystal structures. In each case, the majority of interactions made in the crystal structure complex were able to be reproduced. The technique was then applied to investigate xenoantigen recognition by a panel of monoclonal anti-alphaGal antibodies. The results indicate that there is a significant overlap of the antibody regions engaging the xenoantigens across the panel. Likewise, similar regions of the xenoantigens interact with the antibodies.
Collapse
Affiliation(s)
- Mark Agostino
- Medicinal Chemistry and Drug Action, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | | | | | | | | |
Collapse
|
7
|
Midelfort KS, Wittrup KD. Context-dependent mutations predominate in an engineered high-affinity single chain antibody fragment. Protein Sci 2006; 15:324-34. [PMID: 16434745 PMCID: PMC2242459 DOI: 10.1110/ps.051842406] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A mutational analysis of the femtomolar-affinity anti-fluorescein antibody 4M5.3, compared to its wild-type progenitor, 4-4-20, indicates both context-dependent and -independent mutations are responsible for the 1800-fold affinity improvement. 4M5.3 was engineered from 4-4-20 by directed evolution and contains 14 mutations. The seven mutations identified as present in each of 10 final round affinity maturation clones were studied here. Affinities of the 4-4-20 single mutant addition and 4M5.3 single site reversion mutants were compared. These experiments identified four mutations, of these seven, that were context-dependent in their contribution to higher affinity. A simplified mutant containing only these seven mutations was created to analyze complete double mutant cycles of selected sets of mutations. Specific mutational sets studied included the ligand contact mutations, the heavy chain CDR3 mutations, the heavy chain CDR3 mutations plus the neighboring residue at site H108, and the early and late acquired mutations on the directed evolution pathway. The heavy chain CDR3 mutational set and the ligand-contacting mutations were shown to provide -1.4 and -2.0 kcal/mol, respectively, of the total -3.5 kcal/mol change in free energy of binding of the seven-site consensus mutant. The mutations acquired late in the directed evolution rounds provided much of the change in free energy without the earlier acquired mutations (-3.1 kcal/mol of the total -3.5 kcal/mol). Prior structural data and electrostatic calculations presented several hypotheses for the higher affinity contributions, some of which are supported by these mutational data.
Collapse
Affiliation(s)
- Katarina S Midelfort
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
8
|
Vopel S, Mühlbach H, Skerra A. Rational engineering of a fluorescein-binding anticalin for improved ligand affinity. Biol Chem 2006; 386:1097-104. [PMID: 16307475 DOI: 10.1515/bc.2005.126] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The anticalin FluA is an artificial lipocalin with novelspecificity for the fluorescein group, which was engineered from an insect bilin-binding protein by targeted random mutagenesis and selection. Based on the crystal structure of FluA, an attempt was made to improve the complementarity of its ligand pocket to fluorescein by rational protein design. Several side chains participating in sub-optimal interactions with the ligand were identified and replaced by residues that promised a better steric fit. As a result, the substitution of Ala45 by Ile and of Ser114 by Thr or Arg led to a tight affinity of ca. 1 nM, which is approximately 30-fold better than that of the parental anticalin. Similar to the original FluA, the improved version shows almost complete quenching of the bound ligand fluorescence. Interestingly, the quenching effect was significantly reduced when Trp129 was replaced by Tyr, thus supporting the previously postulated role of this residue, which closely packs against the bound ligand, for efficient electron transfer to the excited fluorescein. Circular dichroism spectra revealed that all variants investigated had retained the lipocalin fold. Corresponding thermal unfolding experiments confirmed similar folding stabilities, with melting temperatures ranging from 52.9 to 60.5 degrees C (i.e., for the high-affinity variant).
Collapse
Affiliation(s)
- Sven Vopel
- Lehrstuhl für Biologische Chemie, Technische Universität München, D-85350 Freising-Weihenstephan, Germany
| | | | | |
Collapse
|
9
|
Pham V, Henzel WJ, Arnott D, Hymowitz S, Sandoval WN, Truong BT, Lowman H, Lill JR. De novo proteomic sequencing of a monoclonal antibody raised against OX40 ligand. Anal Biochem 2006; 352:77-86. [PMID: 16545334 DOI: 10.1016/j.ab.2006.02.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 01/05/2006] [Accepted: 02/01/2006] [Indexed: 11/24/2022]
Abstract
De novo sequencing of a full-length monoclonal antibody raised against OX40 ligand is described. Using a combination of overlapping complementary proteolytic and chemical digestions, with analysis by mass spectrometry and Edman degradation, both the heavy and light chains were fully sequenced. Particular attention was paid to those modifications that could be susceptible to degradation in the complementarity determining region and Fc region. An overview of the protocol is described, and suggestions for improvements to aid in such sequencing projects in the future are discussed.
Collapse
Affiliation(s)
- Victoria Pham
- Department of Protein Chemistry, Genentech, South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Marchalonis JJ, Adelman MK, Schluter SF, Ramsland PA. The antibody repertoire in evolution: chance, selection, and continuity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2006; 30:223-47. [PMID: 16083959 DOI: 10.1016/j.dci.2005.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
All jawed vertebrates contain the genetic elements essential for the function of the adaptive/combinatorial immune response, have diverse sets of natural antibodies resulting from segmental gene recombination, express comparable functional repertoires and can produce specific antibodies following appropriate immunization. Profound variability occurs in the third hypervariable (CDR3) segments of light and heavy chains even within antibodies of the same ostensible specificity. Germline VH and VL elements, as well as the joining (J) segments are highly conserved among the distinct vertebrate species. Conservation is particularly noted among the VH3-like sequences of all jawed vertebrates in the FR2 and FR3 segments, as well as in the FGXGT(R or K)L J-segment characteristic of light chains and TCRs and the WGXGT(uncharged)VT JH segments. Human VH3-53 and Vlambda6 family orthologs may be present over the entire range of vertebrates. Models of the three-dimensional structures of shark VH/VL combining sites indicate similarity in framework structure and comparable CDR usage to those of man. Although carcharhine shark VH regions show greater than 50% identity to the human VH germline prototype, searches of lower deuterostome and invertebrate databases fail to detect molecules with significant relatedness. Overall, antibodies of jawed vertebrates show tremendous individual diversity, but are constructed incorporating design features that arose with the evolutionary emergence of the jawed vertebrates and have been conserved through at least 450 million years of evolutionary time.
Collapse
Affiliation(s)
- John J Marchalonis
- Department of Microbiology and Immunology, College of Medicine, University of Arizona, 1501 N. Campbell Ave., Tucson, AZ 85724-5049, USA.
| | | | | | | |
Collapse
|
11
|
Honegger A, Spinelli S, Cambillau C, Plückthun A. A mutation designed to alter crystal packing permits structural analysis of a tight-binding fluorescein-scFv complex. Protein Sci 2005; 14:2537-49. [PMID: 16195545 PMCID: PMC2253284 DOI: 10.1110/ps.051520605] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The structure of the scFv fragment FITC-E2, obtained from a naive phage antibody scFv library derived from human donors, was determined at 2.1 A resolution in the free form and at 3.0 A in the complexed form. The wild-type (wt) scFv binds fluorescein with a K(D) of 0.75 nM. The free scFv readily crystallizes by compacting its 18 amino acid-long CDR-H3, partially occluding the binding site and further blocking access by binding to the "bottom" of a neighboring scFv molecule with a cluster of exposed aromatic residues within CDR-H3. Only upon mutating one of the residues involved in this dominant crystal contact, an exposed tryptophan in the middle of CDR-H3, crystals of the complex could be obtained. A series of alanine mutants within the putative antigen binding site, covering a range of binding affinities, were used to relate macroscopic thermodynamic and kinetic binding parameters to single-molecule disruption forces measured by AFM. The effects of the mutations on the binding properties, particularly on the fraction of binding-competent molecules within the population, cannot be fully explained by changes in the strength of local interactions. The significant conformational change of CDR-H3 between the free and the liganded form illustrates the plasticity of the binding site. An accompanying study in this issue by Curcio and colleagues presents the molecular dynamics simulation of the forced unbinding experiments and explores possible effects of the mutations on the unbinding pathway of the hapten.
Collapse
Affiliation(s)
- Annemarie Honegger
- Biochemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | |
Collapse
|
12
|
Midelfort KS, Hernandez HH, Lippow SM, Tidor B, Drennan CL, Wittrup KD. Substantial Energetic Improvement with Minimal Structural Perturbation in a High Affinity Mutant Antibody. J Mol Biol 2004; 343:685-701. [PMID: 15465055 DOI: 10.1016/j.jmb.2004.08.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2004] [Revised: 07/27/2004] [Accepted: 08/09/2004] [Indexed: 11/17/2022]
Abstract
Here, we compare an antibody with the highest known engineered affinity (K(d)=270 fM) to its high affinity wild-type (K(d)=700 pM) through thermodynamic, kinetic, structural, and theoretical analyses. The 4M5.3 anti-fluorescein single chain antibody fragment (scFv) contains 14 mutations from the wild-type 4-4-20 scFv and has a 1800-fold increase in fluorescein-binding affinity. The dissociation rate is approximately 16,000 times slower in the mutant; however, this substantial improvement is offset somewhat by the association rate, which is ninefold slower in the mutant. Enthalpic contributions to binding were found by calorimetry to predominate in the differential binding free energy. The crystal structure of the 4M5.3 mutant complexed with antigen was solved to 1.5A resolution and compared with a previously solved structure of an antigen-bound 4-4-20 Fab fragment. Strikingly, the structural comparison shows little difference between the two scFv molecules (backbone RMSD of 0.6A), despite the large difference in affinity. Shape complementarity exhibits a small improvement between the variable light chain and variable heavy chain domains within the antibody, but no significant improvement in shape complementarity of the antibody with the antigen is observed in the mutant over the wild-type. Theoretical modeling calculations show electrostatic contributions to binding account for -1.2 kcal/mol to -3.5 kcal/mol of the binding free energy change, of which -1.1 kcal/mol is directly associated with the mutated residue side-chains. The electrostatic analysis reveals several mechanistic explanations for a portion of the improvement. Collectively, these data provide an example where very high binding affinity is achieved through the cumulative effect of many small structural alterations.
Collapse
Affiliation(s)
- K S Midelfort
- Biological Engineering Division, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|