1
|
Zhang Q, Zhang J, Chang G, Zhao K, Yao Y, Liu L, Du Z, Wang Y, Guo X, Zhao Z, Zeng W, Gao S. Decoding molecular features of bovine oocyte fate during antral follicle growth via single-cell multi-omics analysis†. Biol Reprod 2024; 111:815-833. [PMID: 39058647 DOI: 10.1093/biolre/ioae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/30/2024] [Accepted: 07/25/2024] [Indexed: 07/28/2024] Open
Abstract
Antral follicle size is a useful predictive marker of the competency of enclosed oocytes for yielding an embryo following in vitro maturation and fertilization. However, the molecular mechanisms underpinning oocyte developmental potential during bovine antral follicle growth are still unclear. Here, we used a modified single-cell multi-omics approach to analyze the transcriptome, DNA methylome, and chromatin accessibility in parallel for oocytes and cumulus cells collected from bovine antral follicles of different sizes. Transcriptome profiling identified three types of oocytes (small, medium, and large) that underwent different developmental trajectories, with large oocytes exhibiting the largest average follicle size and characteristics resembling metaphase-II oocytes. Differential expression analysis and real-time polymerase chain reaction assay showed that most replication-dependent histone genes were highly expressed in large oocytes. The joint analysis of multi-omics data revealed that the transcription of 20 differentially expressed genes in large oocytes was associated with both DNA methylation and chromatin accessibility. In addition, oocyte-cumulus interaction analysis showed that inflammation, DNA damage, and p53 signaling pathways were active in small oocytes, which had the smallest average follicle sizes. We further confirmed that p53 pathway inhibition in the in vitro maturation experiments using oocytes obtained from small antral follicles could improve the quality of oocytes and increased the blastocyte rate after in vitro fertilization and culture. Our work provides new insights into the intricate orchestration of bovine oocyte fate determination during antral folliculogenesis, which is instrumental for optimizing in vitro maturation techniques to optimize oocyte quality.
Collapse
Affiliation(s)
- Qiang Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Jingyao Zhang
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gang Chang
- Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen, China
| | - Kun Zhao
- Translational Medical Center for Stem Cell Therapy & Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yujun Yao
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Li Liu
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zihuan Du
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yanping Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Xingrong Guo
- Hubei Key Laboratory of Embryonic Stem Cell Research Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Zongsheng Zhao
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Weibin Zeng
- College of Animal Science and Technology, Shihezi University, Shihezi, China
| | - Shuai Gao
- State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding (MOE), College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Weninger G, Miotto MC, Tchagou C, Reiken S, Dridi H, Brandenburg S, Riedemann GC, Yuan Q, Liu Y, Chang A, Wronska A, Lehnart SE, Marks AR. Structural insights into the regulation of RyR1 by S100A1. Proc Natl Acad Sci U S A 2024; 121:e2400497121. [PMID: 38917010 PMCID: PMC11228480 DOI: 10.1073/pnas.2400497121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/23/2024] [Indexed: 06/27/2024] Open
Abstract
S100A1, a small homodimeric EF-hand Ca2+-binding protein (~21 kDa), plays an important regulatory role in Ca2+ signaling pathways involved in various biological functions including Ca2+ cycling and contractile performance in skeletal and cardiac myocytes. One key target of the S100A1 interactome is the ryanodine receptor (RyR), a huge homotetrameric Ca2+ release channel (~2.3 MDa) of the sarcoplasmic reticulum. Here, we report cryoelectron microscopy structures of S100A1 bound to RyR1, the skeletal muscle isoform, in absence and presence of Ca2+. Ca2+-free apo-S100A1 binds beneath the bridging solenoid (BSol) and forms contacts with the junctional solenoid and the shell-core linker of RyR1. Upon Ca2+-binding, S100A1 undergoes a conformational change resulting in the exposure of the hydrophobic pocket known to serve as a major interaction site of S100A1. Through interactions of the hydrophobic pocket with RyR1, Ca2+-bound S100A1 intrudes deeper into the RyR1 structure beneath BSol than the apo-form and induces sideways motions of the C-terminal BSol region toward the adjacent RyR1 protomer resulting in tighter interprotomer contacts. Interestingly, the second hydrophobic pocket of the S100A1-dimer is largely exposed at the hydrophilic surface making it prone to interactions with the local environment, suggesting that S100A1 could be involved in forming larger heterocomplexes of RyRs with other protein partners. Since S100A1 interactions stabilizing BSol are implicated in the regulation of RyR-mediated Ca2+ release, the characterization of the S100A1 binding site conserved between RyR isoforms may provide the structural basis for the development of therapeutic strategies regarding treatments of RyR-related disorders.
Collapse
Affiliation(s)
- Gunnar Weninger
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Marco C. Miotto
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Carl Tchagou
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Steven Reiken
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Haikel Dridi
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Sören Brandenburg
- Department of Cardiology and Pneumology, Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, 37075Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37075Göttingen, Germany
| | - Gabriel C. Riedemann
- Department of Cardiology and Pneumology, Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, 37075Göttingen, Germany
| | - Qi Yuan
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Yang Liu
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Alexander Chang
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Anetta Wronska
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| | - Stephan E. Lehnart
- Department of Cardiology and Pneumology, Cellular Biophysics and Translational Cardiology Section, Heart Research Center Göttingen, University Medical Center Göttingen, 37075Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC 2067), University of Göttingen, 37075Göttingen, Germany
| | - Andrew R. Marks
- Department of Physiology and Cellular Biophysics, Center for Molecular Cardiology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY10032
| |
Collapse
|
3
|
Wang Q, DiForte C, Aleshintsev A, Elci G, Bhattacharya S, Bongiorno A, Gupta R. Calcium mediated static and dynamic allostery in S100A12: Implications for target recognition by S100 proteins. Protein Sci 2024; 33:e4955. [PMID: 38501487 PMCID: PMC10949321 DOI: 10.1002/pro.4955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/09/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
Structure and functions of S100 proteins are regulated by two distinct calcium binding EF hand motifs. In this work, we used solution-state NMR spectroscopy to investigate the cooperativity between the two calcium binding sites and map the allosteric changes at the target binding site. To parse the contribution of the individual calcium binding events, variants of S100A12 were designed to selectively bind calcium to either the EF-I (N63A) or EF-II (E31A) loop, respectively. Detailed analysis of the backbone chemical shifts for wildtype protein and its mutants indicates that calcium binding to the canonical EF-II loop is the principal trigger for the conformational switch between 'closed' apo to the 'open' Ca2+ -bound conformation of the protein. Elimination of binding in S100-specific EF-I loop has limited impact on the calcium binding affinity of the EF-II loop and the concomitant structural rearrangement. In contrast, deletion of binding in the EF-II loop significantly attenuates calcium affinity in the EF-I loop and the structure adopts a 'closed' apo-like conformation. Analysis of experimental amide nitrogen (15 N) relaxation rates (R1 , R2 , and 15 N-{1 H} NOE) and molecular dynamics (MD) simulations demonstrate that the calcium bound state is relatively floppy with pico-nanosecond motions induced in functionally relevant domains responsible for target recognition such as the hinge domain and the C-terminal residues. Experimental relaxation studies combined with MD simulations show that while calcium binding in the EF-I loop alone does not induce significant motions in the polypeptide chain, EF-I regulates fluctuations in the polypeptide in the presence of bound calcium in the EF-II loop. These results offer novel insights into the dynamic regulation of target recognition by calcium binding and unravels the role of cooperativity between the two calcium binding events in S100A12.
Collapse
Affiliation(s)
- Qian Wang
- Department of ChemistryCollege of Staten Island, City University of New YorkNew YorkUnited States
| | - Christopher DiForte
- Department of ChemistryCollege of Staten Island, City University of New YorkNew YorkUnited States
- Ph.D. Programs in Biochemistry and ChemistryThe Graduate Center of the City University of New YorkUnited States
| | - Aleksey Aleshintsev
- Department of ChemistryCollege of Staten Island, City University of New YorkNew YorkUnited States
- Ph.D. Programs in Biochemistry and ChemistryThe Graduate Center of the City University of New YorkUnited States
| | - Gianna Elci
- Department of ChemistryCollege of Staten Island, City University of New YorkNew YorkUnited States
| | | | - Angelo Bongiorno
- Department of ChemistryCollege of Staten Island, City University of New YorkNew YorkUnited States
- Ph.D. Programs in Biochemistry and ChemistryThe Graduate Center of the City University of New YorkUnited States
| | - Rupal Gupta
- Department of ChemistryCollege of Staten Island, City University of New YorkNew YorkUnited States
- Ph.D. Programs in Biochemistry and ChemistryThe Graduate Center of the City University of New YorkUnited States
| |
Collapse
|
4
|
Wang G, Zhang Y, Kwong HK, Zheng M, Wu J, Cui C, Chan KWY, Xu C, Chen T. On-Site Melanoma Diagnosis Utilizing a Swellable Microneedle-Assisted Skin Interstitial Fluid Sampling and a Microfluidic Particle Dam for Visual Quantification of S100A1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306188. [PMID: 38417122 PMCID: PMC11040363 DOI: 10.1002/advs.202306188] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 01/19/2024] [Indexed: 03/01/2024]
Abstract
Malignant melanoma (MM) is the most aggressive form of skin cancer. The delay in treatment will induce metastasis, resulting in a poor prognosis and even death. Here, a two-step strategy for on-site diagnosis of MM is developed based on the extraction and direct visual quantification of S100A1, a biomarker for melanoma. First, a swellable microneedle is utilized to extract S100A1 in skin interstitial fluid (ISF) with minimal invasion. After elution, antibody-conjugated magnetic microparticles (MMPs) and polystyrene microparticles (PMPs) are introduced. A high expression level of S100A1 gives rise to a robust binding between MMPs and PMPs and reduces the number of free PMPs. By loading the reacted solution into the device with a microfluidic particle dam, the quantity of free PMPs after magnetic separation is displayed with their accumulation length inversely proportional to S100A1 levels. A limit of detection of 18.7 ng mL-1 for S100A1 is achieved. The animal experiment indicates that ISF-based S100A1 quantification using the proposed strategy exhibits a significantly higher sensitivity compared with conventional serum-based detection. In addition, the result is highly comparable with the gold standard enzyme-linked immunosorbent assay based on Lin's concordance correlation coefficient, suggesting the high practicality for routine monitoring of melanoma.
Collapse
Affiliation(s)
- Gaobo Wang
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Yuyue Zhang
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Hoi Kwan Kwong
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Mengjia Zheng
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Jianpeng Wu
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Chenyu Cui
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
- Hong Kong Centre for Cerebro‐Cardiovascular Health EngineeringRm 1115‐1119, Building 19W, 19 Science Park West AvenueHong Kong SAR999077China
| | - Kannie W. Y. Chan
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
- Hong Kong Centre for Cerebro‐Cardiovascular Health EngineeringRm 1115‐1119, Building 19W, 19 Science Park West AvenueHong Kong SAR999077China
| | - Chenjie Xu
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
| | - Ting‐Hsuan Chen
- Department of Biomedical EngineeringCity University of Hong Kong83 Tat Chee AvenueKowloon TongHong Kong SAR999077China
- City University of Hong Kong Shenzhen Research Institute8 Yuexing 1st Road, Shenzhen Hi‐Tech Industrial Park, Nanshan DistrictShenzhen518057China
- Hong Kong Centre for Cerebro‐Cardiovascular Health EngineeringRm 1115‐1119, Building 19W, 19 Science Park West AvenueHong Kong SAR999077China
| |
Collapse
|
5
|
Yoder MW, Wright NT, Borzok MA. Calpain Regulation and Dysregulation-Its Effects on the Intercalated Disk. Int J Mol Sci 2023; 24:11726. [PMID: 37511485 PMCID: PMC10380737 DOI: 10.3390/ijms241411726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/12/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The intercalated disk is a cardiac specific structure composed of three main protein complexes-adherens junctions, desmosomes, and gap junctions-that work in concert to provide mechanical stability and electrical synchronization to the heart. Each substructure is regulated through a variety of mechanisms including proteolysis. Calpain proteases, a class of cysteine proteases dependent on calcium for activation, have recently emerged as important regulators of individual intercalated disk components. In this review, we will examine how calcium homeostasis regulates normal calpain function. We will also explore how calpains modulate gap junctions, desmosomes, and adherens junctions activity by targeting specific proteins, and describe the molecular mechanisms of how calpain dysregulation leads to structural and signaling defects within the heart. We will then examine how changes in calpain activity affects cardiomyocytes, and how such changes underlie various heart diseases.
Collapse
Affiliation(s)
- Micah W Yoder
- Biochemistry, Chemistry, Engineering, and Physics Department, Commonwealth University of Pennsylvania, 31 Academy St., Mansfield, PA 16933, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA 22807, USA
| | - Maegen A Borzok
- Biochemistry, Chemistry, Engineering, and Physics Department, Commonwealth University of Pennsylvania, 31 Academy St., Mansfield, PA 16933, USA
| |
Collapse
|
6
|
Mauriello GE, Moncure GE, Nowzari RA, Miller CJ, Wright NT. The N-terminus of obscurin is flexible in solution. Proteins 2023; 91:485-496. [PMID: 36306263 DOI: 10.1002/prot.26442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022]
Abstract
The N-terminal half of the giant cytoskeletal protein obscurin is comprised of more than 50 Ig-like domains, arranged in tandem. Domains 18-51 are connected to each other through short 5-residue linkers, and this arrangement has been previously shown to form a semi-flexible rod in solution. Domains 1-18 generally have slightly longer ~7 residue interdomain linkers, and the multidomain structure and motion conferred by this kind of linker is understudied. Here, we use NMR, SAXS, and MD to show that these longer linkers are associated with significantly more domain/domain flexibility, with the resulting multidomain structure being moderately compact. Further examination of the relationship between interdomain flexibility and linker length shows there is a 5 residue "sweet spot" linker length that results in dual-domain systems being extended, and conversely that both longer or shorter linkers result in a less extended structure. This detailed knowledge of the obscurin N terminus structure and flexibility allowed for mathematical modeling of domains 1-18, which suggests that this region likely forms tangles if left alone in solution. Given how infrequently protein tangles occur in nature, and given the pathological outcomes that occur when tangles do arise, our data suggest that obscurin is likely either significantly scaffolded or else externally extended in the cell.
Collapse
Affiliation(s)
- Gianna E Mauriello
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Grace E Moncure
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Roujon A Nowzari
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| | - Callie J Miller
- Department of Engineering, James Madison University, Harrisonburg, Virginia, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, USA
| |
Collapse
|
7
|
Young BD, Cook ME, Costabile BK, Samanta R, Zhuang X, Sevdalis SE, Varney KM, Mancia F, Matysiak S, Lattman E, Weber DJ. Binding and Functional Folding (BFF): A Physiological Framework for Studying Biomolecular Interactions and Allostery. J Mol Biol 2022; 434:167872. [PMID: 36354074 PMCID: PMC10871162 DOI: 10.1016/j.jmb.2022.167872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
EF-hand Ca2+-binding proteins (CBPs), such as S100 proteins (S100s) and calmodulin (CaM), are signaling proteins that undergo conformational changes upon increasing intracellular Ca2+. Upon binding Ca2+, S100 proteins and CaM interact with protein targets and induce important biological responses. The Ca2+-binding affinity of CaM and most S100s in the absence of target is weak (CaKD > 1 μM). However, upon effector protein binding, the Ca2+ affinity of these proteins increases via heterotropic allostery (CaKD < 1 μM). Because of the high number and micromolar concentrations of EF-hand CBPs in a cell, at any given time, allostery is required physiologically, allowing for (i) proper Ca2+ homeostasis and (ii) strict maintenance of Ca2+-signaling within a narrow dynamic range of free Ca2+ ion concentrations, [Ca2+]free. In this review, mechanisms of allostery are coalesced into an empirical "binding and functional folding (BFF)" physiological framework. At the molecular level, folding (F), binding and folding (BF), and BFF events include all atoms in the biomolecular complex under study. The BFF framework is introduced with two straightforward BFF types for proteins (type 1, concerted; type 2, stepwise) and considers how homologous and nonhomologous amino acid residues of CBPs and their effector protein(s) evolved to provide allosteric tightening of Ca2+ and simultaneously determine how specific and relatively promiscuous CBP-target complexes form as both are needed for proper cellular function.
Collapse
Affiliation(s)
- Brianna D Young
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary E Cook
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Brianna K Costabile
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Riya Samanta
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Xinhao Zhuang
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Spiridon E Sevdalis
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Kristen M Varney
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Silvina Matysiak
- Biophysics Graduate Program, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Eaton Lattman
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Physics, Arizona State University, Tempe, AZ 85287, USA
| | - David J Weber
- The Center for Biomolecular Therapeutics (CBT), Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; The Institute of Bioscience and Biotechnology Research (IBBR), Rockville, MD 20850, USA.
| |
Collapse
|
8
|
In silico Prediction of Deleterious Single Nucleotide Polymorphism in S100A4 Metastatic Gene: Potential Early Diagnostic Marker. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:4202623. [PMID: 35965620 PMCID: PMC9357733 DOI: 10.1155/2022/4202623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022]
Abstract
S100A4 protein overexpression has been reported in different types of cancer and plays a key role by interacting with the tumor suppressor protein Tp53. Single nucleotide polymorphisms (SNP) in S100A4 could directly influence the biomolecular interaction with the tumor suppressor protein Tp53 due to their aberrant conformations. Hence, the study was designed to predict the deleterious SNP and its effect on the S100A4 protein structure and function. Twenty-one SNP data sets were screened for nonsynonymous mutations and subsequently subjected to deleterious mutation prediction using different computational tools. The screened deleterious mutations were analyzed for their changes in functionality and their interaction with the tumor suppressor protein Tp53 by protein-protein docking analysis. The structural effects were studied using the 3DMissense mutation tool to estimate the solvation energy and torsion angle of the screened mutations on the predicted structures. In our study, 21 deleterious nonsynonymous mutations were screened, including F72V, E74G, L5P, D25E, N65S, A28V, A8D, S20L, L58P, and K26N were found to be remarkably conserved by exhibiting the interaction either with the EF-hand 1 or EF-hand 2 domain. The solvation and torsion values significantly deviated for the mutant-type structures with S20L, N65S, and F72L mutations and showed a marked reduction in their binding affinity with the Tp53 protein. Hence, these deleterious mutations might serve as prospective targets for diagnosing and developing personalized treatments for cancer and other related diseases.
Collapse
|
9
|
Woll KA, Van Petegem F. Calcium Release Channels: Structure and Function of IP3 Receptors and Ryanodine Receptors. Physiol Rev 2021; 102:209-268. [PMID: 34280054 DOI: 10.1152/physrev.00033.2020] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ca2+-release channels are giant membrane proteins that control the release of Ca2+ from the endoplasmic and sarcoplasmic reticulum. The two members, ryanodine receptors (RyRs) and inositol-1,4,5-trisphosphate Receptors (IP3Rs), are evolutionarily related and are both activated by cytosolic Ca2+. They share a common architecture, but RyRs have evolved additional modules in the cytosolic region. Their massive size allows for the regulation by tens of proteins and small molecules, which can affect the opening and closing of the channels. In addition to Ca2+, other major triggers include IP3 for the IP3Rs, and depolarization of the plasma membrane for a particular RyR subtype. Their size has made them popular targets for study via electron microscopic methods, with current structures culminating near 3Å. The available structures have provided many new mechanistic insights int the binding of auxiliary proteins and small molecules, how these can regulate channel opening, and the mechanisms of disease-associated mutations. They also help scrutinize previously proposed binding sites, as some of these are now incompatible with the structures. Many questions remain around the structural effects of post-translational modifications, additional binding partners, and the higher-order complexes these channels can make in situ. This review summarizes our current knowledge about the structures of Ca2+-release channels and how this informs on their function.
Collapse
Affiliation(s)
- Kellie A Woll
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
10
|
Mendelman N, Meirovitch E. SRLS Analysis of 15N- 1H NMR Relaxation from the Protein S100A1: Dynamic Structure, Calcium Binding, and Related Changes in Conformational Entropy. J Phys Chem B 2021; 125:805-816. [PMID: 33449683 DOI: 10.1021/acs.jpcb.0c10124] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We report on amide (N-H) NMR relaxation from the protein S100A1 analyzed with the slowly relaxing local structure (SRLS) approach. S100A1 comprises two calcium-binding "EF-hands" (helix-loop-helix motifs) connected by a linker. The dynamic structure of this protein, in both calcium-free and calcium-bound form, is described as the restricted local N-H motion coupled to isotropic protein tumbling. The restrictions are given by a rhombic potential, u (∼10 kT), the local motion by a diffusion tensor with rate constant D2 (∼109 s-1), and principal axis tilted from the N-H bond at angle β (10-20°). This parameter combination provides a physically insightful picture of the dynamic structure of S100A1 from the N-H bond perspective. Calcium binding primarily affects the C-terminal EF-hand, among others slowing down the motion of helices III and IV approximately 10-fold. Overall, it brings about significant changes in the shape of the local potential, u, and the orientation of the local diffusion axis, β. Conformational entropy derived from u makes an unfavorable entropic contribution to the free energy of calcium binding estimated at 8.6 ± 0.5 kJ/mol. The N-terminal EF-hand undergoes moderate changes. These findings provide new insights into the calcium-binding process. The same data were analyzed previously with the extended model-free (EMF) method, which is a simple limit of SRLS. In that interpretation, the protein tumbles anisotropically. Locally, calcium binding increases ordering in the loops of S100A1 and conformational exchange (Rex) in the helices of its N-terminal EF-hand. These are very unusual features. We show that they most likely stem from problematic data-fitting, oversimplifications inherent in EMF, and experimental imperfections. Rex is shown to be mainly a fit parameter. By reanalyzing the experimental data with SRLS, which is largely free of these deficiencies, we obtain-as delineated above-physically-relevant structural, kinetic, geometric, and binding information.
Collapse
Affiliation(s)
- Netanel Mendelman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Eva Meirovitch
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
11
|
Sun B, Kekenes-Huskey PM. Molecular Basis of S100A1 Activation and Target Regulation Within Physiological Cytosolic Ca 2+ Levels. Front Mol Biosci 2020; 7:77. [PMID: 32656226 PMCID: PMC7324869 DOI: 10.3389/fmolb.2020.00077] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/06/2020] [Indexed: 12/16/2022] Open
Abstract
The S100A1 protein regulates cardiomyocyte function through its binding of calcium (Ca2+) and target proteins, including titin, SERCA, and RyR. S100A1 presents two Ca2+ binding domains, a high-affinity canonical EF-hand (cEF) and a low-affinity pseudo EF-hand (pEF), that control S100A1 activation. For wild-type S100A1, both EF hands must be bound by Ca2+ to form the open state necessary for target peptide binding, which requires unphysiological high sub-millimolar Ca2+ levels. However, there is evidence that post-translational modifications at Cys85 may facilitate the formation of the open state at sub-saturating Ca2+ concentrations. Hence, post-translational modifications of S100A1 could potentially increase the Ca2+-sensitivity of binding protein targets, and thereby modulate corresponding signaling pathways. In this study, we examine the mechanism of S100A1 open-closed gating via molecular dynamics simulations to determine the extent to which Cys85 functionalization, namely via redox reactions, controls the relative population of open states at sub-saturating Ca2+ and capacity to bind peptides. We further characterize the protein's ability to bind a representative peptide target, TRKT12 and relate this propensity to published competition assay data. Our simulation results indicate that functionalization of Cys85 may stabilize the S100A1 open state at physiological, micromolar Ca2+ levels. Our conclusions support growing evidence that S100A1 serves as a signaling hub linking Ca2+ and redox signaling pathways.
Collapse
Affiliation(s)
- Bin Sun
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
| | - Peter M Kekenes-Huskey
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL, United States
| |
Collapse
|
12
|
Chaturvedi N, Ahmad K, Yadav BS, Lee EJ, Sonkar SC, Marina N, Choi I. Understanding Calcium-Dependent Conformational Changes in S100A1 Protein: A Combination of Molecular Dynamics and Gene Expression Study in Skeletal Muscle. Cells 2020; 9:181. [PMID: 31936886 PMCID: PMC7016722 DOI: 10.3390/cells9010181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/12/2022] Open
Abstract
The S100A1 protein, involved in various physiological activities through the binding of calcium ions (Ca2+), participates in several protein-protein interaction (PPI) events after Ca2+-dependent activation. The present work investigates Ca2+-dependent conformational changes in the helix-EF hand-helix using the molecular dynamics (MD) simulation approach that facilitates the understanding of Ca2+-dependent structural and dynamic distinctions between the apo and holo forms of the protein. Furthermore, the process of ion binding by inserting Ca2+ into the bulk of the apo structure was simulated by molecular dynamics. Expectations of the simulation were demonstrated using cluster analysis and a variety of structural metrics, such as interhelical angle estimation, solvent accessible surface area, hydrogen bond analysis, and contact analysis. Ca2+ triggered a rise in the interhelical angles of S100A1 on the binding site and solvent accessible surface area. Significant configurational regulations were observed in the holo protein. The findings would contribute to understanding the molecular basis of the association of Ca2+ with the S100A1 protein, which may be an appropriate study to understand the Ca2+-mediated conformational changes in the protein target. In addition, we investigated the expression profile of S100A1 in myoblast differentiation and muscle regeneration. These data showed that S100A1 is expressed in skeletal muscles. However, the expression decreases with time during the process of myoblast differentiation.
Collapse
Affiliation(s)
- Navaneet Chaturvedi
- Department of Bioengineering, University of Information Science and Technology, St. Paul The Apostle, Ohrid-6000, North Macedonia; (B.S.Y.); (N.M.)
| | - Khurshid Ahmad
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (E.J.L.)
| | - Brijesh Singh Yadav
- Department of Bioengineering, University of Information Science and Technology, St. Paul The Apostle, Ohrid-6000, North Macedonia; (B.S.Y.); (N.M.)
| | - Eun Ju Lee
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (E.J.L.)
| | - Subash Chandra Sonkar
- Department of Obstetrics and Gynaecology, Vardhman Mahavir Medical College and Safdarjang Hospital, New Delhi-110029, India;
| | - Ninoslav Marina
- Department of Bioengineering, University of Information Science and Technology, St. Paul The Apostle, Ohrid-6000, North Macedonia; (B.S.Y.); (N.M.)
| | - Inho Choi
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea; (K.A.); (E.J.L.)
| |
Collapse
|
13
|
Shi X, Xu J, Lu C, Wang Z, Xiao W, Zhao L. Immobilization of high temperature-resistant GH3 β-glucosidase on a magnetic particle Fe3O4-SiO2-NH2-Cellu-ZIF8/zeolitic imidazolate framework. Enzyme Microb Technol 2019; 129:109347. [DOI: 10.1016/j.enzmictec.2019.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023]
|
14
|
TRPM6 N-Terminal CaM- and S100A1-Binding Domains. Int J Mol Sci 2019; 20:ijms20184430. [PMID: 31505788 PMCID: PMC6770577 DOI: 10.3390/ijms20184430] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/02/2019] [Accepted: 09/04/2019] [Indexed: 12/29/2022] Open
Abstract
Transient receptor potential (TRPs) channels are crucial downstream targets of calcium signalling cascades. They can be modulated either by calcium itself and/or by calcium-binding proteins (CBPs). Intracellular messengers usually interact with binding domains present at the most variable TRP regions-N- and C-cytoplasmic termini. Calmodulin (CaM) is a calcium-dependent cytosolic protein serving as a modulator of most transmembrane receptors. Although CaM-binding domains are widespread within intracellular parts of TRPs, no such binding domain has been characterised at the TRP melastatin member-the transient receptor potential melastatin 6 (TRPM6) channel. Another CBP, the S100 calcium-binding protein A1 (S100A1), is also known for its modulatory activities towards receptors. S100A1 commonly shares a CaM-binding domain. Here, we present the first identified CaM and S100A1 binding sites at the N-terminal of TRPM6. We have confirmed the L520-R535 N-terminal TRPM6 domain as a shared binding site for CaM and S100A1 using biophysical and molecular modelling methods. A specific domain of basic amino acid residues (R526/R531/K532/R535) present at this TRPM6 domain has been identified as crucial to maintain non-covalent interactions with the ligands. Our data unambiguously confirm that CaM and S100A1 share the same binding domain at the TRPM6 N-terminus although the ligand-binding mechanism is different.
Collapse
|
15
|
Fan L, Liu B, Guo R, Luo J, Li H, Li Z, Xu W. Elevated plasma S100A1 level is a risk factor for ST-segment elevation myocardial infarction and associated with post-infarction cardiac function. Int J Med Sci 2019; 16:1171-1179. [PMID: 31523180 PMCID: PMC6743283 DOI: 10.7150/ijms.35037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/17/2019] [Indexed: 01/20/2023] Open
Abstract
AIM To investigate the association between plasma S100A1 level and ST-segment elevation myocardial infarction (STEMI) and potential significance of S100A1 in post-infarction cardiac function. METHODS We examined the plasma S100A1 level in 207 STEMI patients (STEMI group) and 217 clinically healthy subjects for routine physical examination without a history of coronary artery disease (Control group). Baseline characteristics and concentrations of relevant biomarkers were compared. The relationship between S100A1 and other plasma biomarkers was detected using correlation analysis. The predictive role of S100A1 on occurrence of STEMI was then assessed using multivariate ordinal regression model analysis after adjusting for other covariates. RESULTS The plasma S100A1 level was found to be significantly higher (P<0.001) in STEMI group (3197.7±1576.0 pg/mL) than in Control (1423.5±1315.5 pg/mL) group. Furthermore, the correlation analysis demonstrated plasma S100A1 level was significantly associated correlated with hypersensitive cardiac troponin T (hs-cTnT) (r = 0.32; P < 0.001), creatine kinase MB (CK-MB) (r = 0.42, P < 0.001), left ventricular eject fraction (LVEF) (r = -0.12, P = 0.01), N-terminal prohormone of brain natriuretic peptide (NT-proBNP) (r = 0.61; P < 0.001) and hypersensitive C reactive protein (hs-CRP) (r = 0.38; P < 0.001). Moreover, the enrolled subjects who with a S100A1 concentration ≤ 1965.9 pg/mL presented significantly better cardiac function than the rest population. Multivariate Logistic regression analysis revealed that S100A1 was an independent predictor for STEMI patients (OR: 0.671, 95% CI 0.500-0.891, P<0.001). In addition, higher S100A1 concentration (> 1965.9 pg/mL) significantly increased the risk of STEMI as compared with the lower level (OR: 6.925; 95% CI: 4.15-11.375; P<0.001). CONCLUSION These results indicated that the elevated plasma S100A1 level is an important predictor of STEMI in combination with several biomarkers and also potentially reflects the cardiac function following the acute coronary ischemia.
Collapse
Affiliation(s)
- Linlin Fan
- Institute of Biomedical Sciences, Department of Cardiology, Shanghai Institute of Cardiovascular Disease, Fudan University, Shanghai, 200032, China
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Baoxin Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Rong Guo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Jiachen Luo
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Hongqiang Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhiqiang Li
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Weigang Xu
- Community Health Service Center of Pengpu New Estate, Jing'an District, Shanghai, 200435, China
| |
Collapse
|
16
|
Whitley JA, Ex-Willey AM, Marzolf DR, Ackermann MA, Tongen AL, Kokhan O, Wright NT. Obscurin is a semi-flexible molecule in solution. Protein Sci 2019; 28:717-726. [PMID: 30666746 DOI: 10.1002/pro.3578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/14/2019] [Indexed: 01/10/2023]
Abstract
Obscurin, a giant modular cytoskeletal protein, is comprised mostly of tandem immunoglobulin-like (Ig-like) domains. This architecture allows obscurin to connect distal targets within the cell. The linkers connecting the Ig domains are usually short (3-4 residues). The physical effect arising from these short linkers is not known; such linkers may lead to a stiff elongated molecule or, conversely, may lead to a more compact and dynamic structure. In an effort to better understand how linkers affect obscurin flexibility, and to better understand the physical underpinnings of this flexibility, here we study the structure and dynamics of four representative sets of dual obscurin Ig domains using experimental and computational techniques. We find in all cases tested that tandem obscurin Ig domains interact at the poles of each domain and tend to stay relatively extended in solution. NMR, SAXS, and MD simulations reveal that while tandem domains are elongated, they also bend and flex significantly. By applying this behavior to a simplified model, it becomes apparent obscurin can link targets more than 200 nm away. However, as targets get further apart, obscurin begins acting as a spring and requires progressively more energy to further elongate.
Collapse
Affiliation(s)
- Jacob A Whitley
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - Aidan M Ex-Willey
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807.,Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, Ohio, 43210
| | - Daniel R Marzolf
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - Maegen A Ackermann
- Department of Physiology and Cell Biology, Wexner Medical Center, Ohio State University, Columbus, Ohio, 43210
| | - Anthony L Tongen
- Department of Mathematics and Statistics, James Madison University, Harrisonburg, Virginia, 22807
| | - Oleksandr Kokhan
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| |
Collapse
|
17
|
Rosik J, Szostak B, Machaj F, Pawlik A. Potential targets of gene therapy in the treatment of heart failure. Expert Opin Ther Targets 2018; 22:811-816. [DOI: 10.1080/14728222.2018.1514012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Filip Machaj
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
18
|
Shi X, Zhao L, Pei J, Ge L, Wan P, Wang Z, Xiao W. Highly enhancing the characteristics of immobilized thermostable β-glucosidase by Zn2+. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Bousova K, Herman P, Vecer J, Bednarova L, Monincova L, Majer P, Vyklicky L, Vondrasek J, Teisinger J. Shared CaM‐ and S100A1‐binding epitopes in the distal
TRPM
4 N terminus. FEBS J 2017; 285:599-613. [DOI: 10.1111/febs.14362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/31/2017] [Accepted: 12/08/2017] [Indexed: 02/05/2023]
Affiliation(s)
- Kristyna Bousova
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
- Institute of Physiology Czech Academy of Sciences Prague Czech Republic
| | - Petr Herman
- Faculty of Mathematics and Physics Charles University Prague Czech Republic
| | - Jaroslav Vecer
- Faculty of Mathematics and Physics Charles University Prague Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Lenka Monincova
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology Czech Academy of Sciences Prague Czech Republic
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry Czech Academy of Sciences Prague Czech Republic
| | - Jan Teisinger
- Institute of Physiology Czech Academy of Sciences Prague Czech Republic
| |
Collapse
|
20
|
Rossi D, Palmio J, Evilä A, Galli L, Barone V, Caldwell TA, Policke RA, Aldkheil E, Berndsen CE, Wright NT, Malfatti E, Brochier G, Pierantozzi E, Jordanova A, Guergueltcheva V, Romero NB, Hackman P, Eymard B, Udd B, Sorrentino V. A novel FLNC frameshift and an OBSCN variant in a family with distal muscular dystrophy. PLoS One 2017; 12:e0186642. [PMID: 29073160 PMCID: PMC5657976 DOI: 10.1371/journal.pone.0186642] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 10/04/2017] [Indexed: 11/30/2022] Open
Abstract
A novel FLNC c.5161delG (p.Gly1722ValfsTer61) mutation was identified in two members of a French family affected by distal myopathy and in one healthy relative. This FLNC c.5161delG mutation is one nucleotide away from a previously reported FLNC mutation (c.5160delC) that was identified in patients and in asymptomatic carriers of three Bulgarian families with distal muscular dystrophy, indicating a low penetrance of the FLNC frameshift mutations. Given these similarities, we believe that the two FLNC mutations alone can be causative of distal myopathy without full penetrance. Moreover, comparative analysis of the clinical manifestations indicates that patients of the French family show an earlier onset and a complete segregation of the disease. As a possible explanation of this, the two French patients also carry a OBSCN c.13330C>T (p.Arg4444Trp) mutation. The p.Arg4444Trp variant is localized within the OBSCN Ig59 domain that, together with Ig58, binds to the ZIg9/ZIg10 domains of titin at Z-disks. Structural and functional studies indicate that this OBSCN p.Arg4444Trp mutation decreases titin binding by ~15-fold. On this line, we suggest that the combination of the OBSCN p.Arg4444Trp variant and of the FLNC c.5161delG mutation, can cooperatively affect myofibril stability and increase the penetrance of muscular dystrophy in the French family.
Collapse
Affiliation(s)
- Daniela Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland
| | - Anni Evilä
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Lucia Galli
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Virginia Barone
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Tracy A. Caldwell
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Rachel A. Policke
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Esraa Aldkheil
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Christopher E. Berndsen
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Nathan T. Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, United States of America
| | - Edoardo Malfatti
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Guy Brochier
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Enrico Pierantozzi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Albena Jordanova
- Molecular Neurogenomics Group, University of Antwerp, Antwerp, Belgium
- Molecular Medicine Center, Department of Medical Chemistry and Biochemistry, Medical University-Sofia, Sofia, Bulgaria
| | | | - Norma Beatriz Romero
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Peter Hackman
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Bruno Eymard
- Neuromuscular Morphology Unit, and Reference Center for Neuromuscular Diseases, Myology Institute, Groupe Hospitalier La Pitié-Salpêtrière, Paris, France
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University and University Hospital, Tampere, Finland
- Folkhälsan Institute of Genetics and Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
- Department of Neurology, Vaasa Central Hospital, Vaasa, Finland
| | - Vincenzo Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena and Azienda Ospedaliera Universitaria Senese, Siena, Italy
- * E-mail:
| |
Collapse
|
21
|
Hu LYR, Ackermann MA, Hecker PA, Prosser BL, King B, O’Connell KA, Grogan A, Meyer LC, Berndsen CE, Wright NT, Jonathan Lederer W, Kontrogianni-Konstantopoulos A. Deregulated Ca 2+ cycling underlies the development of arrhythmia and heart disease due to mutant obscurin. SCIENCE ADVANCES 2017; 3:e1603081. [PMID: 28630914 PMCID: PMC5462502 DOI: 10.1126/sciadv.1603081] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/17/2017] [Indexed: 05/05/2023]
Abstract
Obscurins are cytoskeletal proteins with structural and regulatory roles encoded by OBSCN. Mutations in OBSCN are associated with the development of hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). Specifically, the R4344Q mutation present in immunoglobulin domain 58 (Ig58) was the first to be linked with the development of HCM. To assess the effects of R4344Q in vivo, we generated the respective knock-in mouse model. Mutant obscurins are expressed and incorporated normally into sarcomeres. The expression patterns of sarcomeric and Ca2+-cycling proteins are unaltered in sedentary 1-year-old knock-in myocardia, with the exception of sarco/endoplasmic reticulum Ca2+ adenosine triphosphatase 2 (SERCA2) and pentameric phospholamban whose levels are significantly increased and decreased, respectively. Isolated cardiomyocytes from 1-year-old knock-in hearts exhibit increased Ca2+-transients and Ca2+-load in the sarcoplasmic reticulum and faster contractility kinetics. Moreover, sedentary 1-year-old knock-in animals develop tachycardia accompanied by premature ventricular contractions, whereas 2-month-old knock-in animals subjected to pressure overload develop a DCM-like phenotype. Structural analysis revealed that the R4344Q mutation alters the distribution of electrostatic charges over the Ig58 surface, thus interfering with its binding capabilities. Consistent with this, wild-type Ig58 interacts with phospholamban modestly, and this interaction is markedly enhanced in the presence of R4344Q. Together, our studies demonstrate that under sedentary conditions, the R4344Q mutation results in Ca2+ deregulation and spontaneous arrhythmia, whereas in the presence of chronic, pathological stress, it leads to cardiac remodeling and dilation. We postulate that enhanced binding between mutant obscurins and phospholamban leads to SERCA2 disinhibition, which may underlie the observed pathological alterations.
Collapse
Affiliation(s)
- Li-Yen R. Hu
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Maegen A. Ackermann
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Peter A. Hecker
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Benjamin L. Prosser
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brendan King
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Kelly A. O’Connell
- Division of Cardiovascular Medicine, Department of Medicine, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Alyssa Grogan
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Baltimore, MD 21201, USA
| | - Logan C. Meyer
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA
| | - Christopher E. Berndsen
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA
| | - Nathan T. Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA
| | - W. Jonathan Lederer
- Department of Physiology, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | |
Collapse
|
22
|
Molecular basis for the interaction between stress-inducible phosphoprotein 1 (STIP1) and S100A1. Biochem J 2017; 474:1853-1866. [PMID: 28408431 DOI: 10.1042/bcj20161055] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 04/11/2017] [Accepted: 04/13/2017] [Indexed: 12/27/2022]
Abstract
Stress-inducible phosphoprotein 1 (STIP1) is a cellular co-chaperone, which regulates heat-shock protein 70 (Hsp70) and Hsp90 activity during client protein folding. Members of the S100 family of dimeric calcium-binding proteins have been found to inhibit Hsp association with STIP1 through binding of STIP1 tetratricopeptide repeat (TPR) domains, possibly regulating the chaperone cycle. Here, we investigated the molecular basis of S100A1 binding to STIP1. We show that three S100A1 dimers associate with one molecule of STIP1 in a calcium-dependent manner. Isothermal titration calorimetry revealed that individual STIP1 TPR domains, TPR1, TPR2A and TPR2B, bind a single S100A1 dimer with significantly different affinities and that the TPR2B domain possesses the highest affinity for S100A1. S100A1 bound each TPR domain through a common binding interface composed of α-helices III and IV of each S100A1 subunit, which is only accessible following a large conformational change in S100A1 upon calcium binding. The TPR2B-binding site for S100A1 was predominately mapped to the C-terminal α-helix of TPR2B, where it is inserted into the hydrophobic cleft of an S100A1 dimer, suggesting a novel binding mechanism. Our data present the structural basis behind STIP1 and S100A1 complex formation, and provide novel insights into TPR module-containing proteins and S100 family member complexes.
Collapse
|
23
|
Melville Z, Hernández-Ochoa EO, Pratt SJP, Liu Y, Pierce AD, Wilder PT, Adipietro KA, Breysse DH, Varney KM, Schneider MF, Weber DJ. The Activation of Protein Kinase A by the Calcium-Binding Protein S100A1 Is Independent of Cyclic AMP. Biochemistry 2017; 56:2328-2337. [PMID: 28409622 PMCID: PMC5415871 DOI: 10.1021/acs.biochem.7b00117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Biochemical
and structural studies demonstrate that S100A1 is involved
in a Ca2+-dependent interaction with the type 2α
and type 2β regulatory subunits of protein kinase A (PKA) (RIIα
and RIIβ) to activate holo-PKA. The interaction was specific
for S100A1 because other calcium-binding proteins (i.e., S100B and
calmodulin) had no effect. Likewise, a role for S100A1
in PKA-dependent signaling was established because the PKA-dependent
subcellular redistribution of HDAC4 was abolished in cells derived
from S100A1 knockout mice. Thus, the Ca2+-dependent interaction
between S100A1 and the type 2 regulatory subunits represents a novel
mechanism that provides a link between Ca2+ and PKA signaling,
which is important for the regulation of gene expression in skeletal
muscle via HDAC4 cytosolic–nuclear trafficking.
Collapse
Affiliation(s)
- Zephan Melville
- Department of Biochemistry and Molecular Biology and ‡Center for Biomolecular Therapeutics, University of Maryland School of Medicine , 108 North Greene Street, Baltimore, Maryland 21201, United States
| | - Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology and ‡Center for Biomolecular Therapeutics, University of Maryland School of Medicine , 108 North Greene Street, Baltimore, Maryland 21201, United States
| | - Stephen J P Pratt
- Department of Biochemistry and Molecular Biology and ‡Center for Biomolecular Therapeutics, University of Maryland School of Medicine , 108 North Greene Street, Baltimore, Maryland 21201, United States
| | - Yewei Liu
- Department of Biochemistry and Molecular Biology and ‡Center for Biomolecular Therapeutics, University of Maryland School of Medicine , 108 North Greene Street, Baltimore, Maryland 21201, United States
| | - Adam D Pierce
- Department of Biochemistry and Molecular Biology and ‡Center for Biomolecular Therapeutics, University of Maryland School of Medicine , 108 North Greene Street, Baltimore, Maryland 21201, United States
| | - Paul T Wilder
- Department of Biochemistry and Molecular Biology and ‡Center for Biomolecular Therapeutics, University of Maryland School of Medicine , 108 North Greene Street, Baltimore, Maryland 21201, United States
| | - Kaylin A Adipietro
- Department of Biochemistry and Molecular Biology and ‡Center for Biomolecular Therapeutics, University of Maryland School of Medicine , 108 North Greene Street, Baltimore, Maryland 21201, United States
| | - Daniel H Breysse
- Department of Biochemistry and Molecular Biology and ‡Center for Biomolecular Therapeutics, University of Maryland School of Medicine , 108 North Greene Street, Baltimore, Maryland 21201, United States
| | - Kristen M Varney
- Department of Biochemistry and Molecular Biology and ‡Center for Biomolecular Therapeutics, University of Maryland School of Medicine , 108 North Greene Street, Baltimore, Maryland 21201, United States
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology and ‡Center for Biomolecular Therapeutics, University of Maryland School of Medicine , 108 North Greene Street, Baltimore, Maryland 21201, United States
| | - David J Weber
- Department of Biochemistry and Molecular Biology and ‡Center for Biomolecular Therapeutics, University of Maryland School of Medicine , 108 North Greene Street, Baltimore, Maryland 21201, United States
| |
Collapse
|
24
|
Melville Z, Aligholizadeh E, McKnight LE, Weber DJ, Pozharski E, Weber DJ. X-ray crystal structure of human calcium-bound S100A1. Acta Crystallogr F Struct Biol Commun 2017; 73:215-221. [PMID: 28368280 PMCID: PMC5379171 DOI: 10.1107/s2053230x17003983] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 03/11/2017] [Indexed: 01/02/2023] Open
Abstract
S100A1 is a member of the S100 family of Ca2+-binding proteins and regulates several cellular processes, including those involved in Ca2+ signaling and cardiac and skeletal muscle function. In Alzheimer's disease, brain S100A1 is overexpressed and gives rise to disease pathologies, making it a potential therapeutic target. The 2.25 Å resolution crystal structure of Ca2+-S100A1 is solved here and is compared with the structures of other S100 proteins, most notably S100B, which is a highly homologous S100-family member that is implicated in the progression of malignant melanoma. The observed structural differences in S100A1 versus S100B provide insights regarding target protein-binding specificity and for targeting these two S100 proteins in human diseases using structure-based drug-design approaches.
Collapse
Affiliation(s)
- Zephan Melville
- Center for Biomolecular Therapeutics, Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, 108 North Greene Street, Baltimore, MD 21201, USA
| | - Ehson Aligholizadeh
- Center for Biomolecular Therapeutics, Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, 108 North Greene Street, Baltimore, MD 21201, USA
| | - Laura E. McKnight
- Center for Biomolecular Therapeutics, Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, 108 North Greene Street, Baltimore, MD 21201, USA
| | - Dylan J. Weber
- Center for Biomolecular Therapeutics, Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, 108 North Greene Street, Baltimore, MD 21201, USA
| | - Edwin Pozharski
- Center for Biomolecular Therapeutics, Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, 108 North Greene Street, Baltimore, MD 21201, USA
| | - David J. Weber
- Center for Biomolecular Therapeutics, Department of Biochemistry and Molecular Biology, University of Maryland Baltimore, 108 North Greene Street, Baltimore, MD 21201, USA
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland Baltimore, 108 North Greene Street, Baltimore, MD 21201, USA
| |
Collapse
|
25
|
Molecular Basis of S100A1 Activation at Saturating and Subsaturating Calcium Concentrations. Biophys J 2016; 110:1052-63. [PMID: 26958883 DOI: 10.1016/j.bpj.2015.12.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/30/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022] Open
Abstract
The S100A1 protein mediates a wide variety of physiological processes through its binding of calcium (Ca(2+)) and endogenous target proteins. S100A1 presents two Ca(2+)-binding domains: a high-affinity "canonical" EF (cEF) hand and a low-affinity "pseudo" EF (pEF) hand. Accumulating evidence suggests that both Ca(2+)-binding sites must be saturated to stabilize an open state conducive to peptide recognition, yet the pEF hand's low affinity limits Ca(2+) binding at normal physiological concentrations. To understand the molecular basis of Ca(2+) binding and open-state stabilization, we performed 100 ns molecular dynamics simulations of S100A1 in the apo/holo (Ca(2+)-free/bound) states and a half-saturated state, for which only the cEF sites are Ca(2+)-bound. Our simulations indicate that the pattern of oxygen coordination about Ca(2+) in the cEF relative to the pEF site contributes to the former's higher affinity, whereas Ca(2+) binding strongly reshapes the protein's conformational dynamics by disrupting β-sheet coupling between EF hands. Moreover, modeling of the half-saturated configuration suggests that the open state is unstable and reverts toward a closed state in the absence of the pEF Ca(2+) ion. These findings indicate that Ca(2+) binding at the cEF site alone is insufficient to stabilize opening; thus, posttranslational modification of the protein may be required for target peptide binding at subsaturating intracellular Ca(2+) levels.
Collapse
|
26
|
Kilpatrick AM, Honts JE, Sleister HM, Fowler CA. Solution NMR structures of the C-domain of Tetrahymena cytoskeletal protein Tcb2 reveal distinct calcium-induced structural rearrangements. Proteins 2016; 84:1748-1756. [PMID: 27488393 DOI: 10.1002/prot.25111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/08/2016] [Accepted: 07/25/2016] [Indexed: 01/31/2023]
Abstract
Tcb2 is a calcium-binding protein that localizes to the membrane-associated skeleton of the ciliated protozoan Tetrahymena thermophila with hypothesized roles in ciliary movement, cell cortex signaling, and pronuclear exchange. Tcb2 has also been implicated in a unique calcium-triggered, ATP-independent type of contractility exhibited by filamentous networks isolated from the Tetrahymena cytoskeleton. To gain insight into Tcb2's structure-function relationship and contractile properties, we determined solution NMR structures of its C-terminal domain in the calcium-free and calcium-bound states. The overall architecture is similar to other calcium-binding proteins, with paired EF-hand calcium-binding motifs. Comparison of the two structures reveals that Tcb2-C's calcium-induced conformational transition differs from the prototypical calcium sensor calmodulin, suggesting that the two proteins play distinct functional roles in Tetrahymena and likely have different mechanisms of target recognition. Future studies of the full-length protein and the identification of Tcb2 cellular targets will help establish the molecular basis of Tcb2 function and its unique contractile properties. Proteins 2016; 84:1748-1756. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Adina M Kilpatrick
- Department of Physics and Astronomy, Drake University, Des Moines, Iowa, 50311.
| | - Jerry E Honts
- Department, of Biology, Drake University, Des Moines, Iowa, 50311
| | - Heidi M Sleister
- Department, of Biology, Drake University, Des Moines, Iowa, 50311
| | - C Andrew Fowler
- Roy J. and Lucille A. Carver College of Medicine NMR Facility, University of Iowa, Iowa City, Iowa, 52242
| |
Collapse
|
27
|
Wheeler LC, Donor MT, Prell JS, Harms MJ. Multiple Evolutionary Origins of Ubiquitous Cu2+ and Zn2+ Binding in the S100 Protein Family. PLoS One 2016; 11:e0164740. [PMID: 27764152 PMCID: PMC5072561 DOI: 10.1371/journal.pone.0164740] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 09/29/2016] [Indexed: 12/24/2022] Open
Abstract
The S100 proteins are a large family of signaling proteins that play critical roles in biology and disease. Many S100 proteins bind Zn2+, Cu2+, and/or Mn2+ as part of their biological functions; however, the evolutionary origins of binding remain obscure. One key question is whether divalent transition metal binding is ancestral, or instead arose independently on multiple lineages. To tackle this question, we combined phylogenetics with biophysical characterization of modern S100 proteins. We demonstrate an earlier origin for established S100 subfamilies than previously believed, and reveal that transition metal binding is widely distributed across the tree. Using isothermal titration calorimetry, we found that Cu2+ and Zn2+ binding are common features of the family: the full breadth of human S100 paralogs-as well as two early-branching S100 proteins found in the tunicate Oikopleura dioica-bind these metals with μM affinity and stoichiometries ranging from 1:1 to 3:1 (metal:protein). While binding is consistent across the tree, structural responses to binding are quite variable. Further, mutational analysis and structural modeling revealed that transition metal binding occurs at different sites in different S100 proteins. This is consistent with multiple origins of transition metal binding over the evolution of this protein family. Our work reveals an evolutionary pattern in which the overall phenotype of binding is a constant feature of S100 proteins, even while the site and mechanism of binding is evolutionarily labile.
Collapse
Affiliation(s)
- Lucas C. Wheeler
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
- Institute for Molecular Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Micah T. Donor
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - James S. Prell
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
| | - Michael J. Harms
- Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, 97403, United States of America
- Institute for Molecular Biology, University of Oregon, Eugene, Oregon, 97403, United States of America
| |
Collapse
|
28
|
Lin JM, Tsai YT, Liu YH, Lin Y, Tai HC, Chen CS. Identification of 2-oxohistidine Interacting Proteins Using E. coli Proteome Chips. Mol Cell Proteomics 2016; 15:3581-3593. [PMID: 27644758 DOI: 10.1074/mcp.m116.060806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 08/26/2016] [Indexed: 11/06/2022] Open
Abstract
Cellular proteins are constantly damaged by reactive oxygen species generated by cellular respiration. Because of its metal-chelating property, the histidine residue is easily oxidized in the presence of Cu/Fe ions and H2O2 via metal-catalyzed oxidation, usually converted to 2-oxohistidine. We hypothesized that cells may have evolved antioxidant defenses against the generation of 2-oxohistidine residues on proteins, and therefore there would be cellular proteins which specifically interact with this oxidized side chain. Using two chemically synthesized peptide probes containing 2-oxohistidine, high-throughput interactome screening was conducted using the E. coli K12 proteome microarray containing >4200 proteins. Ten interacting proteins were identified, and successfully validated using a third peptide probe, fluorescence polarization assays, as well as binding constant measurements. We discovered that 9 out of 10 identified proteins seemed to be involved in redox-related cellular functions. We also built the functional interaction network to reveal their interacting proteins. The network showed that our interacting proteins were enriched in oxido-reduction processes, ion binding, and carbon metabolism. A consensus motif was identified among these 10 bacterial interacting proteins based on bioinformatic analysis, which also appeared to be present on human S100A1 protein. Besides, we found that the consensus binding motif among our identified proteins, including bacteria and human, were located within α-helices and faced the outside of proteins. The combination of chemically engineered peptide probes with proteome microarrays proves to be an efficient discovery platform for protein interactomes of unusual post-translational modifications, and sensitive enough to detect even the insertion of a single oxygen atom in this case.
Collapse
Affiliation(s)
- Jun-Mu Lin
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan.,§Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan
| | - Yu-Ting Tsai
- ¶Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yu-Hsuan Liu
- ¶Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Yun Lin
- ¶Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hwan-Ching Tai
- ¶Department of Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Chien-Sheng Chen
- From the ‡Graduate Institute of Systems Biology and Bioinformatics, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan; .,§Department of Biomedical Sciences and Engineering, National Central University, No. 300, Jhongda Rd., Jhongli 32001, Taiwan
| |
Collapse
|
29
|
Jirku M, Lansky Z, Bednarova L, Sulc M, Monincova L, Majer P, Vyklicky L, Vondrasek J, Teisinger J, Bousova K. The characterization of a novel S100A1 binding site in the N-terminus of TRPM1. Int J Biochem Cell Biol 2016; 78:186-193. [PMID: 27435061 DOI: 10.1016/j.biocel.2016.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 07/11/2016] [Accepted: 07/14/2016] [Indexed: 10/21/2022]
Abstract
Transient receptor potential melastatin-1 channel (TRPM1) is an important mediator of calcium influx into the cell that is expressed in melanoma and ON-bipolar cells. Similar to other members of the TRP channel family, the intracellular N- and C- terminal domains of TRPM1 are expected to play important roles in the modulation of TRPM1 receptor function. Among the most commonly occurring modulators of TRP channels are the cytoplasmically expressed calcium binding proteins calmodulin and S100 calcium-binding protein A1 (S100A1), but the interaction of TRPM1 with S100A1 has not been described yet. Here, using a combination of biophysical and bioinformatics methods, we have determined that the N-terminal L242-E344 region of TRPM1 is a S100A1 binding domain. We show that formation of the TRPM1/S100A1 complex is calcium-dependent. Moreover, our structural model of the complex explained data obtained from fluorescence spectroscopy measurements revealing that the complex formation is facilitated through interactions of clusters positively charged (K271A, R273A, R274A) and hydrophobic (L263A, V270A, L276A) residues at the N-terminus of TRPM1. Taken together, our data suggest a molecular mechanism for the potential regulation of TRPM1 by S100A1.
Collapse
Affiliation(s)
- Michaela Jirku
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Zdenek Lansky
- Institute of Biotechnology, Czech Academy of Sciences, BIOCEV, 25250 Vestec, Czech Republic
| | - Lucie Bednarova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Miroslav Sulc
- Institute of Microbiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; Faculty of Science, Charles University in Prague, 12843 Prague, Czech Republic
| | - Lenka Monincova
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Pavel Majer
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Ladislav Vyklicky
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Jiri Vondrasek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic
| | - Jan Teisinger
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic
| | - Kristyna Bousova
- Institute of Physiology, Czech Academy of Sciences, 14220 Prague, Czech Republic; Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, 16610 Prague, Czech Republic.
| |
Collapse
|
30
|
Geisler A, Fechner H. MicroRNA-regulated viral vectors for gene therapy. World J Exp Med 2016; 6:37-54. [PMID: 27226955 PMCID: PMC4873559 DOI: 10.5493/wjem.v6.i2.37] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 03/02/2016] [Accepted: 03/17/2016] [Indexed: 02/06/2023] Open
Abstract
Safe and effective gene therapy approaches require targeted tissue-specific transfer of a therapeutic transgene. Besides traditional approaches, such as transcriptional and transductional targeting, microRNA-dependent post-transcriptional suppression of transgene expression has been emerging as powerful new technology to increase the specificity of vector-mediated transgene expression. MicroRNAs are small non-coding RNAs and often expressed in a tissue-, lineage-, activation- or differentiation-specific pattern. They typically regulate gene expression by binding to imperfectly complementary sequences in the 3' untranslated region (UTR) of the mRNA. To control exogenous transgene expression, tandem repeats of artificial microRNA target sites are usually incorporated into the 3' UTR of the transgene expression cassette, leading to subsequent degradation of transgene mRNA in cells expressing the corresponding microRNA. This targeting strategy, first shown for lentiviral vectors in antigen presenting cells, has now been used for tissue-specific expression of vector-encoded therapeutic transgenes, to reduce immune response against the transgene, to control virus tropism for oncolytic virotherapy, to increase safety of live attenuated virus vaccines and to identify and select cell subsets for pluripotent stem cell therapies, respectively. This review provides an introduction into the technical mechanism underlying microRNA-regulation, highlights new developments in this field and gives an overview of applications of microRNA-regulated viral vectors for cardiac, suicide gene cancer and hematopoietic stem cell therapy, as well as for treatment of neurological and eye diseases.
Collapse
|
31
|
Temple JE, Oehler MC, Wright NT. Chemical shift assignments for the Ig2 domain of human obscurin A. BIOMOLECULAR NMR ASSIGNMENTS 2016; 10:63-65. [PMID: 26373426 DOI: 10.1007/s12104-015-9638-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
The giant sarcomeric protein obscurin (~720 kDa) is an essential contributor to myofibrillogenesis and acts as the only known tether between the contractile apparatus and the surrounding membrane structures in myofibrils. Genomic characterization of OBSCN suggests a modular architecture, consisting of dozens of individually-folded Ig-like and FnIII-like domains arranged in tandem. Here we describe the sequence-specific chemical shift assignments of the second putative obscurin Ig-like domain (Ig2). This domain specifically binds to MyBP-C slow variant-1 through an unknown mechanism. Ultimately, the assignments presented here will facilitate high-resolution structure determination of Ig2 and provide insight into the specificity of the obscurin-MyBP-C interaction.
Collapse
Affiliation(s)
- Joshua E Temple
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA, 22807, USA
| | - Matthew C Oehler
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA, 22807, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA, 22807, USA.
| |
Collapse
|
32
|
Nowakowski M, Saxena S, Stanek J, Żerko S, Koźmiński W. Applications of high dimensionality experiments to biomolecular NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 90-91:49-73. [PMID: 26592945 DOI: 10.1016/j.pnmrs.2015.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 05/23/2023]
Abstract
High dimensionality NMR experiments facilitate resonance assignment and precise determination of spectral parameters such as coupling constants. Sparse non-uniform sampling enables acquisition of experiments of high dimensionality with high resolution in acceptable time. In this review we present and compare some significant applications of NMR experiments of dimensionality higher than three in the field of biomolecular studies in solution.
Collapse
Affiliation(s)
- Michał Nowakowski
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Saurabh Saxena
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Jan Stanek
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Szymon Żerko
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Wiktor Koźmiński
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| |
Collapse
|
33
|
Putney DR, Todd EA, Berndsen CE, Wright NT. Chemical shift assignments for S. cerevisiae Ubc13. BIOMOLECULAR NMR ASSIGNMENTS 2015; 9:407-410. [PMID: 25947351 DOI: 10.1007/s12104-015-9619-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/03/2015] [Indexed: 06/04/2023]
Abstract
The ubiquitination pathway controls several human cellular processes, most notably protein degradation. Ubiquitin, a small signaling protein, is activated by the E1 activating enzyme, transferred to an E2 conjugating enzyme, and then attached to a target substrate through a process that can be facilitated by an E3 ligase enzyme. The enzymatic mechanism of ubiquitin transfer from the E2 conjugating enzyme onto substrate is not clear. The highly conserved HPN motif in E2 catalytic domains is generally thought to help stabilize an oxyanion intermediate formed during ubiquitin transfer. However recent work suggests this motif is instead involved in a structural, non-enzymatic role. As a platform to better understand the E2 catalyzed ubiquitin transfer mechanism, we determined the chemical shift assignments of S. cerevisiae E2 enzyme Ubc13.
Collapse
Affiliation(s)
- D Reid Putney
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA, 22807, USA
| | - Emily A Todd
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA, 22807, USA
| | - Christopher E Berndsen
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA, 22807, USA
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, 901 Carrier Dr., Harrisonburg, VA, 22807, USA.
| |
Collapse
|
34
|
Rohde D, Busch M, Volkert A, Ritterhoff J, Katus HA, Peppel K, Most P. Cardiomyocytes, endothelial cells and cardiac fibroblasts: S100A1's triple action in cardiovascular pathophysiology. Future Cardiol 2015; 11:309-21. [PMID: 26021637 PMCID: PMC11544369 DOI: 10.2217/fca.15.18] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Over the past decade, basic and translational research delivered comprehensive evidence for the relevance of the Ca(2+)-binding protein S100A1 in cardiovascular diseases. Aberrant expression levels of S100A1 surfaced as molecular key defects, driving the pathogenesis of chronic heart failure, arterial and pulmonary hypertension, peripheral artery disease and disturbed myocardial infarction healing. Loss of intracellular S100A1 renders entire Ca(2+)-controlled networks dysfunctional, thereby leading to cardiomyocyte failure and endothelial dysfunction. Lack of S100A1 release in ischemic myocardium compromises cardiac fibroblast function, entailing impaired damage healing. This review focuses on molecular pathways and signaling cascades regulated by S100A1 in cardiomyocytes, endothelial cells and cardiac fibroblasts in order to provide an overview of our current mechanistic understanding of S100A1's action in cardiovascular pathophysiology.
Collapse
Affiliation(s)
- David Rohde
- Molecular & Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
| | - Martin Busch
- Molecular & Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
| | - Anne Volkert
- Molecular & Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
| | - Julia Ritterhoff
- Molecular & Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
| | - Hugo A. Katus
- Molecular & Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
| | - Karsten Peppel
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
- uniQure GmbH, INF 410, 69120 Heidelberg, Germany
| | - Patrick Most
- Molecular & Translational Cardiology, Department of Internal Medicine III, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Heidelberg/Mannheim, Heidelberg University Hospital, Heidelberg University, INF 410, 69120 Heidelberg, Germany
- Center for Translational Medicine, Department of Medicine, Thomas Jefferson University, Philadelphia, PA 19107, USA
- uniQure GmbH, INF 410, 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Rudloff MW, Woosley AN, Wright NT. Biophysical characterization of naturally occurring titin M10 mutations. Protein Sci 2015; 24:946-55. [PMID: 25739468 DOI: 10.1002/pro.2670] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/15/2022]
Abstract
The giant proteins titin and obscurin are important for sarcomeric organization, stretch response, and sarcomerogenesis in myofibrils. The extreme C-terminus of titin (the M10 domain) binds to the N-terminus of obscurin (the Ig1 domain) in the M-band. The high-resolution structure of human M10 has been solved, along with M10 bound to one of its two known molecular targets, the Ig1 domain of obscurin-like. Multiple M10 mutations are linked to limb-girdle muscular dystrophy type 2J (LGMD2J) and tibial muscular dystrophy (TMD). The effect of the M10 mutations on protein structure and function has not been thoroughly characterized. We have engineered all four of the naturally occurring human M10 missense mutants and biophysically characterized them in vitro. Two of the four mutated constructs are severely misfolded, and cannot bind to the obscurin Ig1 domain. One mutation, H66P, is folded at room temperature but unfolds at 37°C, rendering it binding incompetent. The I57N mutation shows no significant structural, dynamic, or binding differences from the wild-type domain. We suggest that this mutation is not directly responsible for muscle wasting disease, but is instead merely a silent mutation found in symptomatic patients. Understanding the biophysical basis of muscle wasting disease can help streamline potential future treatments.
Collapse
Affiliation(s)
- Michael W Rudloff
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - Alec N Woosley
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| | - Nathan T Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia, 22807
| |
Collapse
|
36
|
Hemmis CW, Wright NT, Majumdar A, Schildbach JF. Chemical shift assignments of a reduced N-terminal truncation mutant of the disulfide bond isomerase TrbB from plasmid F, TrbBΔ29. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:435-438. [PMID: 24771093 PMCID: PMC4268134 DOI: 10.1007/s12104-013-9533-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
TrbB from the conjugative plasmid F is a 181-residue disulfide bond isomerase that plays a role in the correct folding and maintenance of disulfide bonds within F plasmid encoded proteins in the bacterial periplasm. As a member of the thioredoxin-like superfamily, TrbB has a predicted thioredoxin-like fold that contains a C-X-X-C active site required for performing specific redox chemistries on protein substrates. Here we report the sequence-specific assignments of the reduced form of the N-terminally truncated TrbB construct, TrbBΔ29.
Collapse
Affiliation(s)
- Casey W. Hemmis
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Nathan T. Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807
| | - Ananya Majumdar
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Joel F. Schildbach
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
37
|
Duarte-Costa S, Castro-Ferreira R, Neves JS, Leite-Moreira AF. S100A1: a major player in cardiovascular performance. Physiol Res 2014; 63:669-81. [PMID: 25157660 DOI: 10.33549/physiolres.932712] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Calcium cycling is a major determinant of cardiac function. S100A1 is the most abundant member of the calcium-binding S100 protein family in myocardial tissue. S100A1 interacts with a variety of calcium regulatory proteins such as SERCA2a, ryanodine receptors, L-type calcium channels and Na(+)/Ca(2+) exchangers, thus enhancing calcium cycling. Aside from this major function, S100A1 has an important role in energy balance, myofilament sliding, myofilament calcium sensibility, titin-actin interaction, apoptosis and cardiac remodeling. Apart from its properties regarding cardiomyocytes, S100A1 is also important in vessel relaxation and angiogenesis. S100A1 potentiates cardiac function thus increasing the cardiomyocytes' functional reserve; this is an important feature in heart failure. In fact, S100A1 seems to normalize cardiac function after myocardial infarction. Also, S100A1 is essential in the acute response to adrenergic stimulation. Gene therapy experiments show promising results, although further studies are still needed to reach clinical practice. In this review, we aim to describe the molecular basis and regulatory function of S100A1, exploring its interactions with a myriad of target proteins. We also explore its functional effects on systolic and diastolic function as well as its acute actions. Finally, we discuss S100A1 gene therapy and its progression so far.
Collapse
Affiliation(s)
- S Duarte-Costa
- Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal.
| | | | | | | |
Collapse
|
38
|
Morimoto S, Hongo K, Kusakari Y, Komukai K, Kawai M, O-Uchi J, Nakayama H, Asahi M, Otsu K, Yoshimura M, Kurihara S. Genetic modulation of the SERCA activity does not affect the Ca(2+) leak from the cardiac sarcoplasmic reticulum. Cell Calcium 2013; 55:17-23. [PMID: 24290743 DOI: 10.1016/j.ceca.2013.10.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 10/25/2013] [Accepted: 10/28/2013] [Indexed: 10/26/2022]
Abstract
The Ca(2+) content in the sarcoplasmic reticulum (SR) determines the amount of Ca(2+) released, thereby regulating the magnitude of Ca(2+) transient and contraction in cardiac muscle. The Ca(2+) content in the SR is known to be regulated by two factors: the activity of the Ca(2+) pump (SERCA) and Ca(2+) leak through the ryanodine receptor (RyR). However, the direct relationship between the SERCA activity and Ca(2+) leak has not been fully investigated in the heart. In the present study, we evaluated the role of the SERCA activity in Ca(2+) leak from the SR using a novel saponin-skinned method combined with transgenic mouse models in which the SERCA activity was genetically modulated. In the SERCA overexpression mice, the Ca(2+) uptake in the SR was significantly increased and the Ca(2+) transient was markedly increased. However, Ca(2+) leak from the SR did not change significantly. In mice with overexpression of a negative regulator of SERCA, sarcolipin, the Ca(2+) uptake by the SR was significantly decreased and the Ca(2+) transient was markedly decreased. Again, Ca(2+) leak from the SR did not change significantly. In conclusion, the selective modulation of the SERCA activity modulates Ca(2+) uptake, although it does not change Ca(2+) leak from the SR.
Collapse
Affiliation(s)
- Satoshi Morimoto
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kenichi Hongo
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.
| | - Yoichiro Kusakari
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kimiaki Komukai
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Makoto Kawai
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Jin O-Uchi
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, USA
| | - Hiroyuki Nakayama
- Department of Clinical Pharmacology and Pharmacogenomics, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Michio Asahi
- Department of Pharmacology, Faculty of Medicine, Osaka Medical College, Osaka, Japan
| | - Kinya Otsu
- Cardiovascular Division, King's College London, London, United Kingdom
| | - Michihiro Yoshimura
- Division of Cardiology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Satoshi Kurihara
- Department of Cell Physiology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
39
|
Wafer LN, Tzul FO, Pandharipande PP, Makhatadze GI. Novel interactions of the TRTK12 peptide with S100 protein family members: specificity and thermodynamic characterization. Biochemistry 2013; 52:5844-56. [PMID: 23899389 DOI: 10.1021/bi400788s] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The S100 protein family consists of small, dimeric proteins that exert their biological functions in response to changing calcium concentrations. S100B is the best-studied member and has been shown to interact with more than 20 binding partners in a calcium-dependent manner. The TRTK12 peptide, derived from the consensus binding sequence for S100B, has previously been found to interact with S100A1 and has been proposed to be a general binding partner of the S100 family. To test this hypothesis and gain a better understanding of the specificity of binding for the S100 proteins, 16 members of the human S100 family were screened against this peptide and its alanine variants. Novel interactions were found with only two family members, S100P and S100A2, indicating that TRTK12 selectively interacts with a small subset of the S100 proteins. Substantial promiscuity was observed in the binding site of S100B thereby accommodating variations in the peptide sequence, while S100A1, S100A2, and S100P exhibited larger differences in the binding constants for the TRTK12 alanine variants. This suggests that single-point substitutions can be used to selectively modulate the affinity of TRTK12 peptides for individual S100 proteins. This study has important implications for the rational drug design of inhibitors for the S100 proteins, which are involved in a variety of cancers and neurodegenerative diseases.
Collapse
Affiliation(s)
- Lucas N Wafer
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | | | | | | |
Collapse
|
40
|
Bily J, Grycova L, Holendova B, Jirku M, Janouskova H, Bousova K, Teisinger J. Characterization of the S100A1 protein binding site on TRPC6 C-terminus. PLoS One 2013; 8:e62677. [PMID: 23671622 PMCID: PMC3643951 DOI: 10.1371/journal.pone.0062677] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 03/24/2013] [Indexed: 12/24/2022] Open
Abstract
The transient receptor potential (TRP) protein superfamily consists of seven major groups, among them the "canonical TRP" family. The TRPC proteins are calcium-permeable nonselective cation channels activated after the emptying of intracellular calcium stores and appear to be gated by various types of messengers. The TRPC6 channel has been shown to be expressed in various tissues and cells, where it modulates the calcium level in response to external signals. Calcium binding proteins such as Calmodulin or the family of S100A proteins are regulators of TRPC channels. Here we characterized the overlapping integrative binding site for S100A1 at the C-tail of TRPC6, which is also able to accomodate various ligands such as Calmodulin and phosphatidyl-inositol-(4,5)-bisphosphate. Several positively charged amino acid residues (Arg852, Lys856, Lys859, Arg860 and Arg864) were determined by fluorescence anisotropy measurements for their participation in the calcium-dependent binding of S100A1 to the C terminus of TRPC6. The triple mutation Arg852/Lys859/Arg860 exhibited significant disruption of the binding of S100A1 to TRPC6. This indicates a unique involvement of these three basic residues in the integrative overlapping binding site for S100A1 on the C tail of TRPC6.
Collapse
Affiliation(s)
- Jan Bily
- Department of Protein Structures, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lenka Grycova
- Department of Protein Structures, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Blanka Holendova
- Department of Protein Structures, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Michaela Jirku
- Department of Protein Structures, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Janouskova
- Department of Protein Structures, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Kristyna Bousova
- Department of Protein Structures, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Jan Teisinger
- Department of Protein Structures, Institute of Physiology, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
41
|
Nowakowski M, Ruszczyńska-Bartnik K, Budzińska M, Jaremko Ł, Jaremko M, Zdanowski K, Bierzyński A, Ejchart A. Impact of Calcium Binding and Thionylation of S100A1 Protein on Its Nuclear Magnetic Resonance-Derived Structure and Backbone Dynamics. Biochemistry 2013; 52:1149-59. [DOI: 10.1021/bi3015407] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Michał Nowakowski
- Institute of Biochemistry and
Biophysics, Polish Academy of Sciences,
Pawińskiego 5A, 02-106 Warsaw, Poland
| | | | - Monika Budzińska
- Institute of Biochemistry and
Biophysics, Polish Academy of Sciences,
Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Łukasz Jaremko
- Institute of Biochemistry and
Biophysics, Polish Academy of Sciences,
Pawińskiego 5A, 02-106 Warsaw, Poland
- Faculty of Chemistry, Warsaw University, Pasteura 1, 02-093 Warsaw, Poland
| | - Mariusz Jaremko
- Institute of Biochemistry and
Biophysics, Polish Academy of Sciences,
Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Konrad Zdanowski
- Institute of Biochemistry and
Biophysics, Polish Academy of Sciences,
Pawińskiego 5A, 02-106 Warsaw, Poland
- Institute of Chemistry, University of Natural Sciences and Humanities, 3 Maja
54, 08-110 Siedlce, Poland
| | - Andrzej Bierzyński
- Institute of Biochemistry and
Biophysics, Polish Academy of Sciences,
Pawińskiego 5A, 02-106 Warsaw, Poland
| | - Andrzej Ejchart
- Institute of Biochemistry and
Biophysics, Polish Academy of Sciences,
Pawińskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
42
|
Bertini I, Borsi V, Cerofolini L, Das Gupta S, Fragai M, Luchinat C. Solution structure and dynamics of human S100A14. J Biol Inorg Chem 2013; 18:183-194. [PMID: 23197251 DOI: 10.1007/s00775-012-0963-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Accepted: 11/06/2012] [Indexed: 01/12/2023]
Abstract
Human S100A14 is a member of the EF-hand calcium-binding protein family that has only recently been described in terms of its functional and pathological properties. The protein is overexpressed in a variety of tumor cells and it has been shown to trigger receptor for advanced glycation end products (RAGE)-dependent signaling in cell cultures. The solution structure of homodimeric S100A14 in the apo state has been solved at physiological temperature. It is shown that the protein does not bind calcium(II) ions and exhibits a "semi-open" conformation that thus represents the physiological structure of the S100A14. The lack of two ligands in the canonical EF-hand calcium(II)-binding site explains the negligible affinity for calcium(II) in solution, and the exposed cysteines and histidine account for the observed precipitation in the presence of zinc(II) or copper(II) ions.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Valentina Borsi
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Linda Cerofolini
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Soumyasri Das Gupta
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy.,Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, Italy. .,Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Italy.
| |
Collapse
|
43
|
Lenarčič Živković M, Zaręba-Kozioł M, Zhukova L, Poznański J, Zhukov I, Wysłouch-Cieszyńska A. Post-translational S-nitrosylation is an endogenous factor fine tuning the properties of human S100A1 protein. J Biol Chem 2012; 287:40457-70. [PMID: 22989881 DOI: 10.1074/jbc.m112.418392] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND S100A1 protein is a proposed target of molecule-guided therapy for heart failure. RESULTS S-Nitrosylation of S100A1 is present in cells, increases Ca(2+) binding, and tunes the overall protein conformation. CONCLUSION Thiol-aromatic molecular switch is responsible for NO-related modification of S100A1 properties. SIGNIFICANCE Post-translational S-nitrosylation may provide functional diversity and specificity to S100A1 and other S100 protein family members. S100A1 is a member of the Ca(2+)-binding S100 protein family. It is expressed in brain and heart tissue, where it plays a crucial role as a modulator of Ca(2+) homeostasis, energy metabolism, neurotransmitter release, and contractile performance. Biological effects of S100A1 have been attributed to its direct interaction with a variety of target proteins. The (patho)physiological relevance of S100A1 makes it an important molecular target for future therapeutic intervention. S-Nitrosylation is a post-translational modification of proteins, which plays a role in cellular signal transduction under physiological and pathological conditions. In this study, we confirmed that S100A1 protein is endogenously modified by Cys(85) S-nitrosylation in PC12 cells, which are a well established model system for studying S100A1 function. We used isothermal calorimetry to show that S-nitrosylation facilitates the formation of Ca(2+)-loaded S100A1 at physiological ionic strength conditions. To establish the unique influence of the S-nitroso group, our study describes high resolution three-dimensional structures of human apo-S100A1 protein with the Cys(85) thiol group in reduced and S-nitrosylated states. Solution structures of the proteins are based on NMR data obtained at physiological ionic strength. Comparative analysis shows that S-nitrosylation fine tunes the overall architecture of S100A1 protein. Although the typical S100 protein intersubunit four-helix bundle is conserved upon S-nitrosylation, the conformation of S100A1 protein is reorganized at the sites most important for target recognition (i.e. the C-terminal helix and the linker connecting two EF-hand domains). In summary, this study discloses cysteine S-nitrosylation as a new factor responsible for increasing functional diversity of S100A1 and helps explain the role of S100A1 as a Ca(2+) signal transmitter sensitive to NO/redox equilibrium within cells.
Collapse
|
44
|
Mishra SK, Siddique HR, Saleem M. S100A4 calcium-binding protein is key player in tumor progression and metastasis: preclinical and clinical evidence. Cancer Metastasis Rev 2012; 31:163-72. [PMID: 22109080 DOI: 10.1007/s10555-011-9338-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The fatality of cancer is mainly bestowed to the property of otherwise benign tumor cells to become malignant and invade surrounding tissues by circumventing normal tissue barriers through a process called metastasis. S100A4 which is a member of the S100 family of calcium-binding proteins has been shown to be able to activate and integrate pathways both intracellular and extracellular to generate a phenotypic response characteristic of cancer metastasis. A large number of studies have shown an increased expression level of S100A4 in various types of cancers. However, its implications in cancer metastasis in terms of whether an increased expression of S100A4 is a causal factor for metastasis or just another after effect of several other physiological and molecular changes in the body resulting from metastasis are not clear. Here we describe the emerging preclinical and clinical evidences implicating S100A4 protein, in both its forms (intracellular and extracellular) in the process of tumorigenesis and metastasis in humans. Based on studies utilizing S100A4 as a metastasis biomarker and molecular target for therapies such as gene therapy, we suggest that S100A4 has emerged as a promising molecule to be tested for anticancer drugs. This review provides an insight in the (1) molecular mechanisms through which S100A4 drives the tumorigenesis and metastasis and (2) developments made in the direction of evaluating S100A4 as a cancer biomarker and drug target.
Collapse
Affiliation(s)
- Shrawan Kumar Mishra
- Department of Molecular Chemoprevention and Therapeutics, University of Minnesota, Austin, MN 55912, USA
| | | | | |
Collapse
|
45
|
Wafer LN, Streicher WW, McCallum SA, Makhatadze GI. Thermodynamic and kinetic analysis of peptides derived from CapZ, NDR, p53, HDM2, and HDM4 binding to human S100B. Biochemistry 2012; 51:7189-201. [PMID: 22913742 PMCID: PMC3448795 DOI: 10.1021/bi300865g] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
S100B is a member of the S100 subfamily of EF-hand proteins that has been implicated in malignant melanoma and neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease. Calcium-induced conformational changes expose a hydrophobic binding cleft, facilitating interactions with a wide variety of nuclear, cytoplasmic, and extracellular target proteins. Previously, peptides derived from CapZ, p53, NDR, HDM2, and HDM4 have been shown to interact with S100B in a calcium-dependent manner. However, the thermodynamic and kinetic basis of these interactions remains largely unknown. To gain further insight, we screened these peptides against the S100B protein using isothermal titration calorimetry and nuclear magnetic resonance. All peptides were found to have binding affinities in the low micromolar to nanomolar range. Binding-induced changes in the line shapes of S100B backbone (1)H and (15)N resonances were monitored to obtain the dissociation constants and the kinetic binding parameters. The large microscopic K(on) rate constants observed in this study (≥1 × 10(7) M(-1) s(-1)) suggest that S100B utilizes a "fly casting mechanism" in the recognition of these peptide targets.
Collapse
Affiliation(s)
- Lucas N. Wafer
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| | | | - Scott A. McCallum
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| | - George I. Makhatadze
- Center for Biotechnology and Interdisciplinary Studies and Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180, USA
| |
Collapse
|
46
|
Wright NT, Raththagala M, Hemmis CW, Edwards S, Curtis JE, Krueger S, Schildbach JF. Solution structure and small angle scattering analysis of TraI (381-569). Proteins 2012; 80:2250-61. [PMID: 22611034 DOI: 10.1002/prot.24114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 04/15/2012] [Accepted: 05/02/2012] [Indexed: 12/12/2022]
Abstract
TraI, the F plasmid-encoded nickase, is a 1756 amino acid protein essential for conjugative transfer of plasmid DNA from one bacterium to another. Although crystal structures of N- and C-terminal domains of F TraI have been determined, central domains of the protein are structurally unexplored. The central region (between residues 306 and 1520) is known to both bind single-stranded DNA (ssDNA) and unwind DNA through a highly processive helicase activity. Here, we show that the ssDNA binding site is located between residues 381 and 858, and we also present the high-resolution solution structure of the N-terminus of this region (residues 381-569). This fragment folds into a four-strand parallel β sheet surrounded by α helices, and it resembles the structure of the N-terminus of helicases such as RecD and RecQ despite little sequence similarity. The structure supports the model that F TraI resulted from duplication of a RecD-like domain and subsequent specialization of domains into the more N-terminal ssDNA binding domain and the more C-terminal domain containing helicase motifs. In addition, we provide evidence that the nickase and ssDNA binding domains of TraI are held close together by an 80-residue linker sequence that connects the two domains. These results suggest a possible physical explanation for the apparent negative cooperativity between the nickase and ssDNA binding domain.
Collapse
Affiliation(s)
- Nathan T Wright
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Holakovska B, Grycova L, Jirku M, Sulc M, Bumba L, Teisinger J. Calmodulin and S100A1 protein interact with N terminus of TRPM3 channel. J Biol Chem 2012; 287:16645-55. [PMID: 22451665 DOI: 10.1074/jbc.m112.350686] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transient receptor potential melastatin 3 ion channel (TRPM3) belongs to the TRP family of cation-permeable ion channels involved in many important biological functions such as pain transduction, thermosensation, and mechanoregulation. The channel was reported to play an important role in Ca(2+) homeostasis, but its gating mechanisms, functions, and regulation are still under research. Utilizing biophysical and biochemical methods, we characterized two independent domains, Ala-35-Lys-124 and His-291-Gly-382, on the TRPM3 N terminus, responsible for interactions with the Ca(2+)-binding proteins calmodulin (CaM) and S100A1. We identified several positively charged residues within these domains as having a crucial impact on CaM/S100A1 binding. The data also suggest that the interaction is calcium-dependent. We also performed competition assays, which suggested that CaM and S100A1 are able to compete for the same binding sites within the TRPM3 N terminus. This is the first time that such an interaction has been shown for TRP family members.
Collapse
Affiliation(s)
- Blanka Holakovska
- Institute of Physiology, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague, Czech Republic
| | | | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Brian R Cannon
- University of Maryland, Baltimore, MD, USA (BRC, DJW); Texas A&M University, College Station, TX, USA (DBZ)
| | - Danna B Zimmer
- University of Maryland, Baltimore, MD, USA (BRC, DJW); Texas A&M University, College Station, TX, USA (DBZ)
| | - David J Weber
- University of Maryland, Baltimore, MD, USA (BRC, DJW); Texas A&M University, College Station, TX, USA (DBZ)
| |
Collapse
|
50
|
|