1
|
Andreini C. Twenty years in metalloprotein bioinformatics: A short history of a long journey. J Inorg Biochem 2025; 266:112854. [PMID: 39961171 DOI: 10.1016/j.jinorgbio.2025.112854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 03/01/2025]
Abstract
The study of the structure and function of metalloproteins is a central subject of inorganic biochemistry. Starting from the 2000s, computational methods have flanked experimental research by exploiting the ever-increasing computing power and the huge amount of data produced by omics technologies. In this article, we retrace the major advancements that brought bioinformatics from being of minor relevance to being an essential tool for today's inorganic biochemists, focusing on the contributions coming from the Magnetic Resonance Center (CERM) of Florence, where we have been developing for twenty years methods and resources to investigate metalloproteins with computational approaches.
Collapse
Affiliation(s)
- Claudia Andreini
- Magnetic Resonance Center, University of Florence, 50019 Sesto Fiorentino, Italy; Department of Chemistry, University of Florence, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
2
|
Brinzer RA, McIntyre JR, Britton C, Laing R. The parasitic nematode Haemonchus contortus lacks molybdenum cofactor synthesis, leading to sulphite sensitivity and lethality in vitro. Int J Parasitol 2025; 55:117-128. [PMID: 39617094 DOI: 10.1016/j.ijpara.2024.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/02/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024]
Abstract
Sulphite oxidase has an essential role in detoxifying environmental and endogenously generated sulphite into sulphate and requires the molybdenum cofactor (Moco) to function. Until recently it was believed that the synthesis pathway for Moco was so important for survival that it was conserved in all multicellular animals. Here we report the use of comparative genomics to identify the absence of the first enzyme involved in Moco synthesis in Haemonchus contortus, a highly pathogenic and economically important helminth of livestock that, similar to many parasitic nematode species, has proved difficult to maintain in vitro. We show that Moco deficiency in Haemonchus leads to a high sensitivity to environmental sulphite and limits the ability to maintain the early parasitic larval stages in vitro. Analogous losses in Moco synthesis in other recently sequenced nematode species are also identified. These findings may lead to improved culture methods for parasitic nematodes and to novel approaches for their control.
Collapse
Affiliation(s)
- Robert A Brinzer
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK.
| | - Jennifer R McIntyre
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK
| | - Collette Britton
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK
| | - Roz Laing
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Scotland G61 1QH, UK.
| |
Collapse
|
3
|
Capdevila DA, Rondón JJ, Edmonds KA, Rocchio JS, Dujovne MV, Giedroc DP. Bacterial Metallostasis: Metal Sensing, Metalloproteome Remodeling, and Metal Trafficking. Chem Rev 2024; 124:13574-13659. [PMID: 39658019 DOI: 10.1021/acs.chemrev.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Transition metals function as structural and catalytic cofactors for a large diversity of proteins and enzymes that collectively comprise the metalloproteome. Metallostasis considers all cellular processes, notably metal sensing, metalloproteome remodeling, and trafficking (or allocation) of metals that collectively ensure the functional integrity and adaptability of the metalloproteome. Bacteria employ both protein and RNA-based mechanisms that sense intracellular transition metal bioavailability and orchestrate systems-level outputs that maintain metallostasis. In this review, we contextualize metallostasis by briefly discussing the metalloproteome and specialized roles that metals play in biology. We then offer a comprehensive perspective on the diversity of metalloregulatory proteins and metal-sensing riboswitches, defining general principles within each sensor superfamily that capture how specificity is encoded in the sequence, and how selectivity can be leveraged in downstream synthetic biology and biotechnology applications. This is followed by a discussion of recent work that highlights selected metalloregulatory outputs, including metalloproteome remodeling and metal allocation by metallochaperones to both client proteins and compartments. We close by briefly discussing places where more work is needed to fill in gaps in our understanding of metallostasis.
Collapse
Affiliation(s)
- Daiana A Capdevila
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Johnma J Rondón
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Joseph S Rocchio
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| | - Matias Villarruel Dujovne
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA-CONICET), C1405 BWE Buenos Aires, Argentina
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405-7102, United States
| |
Collapse
|
4
|
Rabenow M, Haar E, Schmidt K, Hänsch R, Mendel RR, Oliphant KD. Convergent evolution links molybdenum insertase domains with organism-specific sequences. Commun Biol 2024; 7:1352. [PMID: 39424966 PMCID: PMC11489736 DOI: 10.1038/s42003-024-07073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024] Open
Abstract
In all domains of life, the biosynthesis of the pterin-based Molybdenum cofactor (Moco) is crucial. Molybdenum (Mo) becomes biologically active by integrating into a unique pyranopterin scaffold, forming Moco. The final two steps of Moco biosynthesis are catalyzed by the two-domain enzyme Mo insertase, linked by gene fusion in higher organisms. Despite well-understood Moco biosynthesis, the evolutionary significance of Mo insertase fusion remains unclear. Here, we present findings from Neurospora crassa that shed light on the critical role of Mo insertase fusion in eukaryotes. Substituting the linkage region with sequences from other species resulted in Moco deficiency, and separate expression of domains, as seen in lower organisms, failed to rescue deficient strains. Stepwise truncation and structural modeling revealed a crucial 20-amino acid sequence within the linkage region essential for fungal growth. Our findings highlight the evolutionary importance of gene fusion and specific sequence composition in eukaryotic Mo insertases.
Collapse
Affiliation(s)
- Miriam Rabenow
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Eduard Haar
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Katharina Schmidt
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Robert Hänsch
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ralf R Mendel
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Kevin D Oliphant
- Department of Plant Biology, Technische Universität Braunschweig, Braunschweig, Germany.
| |
Collapse
|
5
|
Payne D, Keller LM, Larson J, Bothner B, Colman DR, Boyd ES. Alternative sources of molybdenum for Methanococcus maripaludis and their implication for the evolution of molybdoenzymes. Commun Biol 2024; 7:1337. [PMID: 39414898 PMCID: PMC11484787 DOI: 10.1038/s42003-024-07049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024] Open
Abstract
Molybdoenzymes are essential in global nitrogen, carbon, and sulfur cycling. To date, the only known bioavailable source of molybdenum (Mo) is molybdate. However, in the sulfidic and anoxic (euxinic) habitats that predominate in modern subsurface environments and that were pervasive prior to Earth's widespread oxygenation, Mo occurs as soluble tetrathiomolybdate ion and molybdenite mineral that is not known to be bioavailable. This presents a paradox for how organisms obtain Mo to support molybdoenzymes in these environments. Here, we show that tetrathiomolybdate and molybdenite sustain the high Mo demand of a model anaerobic methanogen, Methanococcus maripaludis, grown via Mo-dependent formate dehydrogenase, formylmethanofuran dehydrogenase, and nitrogenase. Cells grown with tetrathiomolybdate and molybdenite have similar growth kinetics, Mo content, and transcript levels of proteins involved in Mo transport and cofactor biosynthesis when compared to those grown with molybdate, implying similar mechanisms of transport and cofactor biosynthesis. These results help to reconcile the paradox of how Mo is acquired in modern and ancient anaerobes and provide new insight into how molybdoenzymes could have evolved prior to Earth's oxygenation.
Collapse
Affiliation(s)
- Devon Payne
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lisa M Keller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - James Larson
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Brian Bothner
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA.
| |
Collapse
|
6
|
Mendel RR, Oliphant KD. The Final Step in Molybdenum Cofactor Biosynthesis-A Historical View. Molecules 2024; 29:4458. [PMID: 39339452 PMCID: PMC11434336 DOI: 10.3390/molecules29184458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 08/29/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Molybdenum (Mo) is an essential micronutrient across all kingdoms of life, where it functions as a key component of the active centers of molybdenum-dependent enzymes. For these enzymes to gain catalytic activity, Mo must be complexed with a pterin scaffold to form the molybdenum cofactor (Moco). The final step of Moco biosynthesis is catalyzed by the enzyme Mo-insertase. This review focuses on eukaryotic Mo-insertases, with an emphasis on those found in plants and mammals, which have been instrumental in advancing the understanding of Mo biochemistry. Additionally, a historical perspective is provided, tracing the discovery of Mo-insertase from the early 1960s to the detailed characterization of its reaction mechanism in 2021. This review also highlights key milestones in the study of Mo-insertase, including mutant characterization, gene cloning, structural elucidation at the atomic level, functional domain assignment, and the spatial organization of the enzyme within cellular protein networks.
Collapse
Affiliation(s)
- Ralf R. Mendel
- Institute of Plant Biology, Technical University Braunschweig, Humboldtstraße 1, 38106 Braunschweig, Germany;
| | | |
Collapse
|
7
|
王 慧, 姜 晓, 李 飞. [Construction and characterization of a modA gene mutant strain of Klebsiella pneumoniae]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:748-756. [PMID: 38708509 PMCID: PMC11073953 DOI: 10.12122/j.issn.1673-4254.2024.04.17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Indexed: 05/07/2024]
Abstract
OBJECTIVE To construct a mutant strain of Klebsiella pneumoniae NTUH- K2044 with modA gene deletion and its complementary strain and explore the role of modA gene in modulating anaerobic nitrate respiratory growth and phenotypes of K. pneumoniae. METHODS The modA deletion mutant K. pneumoniae strain was constructed by homologous recombination using the suicide vector pKO3-Km. To obtain the complementary strain C-modA, the whole sequence fragment containing the promoter, open reading frame and terminator regions of modA was cloned into pGEM-T-easy and electrically transformed into the modA deletion mutant. The NTUH-K2044 wild-type strain, modA gene deletion mutant and complementary strain were compared by measuring in vitro anaerobic nitrate respiration growth, competitiveness index, biofilm quantification, mucoviscosity assay and morphological measurement using Image J. RESULTS The modA deletion mutant strain ΔmodA and the complementary strain C-modA were successfully constructed. The modA gene knockout strain showed inhibited anaerobic nitrate respiratory growth compared with the wild- type and C-modA strains with significantly weakened competitiveness, reduced capacity of biofilm synthesis during anaerobiosis, and lowered mucoviscosity under anaerobic conditions. The ΔmodA strain showed a spherical morphology in anaerobic conditions as compared with the normal short rod-like morphology of K. pneumoniae, with also distinctly shorter length than the wild-type and C-modA strains. CONCLUSION The molybdate transport system encoding gene modA is associated with the pathogenic capacity of K. pneumoniae by modulating its anaerobic nitrate respiration, competitiveness, biofilm formation, hypermucoviscous phenotype and morphology.
Collapse
Affiliation(s)
- 慧 王
- 黄石市妇幼保健院(湖北理工学院附属妇幼保健院)检验科,湖北 黄石 435000Department of Clinical Laboratory, Huangshi Maternity and Children's Health Hospital (Affiliated Maternity and Children's Health Hospital of Hubei Polytechnic University), Huangshi 435000, China
- 湖北医药学院基础医学院,湖北 十堰 442000School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| | - 晓宇 姜
- 黄石爱尔眼科医院,湖北 黄石 435000Huangshi Aier Eye Hospital, Huangshi 435000, China
| | - 飞雨 李
- 黄石市中医医院,湖北 黄石 435000Clinical Laboratory, Huangshi Hospital of TCM, Huangshi 435000, China
- 湖北医药学院基础医学院,湖北 十堰 442000School of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, China
| |
Collapse
|
8
|
Warnhoff K, Bhattacharya S, Snoozy J, Breen PC, Ruvkun G. Hypoxia-inducible factor induces cysteine dioxygenase and promotes cysteine homeostasis in Caenorhabditis elegans. eLife 2024; 12:RP89173. [PMID: 38349720 PMCID: PMC10942545 DOI: 10.7554/elife.89173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Dedicated genetic pathways regulate cysteine homeostasis. For example, high levels of cysteine activate cysteine dioxygenase, a key enzyme in cysteine catabolism in most animal and many fungal species. The mechanism by which cysteine dioxygenase is regulated is largely unknown. In an unbiased genetic screen for mutations that activate cysteine dioxygenase (cdo-1) in the nematode Caenorhabditis elegans, we isolated loss-of-function mutations in rhy-1 and egl-9, which encode proteins that negatively regulate the stability or activity of the oxygen-sensing hypoxia inducible transcription factor (hif-1). EGL-9 and HIF-1 are core members of the conserved eukaryotic hypoxia response. However, we demonstrate that the mechanism of HIF-1-mediated induction of cdo-1 is largely independent of EGL-9 prolyl hydroxylase activity and the von Hippel-Lindau E3 ubiquitin ligase, the classical hypoxia signaling pathway components. We demonstrate that C. elegans cdo-1 is transcriptionally activated by high levels of cysteine and hif-1. hif-1-dependent activation of cdo-1 occurs downstream of an H2S-sensing pathway that includes rhy-1, cysl-1, and egl-9. cdo-1 transcription is primarily activated in the hypodermis where it is also sufficient to drive sulfur amino acid metabolism. Thus, the regulation of cdo-1 by hif-1 reveals a negative feedback loop that maintains cysteine homeostasis. High levels of cysteine stimulate the production of an H2S signal. H2S then acts through the rhy-1/cysl-1/egl-9 signaling pathway to increase HIF-1-mediated transcription of cdo-1, promoting degradation of cysteine via CDO-1.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Pediatrics and Rare Diseases Group, Sanford ResearchSioux FallsUnited States
- Department of Pediatrics, Sanford School of Medicine, University of South DakotaSioux FallsUnited States
| | | | - Jennifer Snoozy
- Pediatrics and Rare Diseases Group, Sanford ResearchSioux FallsUnited States
| | - Peter C Breen
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
| |
Collapse
|
9
|
Pan C, Yin J, Ma B, Wen J, Luo P. Whole-genome sequence and characterization of a marine red yeast, Rhodosporidium sphaerocarpum GDMCC 60679, featuring the assimilation of ammonia nitrogen. J Biosci Bioeng 2024; 137:85-93. [PMID: 38155026 DOI: 10.1016/j.jbiosc.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
A marine red yeast, Rhodosporidium sphaerocarpum, is generally used for the production of lipids and carotenoids. In a previous study, we demonstrated that a marine-derived R. sphaerocarpum GDMCC 60679 can efficiently remove ammonia nitrogen and exhibit multiple probiotic functions for shrimp, Litopenaeus vannamei. Here, we performed a genome assembly of the strain GDMCC 60679 using a combination of the data from Illumina PE and PacBio CLR reads. The genome has a size of 18.03 Mb and consists of 32 contigs with an N50 length of 1,074,774 bp and GC content of 63 %. The genome was predicted to contain 6092 protein-coding genes, 5962 of which were functionally annotated. Metabolic pathways responsible for the ammonia assimilation and the synthesis of lipids and carotenoids were particularly examined to explore and characterize genes contributing to these functions. Whole-genome sequence and annotation of the strain lays a foundation to reveal the molecular mechanism of its prominent biological functions and will facilitate us to further expand new applications of yeasts in Rhodosporidium.
Collapse
Affiliation(s)
- Chuanhao Pan
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jiayue Yin
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Ma
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Wen
- Department of Biology, Lingnan Normal University, Zhanjiang 524048, China
| | - Peng Luo
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; CAS Key Laboratory of Tropical Marine Bio-resources and Ecology (LMB), Guangdong Provincial Key Laboratory of Applied Marine Biology (LAMB), South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
10
|
Warnhoff K, Bhattacharya S, Snoozy J, Breen PC, Ruvkun G. Hypoxia-inducible factor induces cysteine dioxygenase and promotes cysteine homeostasis in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.538701. [PMID: 37205365 PMCID: PMC10187278 DOI: 10.1101/2023.05.04.538701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Dedicated genetic pathways regulate cysteine homeostasis. For example, high levels of cysteine activate cysteine dioxygenase, a key enzyme in cysteine catabolism in most animal and many fungal species. The mechanism by which cysteine dioxygenase is regulated is largely unknown. In an unbiased genetic screen for mutations that activate cysteine dioxygenase (cdo-1) in the nematode C. elegans, we isolated loss-of-function mutations in rhy-1 and egl-9, which encode proteins that negatively regulate the stability or activity of the oxygen-sensing hypoxia inducible transcription factor (hif-1). EGL-9 and HIF-1 are core members of the conserved eukaryotic hypoxia response. However, we demonstrate that the mechanism of HIF-1-mediated induction of cdo-1 is largely independent of EGL-9 prolyl hydroxylase activity and the von Hippel-Lindau E3 ubiquitin ligase, the classical hypoxia signaling pathway components. We demonstrate that C. elegans cdo-1 is transcriptionally activated by high levels of cysteine and hif-1. hif-1-dependent activation of cdo-1 occurs downstream of an H2S-sensing pathway that includes rhy-1, cysl-1, and egl-9. cdo-1 transcription is primarily activated in the hypodermis where it is also sufficient to drive sulfur amino acid metabolism. Thus, the regulation of cdo-1 by hif-1 reveals a negative feedback loop that maintains cysteine homeostasis. High levels of cysteine stimulate the production of an H2S signal. H2S then acts through the rhy-1/cysl-1/egl-9 signaling pathway to increase HIF-1-mediated transcription of cdo-1, promoting degradation of cysteine via CDO-1.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD 57105 USA
| | - Sushila Bhattacharya
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Jennifer Snoozy
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD 57104, USA
| | - Peter C. Breen
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
11
|
Magalon A. History of Maturation of Prokaryotic Molybdoenzymes-A Personal View. Molecules 2023; 28:7195. [PMID: 37894674 PMCID: PMC10609526 DOI: 10.3390/molecules28207195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
In prokaryotes, the role of Mo/W enzymes in physiology and bioenergetics is widely recognized. It is worth noting that the most diverse family of Mo/W enzymes is exclusive to prokaryotes, with the probable existence of several of them from the earliest forms of life on Earth. The structural organization of these enzymes, which often include additional redox centers, is as diverse as ever, as is their cellular localization. The most notable observation is the involvement of dedicated chaperones assisting with the assembly and acquisition of the metal centers, including Mo/W-bisPGD, one of the largest organic cofactors in nature. This review seeks to provide a new understanding and a unified model of Mo/W enzyme maturation.
Collapse
Affiliation(s)
- Axel Magalon
- Aix Marseille Université, CNRS, Laboratoire de Chimie Bactérienne (UMR7283), IMM, IM2B, 13402 Marseille, France
| |
Collapse
|
12
|
Matczak S, Bouchez V, Leroux P, Douché T, Collinet N, Landier A, Gianetto QG, Guillot S, Chamot-Rooke J, Hasan M, Matondo M, Brisse S, Toubiana J. Biological differences between FIM2 and FIM3 fimbriae of Bordetella pertussis: not just the serotype. Microbes Infect 2023; 25:105152. [PMID: 37245862 DOI: 10.1016/j.micinf.2023.105152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
INTRODUCTION Bordetella pertussis still circulates worldwide despite vaccination. Fimbriae are components of some acellular pertussis vaccines. Population fluctuations of B. pertussis fimbrial serotypes (FIM2 and FIM3) are observed, and fim3 alleles (fim3-1 [clade 1] and fim3-2 [clade 2]) mark a major phylogenetic subdivision of B. pertussis. OBJECTIVES To compare microbiological characteristics and expressed protein profiles between fimbrial serotypes FIM2 and FIM3 and genomic clades. METHODS A total of 19 isolates were selected. Absolute protein abundance of the main virulence factors, autoagglutination and biofilm formation, bacterial survival in whole blood, induced blood cell cytokine secretion, and global proteome profiles were assessed. RESULTS Compared to FIM3, FIM2 isolates produced more fimbriae, less cellular pertussis toxin subunit 1 and more biofilm, but auto-agglutinated less. FIM2 isolates had a lower survival rate in cord blood, but induced higher levels of IL-4, IL-8 and IL-1β secretion. Global proteome comparisons uncovered 15 differentially produced proteins between FIM2 and FIM3 isolates, involved in adhesion and metabolism of metals. FIM3 isolates of clade 2 produced more FIM3 and more biofilm compared to clade 1. CONCLUSION FIM serotype and fim3 clades are associated with proteomic and other biological differences, which may have implications on pathogenesis and epidemiological emergence.
Collapse
Affiliation(s)
- Soraya Matczak
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Valérie Bouchez
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Pauline Leroux
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Thibaut Douché
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Nils Collinet
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Annie Landier
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Sophie Guillot
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Milena Hasan
- Institut Pasteur, Université Paris Cité, Cytometry and Biomarkers Unit of Technology and Service (CB UTechS), 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France; Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants Malades, APHP, Université Paris Cité, 149, Rue de Sèvres, 75015, Paris, France.
| |
Collapse
|
13
|
Maia LB. Bringing Nitric Oxide to the Molybdenum World-A Personal Perspective. Molecules 2023; 28:5819. [PMID: 37570788 PMCID: PMC10420851 DOI: 10.3390/molecules28155819] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Molybdenum-containing enzymes of the xanthine oxidase (XO) family are well known to catalyse oxygen atom transfer reactions, with the great majority of the characterised enzymes catalysing the insertion of an oxygen atom into the substrate. Although some family members are known to catalyse the "reverse" reaction, the capability to abstract an oxygen atom from the substrate molecule is not generally recognised for these enzymes. Hence, it was with surprise and scepticism that the "molybdenum community" noticed the reports on the mammalian XO capability to catalyse the oxygen atom abstraction of nitrite to form nitric oxide (NO). The lack of precedent for a molybdenum- (or tungsten) containing nitrite reductase on the nitrogen biogeochemical cycle contributed also to the scepticism. It took several kinetic, spectroscopic and mechanistic studies on enzymes of the XO family and also of sulfite oxidase and DMSO reductase families to finally have wide recognition of the molybdoenzymes' ability to form NO from nitrite. Herein, integrated in a collection of "personal views" edited by Professor Ralf Mendel, is an overview of my personal journey on the XO and aldehyde oxidase-catalysed nitrite reduction to NO. The main research findings and the path followed to establish XO and AO as competent nitrite reductases are reviewed. The evidence suggesting that these enzymes are probable players of the mammalian NO metabolism is also discussed.
Collapse
Affiliation(s)
- Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), 2829-516 Caparica, Portugal
| |
Collapse
|
14
|
Weber JN, Minner-Meinen R, Behnecke M, Biedendieck R, Hänsch VG, Hercher TW, Hertweck C, van den Hout L, Knüppel L, Sivov S, Schulze J, Mendel RR, Hänsch R, Kaufholdt D. Moonlighting Arabidopsis molybdate transporter 2 family and GSH-complex formation facilitate molybdenum homeostasis. Commun Biol 2023; 6:801. [PMID: 37532778 PMCID: PMC10397214 DOI: 10.1038/s42003-023-05161-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/21/2023] [Indexed: 08/04/2023] Open
Abstract
Molybdenum (Mo) as essential micronutrient for plants, acts as active component of molybdenum cofactor (Moco). Core metabolic processes like nitrate assimilation or abscisic-acid biosynthesis rely on Moco-dependent enzymes. Although a family of molybdate transport proteins (MOT1) is known to date in Arabidopsis, molybdate homeostasis remained unclear. Here we report a second family of molybdate transporters (MOT2) playing key roles in molybdate distribution and usage. KO phenotype-analyses, cellular and organ-specific localization, and connection to Moco-biosynthesis enzymes via protein-protein interaction suggest involvement in cellular import of molybdate in leaves and reproductive organs. Furthermore, we detected a glutathione-molybdate complex, which reveals how vacuolar storage is maintained. A putative Golgi S-adenosyl-methionine transport function was reported recently for the MOT2-family. Here, we propose a moonlighting function, since clear evidence of molybdate transport was found in a yeast-system. Our characterization of the MOT2-family and the detection of a glutathione-molybdate complex unveil the plant-wide way of molybdate.
Collapse
Affiliation(s)
- Jan-Niklas Weber
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Rieke Minner-Meinen
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Maria Behnecke
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Rebekka Biedendieck
- Institute of Microbiology and Braunschweig Integrated Centre of Systems Biology, Technische Universität Braunschweig, Rebenring 56, D-38106, Braunschweig, Germany
| | - Veit G Hänsch
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Research and Infection Biology (HKI), Beutenbergstrasse 11a, Faculty of Biological Sciences, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Thomas W Hercher
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Research and Infection Biology (HKI), Beutenbergstrasse 11a, Faculty of Biological Sciences, Friedrich Schiller University Jena, D-07743, Jena, Germany
| | - Lena van den Hout
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Lars Knüppel
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Simon Sivov
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Jutta Schulze
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Ralf-R Mendel
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| | - Robert Hänsch
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany.
- Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, , Southwest University, Tiansheng Road No. 2, 400715, Chongqing, Beibei District, PR China.
| | - David Kaufholdt
- Institute of Plant Biology, Technische Universität Braunschweig, Humboldtstrasse 1, D-38106, Braunschweig, Germany
| |
Collapse
|
15
|
Maghsoud Y, Dong C, Cisneros GA. Investigation of the Inhibition Mechanism of Xanthine Oxidoreductase by Oxipurinol: A Computational Study. J Chem Inf Model 2023; 63:4190-4206. [PMID: 37319436 PMCID: PMC10405278 DOI: 10.1021/acs.jcim.3c00624] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Xanthine oxidoreductase (XOR) is an enzyme found in various organisms. It converts hypoxanthine to xanthine and urate, which are crucial steps in purine elimination in humans. Elevated uric acid levels can lead to conditions like gout and hyperuricemia. Therefore, there is significant interest in developing drugs that target XOR for treating these conditions and other diseases. Oxipurinol, an analogue of xanthine, is a well-known inhibitor of XOR. Crystallographic studies have revealed that oxipurinol directly binds to the molybdenum cofactor (MoCo) in XOR. However, the precise details of the inhibition mechanism are still unclear, which would be valuable for designing more effective drugs with similar inhibitory functions. In this study, molecular dynamics and quantum mechanics/molecular mechanics calculations are employed to investigate the inhibition mechanism of XOR by oxipurinol. The study examines the structural and dynamic effects of oxipurinol on the pre-catalytic structure of the metabolite-bound system. Our results provide insights on the reaction mechanism catalyzed by the MoCo center in the active site, which aligns well with experimental findings. Furthermore, the results provide insights into the residues surrounding the active site and propose an alternative mechanism for developing alternative covalent inhibitors.
Collapse
Affiliation(s)
- Yazdan Maghsoud
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chao Dong
- Department of Chemistry and Physics, The University of Texas Permian Basin, Odessa, Texas 79762, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
- Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
16
|
Maghsoud Y, Dong C, Cisneros GA. Computational Characterization of the Inhibition Mechanism of Xanthine Oxidoreductase by Topiroxostat. ACS Catal 2023; 13:6023-6043. [PMID: 37547543 PMCID: PMC10399974 DOI: 10.1021/acscatal.3c01245] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Xanthine oxidase (XO) is a member of the molybdopterin-containing enzyme family. It interconverts xanthine to uric acid as the last step of purine catabolism in the human body. The high uric acid concentration in the blood directly leads to human diseases like gout and hyperuricemia. Therefore, drugs that inhibit the biosynthesis of uric acid by human XO have been clinically used for many years to decrease the concentration of uric acid in the blood. In this study, the inhibition mechanism of XO and a new promising drug, topiroxostat (code: FYX-051), is investigated by employing molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) calculations. This drug has been reported to act as both a noncovalent and covalent inhibitor and undergoes a stepwise inhibition by all its hydroxylated metabolites, which include 2-hydroxy-FYX-051, dihydroxy-FYX-051, and trihydroxy-FYX-051. However, the detailed mechanism of inhibition of each metabolite remains elusive and can be useful for designing more effective drugs with similar inhibition functions. Hence, herein we present the computational investigation of the structural and dynamical effects of FYX-051 and the calculated reaction mechanism for all of the oxidation steps catalyzed by the molybdopterin center in the active site. Calculated results for the proposed reaction mechanisms for each metabolite's inhibition reaction in the enzyme's active site, binding affinities, and the noncovalent interactions with the surrounding amino acid residues are consistent with previously reported experimental findings. Analysis of the noncovalent interactions via energy decomposition analysis (EDA) and noncovalent interaction (NCI) techniques suggests that residues L648, K771, E802, R839, L873, R880, R912, F914, F1009, L1014, and A1079 can be used as key interacting residues for further hybrid-type inhibitor development.
Collapse
Affiliation(s)
- Yazdan Maghsoud
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Chao Dong
- Department of Chemistry and Physics, The University of Texas Permian Basin, Odessa, Texas 79762, United States
| | - G Andrés Cisneros
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States; Department of Physics, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
17
|
Schmollinger S, Chen S, Merchant SS. Quantitative elemental imaging in eukaryotic algae. Metallomics 2023; 15:mfad025. [PMID: 37186252 PMCID: PMC10209819 DOI: 10.1093/mtomcs/mfad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 03/03/2023] [Indexed: 05/17/2023]
Abstract
All organisms, fundamentally, are made from the same raw material, namely the elements of the periodic table. Biochemical diversity is achieved by how these elements are utilized, for what purpose, and in which physical location. Determining elemental distributions, especially those of trace elements that facilitate metabolism as cofactors in the active centers of essential enzymes, can determine the state of metabolism, the nutritional status, or the developmental stage of an organism. Photosynthetic eukaryotes, especially algae, are excellent subjects for quantitative analysis of elemental distribution. These microbes utilize unique metabolic pathways that require various trace nutrients at their core to enable their operation. Photosynthetic microbes also have important environmental roles as primary producers in habitats with limited nutrient supplies or toxin contaminations. Accordingly, photosynthetic eukaryotes are of great interest for biotechnological exploitation, carbon sequestration, and bioremediation, with many of the applications involving various trace elements and consequently affecting their quota and intracellular distribution. A number of diverse applications were developed for elemental imaging, allowing subcellular resolution, with X-ray fluorescence microscopy (XFM, XRF) being at the forefront, enabling quantitative descriptions of intact cells in a non-destructive method. This Tutorial Review summarizes the workflow of a quantitative, single-cell elemental distribution analysis of a eukaryotic alga using XFM.
Collapse
Affiliation(s)
- Stefan Schmollinger
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Si Chen
- X-ray Science Division, Argonne National Laboratory, Lemont, IL 60439, USA
| | - Sabeeha S Merchant
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Departments of Molecular and Cell Biology and Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
18
|
Abstract
Living systems are built from a small subset of the atomic elements, including the bulk macronutrients (C,H,N,O,P,S) and ions (Mg,K,Na,Ca) together with a small but variable set of trace elements (micronutrients). Here, we provide a global survey of how chemical elements contribute to life. We define five classes of elements: those that are (i) essential for all life, (ii) essential for many organisms in all three domains of life, (iii) essential or beneficial for many organisms in at least one domain, (iv) beneficial to at least some species, and (v) of no known beneficial use. The ability of cells to sustain life when individual elements are absent or limiting relies on complex physiological and evolutionary mechanisms (elemental economy). This survey of elemental use across the tree of life is encapsulated in a web-based, interactive periodic table that summarizes the roles chemical elements in biology and highlights corresponding mechanisms of elemental economy.
Collapse
Affiliation(s)
- Kaleigh A Remick
- Department of Microbiology, Cornell University, New York, NY, United States
| | - John D Helmann
- Department of Microbiology, Cornell University, New York, NY, United States.
| |
Collapse
|
19
|
MoaE Is Involved in Response to Oxidative Stress in Deinococcus radiodurans. Int J Mol Sci 2023; 24:ijms24032441. [PMID: 36768763 PMCID: PMC9916421 DOI: 10.3390/ijms24032441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Molybdenum ions are covalently bound to molybdenum pterin (MPT) to produce molybdenum cofactor (Moco), a compound essential for the catalytic activity of molybdenum enzymes, which is involved in a variety of biological functions. MoaE is the large subunit of MPT synthase and plays a key role in Moco synthesis. Here, we investigated the function of MoaE in Deinococcus radiodurans (DrMoaE) in vitro and in vivo, demonstrating that the protein contributed to the extreme resistance of D. radiodurans. The crystal structure of DrMoaE was determined by 1.9 Å resolution. DrMoaE was shown to be a dimer and the dimerization disappeared after Arg110 had been mutated. The deletion of drmoaE resulted in sensitivity to DNA damage stress and a slower growth rate in D. radiodurans. The increase in drmoaE transcript levels the and accumulation of intracellular reactive oxygen species levels under oxidative stress suggested that it was involved in the antioxidant process in D. radiodurans. In addition, treatment with the base analog 6-hydroxyaminopurine decreased survival and increased intracellular mutation rates in drmoaE deletion mutant strains. Our results reveal that MoaE plays a role in response to external stress mainly through oxidative stress resistance mechanisms in D. radiodurans.
Collapse
|
20
|
The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells. Biomolecules 2023; 13:biom13010144. [PMID: 36671528 PMCID: PMC9856076 DOI: 10.3390/biom13010144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/25/2022] [Accepted: 12/28/2022] [Indexed: 01/12/2023] Open
Abstract
Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics.
Collapse
|
21
|
Gluconacetobacter diazotrophicus Gene Fitness during Diazotrophic Growth. Appl Environ Microbiol 2022; 88:e0124122. [PMID: 36374093 PMCID: PMC9746312 DOI: 10.1128/aem.01241-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Plant growth-promoting (PGP) bacteria are important to the development of sustainable agricultural systems. PGP microbes that fix atmospheric nitrogen (diazotrophs) could minimize the application of industrially derived fertilizers and function as a biofertilizer. The bacterium Gluconacetobacter diazotrophicus is a nitrogen-fixing PGP microbe originally discovered in association with sugarcane plants, where it functions as an endophyte. It also forms endophyte associations with a range of other agriculturally relevant crop plants. G. diazotrophicus requires microaerobic conditions for diazotrophic growth. We generated a transposon library for G. diazotrophicus and cultured the library under various growth conditions and culture medium compositions to measure fitness defects associated with individual transposon inserts (transposon insertion sequencing [Tn-seq]). Using this library, we probed more than 3,200 genes and ascertained the importance of various genes for diazotrophic growth of this microaerobic endophyte. We also identified a set of essential genes. IMPORTANCE Our results demonstrate a succinct set of genes involved in diazotrophic growth for G. diazotrophicus, with a lower degree of redundancy than what is found in other model diazotrophs. The results will serve as a valuable resource for those interested in biological nitrogen fixation and will establish a baseline data set for plant free growth, which could complement future studies related to the endophyte relationship.
Collapse
|
22
|
Oliphant KD, Fettig RR, Snoozy J, Mendel RR, Warnhoff K. Obtaining the necessary molybdenum cofactor for sulfite oxidase activity in the nematode Caenorhabditis elegans surprisingly involves a dietary source. J Biol Chem 2022; 299:102736. [PMID: 36423681 PMCID: PMC9793310 DOI: 10.1016/j.jbc.2022.102736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/23/2022] Open
Abstract
Molybdenum cofactor (Moco) is a prosthetic group necessary for the activity of four unique enzymes, including the essential sulfite oxidase (SUOX-1). Moco is required for life; humans with inactivating mutations in the genes encoding Moco-biosynthetic enzymes display Moco deficiency, a rare and lethal inborn error of metabolism. Despite its importance to human health, little is known about how Moco moves among and between cells, tissues, and organisms. The prevailing view is that cells that require Moco must synthesize Moco de novo. Although, the nematode Caenorhabditis elegans appears to be an exception to this rule and has emerged as a valuable system for understanding fundamental Moco biology. C. elegans has the seemingly unique capacity to both synthesize its own Moco as well as acquire Moco from its microbial diet. However, the relative contribution of Moco from the diet or endogenous synthesis has not been rigorously evaluated or quantified biochemically. We genetically removed dietary or endogenous Moco sources in C. elegans and biochemically determined their impact on animal Moco content and SUOX-1 activity. We demonstrate that dietary Moco deficiency dramatically reduces both animal Moco content and SUOX-1 activity. Furthermore, these biochemical deficiencies have physiological consequences; we show that dietary Moco deficiency alone causes sensitivity to sulfite, the toxic substrate of SUOX-1. Altogether, this work establishes the biochemical consequences of depleting dietary Moco or endogenous Moco synthesis in C. elegans and quantifies the surprising contribution of the diet to maintaining Moco homeostasis in C. elegans.
Collapse
Affiliation(s)
- Kevin D. Oliphant
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Robin R. Fettig
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA,Department of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Jennifer Snoozy
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Ralf R. Mendel
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Kurt Warnhoff
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota, USA,Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, USA,For correspondence: Kurt Warnhoff
| |
Collapse
|
23
|
Oliphant KD, Rabenow M, Hohtanz L, Mendel RR. The Neurospora crassa molybdate transporter: Characterizing a novel transporter homologous to the plant MOT1 family. Fungal Genet Biol 2022; 163:103745. [PMID: 36240974 DOI: 10.1016/j.fgb.2022.103745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 01/06/2023]
Abstract
Molybdenum (Mo) is an essential element for animals, plants, and fungi. To achieve biological activity in eukaryotes, Mo must be complexed into the molybdenum cofactor (Moco). Cells are known to take up Mo in the form of the oxyanion molybdate. However, molybdate transporters are scarcely characterized in the fungal kingdom. In plants and algae, molybdate is imported into the cell via two families of molybdate transporters (MOT), MOT1 and MOT2. For the filamentous fungus Neurospora crassa, a sequence homologous to the MOT1 family was previously annotated. Here we report a characterization of this molybdate-related transporter, encoded by the ncmot-1 gene. We found that the deletion of ncmot-1 leads to an accumulation of total Mo within the mycelium and a roughly 51 % higher tolerance against high molybdate levels when grown on ammonium medium. The localization of a GFP tagged NcMOT-1 was identified among the vacuolar membrane. Thereby, we propose NcMOT-1 as an exporter, transporting molybdate out of the vacuole into the cytoplasm. Lastly, the heterologous expression of NcMOT-1 in Saccharomyces cerevisiae verifies the functionality of this protein as a MOT. Our results open the way towards understanding molybdate transport as part of Mo homeostasis and Moco-biosynthesis in fungi.
Collapse
Affiliation(s)
- Kevin D Oliphant
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Miriam Rabenow
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Lena Hohtanz
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany
| | - Ralf R Mendel
- Department of Plant Biology, Braunschweig University of Technology, Braunschweig, Germany.
| |
Collapse
|
24
|
Kruse T. Function of Molybdenum Insertases. Molecules 2022; 27:molecules27175372. [PMID: 36080140 PMCID: PMC9458074 DOI: 10.3390/molecules27175372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
For most organisms molybdenum is essential for life as it is found in the active site of various vitally important molybdenum dependent enzymes (Mo-enzymes). Here, molybdenum is bound to a pterin derivative called molybdopterin (MPT), thus forming the molybdenum cofactor (Moco). Synthesis of Moco involves the consecutive action of numerous enzymatic reaction steps, whereby molybdenum insertases (Mo-insertases) catalyze the final maturation step, i.e., the metal insertion reaction yielding Moco. This final maturation step is subdivided into two partial reactions, each catalyzed by a distinctive Mo-insertase domain. Initially, MPT is adenylylated by the Mo-insertase G-domain, yielding MPT-AMP which is used as substrate by the E-domain. This domain catalyzes the insertion of molybdate into the MPT dithiolene moiety, leading to the formation of Moco-AMP. Finally, the Moco-AMP phosphoanhydride bond is cleaved by the E-domain to liberate Moco from its synthesizing enzyme. Thus formed, Moco is physiologically active and may be incorporated into the different Mo-enzymes or bind to carrier proteins instead.
Collapse
Affiliation(s)
- Tobias Kruse
- Institute of Plant Biology, Technische Universität Braunschweig, 38106 Braunschweig, Germany
| |
Collapse
|
25
|
Pi HW, Lin JJ, Chen CA, Wang PH, Chiang YR, Huang CC, Young CC, Li WH. Origin and evolution of nitrogen fixation in prokaryotes. Mol Biol Evol 2022; 39:6673025. [PMID: 35993177 PMCID: PMC9447857 DOI: 10.1093/molbev/msac181] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis.
Collapse
Affiliation(s)
- Hong Wei Pi
- Ph.D. Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taiwan.,Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 11529
| | - Jinn Jy Lin
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 11529
| | - Chi An Chen
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 11529.,Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Po Hsiang Wang
- Graduate Institute of Environmental Engineering, National Central University, Taoyuan, Taiwan 32001.,Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan 145-0061
| | - Yin Ru Chiang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 11529
| | - Chieh Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan 402
| | - Chiu Chung Young
- Department of Soil and Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, Taiwan 402
| | - Wen Hsiung Li
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan 11529.,Department of Ecology and Evolution, University of Chicago, Chicago 60637, USA
| |
Collapse
|
26
|
Mendel RR. The History of the Molybdenum Cofactor-A Personal View. Molecules 2022; 27:4934. [PMID: 35956883 PMCID: PMC9370521 DOI: 10.3390/molecules27154934] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/26/2022] [Accepted: 07/28/2022] [Indexed: 11/16/2022] Open
Abstract
The transition element molybdenum (Mo) is an essential micronutrient for plants, animals, and microorganisms, where it forms part of the active center of Mo enzymes. To gain biological activity in the cell, Mo has to be complexed by a pterin scaffold to form the molybdenum cofactor (Moco). Mo enzymes and Moco are found in all kingdoms of life, where they perform vital transformations in the metabolism of nitrogen, sulfur, and carbon compounds. In this review, I recall the history of Moco in a personal view, starting with the genetics of Moco in the 1960s and 1970s, followed by Moco biochemistry and the description of its chemical structure in the 1980s. When I review the elucidation of Moco biosynthesis in the 1990s and the early 2000s, I do it mainly for eukaryotes, as I worked with plants, human cells, and filamentous fungi. Finally, I briefly touch upon human Moco deficiency and whether there is life without Moco.
Collapse
Affiliation(s)
- Ralf R Mendel
- Institute of Plant Biology, Technical University Braunschweig, Humboldtstrasse 1, 38106 Braunschweig, Germany
| |
Collapse
|
27
|
Buessecker S, Palmer M, Lai D, Dimapilis J, Mayali X, Mosier D, Jiao JY, Colman DR, Keller LM, St John E, Miranda M, Gonzalez C, Gonzalez L, Sam C, Villa C, Zhuo M, Bodman N, Robles F, Boyd ES, Cox AD, St Clair B, Hua ZS, Li WJ, Reysenbach AL, Stott MB, Weber PK, Pett-Ridge J, Dekas AE, Hedlund BP, Dodsworth JA. An essential role for tungsten in the ecology and evolution of a previously uncultivated lineage of anaerobic, thermophilic Archaea. Nat Commun 2022; 13:3773. [PMID: 35773279 PMCID: PMC9246946 DOI: 10.1038/s41467-022-31452-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 06/17/2022] [Indexed: 11/19/2022] Open
Abstract
Trace metals have been an important ingredient for life throughout Earth's history. Here, we describe the genome-guided cultivation of a member of the elusive archaeal lineage Caldarchaeales (syn. Aigarchaeota), Wolframiiraptor gerlachensis, and its growth dependence on tungsten. A metagenome-assembled genome (MAG) of W. gerlachensis encodes putative tungsten membrane transport systems, as well as pathways for anaerobic oxidation of sugars probably mediated by tungsten-dependent ferredoxin oxidoreductases that are expressed during growth. Catalyzed reporter deposition-fluorescence in-situ hybridization (CARD-FISH) and nanoscale secondary ion mass spectrometry (nanoSIMS) show that W. gerlachensis preferentially assimilates xylose. Phylogenetic analyses of 78 high-quality Wolframiiraptoraceae MAGs from terrestrial and marine hydrothermal systems suggest that tungsten-associated enzymes were present in the last common ancestor of extant Wolframiiraptoraceae. Our observations imply a crucial role for tungsten-dependent metabolism in the origin and evolution of this lineage, and hint at a relic metabolic dependence on this trace metal in early anaerobic thermophiles.
Collapse
Affiliation(s)
- Steffen Buessecker
- Department of Earth System Science, Stanford University, Stanford, CA, USA.
| | - Marike Palmer
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA.
| | - Dengxun Lai
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Joshua Dimapilis
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Xavier Mayali
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Damon Mosier
- Department of Biology, California State University, San Bernardino, CA, USA
- Department of Geoscience, University of Calgary, Calgary, AB, Canada
| | - Jian-Yu Jiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Lisa M Keller
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Emily St John
- Department of Biology, Portland State University, Portland, OR, USA
| | - Michelle Miranda
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Cristina Gonzalez
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Lizett Gonzalez
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Christian Sam
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Christopher Villa
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Madeline Zhuo
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Nicholas Bodman
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Fernando Robles
- Department of Biology, California State University, San Bernardino, CA, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT, USA
| | - Alysia D Cox
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Brian St Clair
- Department of Chemistry and Geochemistry, Montana Technological University, Butte, MT, USA
| | - Zheng-Shuang Hua
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, PR China
| | - Wen-Jun Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, PR China
- College of Fisheries, Henan Normal University, Xinxiang, PR China
| | | | - Matthew B Stott
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Peter K Weber
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Jennifer Pett-Ridge
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USA
- Life & Environmental Sciences Department, University of Merced, Merced, CA, USA
| | - Anne E Dekas
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - Brian P Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Jeremy A Dodsworth
- Department of Biology, California State University, San Bernardino, CA, USA.
| |
Collapse
|
28
|
Oliphant KD, Karger M, Nakanishi Y, Mendel RR. Precise Quantification of Molybdate In Vitro by the FRET-Based Nanosensor 'MolyProbe'. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123691. [PMID: 35744816 PMCID: PMC9228995 DOI: 10.3390/molecules27123691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/20/2022] [Accepted: 06/02/2022] [Indexed: 11/27/2022]
Abstract
Molybdenum (Mo) is an essential trace element in all kingdoms of life. Mo is bioavailable as the oxyanion molybdate and gains biological activity in eukaryotes when bound to molybdopterin, forming the molybdenum cofactor. The imbalance of molybdate homeostasis results in growth deficiencies or toxic symptoms within plants, fungi and animals. Recently, fluorescence resonance energy transfer (FRET) methods have emerged, monitoring cellular and subcellular molybdate distribution dynamics using a genetically encoded molybdate-specific FRET nanosensor, named MolyProbe. Here, we show that the MolyProbe system is a fast and reliable in vitro assay for quantitative molybdate determination. We added a Strep-TagII affinity tag to the MolyProbe protein for quick and easy purification. This MolyProbe is highly stable, resistant to freezing and can be stored for several weeks at 4 °C. Furthermore, the molybdate sensitivity of the assay peaked at low nM levels. Additionally, The MolyProbe was applied in vitro for quantitative molybdate determination in cell extracts of the plant Arabidopsis thaliana, the fungus Neurospora crassa and the yeast Saccharomyces cerevisiae. Our results show the functionality of the Arabidopsis thaliana molybdate transporter MOT1.1 and indicate that FRET-based molybdate detection is an excellent tool for measuring bioavailable Mo.
Collapse
Affiliation(s)
- Kevin D. Oliphant
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany; (K.D.O.); (M.K.)
| | - Marius Karger
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany; (K.D.O.); (M.K.)
| | - Yoichi Nakanishi
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan;
| | - Ralf R. Mendel
- Department of Plant Biology, Braunschweig University of Technology, 38106 Braunschweig, Germany; (K.D.O.); (M.K.)
- Correspondence:
| |
Collapse
|
29
|
Tiedemann K, Iobbi-Nivol C, Leimkühler S. The Role of the Nucleotides in the Insertion of the bis-Molybdopterin Guanine Dinucleotide Cofactor into apo-Molybdoenzymes. Molecules 2022; 27:molecules27092993. [PMID: 35566344 PMCID: PMC9103625 DOI: 10.3390/molecules27092993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/15/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
The role of the GMP nucleotides of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor of the DMSO reductase family has long been a subject of discussion. The recent characterization of the bis-molybdopterin (bis-Mo-MPT) cofactor present in the E. coli YdhV protein, which differs from bis-MGD solely by the absence of the nucleotides, now enables studying the role of the nucleotides of bis-MGD and bis-MPT cofactors in Moco insertion and the activity of molybdoenzymes in direct comparison. Using the well-known E. coli TMAO reductase TorA as a model enzyme for cofactor insertion, we were able to show that the GMP nucleotides of bis-MGD are crucial for the insertion of the bis-MGD cofactor into apo-TorA.
Collapse
Affiliation(s)
- Kim Tiedemann
- Institute of Biochemistry and Biology, Molecular Enzymology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany;
| | - Chantal Iobbi-Nivol
- Laboratoire de Bioénergétique et Ingénierie des Protéines, Institut de Microbiologie de la Méditerranée, Centre National de la Recherche Scientifique, Aix-Marseille Université, CEDEX 09, 13402 Marseille, France;
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Molecular Enzymology, University of Potsdam, Karl-Liebknecht Str. 24-25, 14476 Potsdam-Golm, Germany;
- Correspondence:
| |
Collapse
|
30
|
Huang XY, Hu DW, Zhao FJ. Molybdenum: More than an essential element. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1766-1774. [PMID: 34864981 DOI: 10.1093/jxb/erab534] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Molybdenum (Mo) is an essential element for almost all living organisms. After being taken up into the cells as molybdate, it is incorporated into the molybdenum cofactor, which functions as the active site of several molybdenum-requiring enzymes and thus plays crucial roles in multiple biological processes. The uptake and transport of molybdate is mainly mediated by two types of molybdate transporters. The homeostasis of Mo in plant cells is tightly controlled, and such homeostasis likely plays vital roles in plant adaptation to local environments. Recent evidence suggests that Mo is more than an essential element required for plant growth and development; it is also involved in local adaptation to coastal salinity. In this review, we summarize recent research progress on molybdate uptake and transport, molybdenum homeostasis network in plants, and discuss the potential roles of the molybdate transporter in plant adaptation to their local environment.
Collapse
Affiliation(s)
- Xin-Yuan Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Da-Wei Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
31
|
Lamont EI, Lee M, Burgdorf D, Ibsen C, McQualter J, Sarhan R, Thompson O, Schulze SR. Mocs1 ( Molybdenum cofactor synthesis 1) may contribute to lifespan extension in Drosophila. MICROPUBLICATION BIOLOGY 2022; 2022:10.17912/micropub.biology.000517. [PMID: 35098048 PMCID: PMC8790633 DOI: 10.17912/micropub.biology.000517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/07/2022] [Accepted: 01/18/2022] [Indexed: 11/05/2022]
Abstract
While evaluating the effect on lifespan of decreased ribosomal protein (Rp) expression in Drosophila, we discovered a potential function in the same process for the Molybdenum cofactor synthesis 1 (Mocs1) gene. We utilized the UAS-GAL4 inducible system, by crossing tissue-specific GAL4 drivers to the Harvard Drosophila Transgenic RNAi Project (TrIP) responder lines for Rp gene knockdown. We also employed a negative control that knocked down a gene unrelated to Drosophila (GAL4). Relative to the genetic background in which no driven transgenes were present, lifespan was significantly lengthened in females, both for Rp knockdown and the negative GAL4 control. We reasoned that the Mocs1 gene, located immediately downstream of the integration site on the third chromosome where all the TrIP responders are targeted might be responsible for the lifespan effects observed, due to the potential for upregulation using the UAS-GAL4 system. We repeated the lifespan experiment using an enhancer trap in the same location as the TrIP transgenes, and found that lifespan was significantly lengthened in females that possessed both the driver and responder, relative to controls, implicating Mocs1 in the biology of aging.
Collapse
Affiliation(s)
- Eleanor I. Lamont
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Michael Lee
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - David Burgdorf
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Camille Ibsen
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Jazmyne McQualter
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Ryan Sarhan
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Olivia Thompson
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA
| | - Sandra R Schulze
- Department of Biology, Western Washington University, Bellingham, WA, 98225, USA,
Correspondence to: Sandra R Schulze ()
| |
Collapse
|
32
|
Abstract
Soil micronutrients limit crop productivity in many regions worldwide, and micronutrient deficiencies affect over two billion people globally. Microbial biofertilizers could combat these issues by inoculating arable soils with microorganisms that mobilize micronutrients, increasing their availability to crop plants in an environmentally sustainable and cost-effective manner. However, the widespread application of biofertilizers is limited by complex micronutrient–microbe–plant interactions, which reduce their effectiveness under field conditions. Here, we review the current state of seven micronutrients in food production. We examine the mechanisms underpinning microbial micronutrient mobilization in natural ecosystems and synthesize the state-of-knowledge to improve our overall understanding of biofertilizers in food crop production. We demonstrate that, although soil micronutrient concentrations are strongly influenced by soil conditions, land management practices can also substantially affect micronutrient availability and uptake by plants. The effectiveness of biofertilizers varies, but several lines of evidence indicate substantial benefits in co-applying biofertilizers with conventional inorganic or organic fertilizers. Studies of micronutrient cycling in natural ecosystems provide examples of microbial taxa capable of mobilizing multiple micronutrients whilst withstanding harsh environmental conditions. Research into the mechanisms of microbial nutrient mobilization in natural ecosystems could, therefore, yield effective biofertilizers to improve crop nutrition under global changes.
Collapse
|
33
|
Maiti BK, Maia LB, Moura JJG. Sulfide and transition metals - A partnership for life. J Inorg Biochem 2021; 227:111687. [PMID: 34953313 DOI: 10.1016/j.jinorgbio.2021.111687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
Sulfide and transition metals often came together in Biology. The variety of possible structural combinations enabled living organisms to evolve an array of highly versatile metal-sulfide centers to fulfill different physiological roles. The ubiquitous iron‑sulfur centers, with their structural, redox, and functional diversity, are certainly the best-known partners, but other metal-sulfide centers, involving copper, nickel, molybdenum or tungsten, are equally crucial for Life. This review provides a concise overview of the exclusive sulfide properties as a metal ligand, with emphasis on the structural aspects and biosynthesis. Sulfide as catalyst and as a substrate is discussed. Different enzymes are considered, including xanthine oxidase, formate dehydrogenases, nitrogenases and carbon monoxide dehydrogenases. The sulfide effect on the activity and function of iron‑sulfur, heme and zinc proteins is also addressed.
Collapse
Affiliation(s)
- Biplab K Maiti
- National Institute of Technology Sikkim, Department of Chemistry, Ravangla Campus, Barfung Block, Ravangla Sub Division, South Sikkim 737139, India.
| | - Luisa B Maia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| | - José J G Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology (FCT NOVA), Universidade NOVA de Lisboa, Campus de Caparica, Portugal.
| |
Collapse
|
34
|
Yadav I, Rautela A, Kumar S. Approaches in the photosynthetic production of sustainable fuels by cyanobacteria using tools of synthetic biology. World J Microbiol Biotechnol 2021; 37:201. [PMID: 34664124 DOI: 10.1007/s11274-021-03157-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 09/29/2021] [Indexed: 10/20/2022]
Abstract
Cyanobacteria, photosynthetic prokaryotic microorganisms having a simple genetic composition are the prospective photoautotrophic cell factories for the production of a wide range of biofuel molecules. The simple genetic composition of cyanobacteria allows effortless genetic manipulation which leads to increased research endeavors from the synthetic biology approach. Various unicellular model cyanobacterial strains like Synechocystis sp. PCC 6803 and Synechococcus elongatus PCC 7942 have been successfully engineered for biofuels generation. Improved development of synthetic biology tools, genetic modification methods and advancement in transformation techniques to construct a strain that can contain multiple foreign genes in a single operon have vastly expanded the functions that can be used for engineering photosynthetic cyanobacteria for the generation of various biofuel molecules. In this review, recent advancements and approaches in synthetic biology tools used for cyanobacterial genome editing have been discussed. Apart from this, cyanobacterial productions of various fuel molecules like isoprene, limonene, α-farnesene, squalene, alkanes, butanol, and fatty acids, which can be a substitute for petroleum and fossil fuels in the future, have been elaborated.
Collapse
Affiliation(s)
- Indrajeet Yadav
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Akhil Rautela
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India
| | - Sanjay Kumar
- School of Biochemical Engineering, IIT (BHU) Varanasi, Varanasi, Uttar Pradesh, 221005, India.
| |
Collapse
|
35
|
Hemkemeyer M, Schwalb SA, Heinze S, Joergensen RG, Wichern F. Functions of elements in soil microorganisms. Microbiol Res 2021; 252:126832. [PMID: 34508963 DOI: 10.1016/j.micres.2021.126832] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/15/2022]
Abstract
The soil microbial community fulfils various functions, such as nutrient cycling and carbon (C) sequestration, therefore contributing to maintenance of soil fertility and mitigation of global warming. In this context, a major focus of research has been on C, nitrogen (N) and phosphorus (P) cycling. However, from aquatic and other environments, it is well known that other elements beyond C, N, and P are essential for microbial functioning. Nonetheless, for soil microorganisms this knowledge has not yet been synthesised. To gain a better mechanistic understanding of microbial processes in soil systems, we aimed at summarising the current knowledge on the function of a range of essential or beneficial elements, which may affect the efficiency of microbial processes in soil. This knowledge is discussed in the context of microbial driven nutrient and C cycling. Our findings may support future investigations and data evaluation, where other elements than C, N, and P affect microbial processes.
Collapse
Affiliation(s)
- Michael Hemkemeyer
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany.
| | - Sanja A Schwalb
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| | - Stefanie Heinze
- Department of Soil Science & Soil Ecology, Ruhr-University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Rainer Georg Joergensen
- Department of Soil Biology and Plant Nutrition, University of Kassel, Nordbahnhofstr. 1a, 37213 Witzenhausen, Germany
| | - Florian Wichern
- Department of Soil Science and Plant Nutrition, Institute of Biogenic Resources in Sustainable Food Systems - From Farm to Function, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany
| |
Collapse
|
36
|
Warnhoff K, Hercher TW, Mendel RR, Ruvkun G. Protein-bound molybdenum cofactor is bioavailable and rescues molybdenum cofactor-deficient C. elegans. Genes Dev 2021; 35:212-217. [PMID: 33446569 PMCID: PMC7849362 DOI: 10.1101/gad.345579.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 01/10/2023]
Abstract
In this paper, Warnoff et al. investigated the mechanism by which C. elegans stably acquires molybdenum cofactor (Moco), which is essential in animals and causes lethal neurological and developmental defects in humans with mutations in genes that encode Moco biosynthetic enzymes. The authors show that protein-bound Moco is the stable, bioavailable species of Moco taken up by C. elegans from its diet and is an effective dietary supplement in a C. elegans model of Moco deficiency, and that these Moco:protein complexes are very stable, suggesting they may provide a strategy for the production and delivery of therapeutically active Moco to treat human Moco deficiency. The molybdenum cofactor (Moco) is a 520-Da prosthetic group that is synthesized in all domains of life. In animals, four oxidases (among them sulfite oxidase) use Moco as a prosthetic group. Moco is essential in animals; humans with mutations in genes that encode Moco biosynthetic enzymes display lethal neurological and developmental defects. Moco supplementation seems a logical therapy; however, the instability of Moco has precluded biochemical and cell biological studies of Moco transport and bioavailability. The nematode Caenorhabditis elegans can take up Moco from its bacterial diet and transport it to cells and tissues that express Moco-requiring enzymes, suggesting a system for Moco uptake and distribution. Here we show that protein-bound Moco is the stable, bioavailable species of Moco taken up by C. elegans from its diet and is an effective dietary supplement, rescuing a C. elegans model of Moco deficiency. We demonstrate that diverse Moco:protein complexes are stable and bioavailable, suggesting a new strategy for the production and delivery of therapeutically active Moco to treat human Moco deficiency.
Collapse
Affiliation(s)
- Kurt Warnhoff
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| | - Thomas W Hercher
- Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Ralf R Mendel
- Braunschweig University of Technology, 38106 Braunschweig, Germany
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114.,Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
37
|
Zhong Q, Kobe B, Kappler U. Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria. Front Microbiol 2020; 11:615860. [PMID: 33362753 PMCID: PMC7759655 DOI: 10.3389/fmicb.2020.615860] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mononuclear molybdoenzymes are highly versatile catalysts that occur in organisms in all domains of life, where they mediate essential cellular functions such as energy generation and detoxification reactions. Molybdoenzymes are particularly abundant in bacteria, where over 50 distinct types of enzymes have been identified to date. In bacterial pathogens, all aspects of molybdoenzyme biology such as molybdate uptake, cofactor biosynthesis, and function of the enzymes themselves, have been shown to affect fitness in the host as well as virulence. Although current studies are mostly focused on a few key pathogens such as Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Mycobacterium tuberculosis, some common themes for the function and adaptation of the molybdoenzymes to pathogen environmental niches are emerging. Firstly, for many of these enzymes, their role is in supporting bacterial energy generation; and the corresponding pathogen fitness and virulence defects appear to arise from a suboptimally poised metabolic network. Secondly, all substrates converted by virulence-relevant bacterial Mo enzymes belong to classes known to be generated in the host either during inflammation or as part of the host signaling network, with some enzyme groups showing adaptation to the increased conversion of such substrates. Lastly, a specific adaptation to bacterial in-host survival is an emerging link between the regulation of molybdoenzyme expression in bacterial pathogens and the presence of immune system-generated reactive oxygen species. The prevalence of molybdoenzymes in key bacterial pathogens including ESKAPE pathogens, paired with the mounting evidence of their central roles in bacterial fitness during infection, suggest that they could be important future drug targets.
Collapse
Affiliation(s)
- Qifeng Zhong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
38
|
Ge X, Thorgersen MP, Poole FL, Deutschbauer AM, Chandonia JM, Novichkov PS, Gushgari-Doyle S, Lui LM, Nielsen T, Chakraborty R, Adams PD, Arkin AP, Hazen TC, Adams MWW. Characterization of a Metal-Resistant Bacillus Strain With a High Molybdate Affinity ModA From Contaminated Sediments at the Oak Ridge Reservation. Front Microbiol 2020; 11:587127. [PMID: 33193240 PMCID: PMC7604516 DOI: 10.3389/fmicb.2020.587127] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/22/2020] [Indexed: 12/12/2022] Open
Abstract
A nitrate- and metal-contaminated site at the Oak Ridge Reservation (ORR) was previously shown to contain the metal molybdenum (Mo) at picomolar concentrations. This potentially limits microbial nitrate reduction, as Mo is required by the enzyme nitrate reductase, which catalyzes the first step of nitrate removal. Enrichment for anaerobic nitrate-reducing microbes from contaminated sediment at the ORR yielded Bacillus strain EB106-08-02-XG196. This bacterium grows in the presence of multiple metals (Cd, Ni, Cu, Co, Mn, and U) but also exhibits better growth compared to control strains, including Pseudomonas fluorescens N2E2 isolated from a pristine ORR environment under low molybdate concentrations (<1 nM). Molybdate is taken up by the molybdate binding protein, ModA, of the molybdate ATP-binding cassette transporter. ModA of XG196 is phylogenetically distinct from those of other characterized ModA proteins. The genes encoding ModA from XG196, P. fluorescens N2E2 and Escherichia coli K12 were expressed in E. coli and the recombinant proteins were purified. Isothermal titration calorimetry analysis showed that XG196 ModA has a higher affinity for molybdate than other ModA proteins with a molybdate binding constant (KD) of 2.2 nM, about one order of magnitude lower than those of P. fluorescens N2E2 (27.0 nM) and E. coli K12 (25.0 nM). XG196 ModA also showed a fivefold higher affinity for molybdate than for tungstate (11 nM), whereas the ModA proteins from P. fluorescens N2E2 [KD (Mo) 27.0 nM, KD (W) 26.7 nM] and E. coli K12[(KD (Mo) 25.0 nM, KD (W) 23.8 nM] had similar affinities for the two oxyanions. We propose that high molybdate affinity coupled with resistance to multiple metals gives strain XG196 a competitive advantage in Mo-limited environments contaminated with high concentrations of metals and nitrate, as found at ORR.
Collapse
Affiliation(s)
- Xiaoxuan Ge
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Michael P Thorgersen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Farris L Poole
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - John-Marc Chandonia
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Pavel S Novichkov
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Sara Gushgari-Doyle
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Lauren M Lui
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Torben Nielsen
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Romy Chakraborty
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Paul D Adams
- Molecular Biosciences and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Adam P Arkin
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Terry C Hazen
- Department of Civil and Environmental Engineering, The University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Michael W W Adams
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
39
|
Mayr SJ, Mendel RR, Schwarz G. Molybdenum cofactor biology, evolution and deficiency. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118883. [PMID: 33017596 DOI: 10.1016/j.bbamcr.2020.118883] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/14/2022]
Abstract
The molybdenum cofactor (Moco) represents an ancient metal‑sulfur cofactor, which participates as catalyst in carbon, nitrogen and sulfur cycles, both on individual and global scale. Given the diversity of biological processes dependent on Moco and their evolutionary age, Moco is traced back to the last universal common ancestor (LUCA), while Moco biosynthetic genes underwent significant changes through evolution and acquired additional functions. In this review, focused on eukaryotic Moco biology, we elucidate the benefits of gene fusions on Moco biosynthesis and beyond. While originally the gene fusions were driven by biosynthetic advantages such as coordinated expression of functionally related proteins and product/substrate channeling, they also served as origin for the development of novel functions. Today, Moco biosynthetic genes are involved in a multitude of cellular processes and loss of the according gene products result in severe disorders, both related to Moco biosynthesis and secondary enzyme functions.
Collapse
Affiliation(s)
- Simon J Mayr
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zuelpicher Str. 47, 50674 Koeln, Germany
| | - Ralf-R Mendel
- Institute of Plant Biology, Braunschweig University of Technology, Humboldtstr. 1, 38106 Braunschweig, Germany
| | - Guenter Schwarz
- Institute of Biochemistry, Department of Chemistry, Center for Molecular Medicine, University of Cologne, Zuelpicher Str. 47, 50674 Koeln, Germany.
| |
Collapse
|
40
|
Abstract
Tungsten is the heaviest element used in biological systems. It occurs in the active sites of several bacterial or archaeal enzymes and is ligated to an organic cofactor (metallopterin or metal binding pterin; MPT) which is referred to as tungsten cofactor (Wco). Wco-containing enzymes are found in the dimethyl sulfoxide reductase (DMSOR) and the aldehyde:ferredoxin oxidoreductase (AOR) families of MPT-containing enzymes. Some depend on Wco, such as aldehyde oxidoreductases (AORs), class II benzoyl-CoA reductases (BCRs) and acetylene hydratases (AHs), whereas others may incorporate either Wco or molybdenum cofactor (Moco), such as formate dehydrogenases, formylmethanofuran dehydrogenases or nitrate reductases. The obligately tungsten-dependent enzymes catalyze rather unusual reactions such as ones with extremely low-potential electron transfers (AOR, BCR) or an unusual hydration reaction (AH). In recent years, insights into the structure and function of many tungstoenzymes have been obtained. Though specific and unspecific ABC transporter uptake systems have been described for tungstate and molybdate, only little is known about further discriminative steps in Moco and Wco biosynthesis. In bacteria producing Moco- and Wco-containing enzymes simultaneously, paralogous isoforms of the metal insertase MoeA may be specifically involved in the molybdenum- and tungsten-insertion into MPT, and in targeting Moco or Wco to their respective apo-enzymes. Wco-containing enzymes are of emerging biotechnological interest for a number of applications such as the biocatalytic reduction of CO2, carboxylic acids and aromatic compounds, or the conversion of acetylene to acetaldehyde.
Collapse
|
41
|
Nakai Y, Maruyama-Nakashita A. Biosynthesis of Sulfur-Containing Small Biomolecules in Plants. Int J Mol Sci 2020; 21:ijms21103470. [PMID: 32423011 PMCID: PMC7278922 DOI: 10.3390/ijms21103470] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/08/2020] [Accepted: 05/13/2020] [Indexed: 01/25/2023] Open
Abstract
Sulfur is an essential element required for plant growth. It can be found as a thiol group of proteins or non-protein molecules, and as various sulfur-containing small biomolecules, including iron-sulfur (Fe/S) clusters, molybdenum cofactor (Moco), and sulfur-modified nucleotides. Thiol-mediated redox regulation has been well investigated, whereas biosynthesis pathways of the sulfur-containing small biomolecules have not yet been clearly described. In order to understand overall sulfur transfer processes in plant cells, it is important to elucidate the relationships among various sulfur delivery pathways as well as to investigate their interactions. In this review, we summarize the information from recent studies on the biosynthesis pathways of several sulfur-containing small biomolecules and the proteins participating in these processes. In addition, we show characteristic features of gene expression in Arabidopsis at the early stage of sulfate depletion from the medium, and we provide insights into sulfur transfer processes in plant cells.
Collapse
Affiliation(s)
- Yumi Nakai
- Department of Biochemistry, Osaka Medical College, 2-7 Daigakumachi, Takatsuki 569-8686, Japan
- Correspondence: ; Fax: +81-72-684-6516
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka 819-0395, Japan;
| |
Collapse
|
42
|
Wehmeier S, Morrison E, Plato A, Raab A, Feldmann J, Bedekovic T, Wilson D, Brand AC. Multi trace element profiling in pathogenic and non-pathogenic fungi. Fungal Biol 2020; 124:516-524. [PMID: 32389315 PMCID: PMC7232024 DOI: 10.1016/j.funbio.2020.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Maintaining appropriate levels of trace elements during infection of a host is essential for microbial pathogenicity. Here we compared the uptake of 10 trace elements from 3 commonly-used laboratory media by 3 pathogens, Candida albicans, Cryptococcus neoformans and Aspergillus fumigatus, and a model yeast, Saccharomyces cerevisiae. The trace element composition of the yeasts, C. albicans, C. neoformans and S. cerevisiae, grown in rich (YPD) medium, differed primarily in P, S, Fe, Zn and Co. Speciation analysis of the intracellular fraction, which indicates the size of the organic ligands with which trace elements are complexed, showed that the ligands for S were similar in the three fungi but there were significant differences in binding partners for Fe and Zn between C. neoformans and S.cerevisiae. The profile for Cu varied across the 3 yeast species. In a comparison of C. albicans and A. fumigatus hyphae, the former showed higher Fe, Cu, Zn and Mn, while A. fumigatus contained higher P, S Ca and Mo. Washing C. albicans cells with the cell-impermeable chelator, EGTA, depleted 50–90 % of cellular Ca, suggesting that a large proportion of this cation is stored in the cell wall. Treatment with the cell wall stressor, Calcofluor White (CFW), alone had little effect on the elemental profile whilst combined Ca + CFW stress resulted in high cellular Cu and very high Ca. Together our data enhance our understanding of trace element uptake by pathogenic fungi and provide evidence for the cell wall as an important storage organelle for Ca.
Collapse
Affiliation(s)
- Silvia Wehmeier
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Emma Morrison
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Anthony Plato
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Andrea Raab
- TESLA, School of Natural and Computing Sciences, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK
| | - Jörg Feldmann
- TESLA, School of Natural and Computing Sciences, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK
| | - Tina Bedekovic
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK; Medical Research Council Centre for Medical Mycology at the University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Duncan Wilson
- Medical Research Council Centre for Medical Mycology at the University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Alexandra C Brand
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK; Medical Research Council Centre for Medical Mycology at the University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
43
|
Abreu I, Mihelj P, Raimunda D. Transition metal transporters in rhizobia: tuning the inorganic micronutrient requirements to different living styles. Metallomics 2020; 11:735-755. [PMID: 30734808 DOI: 10.1039/c8mt00372f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A group of bacteria known as rhizobia are key players in symbiotic nitrogen fixation (SNF) in partnership with legumes. After a molecular exchange, the bacteria end surrounded by a plant membrane forming symbiosomes, organelle-like structures, where they differentiate to bacteroids and fix nitrogen. This symbiotic process is highly dependent on dynamic nutrient exchanges between the partners. Among these are transition metals (TM) participating as inorganic and organic cofactors of fundamental enzymes. While the understanding of how plant transporters facilitate TMs to the very near environment of the bacteroid is expanding, our knowledge on how bacteroid transporters integrate to TM homeostasis mechanisms in the plant host is still limited. This is significantly relevant considering the low solubility and scarcity of TMs in soils, and the in crescendo gradient of TM bioavailability rhizobia faces during the infection and bacteroid differentiation processes. In the present work, we review the main metal transporter families found in rhizobia, their role in free-living conditions and, when known, in symbiosis. We focus on discussing those transporters which could play a significant role in TM-dependent biochemical and physiological processes in the bacteroid, thus paving the way towards an optimized SNF.
Collapse
Affiliation(s)
- Isidro Abreu
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | | |
Collapse
|
44
|
Demtröder L, Pfänder Y, Masepohl B. Rhodobacter capsulatus AnfA is essential for production of Fe-nitrogenase proteins but dispensable for cofactor biosynthesis and electron supply. Microbiologyopen 2020; 9:1234-1246. [PMID: 32207246 PMCID: PMC7294313 DOI: 10.1002/mbo3.1033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 03/04/2020] [Accepted: 03/06/2020] [Indexed: 01/07/2023] Open
Abstract
The photosynthetic α‐proteobacterium Rhodobacter capsulatus reduces and thereby fixes atmospheric dinitrogen (N2) by a molybdenum (Mo)‐nitrogenase and an iron‐only (Fe)‐nitrogenase. Differential expression of the structural genes of Mo‐nitrogenase (nifHDK) and Fe‐nitrogenase (anfHDGK) is strictly controlled and activated by NifA and AnfA, respectively. In contrast to NifA‐binding sites, AnfA‐binding sites are poorly defined. Here, we identified two highly similar AnfA‐binding sites in the R. capsulatus anfH promoter by studying the effects of promoter mutations on in vivo anfH expression and in vitro promoter binding by AnfA. Comparison of the experimentally determined R. capsulatus AnfA‐binding sites and presumed AnfA‐binding sites from other α‐proteobacteria revealed a consensus sequence of dyad symmetry, TAC–N6–GTA, suggesting that AnfA proteins bind their target promoters as dimers. Chromosomal replacement of the anfH promoter by the nifH promoter restored anfHDGK expression and Fe‐nitrogenase activity in an R. capsulatus strain lacking AnfA suggesting that AnfA is required for AnfHDGK production, but dispensable for biosynthesis of the iron‐only cofactor and electron delivery to Fe‐nitrogenase, pathways activated by NifA. These observations strengthen our model, in which the Fe‐nitrogenase system in R. capsulatus is largely integrated into the Mo‐nitrogenase system.
Collapse
Affiliation(s)
- Lisa Demtröder
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Yvonne Pfänder
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Bernd Masepohl
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
45
|
Hercher TW, Krausze J, Hoffmeister S, Zwerschke D, Lindel T, Blankenfeldt W, Mendel RR, Kruse T. Insights into the Cnx1E catalyzed MPT-AMP hydrolysis. Biosci Rep 2020; 40:BSR20191806. [PMID: 31860061 PMCID: PMC6954367 DOI: 10.1042/bsr20191806] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 12/17/2019] [Accepted: 12/19/2019] [Indexed: 11/23/2022] Open
Abstract
Molybdenum insertases (Mo-insertases) catalyze the final step of molybdenum cofactor (Moco) biosynthesis, an evolutionary old and highly conserved multi-step pathway. In the first step of the pathway, GTP serves as substrate for the formation of cyclic pyranopterin monophosphate, which is subsequently converted into molybdopterin (MPT) in the second pathway step. In the following synthesis steps, MPT is adenylated yielding MPT-AMP that is subsequently used as substrate for enzyme catalyzed molybdate insertion. Molybdate insertion and MPT-AMP hydrolysis are catalyzed by the Mo-insertase E-domain. Earlier work reported a highly conserved aspartate residue to be essential for Mo-insertase functionality. In this work, we confirmed the mechanistic relevance of this residue for the Arabidopsis thaliana Mo-insertase Cnx1E. We found that the conservative substitution of Cnx1E residue Asp274 by Glu (D274E) leads to an arrest of MPT-AMP hydrolysis and hence to the accumulation of MPT-AMP. We further showed that the MPT-AMP accumulation goes in hand with the accumulation of molybdate. By crystallization and structure determination of the Cnx1E variant D274E, we identified the potential reason for the missing hydrolysis activity in the disorder of the region spanning amino acids 269 to 274. We reasoned that this is caused by the inability of a glutamate in position 274 to coordinate the octahedral Mg2+-water complex in the Cnx1E active site.
Collapse
Affiliation(s)
- Thomas W. Hercher
- TU Braunschweig, Institute of Plant Biology, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Joern Krausze
- TU Braunschweig, Institute of Plant Biology, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Sven Hoffmeister
- TU Braunschweig, Institute of Plant Biology, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Dagmar Zwerschke
- TU Braunschweig, Institute of Plant Biology, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Thomas Lindel
- TU Braunschweig, Institute of Organic Chemistry, Hagenring 30, 38106 Braunschweig, Germany
| | - Wulf Blankenfeldt
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- TU Braunschweig, Department for Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Ralf R. Mendel
- TU Braunschweig, Institute of Plant Biology, Spielmannstrasse 7, 38106 Braunschweig, Germany
| | - Tobias Kruse
- TU Braunschweig, Institute of Plant Biology, Spielmannstrasse 7, 38106 Braunschweig, Germany
| |
Collapse
|
46
|
Farukh M. Comparative genomic analysis of selenium utilization traits in different marine environments. J Microbiol 2020; 58:113-122. [PMID: 31993987 DOI: 10.1007/s12275-020-9250-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/02/2019] [Accepted: 10/31/2019] [Indexed: 11/25/2022]
Abstract
Selenium (Se) is an essential trace element for many organisms, which is required in the biosynthesis of proteins with selenocysteine, tRNAs with selenouridine, and certain enzymes with Se as a cofactor. Recent large-scale metagenomics projects provide a unique opportunity for studying the global trends of Se utilization in marine environments. Here, we analyzed samples from different marine microbial communities, revealed by the Tara Oceans project, to characterize the Se utilization traits. We found that the selenophosphate synthetase gene, which defines the overall Se utilization, and Se utilization traits are present in all samples. Regions with samples rich and poor in Se utilization traits were categorized. From the analysis of environmental factors, the mesopelagic zone and high temperature (> 15°C) of water are favorable, while geographical location has little influence on Se utilization. All Se utilization traits showed a relatively independent occurrence. The taxonomic classification of Se traits shows that most of the sequences corresponding to Se utilization traits belong to the phylum Proteobacteria. Overall, our study provides useful insights into the general features of Se utilization in ocean samples and may help to understand the evolutionary dynamics of Se utilization in different marine environments.
Collapse
Affiliation(s)
- Muhammad Farukh
- Department of Biotechnology, School of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan, 430074, P. R. China.
- Key Laboratory of Molecular Biophysics, Ministry of Education, Wuhan, Hubei, P. R. China.
| |
Collapse
|
47
|
Classification and enzyme kinetics of formate dehydrogenases for biomanufacturing via CO2 utilization. Biotechnol Adv 2019; 37:107408. [DOI: 10.1016/j.biotechadv.2019.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/26/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022]
|
48
|
Mogwasi R, Kariuki DK, Getenga MZ, Nischwitz V. Comparison of aqueous and enzymatic extraction combination with sequential filtration for the profiling of selected trace elements in medicinal plants from Kenya. J Trace Elem Med Biol 2019; 54:1-7. [PMID: 31109598 DOI: 10.1016/j.jtemb.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 03/08/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
This work presents results for the profiling of eight essential elements (Co, Cu, Ni, V, Mo, Mn, Zn and Cr) in aqueous and enzymatic extracts of eight anti-diabetic medicinal plants, used by Traditional Medicine Practitioners from Nyamira County, Kenya determined by ICP-MS. The plants used in the study were Solanum indicum, Plectranthus barbatus, Ultrica dioica, Bidens pilosa, Solanum mauense, Clerodendrum myricoides, Carissa edulis and Aloe vera. A sequential filtration procedure was applied to fractionate the elemental contents of the obtained aqueous extracts into molecular size fractions. The results indicate that the low molecular size species (<3 kDa) were predominant for Mo, Zn, Ni, Co, Mn and Cu, while the moderately large species (10 kDa-0.45 μm) of V were predominant in most of the medicinal plant extracts. In addition enzymatic extraction was compared to aqueous extraction to study the effect of the gastric and intestinal conditions on the release of selected elements from the plants. The amount of the elements extracted by the gastric phase enzymes was higher than the amount extracted by the intestinal phase enzymes. In general, the determined elemental amounts of enzymatic extractions were higher than those of corresponding water extractions for 70% of the elements studied.
Collapse
Affiliation(s)
- R Mogwasi
- Department of Chemistry, Kisii University, P.O. Box 408-40200, Kisii, Kenya; Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya.
| | - D K Kariuki
- Department of Chemistry, University of Nairobi, P.O. Box 30197-00100, Nairobi, Kenya
| | - M Z Getenga
- Department of Chemistry, Chuka University, P.O. Box 109-60400, Chuka, Kenya
| | - V Nischwitz
- Central Institute for Engineering, Electronics and Analytics, Analytics (ZEA-3), Forschungszentrum Juelich, 52425, Juelich, Germany
| |
Collapse
|
49
|
Wang H, Chen X, Zhang W, Zhou W, Liu X, Rao Z. Structural analysis of molybdopterin synthases from two mycobacterial pathogens. Biochem Biophys Res Commun 2019; 511:21-27. [PMID: 30765225 DOI: 10.1016/j.bbrc.2019.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/05/2019] [Indexed: 11/25/2022]
Abstract
The molybdenum cofactor, composed of molybdopterin and molybdenum, is a necessary compound for the catalytic activity of molybdenum enzymes. Molybdenum cofactor biosynthesis is a conserved multi-step process involving several enzymes. Molybdopterin synthase, a hetero-tetrameric enzyme composed of a pair of MoaE-MoaD subunits, catalyzes the generation of the cis-dithiolene group of molybdopterin in the second step of the process. The cis-dithiolene group can covalently bind molybdenum. Most mycobacterial species possess several genes encoding the full pathway of molybdenum cofactor biosynthesis. In M. smegmatis, the moaD2 and moaE2 genes encode the functional molybdopterin synthase. However, M. tuberculosis has genes encoding several molybdopterin synthase subunit homologs, including moaD1, moaD2, moaE1, moaE2, and moaX, which encodes a MoaD-MoaE fusion protein. Previous studies have shown that moaD2 and moaE2 encode functional molybdopterin synthase. Here, we report the crystal structures of two substrate-free molybdopterin synthases from two different mycobacterial pathogens, M. tuberculosis and M. smegmatis, at 2.1 Å and 2.6 Å resolutions, respectively. The overall structure of both molybdopterin synthases was hetero-tetrameric, consisting of a MoaE2 dimer flanked on either side by single MoaD2 subunits. The carboxyl-terminal domain of MoaD2 inserted into MoaE2, forming the active pocket. A comparison with previously reported molybdopterin synthase structures showed that substrate-binding and catalytic residues were conserved, despite low sequence similarity among these enzymes. The low sequence identity at the MoaE-MoaD heterodimer interface may provide the structural basis to explore mycobacterial inhibitors.
Collapse
Affiliation(s)
- Huiying Wang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; College of Life Science, Nankai University, Tianjin, China
| | - Xiaobo Chen
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; College of Life Science, Nankai University, Tianjin, China
| | - Wei Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; College of Life Science, Nankai University, Tianjin, China
| | - Weihong Zhou
- College of Life Science, Nankai University, Tianjin, China
| | - Xiang Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
| | - Zihe Rao
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China; College of Life Science, Nankai University, Tianjin, China; Laboratory of Structural Biology, Tsinghua University, Beijing, China
| |
Collapse
|
50
|
Molybdenum cofactor transfer from bacteria to nematode mediates sulfite detoxification. Nat Chem Biol 2019; 15:480-488. [PMID: 30911177 PMCID: PMC6470025 DOI: 10.1038/s41589-019-0249-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 02/14/2019] [Indexed: 11/26/2022]
Abstract
The kingdoms of life share many small molecule cofactors and coenzymes. Molybdenum cofactor (Moco) is synthesized by many archaea, bacteria, and eukaryotes, and is essential for human viability. The genome of the animal Caenorhabditis elegans contains all of the Moco biosynthesis genes, and surprisingly these genes are not essential if animals are fed a bacterial diet that synthesizes Moco. C. elegans lacking both endogenous Moco synthesis and dietary Moco from bacteria arrest development, demonstrating interkingdom Moco transfer. Our screen of E. coli mutants identified genes necessary for synthesis of bacterial Moco or transfer to C. elegans. Moco-deficient C. elegans developmental arrest is caused by loss of sulfite oxidase, a Moco-requiring enzyme, and is suppressed by mutations in either C. elegans cystathionine gamma-lyase or cysteine dioxygenase, blocking toxic sulfite production from cystathionine. Thus, we define the genetic pathways for an interkingdom dialogue focused on sulfur homeostasis.
Collapse
|