1
|
Clarke JR, Bacelar TS, Fernandes GG, Silva RCD, Antonio LS, Queiroz M, de Souza RV, Valadão LF, Ribeiro GS, De Lima EV, Colodeti LC, Mangeth LC, Wiecikowski A, da Silva TN, Paula-Neto HA, da Costa R, Cordeiro Y, Passos GF, Figueiredo CP. Abatacept inhibits Th17 differentiation and mitigates α-synuclein-induced dopaminergic dysfunction in mice. Mol Psychiatry 2025; 30:547-555. [PMID: 39152331 DOI: 10.1038/s41380-024-02618-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 08/19/2024]
Abstract
Parkinson's disease (PD) is a multifaceted disease characterized by degeneration of nigrostriatal dopaminergic neurons, which results in motor and non-motor dysfunctions. Accumulation of α-synuclein (αSYN) in Lewy bodies is a key pathological feature of PD. Although the exact cause of PD remains unknown, accumulating evidence suggests that brain infiltration of T cells plays a critical role in the pathogenesis of disease, contributing to neuroinflammation and dopaminergic neurodegeneration. Here, we used a mouse model of brain-infused aggregated αSYN, which recapitulates motor and non-motor dysfunctions seen in PD patients. We found that αSYN-induced motor dysfunction in mice is accompanied by an increased number of brain-residing Th17 (IL17+ CD4+) cells, but not CD8+ T cells. To evaluate whether the modulation of T cell response could rescue αSYN-induced damage, we chronically treated animals with abatacept (8 mg/kg, sc, 3x per week), a selective T-cell co-stimulation modulator. We found that abatacept treatment decreased Th1 (IFNƔ+ CD4+) and Th17 (IL17+ CD4+) cells in the brain, rescued motor function and prevented dopaminergic neuronal loss in αSYN-infused mice. These results highlight the significance of effector CD4+ T cells, especially Th17, in the progression of PD and introduce novel possibilities for repurposing immunomodulatory drugs used for arthritis as PD-modifying therapies.
Collapse
Affiliation(s)
- Julia R Clarke
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Thiago Sa Bacelar
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Raquel Costa da Silva
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leticia S Antonio
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Mariana Queiroz
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Renata V de Souza
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Leticia F Valadão
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Gabriel S Ribeiro
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Emanuelle V De Lima
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21944-590, Brazil
| | - Lilian C Colodeti
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Luana C Mangeth
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Adalgisa Wiecikowski
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Talita N da Silva
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Heitor A Paula-Neto
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Robson da Costa
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Yraima Cordeiro
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Giselle F Passos
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| | - Claudia P Figueiredo
- School of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
2
|
Li S, Liu Y, Lu S, Xu J, Liu X, Yang D, Yang Y, Hou L, Li N. A crazy trio in Parkinson's disease: metabolism alteration, α-synuclein aggregation, and oxidative stress. Mol Cell Biochem 2025; 480:139-157. [PMID: 38625515 DOI: 10.1007/s11010-024-04985-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/06/2024] [Indexed: 04/17/2024]
Abstract
Parkinson's disease (PD) is an aging-associated neurodegenerative disorder, characterized by the progressive loss of dopaminergic neurons in the pars compacta of the substantia nigra and the presence of Lewy bodies containing α-synuclein within these neurons. Oligomeric α-synuclein exerts neurotoxic effects through mitochondrial dysfunction, glial cell inflammatory response, lysosomal dysfunction and so on. α-synuclein aggregation, often accompanied by oxidative stress, is generally considered to be a key factor in PD pathology. At present, emerging evidences suggest that metabolism alteration is closely associated with α-synuclein aggregation and PD progression, and improvement of key molecules in metabolism might be potentially beneficial in PD treatment. In this review, we highlight the tripartite relationship among metabolic changes, α-synuclein aggregation, and oxidative stress in PD, and offer updated insights into the treatments of PD, aiming to deepen our understanding of PD pathogenesis and explore new therapeutic strategies for the disease.
Collapse
Affiliation(s)
- Sheng Li
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Yanbing Liu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Sen Lu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jiayi Xu
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xiaokun Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Di Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Yuxuan Yang
- School of Basic Medicine, Qingdao University, Qingdao, China
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Ning Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
3
|
Podturkina AV, Ardashov OV, Soldatova YV, Poletaeva DA, Smolina AV, Vasyuchenko EP, Vyatkin YV, Li-Zhulanov NS, Faingold II, Salakhutdinov NF, Volcho KP. Inhibitory Activity of N- and S-Functionalized Monoterpene Diols Towards Monoamine Oxidases A and B. Int J Mol Sci 2024; 26:97. [PMID: 39795958 PMCID: PMC11720030 DOI: 10.3390/ijms26010097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Monoamine oxidase B (MAO-B) inhibitors are widely used as part of combination drug therapy for Parkinson's disease. As demonstrated in both in vitro and in vivo experiments, the monoterpenoid Prottremine and some of its derivatives exhibit high antiparkinsonian activity. In this study, the inhibitory activity of Prottremine and its derivatives (including 14 new 9-N- and S-derivatives) against MAO-A and MAO-B enzymes has been investigated for the first time. Compounds containing fragments of substituted anilines have demonstrated the highest activity against MAO-A; for example, compound 28 had an IC50 of 178 ± 44 μM. A significant proportion of the compounds tested, including Prottremine, exhibited moderate inhibitory activity towards MAO-B, with the most active being the o-aminoacetophenone derivative, which had an IC50 of 95 ± 5 μM. A molecular docking method for studying murine MAO-A and -B enzymes was developed using AlphaFold2 (v2.3.2), with further improvements. For the MAO-B enzyme, a strong correlation was observed between the molecular docking data and the measured activity of the compounds, with the maximum binding affinity registered for the most active compound. It is conceivable that the antiparkinsonian activity of Prottremine and some of its derivatives may be partially mediated, among other mechanisms, by MAO-B enzyme inhibition.
Collapse
Affiliation(s)
- Alexandra V. Podturkina
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (A.V.P.); (O.V.A.); (N.S.L.-Z.); (N.F.S.)
| | - Oleg V. Ardashov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (A.V.P.); (O.V.A.); (N.S.L.-Z.); (N.F.S.)
| | - Yuliya V. Soldatova
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Ave. 1, 142432 Chernogolovka, Russia; (Y.V.S.); (D.A.P.); (A.V.S.); (I.I.F.)
| | - Darya A. Poletaeva
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Ave. 1, 142432 Chernogolovka, Russia; (Y.V.S.); (D.A.P.); (A.V.S.); (I.I.F.)
| | - Anastasiya V. Smolina
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Ave. 1, 142432 Chernogolovka, Russia; (Y.V.S.); (D.A.P.); (A.V.S.); (I.I.F.)
| | - Ekaterina P. Vasyuchenko
- Institute for Artificial Intelligence, Lomonosov Moscow State University, Lomonosovsky Ave. 1 Bldg. 27, 119992 Moscow, Russia; (E.P.V.); (Y.V.V.)
| | - Yuri V. Vyatkin
- Institute for Artificial Intelligence, Lomonosov Moscow State University, Lomonosovsky Ave. 1 Bldg. 27, 119992 Moscow, Russia; (E.P.V.); (Y.V.V.)
| | - Nikolai S. Li-Zhulanov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (A.V.P.); (O.V.A.); (N.S.L.-Z.); (N.F.S.)
| | - Irina I. Faingold
- Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Academician Semenov Ave. 1, 142432 Chernogolovka, Russia; (Y.V.S.); (D.A.P.); (A.V.S.); (I.I.F.)
| | - Nariman F. Salakhutdinov
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (A.V.P.); (O.V.A.); (N.S.L.-Z.); (N.F.S.)
| | - Konstantin P. Volcho
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch of the Russian Academy of Sciences, Lavrentiev Ave. 9, 630090 Novosibirsk, Russia; (A.V.P.); (O.V.A.); (N.S.L.-Z.); (N.F.S.)
| |
Collapse
|
4
|
Ahanger IA, Dar TA. Small molecule modulators of alpha-synuclein aggregation and toxicity: Pioneering an emerging arsenal against Parkinson's disease. Ageing Res Rev 2024; 101:102538. [PMID: 39389237 DOI: 10.1016/j.arr.2024.102538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
Parkinson's disease (PD) is primarily characterized by loss of dopaminergic neurons in the substantia nigra pars compacta region of the brain and accumulation of aggregated forms of alpha-synuclein (α-Syn), an intrinsically disordered protein, in the form of Lewy Bodies and Lewy Neurites. Substantial evidences point to the aggregated/fibrillar forms of α-Syn as a central event in PD pathogenesis, underscoring the modulation of α-Syn aggregation as a promising strategy for PD treatment. Consequently, numerous anti-aggregation agents, spanning from small molecules to polymers, have been scrutinized for their potential to mitigate α-Syn aggregation and its associated toxicity. Among these, small molecule modulators like osmoprotectants, polyphenols, cellular metabolites, metals, and peptides have emerged as promising candidates with significant potential in PD management. This article offers a comprehensive overview of the effects of these small molecule modulators on the aggregation propensity and associated toxicity of α-Syn and its PD-associated mutants. It serves as a valuable resource for identifying and developing potent, non-invasive, non-toxic, and highly specific small molecule-based therapeutic arsenal for combating PD. Additionally, it raises pertinent questions aimed at guiding future research endeavours in the field of α-Syn aggregation remodelling.
Collapse
Affiliation(s)
- Ishfaq Ahmad Ahanger
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir 190006, India.
| |
Collapse
|
5
|
Singh A, Sinha S, Singh NK. Dietary Natural Flavonoids: Intervention for MAO-B Against Parkinson's Disease. Chem Biol Drug Des 2024; 104:e14619. [PMID: 39223743 DOI: 10.1111/cbdd.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/27/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Parkinson's disease (PD) stands as the second most common neurological disorder after Alzheimer's disease, primarily affecting the elderly population and significantly compromising their quality of life. The precise etiology of PD remains elusive, but recent research has shed light on potential factors, including the formation of α-synuclein aggregates, oxidative stress, neurotransmitter imbalances, and dopaminergic neurodegeneration in the substantia nigra pars compacta (SNpc) region of the brain, culminating in motor symptoms such as bradykinesia, akinesia, tremors, and rigidity. Monoamine oxidase (MAO) is an essential enzyme, comprising two isoforms, MAO-A and MAO-B, responsible for the oxidation of monoamines such as dopamine. Increased MAO-B activity is responsible for decreased dopamine levels in the SNpc region of mid brain which is remarkably associated with the pathogenesis of PD-like manifestations. Inhibitors of MAO-B enhance striatal neuronal responses to dopamine, making them valuable in treating PD, which involves dopamine deficiency. Clinically approved MAO-B inhibitors such as selegiline, L-deprenyl, pargyline, and rasagiline are employed in the management of neurodegenerative conditions associated with PD. Current therapeutic interventions including MAO-B inhibitors for PD predominantly aim to alleviate these motor symptoms but often come with a host of side effects that can be particularly challenging for the patients. While effective, they have limitations, prompting a search for alternative treatments, there is a growing interest in exploring natural products notably flavonoids as potential sources of novel MAO-B inhibitors. In line with that, the present review focuses on natural flavonoids of plant origin that hold promise as potential candidates for the development of novel MAO-B inhibitors. The discussion encompasses both in vitro and in vivo studies, shedding light on their potential therapeutic applications. Furthermore, this review underscores the significance of exploring natural products as valuable reservoirs of MAO-B inhibitors, offering new avenues for drug development and addressing the pressing need for improved treatments in PD-like pathological conditions. The authors of this review majorly explore the neuroprotective potential of natural flavonoids exhibiting notable MAO-B inhibitory activity and additionally multi-targeted approaches in the treatment of PD with clinical evidence and challenges faced in current therapeutic approaches.
Collapse
Affiliation(s)
- Ashini Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Suman Sinha
- Division of Pharmaceutical Chemistry, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Niraj Kumar Singh
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| |
Collapse
|
6
|
Jahan I, Ahmad A, Deep S. Effect of flavonoids on the destabilization of α-synuclein fibrils and their conversion to amorphous aggregate: A molecular dynamics simulation and experimental study. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140951. [PMID: 37574034 DOI: 10.1016/j.bbapap.2023.140951] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023]
Abstract
The second most prevalent neurodegenerative disease, Parkinson's disease (PD), is caused by the accumulation and deposition of fibrillar aggregates of the α-Syn into the Lewy bodies. To create a potent pharmacological candidate to destabilize the preformed α-Syn fibril, it is important to understand the precise molecular mechanism underlying the destabilization of the α-Syn fibril. Through molecular dynamics simulations and experiments, we have examined the molecular mechanisms causing the destabilization and suppression of a newly discovered α-Syn fibril with a Greek-key-like shape and an aggregation prone state (APS) of α-Syn in the presence and absence of various Flvs. According to MD simulation and experimental evidence, morin, quercetin, and myricetin are the Flvs, most capable of destabilizing the fibrils and converting them into amorphous aggregates. Compared to galangin and kaempferol, they have more hydroxyl groups and form more hydrogen bonds with fibrils.The processes by which morin and myricetin prevent new fibril production from APS and destabilize the fibrils are different. According to linear interaction energy analysis, van der Waals interaction predominates with morin, and electrostatic interaction dominates with myricetin. Our MD simulation and experimental findings provide mechanistic insights into how Flvs destabilize α-Syn fibrils and change their morphology, opening the door to developing structure-based drugs for treating Parkinson's disease.
Collapse
Affiliation(s)
- Ishrat Jahan
- Department of Chemistry, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Aziz Ahmad
- Department of Chemistry, Indian Institute of Technology Delhi, Delhi 110016, India
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology Delhi, Delhi 110016, India.
| |
Collapse
|
7
|
Sant'Anna R, Robbs BK, de Freitas JA, Dos Santos PP, König A, Outeiro TF, Foguel D. The alpha-synuclein oligomers activate nuclear factor of activated T-cell (NFAT) modulating synaptic homeostasis and apoptosis. Mol Med 2023; 29:111. [PMID: 37596531 PMCID: PMC10439599 DOI: 10.1186/s10020-023-00704-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/18/2023] [Indexed: 08/20/2023] Open
Abstract
BACKGROUND Soluble oligomeric forms of alpha-synuclein (aSyn-O) are believed to be one of the main toxic species in Parkinson's disease (PD) leading to degeneration. aSyn-O can induce Ca2+ influx, over activating downstream pathways leading to PD phenotype. Calcineurin (CN), a phosphatase regulated by Ca2+ levels, activates NFAT transcription factors that are involved in the regulation of neuronal plasticity, growth, and survival. METHODS Here, using a combination of cell toxicity and gene regulation assays performed in the presence of classical inhibitors of the NFAT/CN pathway, we investigate NFAT's role in neuronal degeneration induced by aSyn-O. RESULTS aSyn-O are toxic to neurons leading to cell death, loss of neuron ramification and reduction of synaptic proteins which are reversed by CN inhibition with ciclosporin-A or VIVIT, a NFAT specific inhibitor. aSyn-O induce NFAT nuclear translocation and transactivation. We found that aSyn-O modulates the gene involved in the maintenance of synapses, synapsin 1 (Syn 1). Syn1 mRNA and protein and synaptic puncta are drastically reduced in cells treated with aSyn-O which are reversed by NFAT inhibition. CONCLUSIONS For the first time a direct role of NFAT in aSyn-O-induced toxicity and Syn1 gene regulation was demonstrated, enlarging our understanding of the pathways underpinnings synucleinopathies.
Collapse
Affiliation(s)
- Ricardo Sant'Anna
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil
| | - Bruno K Robbs
- Departamento de Ciência Básica, Instituto de Saúde de Nova Friburgo, Universidade Federal Fluminense, Nova Friburgo, RJ, 28625-650, Brazil
| | - Júlia Araújo de Freitas
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil
| | - Patrícia Pires Dos Santos
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany
| | - Tiago Fleming Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Waldweg 33, 37073, Göttingen, Germany.
- Max Planck Institute for Multidisciplinary Sciences, 37075, Göttingen, Germany.
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK.
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany.
| | - Debora Foguel
- Centro de Ciências da Saúde, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Bloco E sala 42, Rio de Janeiro, 21941-590, Brazil.
| |
Collapse
|
8
|
Verma G, Bhat R. The Anthocyanidin Peonidin Interferes with an Early Step in the Fibrillation Pathway of α-Synuclein and Modulates It toward Amorphous Aggregates. ACS Chem Neurosci 2023. [PMID: 37011370 DOI: 10.1021/acschemneuro.2c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Parkinson's disease (PD) is characterized by progressive degeneration of the dopaminergic neurons in the brain, accompanied by the accumulation of proteinaceous inclusions, Lewy bodies (LB), mainly comprised of alpha synuclein (α-syn) aggregates. The heterogeneity and the transient nature of the intermediate species formed in the α-syn fibrillation pathway have made it difficult to develop an effective therapeutic intervention. Therefore, any therapeutic molecule that could prevent as well as treat PD would be of great interest. Anthocyanidins are natural flavonoid compounds that have been shown to have neuroprotective properties and to modulate factors that cause neuronal death. Herein, we have explored the modulation and inhibition of α-syn fibrillation by the anthocyanidins cyanidin, delphinidin, and peonidin using a number of biophysical and structural tools. α-Syn fibrillation monitored using thioflavin T (ThT) fluorescence and light scattering suggested concentration dependent inhibition of α-syn fibrillation by all the three anthocyanidins. While cyanidin and delphinidin induced the formation of oligomers and small fibrillar structures of α-syn, respectively, peonidin led to the formation of amorphous aggregates, as observed by Atomic Force Microscopy (AFM). Peonidin proved to be most effective of the three anthocyanidins toward alleviating cell toxicity of SH-SY5Y neuroblastoma cells at concentrations where α-synuclein fibrillation was completely suppressed. Hence, the inhibition mechanism of peonidin was further explored by studying its interaction with α-syn using titration calorimetry and molecular docking. The results show its weak binding (in mM range) to the NAC region of α-syn through hydrogen bonding interactions. Also, circular dichroism and Raman spectroscopy revealed the structural aspects of peonidin-induced α-syn amorphous aggregates showing alpha helical structures with exposed Phe and Tyr regions. Due to the neuroprotective nature of peonidin, the findings reported here are significant and can be further explored toward developing a modifying therapy that could address both disease onset as well as the progression of PD.
Collapse
Affiliation(s)
- Geetika Verma
- School of Biotechnology Jawaharlal Nehru University, New Delhi 110067, India
| | - Rajiv Bhat
- School of Biotechnology Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
9
|
Mankoo OK, Kaur A, Goyal D, Goyal B. Unravelling the destabilization potential of ellagic acid on α-synuclein fibrils using molecular dynamics simulations. Phys Chem Chem Phys 2023; 25:8128-8143. [PMID: 36877087 DOI: 10.1039/d2cp06006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The aberrant deposition of α-synuclein (α-Syn) protein into the intracellular neuronal aggregates termed Lewy bodies and Lewy neurites characterizes the devastating neurodegenerative condition known as Parkinson's disease (PD). The disruption of pre-existing disease-relevant α-Syn fibrils is recognized as a viable therapeutic approach for PD. Ellagic acid (EA), a natural polyphenolic compound, is experimentally proven as a potential candidate that prevents or reverses the α-Syn fibrillization process. However, the detailed inhibitory mechanism of EA against the destabilization of α-Syn fibril remains largely unclear. In this work, the influence of EA on α-Syn fibril and its putative binding mechanism were explored using molecular dynamics (MD) simulations. EA interacted primarily with the non-amyloid-β component (NAC) of α-Syn fibril, disrupting its β-sheet content and thereby increasing the coil content. The E46-K80 salt bridge, critical for the stability of Greek-key-like α-Syn fibril, was disrupted in the presence of EA. The binding free energy analysis using the MM-PBSA method demonstrates the favourable binding of EA to α-Syn fibril (ΔGbinding = -34.62 ± 11.33 kcal mol-1). Interestingly, the binding affinity between chains H and J of the α-Syn fibril was significantly reduced on the incorporation of EA, which highlights the disruptive ability of EA towards α-Syn fibril. The MD simulations provide mechanistic insights into the α-Syn fibril disruption by EA, which gives a valuable direction for the development of potential inhibitors of α-Syn fibrillization and its associated cytotoxicity.
Collapse
Affiliation(s)
- Opinder Kaur Mankoo
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Anupamjeet Kaur
- Department of Chemistry, Faculty of Basic and Applied Sciences, Sri Guru Granth Sahib World University, Fatehgarh Sahib 140406, Punjab, India
| | - Deepti Goyal
- Department of Chemistry, DAV College, Sector 10, Chandigarh 160011, India.
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry, Thapar Institute of Engineering & Technology, Patiala 147004, Punjab, India.
| |
Collapse
|
10
|
Weerasinghe-Mudiyanselage PD, Kang S, Kim JS, Moon C. Therapeutic Approaches to Non-Motor Symptoms of Parkinson's Disease: A Current Update on Preclinical Evidence. Curr Neuropharmacol 2023; 21:560-577. [PMID: 36200159 PMCID: PMC10207906 DOI: 10.2174/1570159x20666221005090126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/22/2022] Open
Abstract
Despite being classified as a movement disorder, Parkinson's disease (PD) is characterized by a wide range of non-motor symptoms that significantly affect the patients' quality of life. However, clear evidence-based therapy recommendations for non-motor symptoms of PD are uncommon. Animal models of PD have previously been shown to be useful for advancing the knowledge and treatment of motor symptoms. However, these models may provide insight into and assess therapies for non-motor symptoms in PD. This paper highlights non-motor symptoms in preclinical models of PD and the current position regarding preclinical therapeutic approaches for these non-motor symptoms. This information may be relevant for designing future preclinical investigations of therapies for nonmotor symptoms in PD.
Collapse
Affiliation(s)
- Poornima D.E. Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju 61186, South Korea
| |
Collapse
|
11
|
Wang Z, Cui Y, Wen L, Yu H, Feng J, Yuan W, He X. Dietary Restriction against Parkinson's Disease: What We Know So Far. Nutrients 2022; 14:nu14194108. [PMID: 36235760 PMCID: PMC9571011 DOI: 10.3390/nu14194108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/24/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
Dietary restriction (DR) is defined as a moderate reduction in food intake while avoiding malnutrition. The beneficial effects of DR are being increasingly acknowledged in aging and in a series of age-related neurodegenerative disorders, for example, Parkinson's disease (PD). To date, the pathogenesis of PD remains elusive and there is no cure for it in spite of intensive research over decades. In this review, we summarize the current knowledge on the efficacy of DR on PD, focusing on the underlying mechanisms involving general metabolism, neuroendocrinolgy, neuroinflammation, gut microbiome, and so on. We anticipate that this review will provide future perspectives for PD prevention and treatment.
Collapse
Affiliation(s)
- Zhonglei Wang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yueran Cui
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lulu Wen
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Haiyang Yu
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Juan Feng
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wei Yuan
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang 110001, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| | - Xin He
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang 110004, China
- Correspondence: (W.Y.); (X.H.); Tel.: +86-024-8328-3360 (W.Y.); +86-024-96615-28111 (X.H.)
| |
Collapse
|
12
|
Naoi M, Maruyama W, Shamoto-Nagai M. Neuroprotective Function of Rasagiline and Selegiline, Inhibitors of Type B Monoamine Oxidase, and Role of Monoamine Oxidases in Synucleinopathies. Int J Mol Sci 2022; 23:ijms231911059. [PMID: 36232361 PMCID: PMC9570229 DOI: 10.3390/ijms231911059] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/27/2022] Open
Abstract
Synucleinopathies are a group of neurodegenerative disorders caused by the accumulation of toxic species of α-synuclein. The common clinical features are chronic progressive decline of motor, cognitive, behavioral, and autonomic functions. They include Parkinson’s disease, dementia with Lewy body, and multiple system atrophy. Their etiology has not been clarified and multiple pathogenic factors include oxidative stress, mitochondrial dysfunction, impaired protein degradation systems, and neuroinflammation. Current available therapy cannot prevent progressive neurodegeneration and “disease-modifying or neuroprotective” therapy has been proposed. This paper presents the molecular mechanisms of neuroprotection by the inhibitors of type B monoamine oxidase, rasagiline and selegiline. They prevent mitochondrial apoptosis, induce anti-apoptotic Bcl-2 protein family, and pro-survival brain- and glial cell line-derived neurotrophic factors. They also prevent toxic oligomerization and aggregation of α-synuclein. Monoamine oxidase is involved in neurodegeneration and neuroprotection, independently of the catalytic activity. Type A monoamine oxidases mediates rasagiline-activated signaling pathways to induce neuroprotective genes in neuronal cells. Multi-targeting propargylamine derivatives have been developed for therapy in various neurodegenerative diseases. Preclinical studies have presented neuroprotection of rasagiline and selegiline, but beneficial effects have been scarcely presented. Strategy to improve clinical trials is discussed to achieve disease-modification in synucleinopathies.
Collapse
Affiliation(s)
- Makoto Naoi
- Correspondence: ; Tel.: +81-05-6173-1111 (ext. 3494); Fax: +81-561-731-142
| | | | | |
Collapse
|
13
|
Yao Y, Tang Y, Zhou Y, Yang Z, Wei G. Baicalein exhibits differential effects and mechanisms towards disruption of α-synuclein fibrils with different polymorphs. Int J Biol Macromol 2022; 220:316-325. [PMID: 35981677 DOI: 10.1016/j.ijbiomac.2022.08.088] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative diseases with no cure yet and its major hallmark is α-synuclein fibrillary aggregates. The crucial role of α-synuclein aggregation in PD makes it an attractive target for potential disease-modifying therapies. Disaggregation of α-synuclein fibrils is considered as one of the promising therapeutic strategies to treat PD. The wild type (WT) and mutant α-synuclein fibrils exhibit different polymorphs and provide therapeutic targets for PD. Recent experiments reported that a flavonoid baicalein can disrupt WT α-synuclein fibrils. However, the underlying disruptive mechanism remains largely elusive, and whether BAC is capable of disrupting mutant α-synuclein fibrils is also unknown. Herein, we performed microsecond molecular dynamics simulations on cryo-EM-determined WT and two familial PD-associated mutant (E46K and H50Q) α-synuclein fibrils with and without baicalein. We find that baicalein destructs WT fibril by disrupting E46-K80 salt-bridge and β-sheets, and by remodeling the inter-protofilament interface. And baicalein can also damage E46K and H50Q mutant fibrils, but to different extents and via different mechanisms. The E46K fibril disruption is initiated from E61-K80 salt-bridge and N-terminal β-sheet, while the H50Q fibril disruption starts from the inter-protofilament interface and N-terminal β-sheet. These results reveal that disruptive effects and modes of baicalein on α-synuclein fibrils are polymorphism-dependent. This study suggests that baicalein may be a potential drug candidate to disrupt both WT and E46K/H50Q mutant α-synuclein fibrils and alleviate the pathological process of PD.
Collapse
Affiliation(s)
- Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Yun Zhou
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Zhongyuan Yang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai 200438, People's Republic of China.
| |
Collapse
|
14
|
Lima VDA, Esquinelato R, Carmo-Gonçalves P, Nascimento LAD, Lee H, Eliezer D, Romão L, Follmer C. The dopamine receptor agonist apomorphine stabilizes neurotoxic α-synuclein oligomers. FEBS Lett 2022; 596:309-322. [PMID: 34928512 PMCID: PMC8972942 DOI: 10.1002/1873-3468.14263] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/13/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023]
Abstract
The misfolding and aggregation of the protein α-synuclein (aSyn) into potentially neurotoxic oligomers is believed to play a pivotal role in the neuropathogenesis of Parkinson's disease (PD). Herein, we explore how apomorphine (Apo), a nonselective dopamine D1 and D2 receptor agonist utilized in the therapy for PD, affects the aggregation and toxicity of aSyn in vitro. Our data indicated that Apo inhibits aSyn fibrillation leading to the formation of large oligomeric species (Apo-aSyn-O), which exhibit remarkable toxicity in mesencephalic dopaminergic neurons in primary cultures. Interestingly, purified Apo-aSyn-O, even at very low concentrations, seems to be capable of converting unmodified aSyn monomer into neurotoxic species. Collectively, our findings warn for a possible dangerous effect of Apo on aSyn misfolding/aggregation pathway.
Collapse
Affiliation(s)
- Vanderlei de Araujo Lima
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Esquinelato
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
| | - Phelippe Carmo-Gonçalves
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Hudson Lee
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Luciana Romão
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristian Follmer
- Department of Physical Chemistry, Federal University of Rio de Janeiro, Brazil
- Graduate Program in Chemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Oliveira JT, Dakic V, Vitória G, Pedrosa CDS, Mendes M, Aragão LGH, Cardim-Pires TR, Lelièvre D, Furtado DR, Pinheiro RO, Foguel D, Breton L, Bouez C, De Vecchi R, Guimarães MZP, Rehen S. Oligomeric α-Synuclein induces skin degeneration in reconstructed human epidermis. Neurobiol Aging 2022; 113:108-117. [DOI: 10.1016/j.neurobiolaging.2022.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 10/19/2022]
|
16
|
Abstract
Parkinson’s disease, the second most prevalent neurodegenerative disorder worldwide, is characterized by a progressive loss of dopaminergic neurons in substantia nigra pars compacta, causing motor symptoms. This disorder’s main hallmark is the formation of intraneuronal protein inclusions, named Lewy bodies and neurites. The major component of these arrangements is α-synuclein, an intrinsically disordered and soluble protein that, in pathological conditions, can form toxic and cell-to-cell transmissible amyloid structures. Preventing α-synuclein aggregation has attracted significant effort in the search for a disease-modifying therapy for Parkinson’s disease. Small molecules like SynuClean-D, epigallocatechin gallate, trodusquemine, or anle138b exemplify this therapeutic potential. Here, we describe a subset of compounds containing a single aromatic ring, like dopamine, ZPDm, gallic acid, or entacapone, which act as molecular chaperones against α-synuclein aggregation. The simplicity of their structures contrasts with the complexity of the aggregation process, yet the block efficiently α-synuclein assembly into amyloid fibrils, in many cases, redirecting the reaction towards the formation of non-toxic off-pathway oligomers. Moreover, some of these compounds can disentangle mature α-synuclein amyloid fibrils. Their simple structures allow structure-activity relationship analysis to elucidate the role of different functional groups in the inhibition of α-synuclein aggregation and fibril dismantling, making them informative lead scaffolds for the rational development of efficient drugs.
Collapse
Affiliation(s)
- Samuel Pena-DIaz
- Institut de Biotecnologia i Biomedicina; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina; Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
17
|
Tan YY, Jenner P, Chen SD. Monoamine Oxidase-B Inhibitors for the Treatment of Parkinson's Disease: Past, Present, and Future. JOURNAL OF PARKINSON'S DISEASE 2022; 12:477-493. [PMID: 34957948 PMCID: PMC8925102 DOI: 10.3233/jpd-212976] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 12/13/2022]
Abstract
Monoamine oxidase-B (MAO-B) inhibitors are commonly used for the symptomatic treatment of Parkinson's disease (PD). MAO-B inhibitor monotherapy has been shown to be effective and safe for the treatment of early-stage PD, while MAO-B inhibitors as adjuvant drugs have been widely applied for the treatment of the advanced stages of the illness. MAO-B inhibitors can effectively improve patients' motor and non-motor symptoms, reduce "OFF" time, and may potentially prevent/delay disease progression. In this review, we discuss the effects of MAO-B inhibitors on motor and non-motor symptoms in PD patients, their mechanism of action, and the future development of MAO-B inhibitor therapy.
Collapse
Affiliation(s)
- Yu-Yan Tan
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peter Jenner
- Neurodegenerative Diseases Research Group, Institute of Pharmaceutical Sciences, Faculty of Health Sciences and Medicine, King’s College, London, UK
| | - Sheng-Di Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Lab for Translational Research of Neurodegenerative Diseases, Institute of Immunochemistry, Shanghai Tech University, Shanghai, China
| |
Collapse
|
18
|
Gadhe L, Sakunthala A, Mukherjee S, Gahlot N, Bera R, Sawner AS, Kadu P, Maji SK. Intermediates of α-synuclein aggregation: Implications in Parkinson's disease pathogenesis. Biophys Chem 2021; 281:106736. [PMID: 34923391 DOI: 10.1016/j.bpc.2021.106736] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/27/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Cytoplasmic deposition of aberrantly misfolded α-synuclein (α-Syn) is a common feature of synucleinopathies, including Parkinson's disease (PD). However, the precise pathogenic mechanism of α-Syn in synucleinopathies remains elusive. Emerging evidence has suggested that α-Syn may contribute to PD pathogenesis in several ways; wherein the contribution of fibrillar species, for exerting toxicity and disease transmission, cannot be neglected. Further, the oligomeric species could be the most plausible neurotoxic species causing neuronal cell death. However, understanding the structural and molecular insights of these oligomers are very challenging due to the heterogeneity and transient nature of the species. In this review, we discuss the recent advancements in understanding the formation and role of α-Syn oligomers in PD pathogenesis. We also summarize the different types of α-Syn oligomeric species and potential mechanisms to exert neurotoxicity. Finally, we address the possible ways to target α-Syn as a promising approach against PD and the possible future directions.
Collapse
Affiliation(s)
- Laxmikant Gadhe
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Arunima Sakunthala
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Semanti Mukherjee
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Nitisha Gahlot
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Riya Bera
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Ajay Singh Sawner
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Pradeep Kadu
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Samir K Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
19
|
Singh A, Maharana SK, Shukla R, Kesharwani P. Nanotherapeutics approaches for targeting alpha synuclien protein in the management of Parkinson disease. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
20
|
Monoamine Oxidase-B Inhibition Facilitates α-Synuclein Secretion In Vitro and Delays Its Aggregation in rAAV-Based Rat Models of Parkinson's Disease. J Neurosci 2021; 41:7479-7491. [PMID: 34290084 DOI: 10.1523/jneurosci.0476-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 07/12/2021] [Accepted: 07/15/2021] [Indexed: 12/26/2022] Open
Abstract
Cell-to-cell transmission of α-synuclein (α-syn) pathology is considered to underlie the spread of neurodegeneration in Parkinson's disease (PD). Previous studies have demonstrated that α-syn is secreted under physiological conditions in neuronal cell lines and primary neurons. However, the molecular mechanisms that regulate extracellular α-syn secretion remain unclear. In this study, we found that inhibition of monoamine oxidase-B (MAO-B) enzymatic activity facilitated α-syn secretion in human neuroblastoma SH-SY5Y cells. Both inhibition of MAO-B by selegiline or rasagiline and siRNA-mediated knock-down of MAO-B facilitated α-syn secretion. However, TVP-1022, the S-isomer of rasagiline that is 1000 times less active, failed to facilitate α-syn secretion. Additionally, the MAO-B inhibition-induced increase in α-syn secretion was unaffected by brefeldin A, which inhibits endoplasmic reticulum (ER)/Golgi transport, but was blocked by probenecid and glyburide, which inhibit ATP-binding cassette (ABC) transporter function. MAO-B inhibition preferentially facilitated the secretion of detergent-insoluble α-syn protein and decreased its intracellular accumulation under chloroquine-induced lysosomal dysfunction. Moreover, in a rat model (male Sprague Dawley rats) generated by injecting recombinant adeno-associated virus (rAAV)-A53T α-syn, subcutaneous administration of selegiline delayed the striatal formation of Ser129-phosphorylated α-syn aggregates, and mitigated loss of nigrostriatal dopaminergic neurons. Selegiline also delayed α-syn aggregation and dopaminergic neuronal loss in a cell-to-cell transmission rat model (male Sprague Dawley rats) generated by injecting rAAV-wild-type α-syn and externally inoculating α-syn fibrils into the striatum. These findings suggest that MAO-B inhibition modulates the intracellular clearance of detergent-insoluble α-syn via the ABC transporter-mediated non-classical secretion pathway, and temporarily suppresses the formation and transmission of α-syn aggregates.SIGNIFICANCE STATEMENT The identification of a neuroprotective agent that slows or stops the progression of motor impairments is required to treat Parkinson's disease (PD). The process of α-synuclein (α-syn) aggregation is thought to underlie neurodegeneration in PD. Here, we demonstrated that pharmacological inhibition or knock-down of monoamine oxidase-B (MAO-B) in SH-SY5Y cells facilitated α-syn secretion via a non-classical pathway involving an ATP-binding cassette (ABC) transporter. MAO-B inhibition preferentially facilitated secretion of detergent-insoluble α-syn protein and reduced its intracellular accumulation under chloroquine-induced lysosomal dysfunction. Additionally, MAO-B inhibition by selegiline protected A53T α-syn-induced nigrostriatal dopaminergic neuronal loss and suppressed the formation and cell-to-cell transmission of α-syn aggregates in rat models. We therefore propose a new function of MAO-B inhibition that modulates α-syn secretion and aggregation.
Collapse
|
21
|
Sharma R, Srivastava T, Pandey AR, Mishra T, Gupta B, Reddy SS, Singh SP, Narender T, Tripathi A, Chandramouli B, Sashidhara KV, Priya S, Kumar N. Identification of Natural Products as Potential Pharmacological Chaperones for Protein Misfolding Diseases. ChemMedChem 2021; 16:2146-2156. [PMID: 33760394 DOI: 10.1002/cmdc.202100147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 01/12/2023]
Abstract
Defective protein folding and accumulation of misfolded proteins is associated with neurodegenerative, cardiovascular, secretory, and metabolic disorders. Efforts are being made to identify small-molecule modulators or structural-correctors for conformationally destabilized proteins implicated in various protein aggregation diseases. Using a metastable-reporter-based primary screen, we evaluated pharmacological chaperone activity of a diverse class of natural products. We found that a flavonoid glycoside (C-10, chrysoeriol-7-O-β-D-glucopyranoside) stabilizes metastable proteins, prevents its aggregation, and remodels the oligomers into protease-sensitive species. Data was corroborated with additional secondary screen with disease-specific pathogenic protein. In vitro and cell-based experiments showed that C-10 inhibits α-synuclein aggregation which is implicated in synucleinopathies-related neurodegeneration. C-10 interferes in its structural transition into β-sheeted fibrils and mitigates α-synuclein aggregation-associated cytotoxic effects. Computational modeling suggests that C-10 binds to unique sites in α-synuclein which may interfere in its aggregation amplification. These findings open an avenue for comprehensive SAR development for flavonoid glycosides as pharmacological chaperones for metastable and aggregation-prone proteins implicated in protein conformational diseases.
Collapse
Affiliation(s)
- Richa Sharma
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Tulika Srivastava
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Alka Raj Pandey
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Tripti Mishra
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Bhagyashri Gupta
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | | | - Suriya P Singh
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | - Tadigoppula Narender
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Aradhya Tripathi
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India
| | | | - Koneni V Sashidhara
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Smriti Priya
- CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| | - Niti Kumar
- CSIR-Central Drug Research Institute, Lucknow, 226031, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201 002, India
| |
Collapse
|
22
|
Yao Y, Tang Y, Wei G. Epigallocatechin Gallate Destabilizes α-Synuclein Fibril by Disrupting the E46-K80 Salt-Bridge and Inter-protofibril Interface. ACS Chem Neurosci 2020; 11:4351-4361. [PMID: 33186020 DOI: 10.1021/acschemneuro.0c00598] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The accumulation and deposition of fibrillar aggregates of α-synuclein (α-syn) into Lewy bodies are the major hallmarks of Parkinson's disease (PD) for which there is no cure yet. Disrupting preformed α-syn fibrils is considered one of the rational therapeutic strategies to combat PD. Experimental studies reported that epigallocatechin gallate (EGCG), a polyphenol extracted from green tea, can disrupt α-syn fibrils into benign amorphous aggregates. However, the molecular mechanism of action is poorly understood. Herein, we performed molecular dynamics simulations on a newly released Greek-key-like α-syn fibril with or without EGCG to investigate the influence of EGCG on α-syn fibril. Our simulations show that EGCG disrupts the local β-sheet structure, E46-K80 salt-bridge crucial for the stabilization of the Greek-key-like structure, and hydrophobic interactions stabilizing the inter-protofibril interface and destabilizes the global structure of the α-syn fibril. Interaction analyses reveal that hydrophobic and hydrogen-bonding interactions between EGCG and α-syn fibrils play important roles in the destabilization of the fibril. We find that the disruption of the E46-K80 salt-bridge closely correlates with the formation of hydrogen-bonds (H-bonds) between EGCG and E46/K80. Our results provide mechanistic insights into the disruption modes of α-syn fibril by EGCG, which may pave the way for designing drug candidates targeting α-syn fibrillization to treat PD.
Collapse
Affiliation(s)
- Yifei Yao
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200438, People’s Republic of China
| |
Collapse
|
23
|
Zhao X, Chen Y, Wang L, Li X, Chen X, Zhang H. Associations of ATG7 rs1375206 polymorphism and elevated plasma ATG7 levels with late-onset sporadic Parkinson's disease in a cohort of Han Chinese from southern China. Int J Neurosci 2020; 130:1206-1214. [PMID: 32065549 DOI: 10.1080/00207454.2020.1731507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 01/25/2020] [Accepted: 02/09/2020] [Indexed: 10/25/2022]
Abstract
Background: Autophagy-related gene 7 (ATG7) plays a key role in autophagy and is strongly implicated in Parkinson's disease (PD). This study investigated the associations of rs1375206 polymorphism in ATG7 gene promoter and plasma ATG7 levels with late-onset sporadic PD in a cohort of Han Chinese from southern China.Methods: Variant genotypes were identified using polymerase chain reaction-restriction fragment length polymorphism and gene sequencing in 124 patients with late-onset sporadic PD, as well as in 105 age- and sex-matched healthy controls. Plasma ATG7 levels were determined using an enzyme-linked immunosorbent assay.Results: No significant differences in genotype distributions were found between the two groups. Stratification analyses by sex and clinical motor subtypes revealed that the differences remained non-significant in each subgroup (all p > 0.05). Plasma ATG7 protein levels were significantly higher in the PD group than in the control group (p = 0.000). Haplotype analysis demonstrated that the A-T haplotype was significantly associated with late-onset sporadic PD (p = 0.045).Conclusion: Our study suggests that the rs1375206 polymorphism in ATG7 may not be associated with late-onset sporadic PD; however, high plasma ATG7 levels and the A-T haplotype may be associated with susceptibility to late-onset sporadic PD in the Han population from Zhejiang and Guangdong provinces.
Collapse
Affiliation(s)
- Xiyao Zhao
- Department of Neurology, The Second Affiliated Hospital (Jiande Branch), School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Yusen Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Li Wang
- Department of Neurology, The Second Affiliated Hospital (Jiande Branch), School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiangxin Li
- Department of Neurology, The Second Affiliated Hospital (Jiande Branch), School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiaoyi Chen
- Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, China
| | - Hao Zhang
- Department of Neurology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| |
Collapse
|
24
|
Fernandes L, Messias B, Pereira-Neves A, Azevedo EP, Araújo J, Foguel D, Palhano FL. Green Tea Polyphenol Microparticles Based on the Oxidative Coupling of EGCG Inhibit Amyloid Aggregation/Cytotoxicity and Serve as a Platform for Drug Delivery. ACS Biomater Sci Eng 2020; 6:4414-4423. [PMID: 33455167 DOI: 10.1021/acsbiomaterials.0c00188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The accumulation of cross-β-sheet amyloid fibrils is a hallmark of all human amyloid diseases. The compound epigallocatechin-3-gallate (EGCG), the main polyphenol present in green tea, has been described to have beneficial effects in several pathologies, including amyloidogenic diseases. This polyphenol blocks amyloidogenesis and disaggregates a broad range of amyloidogenic peptides comprising amyloid fibrils in vitro. The mechanism by which EGCG acts in the context of amyloid aggregation is not clear. Most of the biological effects of EGCG are attributable to its antioxidant activity. However, EGCG-oxidized products appear to be sufficient for the majority of EGCG amyloid remodeling observed against some polypeptides. If controlled, EGCG oxidation can afford homogenous microparticles (MPs) and can serve as drug delivery agents. Herein, we produced EGCG MPs by oxidative coupling and analyzed their activity during the aggregation of the protein α-synuclein (α-syn), the main protein related to Parkinson's disease. The MPs modestly remodeled mature amyloid fibrils and efficiently inhibited the amyloidogenic aggregation of α-syn. The MPs showed low cytotoxicity against both dopaminergic cells and microglial cells. The MPs reduced the cytotoxic effects of α-syn oligomers. Interestingly, the MPs were loaded with another antiamyloidogenic compound, increasing their activity against amyloid aggregation. We propose the use of EGCG MPs as a bifunctional strategy, blocking amyloid aggregation directly and carrying a molecule that can act synergistically to alleviate the symptoms caused by the amyloidogenic pathway.
Collapse
Affiliation(s)
- Luiza Fernandes
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Beatriz Messias
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Antonio Pereira-Neves
- Fiocruz Pernambuco, Departamento de Microbiologia, Instituto Aggeu Magalhães, Recife, Pernambuco 50740-465, Brazil
| | - Estefania P Azevedo
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Júlia Araújo
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| | - Fernando L Palhano
- Instituto de Bioquímica Médica Leopoldo de Meis, Programa de Biologia Estrutural, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro 21941-590, Brazil
| |
Collapse
|
25
|
Diniz LP, Araujo APB, Matias I, Garcia MN, Barros-Aragão FGQ, de Melo Reis RA, Foguel D, Braga C, Figueiredo CP, Romão L, Gomes FCA. Astrocyte glutamate transporters are increased in an early sporadic model of synucleinopathy. Neurochem Int 2020; 138:104758. [PMID: 32439533 DOI: 10.1016/j.neuint.2020.104758] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/29/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
α-Synuclein protein (α-syn) is a central player in Parkinson's disease (PD) and in a spectrum of neurodegenerative diseases collectively known as synucleinopathies. These diseases are characterized by abnormal motor symptoms, such as tremor at rest, slowness of movement, rigidity of posture, and bradykinesia. Histopathological features of PD include preferential loss of dopaminergic neurons in the substantia nigra and formation of fibrillar intraneuronal inclusions called Lewy bodies and Lewy neurites, which are composed primarily of the α-syn protein. Currently, it is well accepted that α-syn oligomers (αSO) are the main toxic agent responsible for the etiology of PD. Glutamatergic excitotoxicity is associated with several neurological disorders, including PD. Excess glutamate in the synaptic cleft can be taken up by the astrocytic glutamate transporters GLAST and GLT-1. Although this event is the main defense against glutamatergic excitotoxicity, the molecular mechanisms that regulate this process have not yet been investigated in an early sporadic model of synucleinopathy. Here, using an early sporadic model of synucleinopathy, we demonstrated that the treatment of astrocytes with αSO increased glutamate uptake. This was associated with higher levels of GLAST and GLT-1 in astrocyte cultures and in a mouse model of synucleinopathy 24 h and 45 days after inoculation with αSO, respectively. Pharmacological inhibition of the TGF-β1 (transforming growth factor beta 1) pathway in vivo reverted GLAST/GLT-1 enhancement induced by αSO injection. Therefore, our study describes a new neuroprotective role of astrocytes in an early sporadic model of synucleinopathy and sheds light on the mechanisms of glutamate transporter regulation for neuroprotection against glutamatergic excitotoxicity in synucleinopathy.
Collapse
Affiliation(s)
- Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Ana Paula Bérgamo Araujo
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Isadora Matias
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Matheus N Garcia
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernanda G Q Barros-Aragão
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil; Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Débora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carolina Braga
- Campus Duque de Caxias, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cláudia P Figueiredo
- Faculdade de Farmácia, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luciana Romão
- Instituto de Ciências Biomédicas, Universidade Federal Do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | |
Collapse
|
26
|
Advances in the development of imaging probes and aggregation inhibitors for alpha-synuclein. Acta Pharmacol Sin 2020; 41:483-498. [PMID: 31586134 PMCID: PMC7470848 DOI: 10.1038/s41401-019-0304-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 08/29/2019] [Indexed: 12/20/2022]
Abstract
Abnormal protein aggregation has been linked to many neurodegenerative diseases, including Parkinson’s disease (PD). The main pathological hallmark of PD is the formation of Lewy bodies (LBs) and Lewy neurites, both of which contain the presynaptic protein alpha-synuclein (α-syn). Under normal conditions, native α-syn exists in a soluble unfolded state but undergoes misfolding and aggregation into toxic aggregates under pathological conditions. Toxic α-syn species, especially oligomers, can cause oxidative stress, membrane penetration, synaptic and mitochondrial dysfunction, as well as other damage, leading to neuronal death and eventually neurodegeneration. Early diagnosis and treatments targeting PD pathogenesis are urgently needed. Given its critical role in PD, α-syn is an attractive target for the development of both diagnostic tools and effective therapeutics. This review summarizes the progress toward discovering imaging probes and aggregation inhibitors for α-syn. Relevant strategies and techniques in the discovery of α-syn-targeted drugs are also discussed.
Collapse
|
27
|
Diniz LP, Matias I, Araujo APB, Garcia MN, Barros-Aragão FGQ, Alves-Leon SV, de Souza JM, Foguel D, Figueiredo CP, Braga C, Romão L, Gomes FCA. α-synuclein oligomers enhance astrocyte-induced synapse formation through TGF-β1 signaling in a Parkinson's disease model. J Neurochem 2020; 150:138-157. [PMID: 31009074 DOI: 10.1111/jnc.14710] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/02/2019] [Accepted: 04/04/2019] [Indexed: 12/12/2022]
Abstract
Parkinson's disease (PD) is characterized by selective death of dopaminergic neurons in the substantia nigra, degeneration of the nigrostriatal pathway, increases in glutamatergic synapses in the striatum and aggregation of α-synuclein. Evidence suggests that oligomeric species of α-synuclein (αSO) are the genuine neurotoxins of PD. Although several studies have supported the direct neurotoxic effects of αSO on neurons, their effects on astrocytes have not been directly addressed. Astrocytes are essential to several steps of synapse formation and function, including secretion of synaptogenic factors, control of synaptic elimination and stabilization, secretion of neural/glial modulators, and modulation of extracellular ions, and neurotransmitter levels in the synaptic cleft. Here, we show that αSO induced the astrocyte reactivity and enhanced the synaptogenic capacity of human and murine astrocytes by increasing the levels of the known synaptogenic molecule transforming growth factor beta 1 (TGF-β1). Moreover, intracerebroventricular injection of αSO in mice increased the number of astrocytes, the density of excitatory synapses, and the levels of TGF-β1 in the striatum of injected animals. Inhibition of TGF-β1 signaling impaired the effect of the astrocyte-conditioned medium on glutamatergic synapse formation in vitro and on striatal synapse formation in vivo, whereas addition of TGF-β1 protected mesencephalic neurons against synapse loss triggered by αSO. Together, our data suggest that αSO have important effects on astrocytic functions and describe TGF-β1 as a new endogenous astrocyte-derived molecule involved in the increase in striatal glutamatergic synaptic density present in early stages of PD. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/. Cover Image for this issue: doi: 10.1111/jnc.14514.
Collapse
Affiliation(s)
- Luan Pereira Diniz
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Isadora Matias
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Ana Paula Bérgamo Araujo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Matheus Nunes Garcia
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Soniza Vieira Alves-Leon
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Jorge Marcondes de Souza
- Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Débora Foguel
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | | - Carolina Braga
- Núcleo Multidisciplinar de Pesquisa em Biologia - NUMPEX-BIO, Campus Duque de Caxias Professor Geraldo Cidade, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Luciana Romão
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | | |
Collapse
|
28
|
Rasagiline and selegiline modulate mitochondrial homeostasis, intervene apoptosis system and mitigate α-synuclein cytotoxicity in disease-modifying therapy for Parkinson's disease. J Neural Transm (Vienna) 2020; 127:131-147. [PMID: 31993732 DOI: 10.1007/s00702-020-02150-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 01/21/2020] [Indexed: 12/16/2022]
Abstract
Parkinson's disease has been considered as a motor neuron disease with dopamine (DA) deficit caused by neuronal loss in the substantia nigra, but now proposed as a multi-system disorder associated with α-synuclein accumulation in neuronal and non-neuronal systems. Neuroprotection in Parkinson's disease has intended to halt or reverse cell death of nigro-striatal DA neurons and prevent the disease progression, but clinical studies have not presented enough beneficial results, except the trial of rasagiline by delayed start design at low dose of 1 mg/day only. Now strategy of disease-modifying therapy should be reconsidered taking consideration of accumulation and toxicity of α-synuclein preceding the manifest of motor symptoms. Hitherto neuroprotective therapy has been aimed to mitigate non-specific risk factors; oxidative stress, mitochondrial dysfunction, apoptosis, deficits of neurotrophic factors (NTFs), inflammation and accumulation of pathogenic protein. Future disease-modify therapy should target more specified pathogenic factors, including deregulated mitochondrial homeostasis, deficit of NTFs and α-synuclein toxicity. Selegiline and rasagiline, inhibitors of type B monoamine oxidase, have been proved to exhibit potent neuroprotective function: regulation of mitochondrial apoptosis system, maintenance of mitochondrial function, increased expression of genes coding antioxidant enzymes, anti-apoptotic Bcl-2 and pro-survival NTFs, and suppression of oligomerization and aggregation of α-synuclein and the toxicity in cellular and animal experiments. However, the present available pharmacological therapy starts too late to reverse disease progression, and future disease-modifying therapy should include also non-pharmacological complementary therapy during the prodromal stage.
Collapse
|
29
|
Kumar R, Kumar S, Hanpude P, Singh AK, Johari T, Majumder S, Maiti TK. Partially oxidized DJ-1 inhibits α-synuclein nucleation and remodels mature α-synuclein fibrils in vitro. Commun Biol 2019; 2:395. [PMID: 31701024 PMCID: PMC6821844 DOI: 10.1038/s42003-019-0644-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
DJ-1 is a deglycase enzyme which exhibits a redox-sensitive chaperone-like activity. The partially oxidized state of DJ-1 is active in inhibiting the aggregation of α-synuclein, a key protein associated with Parkinson's disease. The underlying molecular mechanism behind α-synuclein aggregation inhibition remains unknown. Here we report that the partially oxidized DJ-1 possesses an adhesive surface which sequesters α-synuclein monomers and blocks the early stages of α-synuclein aggregation and also restricts the elongation of α-synuclein fibrils. DJ-1 remodels mature α-synuclein fibrils into heterogeneous toxic oligomeric species. The remodeled fibers show loose surface topology due to a decrease in elastic modulus and disrupt membrane architecture, internalize easily and induce aberrant nitric oxide release. Our results provide a mechanism by which partially oxidized DJ-1 counteracts α-synuclein aggregation at initial stages of aggregation and provide evidence of a deleterious effect of remodeled α-synuclein species generated by partially oxidized DJ-1.
Collapse
Affiliation(s)
- Roshan Kumar
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Sanjay Kumar
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Pranita Hanpude
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Abhishek Kumar Singh
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Tanu Johari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
- Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Sushanta Majumder
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Gurgaon-Faridabad Expressway, Faridabad, 121001 India
| |
Collapse
|
30
|
In-vitro and in-silico investigation of protective mechanisms of crocin against E46K α-synuclein amyloid formation. Mol Biol Rep 2019; 46:4279-4292. [DOI: 10.1007/s11033-019-04882-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 05/15/2019] [Indexed: 01/16/2023]
|
31
|
Pérez-Pi I, Evans DA, Horrocks MH, Pham NT, Dolt KS, Koszela J, Kunath T, Auer M. α-Synuclein-Confocal Nanoscanning (ASYN-CONA), a Bead-Based Assay for Detecting Early-Stage α-Synuclein Aggregation. Anal Chem 2019; 91:5582-5590. [PMID: 30964656 PMCID: PMC6534341 DOI: 10.1021/acs.analchem.8b03842] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
![]()
α-Synuclein
fibrils are considered a hallmark of Parkinson’s
disease and other synucleinopathies. However, small oligomers that
formed during the early stages of α-synuclein aggregation are
thought to be the main toxic species causing disease. The formation
of α-synuclein oligomers has proven difficult to follow, because
of the heterogeneity and transient nature of the species formed. Here,
a novel bead-based aggregation assay for monitoring the earliest stages
of α-synuclein oligomerization, α-Synuclein–Confocal
Nanoscanning (ASYN-CONA), is presented. The α-synuclein A91C
single cysteine mutant is modified with a trifunctional chemical tag,
which allows simultaneous fluorescent labeling with a green dye (tetramethylrhodamine,
TMR) and attachment to microbeads. Beads with bound TMR-labeled α-synuclein
are then incubated with a red dye (Cy5)-labeled variant of α-synuclein
A91C, and EtOH (20%) to induce aggregation. Aggregation is detected
by confocal scanning imaging, below the equatorial plane of the beads,
which is known as the CONA technique. On-bead TMR-labeled α-synuclein
and aggregated Cy5-labeled α-synuclein from the solution are
quantitatively monitored in parallel by detection of fluorescent halos
or “rings”. α-Synuclein on-bead oligomerization
results in a linear increase of red bead ring fluorescence intensity
over a period of 5 h. Total internal reflection fluorescence microscopy
was performed on oligomers cleaved from the beads, and it revealed
that (i) oligomers are sufficiently stable in solution to investigate
their composition, consisting of 6 ± 1 monomer units, and (ii)
oligomers containing a mean of 15 monomers bind Thioflavin-T. Various
known inhibitors of α-synuclein aggregation were used to validate
the ASYN-CONA assay for drug screening. Baicalein, curcumin, and rifampicin
showed concentration-dependent inhibition of the α-synuclein
aggregation and the IC50 (the concentration of the compound
at which the maxiumum intensity was reduced by one-half) were calculated.
Collapse
Affiliation(s)
- Irene Pérez-Pi
- School of Biological Sciences and Edinburgh Medical School: Biomedical Sciences , University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF , United Kingdom
| | - David A Evans
- School of Biological Sciences and Edinburgh Medical School: Biomedical Sciences , University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF , United Kingdom
| | - Mathew H Horrocks
- EaStCHEM School of Chemistry , University of Edinburgh , Edinburgh EH9 3FJ , United Kingdom.,UK Dementia Research Institute , University of Edinburgh , Chancellor's Building, Edinburgh Medical School , Edinburgh EH16 4SB , United Kingdom
| | - Nhan T Pham
- School of Biological Sciences and Edinburgh Medical School: Biomedical Sciences , University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF , United Kingdom
| | - Karamjit S Dolt
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences , The University of Edinburgh , Edinburgh EH16 4UU , United Kingdom
| | - Joanna Koszela
- School of Biological Sciences and Edinburgh Medical School: Biomedical Sciences , University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF , United Kingdom
| | - Tilo Kunath
- MRC Centre for Regenerative Medicine, Institute for Stem Cell Research, School of Biological Sciences , The University of Edinburgh , Edinburgh EH16 4UU , United Kingdom
| | - Manfred Auer
- School of Biological Sciences and Edinburgh Medical School: Biomedical Sciences , University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF , United Kingdom
| |
Collapse
|
32
|
Oliveri V. Toward the discovery and development of effective modulators of α-synuclein amyloid aggregation. Eur J Med Chem 2019; 167:10-36. [PMID: 30743095 DOI: 10.1016/j.ejmech.2019.01.045] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 01/21/2019] [Accepted: 01/21/2019] [Indexed: 12/17/2022]
Abstract
A host of human diseases, including Parkinson's disease and Dementia with Lewy bodies, are suspected to be directly linked to protein aggregation. Amyloid protein aggregates and oligomeric intermediates of α-synuclein are observed in synucleinopathies and considered to be mediators of cellular toxicity. Hence, α-synuclein has seen as one of the leading and most compelling targets and is receiving a great deal of attention from researchers. Nevertheless, there is no neuroprotective approach directed toward Parkinson's disease or other synucleinopathies so far. In this review, we summarize the available data concerning inhibitors of α-synuclein aggregation and their advancing towards clinical use. The compounds are grouped according to their chemical structures, providing respective insights into their mechanism of action, pharmacology, and pharmacokinetics. Overall, shared structure-activity elements are emerging, as well as specific binding modes related to the ability of the modulators to establish hydrophobic and hydrogen bonds interactions with the protein. Some molecules with encouraging in vivo data support the possibility of translation to the clinic.
Collapse
Affiliation(s)
- Valentina Oliveri
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, viale A. Doria 6, 95125, Catania, Italy.
| |
Collapse
|
33
|
In vitro neurotoxicity of salsolinol is attenuated by the presynaptic protein α-synuclein. Biochim Biophys Acta Gen Subj 2018; 1862:2835-2845. [DOI: 10.1016/j.bbagen.2018.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 01/08/2023]
|
34
|
Bhasne K, Mukhopadhyay S. Formation of Heterotypic Amyloids: α-Synuclein in Co-Aggregation. Proteomics 2018; 18:e1800059. [PMID: 30216674 DOI: 10.1002/pmic.201800059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/28/2018] [Indexed: 12/13/2022]
Abstract
Protein misfolding resulting in the formation of ordered amyloid aggregates is associated with a number of devastating human diseases. Intrinsically disordered proteins (IDPs) do not autonomously fold up into a unique stable conformation and remain as an ensemble of rapidly fluctuating conformers. Many IDPs are prone to convert into the β-rich amyloid state. One such amyloidogenic IDP is α-synuclein that is involved in Parkinson's disease. Recent studies have indicated that other neuronal proteins, especially IDPs, can co-aggregate with α-synuclein in many pathological ailments. This article describes several such observations highlighting the role of heterotypic protein-protein interactions in the formation of hetero-amyloids. It is believed that the characterizations of molecular cross talks between amyloidogenic proteins as well as the mechanistic studies of heterotypic protein aggregation will allow us to decipher the role of the interacting proteins in amyloid proteomics.
Collapse
Affiliation(s)
- Karishma Bhasne
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| | - Samrat Mukhopadhyay
- Centre for Protein Science, Design and Engineering, Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India.,Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Mohali, Punjab 140306, India
| |
Collapse
|
35
|
Exploring the role of methionine residues on the oligomerization and neurotoxic properties of DOPAL-modified α-synuclein. Biochem Biophys Res Commun 2018; 505:295-301. [PMID: 30249394 DOI: 10.1016/j.bbrc.2018.09.111] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 11/20/2022]
Abstract
The dopamine metabolite 3,4-dihydroxyphenylacetaldehyde (DOPAL) is believed to play a central role in Parkinson's disease neurodegeneration by stabilizing potentially toxic oligomers of the presynaptic protein α-Synuclein (aSyn). Besides the formation of covalent DOPAL-Lys adducts, DOPAL promotes the oxidation of Met residues of aSyn, which is also a common oxidative post-translational modification found in the protein in vivo. Herein we set out to address the role of Met residues on the oligomerization and neurotoxic properties of DOPAL-modified aSyn. Our data indicate that DOPAL promotes the formation of two distinct types of aSyn oligomers: large and small (dimer and trimers) oligomers, which seem to be generated by independent mechanisms and cannot be interconverted by using denaturing agents. Interestingly, H2O2-treated aSyn monomer, which exhibits all-four Met residues oxidized to Met-sulfoxide, exhibited a reduced ability to form large oligomers upon treatment with DOPAL, with no effect on the population of small oligomers. In this context, triple Met-Val mutant M5V/M116V/M127V exhibited an increased population of large aSyn-DOPAL oligomers in comparison with the wild-type protein. Interestingly, the stabilization of large rather than small oligomers seems to be associated with an enhanced toxicity of DOPAL-aSyn adducts. Collectively, these findings indicate that Met residues may play an important role in modulating both the oligomerization and the neurotoxic properties of DOPAL-derived aSyn species.
Collapse
|
36
|
Kuo YC, Rajesh R. Current development of nanocarrier delivery systems for Parkinson's disease pharmacotherapy. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.03.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Aliakbari F, Mohammad-Beigi H, Rezaei-Ghaleh N, Becker S, Dehghani Esmatabad F, Eslampanah Seyedi HA, Bardania H, Tayaranian Marvian A, Collingwood JF, Christiansen G, Zweckstetter M, Otzen DE, Morshedi D. The potential of zwitterionic nanoliposomes against neurotoxic alpha-synuclein aggregates in Parkinson's Disease. NANOSCALE 2018; 10:9174-9185. [PMID: 29725687 DOI: 10.1039/c8nr00632f] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The protein α-synuclein (αSN) aggregates to form fibrils in neuronal cells of Parkinson's patients. Here we report on the effect of neutral (zwitterionic) nanoliposomes (NLPs), supplemented with cholesterol (NLP-Chol) and decorated with PEG (NLP-Chol-PEG), on αSN aggregation and neurotoxicity. Both NLPs retard αSN fibrillization in a concentration-independent fashion. They do so largely by increasing lag time (formation of fibrillization nuclei) rather than elongation (extension of existing nuclei). Interactions between neutral NLPs and αSN may locate to the N-terminus of the protein. This interaction can even perturb the interaction of αSN with negatively charged NLPs which induces an α-helical structure in αSN. This interaction was found to occur throughout the fibrillization process. Both NLP-Chol and NLP-Chol-PEG were shown to be biocompatible in vitro, and to reduce αSN neurotoxicity and reactive oxygen species (ROS) levels with no influence on intracellular calcium in neuronal cells, emphasizing a prospective role for NLPs in reducing αSN pathogenicity in vivo as well as utility as a vehicle for drug delivery.
Collapse
Affiliation(s)
- Farhang Aliakbari
- Bioprocess Engineering Research group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Szökő É, Tábi T, Riederer P, Vécsei L, Magyar K. Pharmacological aspects of the neuroprotective effects of irreversible MAO-B inhibitors, selegiline and rasagiline, in Parkinson's disease. J Neural Transm (Vienna) 2018; 125:1735-1749. [PMID: 29417334 DOI: 10.1007/s00702-018-1853-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 01/31/2018] [Indexed: 11/24/2022]
Abstract
The era of MAO-B inhibitors dates back more than 50 years. It began with Kálmán Magyar's outstanding discovery of the selective inhibitor, selegiline. This compound is still regarded as the gold standard of MAO-B inhibition, although newer drugs have also been introduced to the field. It was revealed early on that selective, even irreversible inhibition of MAO-B is free from the severe side effect of the non-selective MAO inhibitors, the potentiation of tyramine, resulting in the so-called 'cheese effect'. Since MAO-B is involved mainly in the degradation of dopamine, the inhibitors lack any antidepressant effect; however, they became first-line medications for the therapy of Parkinson's disease based on their dopamine-sparing activity. Extensive studies with selegiline indicated its complex pharmacological activity profile with MAO-B-independent mechanisms involved. Some of these beneficial effects, such as neuroprotective and antiapoptotic properties, were connected to its propargylamine structure. The second MAO-B inhibitor approved for the treatment of Parkinson's disease, rasagiline also possesses this structural element and shows similar pharmacological characteristics. The preclinical studies performed with selegiline and rasagiline are summarized in this review.
Collapse
Affiliation(s)
- Éva Szökő
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Tamás Tábi
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| | - Peter Riederer
- Center of Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Magarete-Höppel-Platz 1, 97080, Würzburg, Germany
| | - László Vécsei
- Department of Neurology, University of Szeged, Semmelweis u. 6, Szeged, 6725, Hungary. .,MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, Szeged, 6725, Hungary.
| | - Kálmán Magyar
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4, Budapest, 1089, Hungary
| |
Collapse
|
39
|
Mochizuki H, Choong CJ, Masliah E. A refined concept: α-synuclein dysregulation disease. Neurochem Int 2018; 119:84-96. [PMID: 29305061 DOI: 10.1016/j.neuint.2017.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 12/23/2022]
Abstract
α-synuclein (αSyn) still remains a mysterious protein even two decades after SNCA encoding it was identified as the first causative gene of familial Parkinson's disease (PD). Accumulation of αSyn causes α-synucleinopathies including PD, dementia with Lewy bodies (DLB) and multiple system atrophy (MSA). Recent advances in therapeutic approaches offer new antibody-, vaccine-, antisense-oligonucleotide- and small molecule-based options to reduce αSyn protein levels and aggregates in patient's brain. Gathering research information of other neurological disease particularly Alzheimer's disease, recent disappointment of an experimental amyloid plaques busting antibody in clinical trials underscores the difficulty of treating people who show even mild dementia as damage in their brain may already be too extensive. Prodromal intervention to inhibit the accumulation of pathogenic protein may advantageously provide a better outcome. However, treatment prior to onset is not ethically justified as standard practice at present. In this review, we initiate a refined concept to define early pathogenic state of αSyn accumulation before occurrence of brain damage as a disease criterion for αSyn dysregulation disease.
Collapse
Affiliation(s)
- Hideki Mochizuki
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan.
| | - Chi-Jing Choong
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| | - Eliezer Masliah
- Department of Neurology, Graduate School of Medicine, Osaka University, Yamadaoka 2-2, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
40
|
Jha NN, Kumar R, Panigrahi R, Navalkar A, Ghosh D, Sahay S, Mondal M, Kumar A, Maji SK. Comparison of α-Synuclein Fibril Inhibition by Four Different Amyloid Inhibitors. ACS Chem Neurosci 2017; 8:2722-2733. [PMID: 28872299 DOI: 10.1021/acschemneuro.7b00261] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aggregation of α-synuclein (α-Syn) into toxic oligomers and fibrils leads to Parkinson's disease (PD) pathogenesis. Molecules that can inhibit the fibrillization and oligomerization of α-Syn have potential therapeutic value. Here, we studied four selective amyloid inhibitors: dopamine (Dopa), amphotericin-B (Amph), epigallocatechingallate (EGCG), and quinacrinedihydrochloride (Quin) for their effect on oligomerization, fibrillization, and preformed fibrils of α-Syn. The aggregation kinetics of α-Syn using ThT fluorescence and conformational transition by circular dichroism (CD) in the presence and absence of these four compounds suggest that, except Quin, the remaining three molecules inhibit α-Syn aggregation in a concentration dependent manner. Consistent with the aggregation kinetics data, the morphological study of aggregates formed in the presence of these compounds showed corresponding decrease in fibrillar size. The analysis of cell viability using MTT assay showed reduction in toxicity of α-Syn aggregates formed in the presence of these compounds, which also correlates with reduction of exposed hydrophobic surface as studied by ANS binding. Additionally, these inhibitors, except Quin, demonstrated reduction in size as well as the toxicity of oligomeric/fibrillar aggregates of α-Syn. The residue specific interaction to low molecular weight (LMW) species of α-Syn by 2D NMR study revealed that, the region and extent of binding are different for all these molecules. Furthermore, fibril-binding data using SPR suggested that there is no direct relationship between the binding affinity and fibril inhibition by these compounds. The present study suggests that sequence based interaction of small molecules with soluble α-Syn might dictate their inhibition or modulation capacity, which might be helpful in designing modulators of α-Syn aggregation.
Collapse
Affiliation(s)
- Narendra Nath Jha
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Rakesh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Rajlaxmi Panigrahi
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Ambuja Navalkar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Dhiman Ghosh
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Shruti Sahay
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Mritunjoy Mondal
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| | - Samir. K. Maji
- Department of Biosciences and Bioengineering, IIT Bombay, Mumbai 400 076, India
| |
Collapse
|
41
|
Wei CC, Chang CH, Liao VHC. Anti-Parkinsonian effects of β-amyrin are regulated via LGG-1 involved autophagy pathway in Caenorhabditis elegans. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2017; 36:118-125. [PMID: 29157804 DOI: 10.1016/j.phymed.2017.09.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 07/11/2017] [Accepted: 09/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease that is associated with aging and is characterized as a movement disorder. Currently, there is still no complete therapy for PD. In recent years, the identification and characterization of medicinal plants to cure or treat PD has gained increasing scientific interest. PURPOSE In this study, we investigated a pentacyclic triterpenoid compound, β-amyrin, which is found in many medicinal plants for its anti-Parkinsonian effects, using Caenorhabditis elegans (C. elegans) disease models and their underlying mechanisms. METHODS C. elegans treated or untreated with β-amyrin were investigated for oxidative stress resistance, neurodegeneration, and α-synuclein aggregation assays. The C. elegans ortholog of Atg8/LC3, LGG-1 that is involved in the autophagy pathway was also evaluated by quantitative RT-PCR and transgenic strain experiments. RESULTS β-Amyrin exerted excellent antioxidant activity and reduced intracellular oxygen species in C. elegans. Using the transgenic strain BZ555, β-amyrin showed a protective effect on dopaminergic neurons reducing cell damage induced by 6-hydroxydopamine (6-OHDA). In addition, β-amyrin significantly reduced the α-synuclein aggregation in the transgenic strain NL5901. Moreover, β-amyrin up-regulated LGG-1 mRNA expression and increased the number of localized LGG-1 puncta in the transgenic strain DA2123. CONCLUSION The results from this study suggest that the anti-Parkinsonian effects of β-amyrin might be regulated via LGG-1 involved autophagy pathway in C. elegans. Therefore, β-amyrin may be useful for therapeutic applications or supplements to treat or slow the progression of PD.
Collapse
Affiliation(s)
- Chia-Cheng Wei
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Chun-Han Chang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan
| | - Vivian Hsiu-Chuan Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 106, Taiwan.
| |
Collapse
|
42
|
Pokrzywa M, Pawełek K, Kucia WE, Sarbak S, Chorell E, Almqvist F, Wittung-Stafshede P. Effects of small-molecule amyloid modulators on a Drosophila model of Parkinson's disease. PLoS One 2017; 12:e0184117. [PMID: 28863169 PMCID: PMC5581160 DOI: 10.1371/journal.pone.0184117] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 08/20/2017] [Indexed: 11/18/2022] Open
Abstract
Alpha-synuclein (aS) amyloid formation is involved in Parkinson's disease (PD); therefore, small molecules that target aS and affect its aggregation are of interest as future drug candidates. We recently reported modified ring-fused 2-pyridones that modulate aS amyloid formation in vitro. Here, we describe the effects of such molecules on behavioral parameters of a Drosophila model of PD (i.e., flies expressing human aS), using a new approach (implemented in a commercially available FlyTracker system) to quantify fly mobility. FlyTracker allows for automated analysis of walking and climbing locomotor behavior, as it collects large sequences of data over time in an unbiased manner. We found that the molecules per se have no toxic or kinetic effects on normal flies. Feeding aS-expressing flies with the amyloid-promoting molecule FN075, remarkably, resulted in increased fly mobility at early time points; however, this effect switched to reduced mobility at later time points, and flies had shorter life spans than controls. In contrast, an amyloid inhibitor increased both fly kinetics and life span. In agreement with increased aS amyloid formation, the FN075-fed flies had less soluble aS, and in vitro aS-FN075 interactions stimulated aS amyloid formation. In addition to a new quantitative approach to probe mobility (available in FlyTracker), our results imply that aS regulates brain activity such that initial removal (here, by FN075-triggered assembly of aS) allows for increased fly mobility.
Collapse
Affiliation(s)
| | | | | | | | - Erik Chorell
- Department of Chemistry, Umeå University, Umeå, Sweden
| | | | | |
Collapse
|
43
|
α-Synuclein aggregation modulation: an emerging approach for the treatment of Parkinson's disease. Future Med Chem 2017. [PMID: 28632413 DOI: 10.4155/fmc-2017-0016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Parkinson's disease (PD) is a multifactorial progressive neurological disorder. Pathological hallmarks of PD are characterized by the presence of α-synuclein (αSyn) aggregates known as Lewy bodies. αSyn aggregation is one of the leading causes for the neuronal dysfunction and death in PD. It is also associated with neurotransmitter and calcium release. Current therapies of PD are limited to only symptomatic relief without addressing the underlying pathogenic factors of the disease process such as aggregation of αSyn. Consequently, the progression of the disease continues with the current therapies. Therefore, the modulation of αSyn aggregation is an emerging approach as a novel therapeutic target to treat PD. There are two major aspects that might be targeted therapeutically: first, protein is prone to aggregation, therefore, anti-aggregative or compounds that can break the pre-existing aggregates should be helpful. Second, there are number of molecular events that may be targeted to combat the disease.
Collapse
|
44
|
Wu AG, Zeng W, Wong VKW, Zhu YZ, Lo AC, Liu L, Law BYK. Hederagenin and α-hederin promote degradation of proteins in neurodegenerative diseases and improve motor deficits in MPTP-mice. Pharmacol Res 2017; 115:25-44. [DOI: 10.1016/j.phrs.2016.11.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/21/2016] [Accepted: 11/02/2016] [Indexed: 11/30/2022]
|
45
|
Structural Characteristics of α-Synuclein Oligomers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 329:79-143. [DOI: 10.1016/bs.ircmb.2016.08.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Khanam H, Ali A, Asif M, Shamsuzzaman. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur J Med Chem 2016; 124:1121-1141. [DOI: 10.1016/j.ejmech.2016.08.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/02/2016] [Accepted: 08/05/2016] [Indexed: 12/11/2022]
|
47
|
Breydo L, Redington JM, Uversky VN. Effects of Intrinsic and Extrinsic Factors on Aggregation of Physiologically Important Intrinsically Disordered Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 329:145-185. [PMID: 28109327 DOI: 10.1016/bs.ircmb.2016.08.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Misfolding and aggregation of proteins and peptides play an important role in a number of diseases as well as in many physiological processes. Many of the proteins that misfold and aggregate in vivo are intrinsically disordered. Protein aggregation is a complex multistep process, and aggregates can significantly differ in morphology, structure, stability, cytotoxicity, and self-propagation ability. The aggregation process is influenced by both intrinsic (e.g., mutations and expression levels) and extrinsic (e.g., polypeptide chain truncation, macromolecular crowding, posttranslational modifications, as well as interaction with metal ions, other small molecules, lipid membranes, and chaperons) factors. This review examines the effect of a variety of these factors on aggregation of physiologically important intrinsically disordered proteins.
Collapse
Affiliation(s)
- L Breydo
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| | - J M Redington
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - V N Uversky
- Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States; Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia.
| |
Collapse
|
48
|
Xiao WD, Peng K, Yang H. Enteric glial cells: An emerging key player in intestinal homeostasis modulation under physiological and pathological conditions. Shijie Huaren Xiaohua Zazhi 2016; 24:3657-3665. [DOI: 10.11569/wcjd.v24.i25.3657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The intestine contains multiple components including epithelial cells, microbiome as well as various neuroendocrine pathways, all of which are essential for maintaining dynamic mucosal homeostasis through complex interactions among different components in the gastrointestinal tract. Beyond the basic neurosupportive and neurotrophic effects, growing evidence reveals the key role of enteric glial cells (EGCs) in the modulation of bowel movement, nutrient absorption and secretion, intestinal immunity as well as barrier function. As well, abnormally activated EGCs are believed to be a vital player in the pathogenesis of a variety of diseases including inflammatory bowel disease, intestinal barrier dysfunction and infections. Here we provide a brief overview of recent research progress about the precise role and the molecule mechanisms of EGCs in modulating intestinal homeostasis, and highlight the critical role of EGC in various intestinal diseases.
Collapse
|
49
|
Ochoa-Cortes F, Turco F, Linan-Rico A, Soghomonyan S, Whitaker E, Wehner S, Cuomo R, Christofi FL. Enteric Glial Cells: A New Frontier in Neurogastroenterology and Clinical Target for Inflammatory Bowel Diseases. Inflamm Bowel Dis 2016; 22:433-49. [PMID: 26689598 PMCID: PMC4718179 DOI: 10.1097/mib.0000000000000667] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 08/29/2015] [Indexed: 12/12/2022]
Abstract
The word "glia" is derived from the Greek word "γλoια," glue of the enteric nervous system, and for many years, enteric glial cells (EGCs) were believed to provide mainly structural support. However, EGCs as astrocytes in the central nervous system may serve a much more vital and active role in the enteric nervous system, and in homeostatic regulation of gastrointestinal functions. The emphasis of this review will be on emerging concepts supported by basic, translational, and/or clinical studies, implicating EGCs in neuron-to-glial (neuroglial) communication, motility, interactions with other cells in the gut microenvironment, infection, and inflammatory bowel diseases. The concept of the "reactive glial phenotype" is explored as it relates to inflammatory bowel diseases, bacterial and viral infections, postoperative ileus, functional gastrointestinal disorders, and motility disorders. The main theme of this review is that EGCs are emerging as a new frontier in neurogastroenterology and a potential therapeutic target. New technological innovations in neuroimaging techniques are facilitating progress in the field, and an update is provided on exciting new translational studies. Gaps in our knowledge are discussed for further research. Restoring normal EGC function may prove to be an efficient strategy to dampen inflammation. Probiotics, palmitoylethanolamide (peroxisome proliferator-activated receptor-α), interleukin-1 antagonists (anakinra), and interventions acting on nitric oxide, receptor for advanced glycation end products, S100B, or purinergic signaling pathways are relevant clinical targets on EGCs with therapeutic potential.
Collapse
Affiliation(s)
| | - Fabio Turco
- Department of Anesthesiology, The Ohio State University, Columbus, Ohio
- Department of Clinical and Experimental Medicine, Gastroenterological Unit, “Federico II” University of Naples, Naples, Italy; and
| | | | - Suren Soghomonyan
- Department of Anesthesiology, The Ohio State University, Columbus, Ohio
| | - Emmett Whitaker
- Department of Anesthesiology, The Ohio State University, Columbus, Ohio
| | - Sven Wehner
- Department of Surgery, University of Bonn, Bonn, Germany
| | - Rosario Cuomo
- Department of Clinical and Experimental Medicine, Gastroenterological Unit, “Federico II” University of Naples, Naples, Italy; and
| | | |
Collapse
|
50
|
Single injection of small-molecule amyloid accelerator results in cell death of nigral dopamine neurons in mice. NPJ PARKINSONS DISEASE 2015; 1:15024. [PMID: 28725689 PMCID: PMC5516562 DOI: 10.1038/npjparkd.2015.24] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/14/2015] [Accepted: 11/13/2015] [Indexed: 12/21/2022]
Abstract
The assembly process of α-synuclein toward amyloid fibers is linked to neurodegeneration in Parkinson’s disease. In the present study, we capitalized on the in vitro discovery of a small-molecule accelerator of α-synuclein amyloid formation and assessed its effects when injected in brains of normal mice. An accelerator and an inhibitor of α-synuclein amyloid formation, as well as vehicle only, were injected into the striatum of normal mice and followed by behavioral evaluation, immunohistochemistry, and metabolomics up to six months later. The effects of molecules injected into the substantia nigra of normal and α-synuclein knock-out mice were also analyzed. When accelerator or inhibitor was injected into the brain of normal mice no acute compound toxicity was found. However, 6 months after single striatal injection of accelerator, mice sensorimotor functions were impaired, whereas mice injected with inhibitor had no dysfunctions. Injection of accelerator (but not inhibitor or vehicle) into the substantia nigra revealed significant loss of tyrosine hydroxylase (TH)-positive neurons after 3 months. No loss of TH-positive neurons was found in α-synuclein knock-out mice injected with accelerator into the substantia nigra. Metabolic serum profiles from accelerator-injected normal mice matched those of newly diagnosed Parkinson’s disease patients, whereas the profiles from inhibitor-injected normal mice matched controls. Single inoculation of a small-molecule amyloid accelerator may be a new approach for studies of early events during dopamine neurodegeneration in mice.
Collapse
|