1
|
Thomas C, Green S, Kimball L, Schmidtke IR, Rothwell L, Griffin M, Par I, Schobel S, Palacio Y, Towle-Weicksel JB, Weicksel SE. Zebrafish Polymerase Theta and human Polymerase Theta: Orthologues with homologous function. PLoS One 2025; 20:e0321886. [PMID: 40299938 PMCID: PMC12040184 DOI: 10.1371/journal.pone.0321886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 03/12/2025] [Indexed: 05/01/2025] Open
Abstract
DNA Polymerase Theta (Pol θ) is a conserved an A-family polymerase that plays an essential role in repairing double strand breaks, through micro-homology end joining, and bypassing DNA lesions, through translesion synthesis, to protect genome integrity. Despite its essential role in DNA repair, Pol θ is inherently error-prone. Recently, key loop regions were identified to play an important role in key functions of Pol θ. Here we present a comparative structure-function study of the polymerase domain of zebrafish and human Pol θ. We show that these two proteins share a large amount of sequence and structural homology. Using a classical biochemical approach we observe that zebrafish Pol θ displays behavior characteristic of human Pol θ, including DNA template extension in the presence of different divalent metals, microhomology-mediated end joining, and translesion synthesis. These results will support future studies looking to gain insight into Pol θ function on the basis of evolutionarily conserved features.
Collapse
Affiliation(s)
- Corey Thomas
- Department of Physical Sciences, Rhode Island College, Providence, Rhode Island, United States of America
| | - Sydney Green
- Department of Physical Sciences, Rhode Island College, Providence, Rhode Island, United States of America
| | - Lily Kimball
- Department of Biology and Biological Sciences, Bryant University, Smithfield, Rhode Island, United States of America
| | - Isaiah R. Schmidtke
- Department of Biology and Biological Sciences, Bryant University, Smithfield, Rhode Island, United States of America
| | - Lauren Rothwell
- Department of Biology and Biological Sciences, Bryant University, Smithfield, Rhode Island, United States of America
| | - Makayla Griffin
- Department of Biology and Biological Sciences, Bryant University, Smithfield, Rhode Island, United States of America
| | - Ivy Par
- Department of Physical Sciences, Rhode Island College, Providence, Rhode Island, United States of America
| | - Sophia Schobel
- Department of Physical Sciences, Rhode Island College, Providence, Rhode Island, United States of America
| | - Yayleene Palacio
- Department of Physical Sciences, Rhode Island College, Providence, Rhode Island, United States of America
| | - Jamie B. Towle-Weicksel
- Department of Physical Sciences, Rhode Island College, Providence, Rhode Island, United States of America
| | - Steven E. Weicksel
- Department of Biology and Biological Sciences, Bryant University, Smithfield, Rhode Island, United States of America
| |
Collapse
|
2
|
Li C, Maksoud LM, Gao Y. Structural basis of error-prone DNA synthesis by DNA polymerase θ. Nat Commun 2025; 16:2063. [PMID: 40021647 PMCID: PMC11871136 DOI: 10.1038/s41467-025-57269-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 02/18/2025] [Indexed: 03/03/2025] Open
Abstract
DNA polymerase θ (Pol θ) is an A-family DNA polymerase specialized in DNA double-strand breaks repair and translesion synthesis. Distinct from its high-fidelity homologs in DNA replication, Pol θ catalyzes template-dependent DNA synthesis with an inherent propensity for error incorporation. However, the structural basis of Pol θ's low-fidelity DNA synthesis is not clear. Here, we present cryo-electron microscopy structures detailing the polymerase domain of human Pol θ in complex with a cognate C:G base pair (bp), a mismatched T:G bp, or a mismatched T:T bp. Our structures illustrate that Pol θ snugly accommodates the mismatched nascent base pairs within its active site with the finger domain well-closed, consistent with our in-solution fluorescence measurement but in contrast to its high-fidelity homologs. In addition, structural examination and mutagenesis study show that unique residues surrounding the active site contribute to the stabilization of the mismatched nascent base pair. Furthermore, Pol θ can efficiently extend from the misincorporated T:G or T:T mismatches, yet with a preference for template or primer looping-out, resulting in insertions and deletions. Collectively, our results elucidate how an A-family polymerase is adapted for error-prone DNA synthesis.
Collapse
Affiliation(s)
- Chuxuan Li
- Department of Biosciences, Rice University, 6500 Main St., Houston, 77005, TX, USA
| | - Leora M Maksoud
- Department of Biosciences, Rice University, 6500 Main St., Houston, 77005, TX, USA
| | - Yang Gao
- Department of Biosciences, Rice University, 6500 Main St., Houston, 77005, TX, USA.
| |
Collapse
|
3
|
Hayward BE, Kim GY, Miller CJ, McCann C, Lowery MG, Wood RD, Usdin K. Repeat expansion in a fragile X model is independent of double strand break repair mediated by Pol θ, RAD52, RAD54 or RAD54B. Sci Rep 2025; 15:5033. [PMID: 39934227 PMCID: PMC11814403 DOI: 10.1038/s41598-025-87541-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Microsatellite instability is responsible for the human repeat expansion diseases (REDs). The mutagenic process differs from classical cancer-associated microsatellite instability (MSI) in that it requires the mismatch repair proteins that normally protect against MSI. LIG4, an enzyme essential for non-homologous end-joining (NHEJ), the major pathway for double-strand break repair (DSBR) in mammalian cells, protects against expansion in mouse models. Thus, NHEJ may compete with the expansion pathway for access to a common intermediate. This raises the possibility that expansion involves an NHEJ-independent form of DSBR. Pol θ, a polymerase involved in the theta-mediated end joining (TMEJ) DSBR pathway, has been proposed to play a role in repeat expansion. Here we examine the effect of the loss of Pol θ on expansion in FXD mouse embryonic stem cells (mESCs), along with the effects of mutations in Rad52, Rad54l and Rad54b, genes important for multiple DSBR pathways. None of these mutations significantly affected repeat expansion. These observations put major constraints on what pathways are likely to drive expansion. Together with our previous demonstration of the protective effect of nucleases like EXO1 and FAN1, and the importance of Pol β, they suggest a plausible model for late steps in the expansion process.
Collapse
Affiliation(s)
- Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Geum-Yi Kim
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Carson J Miller
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Cai McCann
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Megan G Lowery
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, PO Box 301429, Unit 1951, Houston, TX, 77230, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, PO Box 301429, Unit 1951, Houston, TX, 77230, USA
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA.
- National Institutes of Health, 8 Center Drive MSC 0830, Building 8, Room 2A19, Bethesda, MD, USA.
| |
Collapse
|
4
|
Hayward BE, Kim GY, Miller CJ, McCann C, Lowery MG, Wood RD, Usdin K. Repeat expansion in a Fragile X model is independent of double strand break repair mediated by Pol θ, Rad52, Rad54l or Rad54b. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.621911. [PMID: 39574643 PMCID: PMC11580960 DOI: 10.1101/2024.11.05.621911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2024]
Abstract
Microsatellite instability is responsible for the human Repeat Expansion Disorders. The mutation responsible differs from classical cancer-associated microsatellite instability (MSI) in that it requires the mismatch repair proteins that normally protect against MSI. LIG4, an enzyme essential for non-homologous end-joining (NHEJ), the major pathway for double-strand break repair (DSBR) in mammalian cells, protects against expansion in mouse models. Thus, NHEJ may compete with the expansion pathway for access to a common intermediate. This raises the possibility that expansion involves an NHEJ-independent form of DSBR. Pol θ, a polymerase involved in the theta-mediated end joining (TMEJ) DSBR pathway, has been proposed to play a role in repeat expansion. Here we examine the effect of the loss of Pol θ on expansion in FXD mouse embryonic stem cells (mESCs), along with the effects of mutations in Rad52, Rad54l and Rad54b, genes important for multiple DSBR pathways. None of these mutations significantly affected repeat expansion. These observations put major constraints on what pathways are likely to drive expansion. Together with our previous demonstration of the protective effect of nucleases like EXO1 and FAN1, and the importance of Pol β, they suggest a plausible model for late steps in the expansion process.
Collapse
Affiliation(s)
- Bruce E Hayward
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Geum-Yi Kim
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Carson J Miller
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Cai McCann
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
- Takeda Pharmaceuticals U.S.A., Inc., Global Biologics Informatics and Automation, 500 Kendall Street, Cambridge, MA 02142, USA
| | - Megan G Lowery
- The University of Texas MD Anderson Cancer Center, Department of Epigenetics & Molecular Carcinogenesis, PO Box 301429, Unit 1951, Houston, Texas 77230
| | - Richard D Wood
- The University of Texas MD Anderson Cancer Center, Department of Epigenetics & Molecular Carcinogenesis, PO Box 301429, Unit 1951, Houston, Texas 77230
| | - Karen Usdin
- Section on Gene Structure and Disease, Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
5
|
Thomas C, Green S, Kimball L, Schmidtke IR, Griffin M, Rothwell L, Par I, Schobel S, Palacio Y, Towle-Weicksel JB, Weicksel SE. Zebrafish Polymerase Theta and human Polymerase Theta: orthologues with homologous function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.27.615541. [PMID: 39386538 PMCID: PMC11463350 DOI: 10.1101/2024.09.27.615541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
DNA Polymerase Theta (Pol θ) is a conserved an A-family polymerase that plays an essential role in repairing double strand breaks, through micro-homology end joining, and bypassing DNA lesions, through translesion synthesis, to protect genome integrity. Despite its essential role in DNA repair, Pol θ is inherently error-prone. Recently, key loop regions were identified to play an important role in key functions of Pol θ. Here we present a comparative structure-function study of the polymerase domain of zebrafish and human Pol θ. We show that these two proteins share a large amount of sequence and structural homology. However, we identify differences in the amino acid composition within the key loop areas shown to drive characteristic Pol θ functions. Despite these differences zebrafish Pol θ still displays characteristics identify in human Pol θ, including DNA template extension in the presence of different divalent metals, microhomology-mediated end joining, and translesion synthesis. These results will support future studies looking to gain insight into Pol θ function on the basis of evolutionarily conserved features.
Collapse
Affiliation(s)
- Corey Thomas
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Sydney Green
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Lily Kimball
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Isaiah R Schmidtke
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Makayla Griffin
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Lauren Rothwell
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| | - Ivy Par
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Sophia Schobel
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | - Yayleene Palacio
- Department of Physical Sciences, Rhode Island College, Providence, RI
| | | | - Steven E Weicksel
- Department of Biology and Biological Sciences, Bryant University, Smithfield RI
| |
Collapse
|
6
|
Ramirez-Otero MA, Costanzo V. "Bridging the DNA divide": Understanding the interplay between replication- gaps and homologous recombination proteins RAD51 and BRCA1/2. DNA Repair (Amst) 2024; 141:103738. [PMID: 39084178 DOI: 10.1016/j.dnarep.2024.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
A key but often neglected component of genomic instability is the emergence of single-stranded DNA (ssDNA) gaps during DNA replication in the absence of functional homologous recombination (HR) proteins, such as RAD51 and BRCA1/2. Research in prokaryotes has shed light on the dual role of RAD51's bacterial ortholog, RecA, in HR and the protection of replication forks, emphasizing its essential role in preventing the formation of ssDNA gaps, which is vital for cellular viability. This phenomenon was corroborated in eukaryotic cells deficient in HR, where the formation of ssDNA gaps within newly synthesized DNA and their subsequent processing by the MRE11 nuclease were observed. Without functional HR proteins, cells employ alternative ssDNA gap-filling mechanisms to ensure survival, though this compensatory response can compromise genomic stability. A notable example is the involvement of the translesion synthesis (TLS) polymerase POLζ, along with the repair protein POLθ, in the suppression of replicative ssDNA gaps. Persistent ssDNA gaps may result in replication fork collapse, chromosomal anomalies, and cell death, which contribute to cancer progression and resistance to therapy. Elucidating the processes that avert ssDNA gaps and safeguard replication forks is critical for enhancing cancer treatment approaches by exploiting the vulnerabilities of cancer cells in these pathways.
Collapse
Affiliation(s)
| | - Vincenzo Costanzo
- IFOM ETS - The AIRC Institute of Molecular Oncology, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
7
|
Vekariya U, Minakhin L, Chandramouly G, Tyagi M, Kent T, Sullivan-Reed K, Atkins J, Ralph D, Nieborowska-Skorska M, Kukuyan AM, Tang HY, Pomerantz RT, Skorski T. PARG is essential for Polθ-mediated DNA end-joining by removing repressive poly-ADP-ribose marks. Nat Commun 2024; 15:5822. [PMID: 38987289 PMCID: PMC11236980 DOI: 10.1038/s41467-024-50158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 06/27/2024] [Indexed: 07/12/2024] Open
Abstract
DNA polymerase theta (Polθ)-mediated end-joining (TMEJ) repairs DNA double-strand breaks and confers resistance to genotoxic agents. How Polθ is regulated at the molecular level to exert TMEJ remains poorly characterized. We find that Polθ interacts with and is PARylated by PARP1 in a HPF1-independent manner. PARP1 recruits Polθ to the vicinity of DNA damage via PARylation dependent liquid demixing, however, PARylated Polθ cannot perform TMEJ due to its inability to bind DNA. PARG-mediated de-PARylation of Polθ reactivates its DNA binding and end-joining activities. Consistent with this, PARG is essential for TMEJ and the temporal recruitment of PARG to DNA damage corresponds with TMEJ activation and dissipation of PARP1 and PAR. In conclusion, we show a two-step spatiotemporal mechanism of TMEJ regulation. First, PARP1 PARylates Polθ and facilitates its recruitment to DNA damage sites in an inactivated state. PARG subsequently activates TMEJ by removing repressive PAR marks on Polθ.
Collapse
Affiliation(s)
- Umeshkumar Vekariya
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Leonid Minakhin
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Gurushankar Chandramouly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Mrityunjay Tyagi
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Tatiana Kent
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Katherine Sullivan-Reed
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Jessica Atkins
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Douglas Ralph
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA
| | - Margaret Nieborowska-Skorska
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Anna-Mariya Kukuyan
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Hsin-Yao Tang
- Proteomics and Metabolomics Facility, The Wistar Institute, Philadelphia, PA, 19104, USA
| | - Richard T Pomerantz
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Department of Biochemistry and Molecular Biology, Philadelphia, PA, 19107, USA.
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA.
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
8
|
Carvajal-Maldonado D, Li Y, Returan M, Averill AM, Doublié S, Wood RD. Dynamic stem-loop extension by Pol θ and templated insertion during DNA repair. J Biol Chem 2024; 300:107461. [PMID: 38876299 PMCID: PMC11292364 DOI: 10.1016/j.jbc.2024.107461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024] Open
Abstract
Theta-mediated end joining (TMEJ) is critical for survival of cancer cells when other DNA double-stranded break repair pathways are impaired. Human DNA polymerase theta (Pol θ) can extend ssDNA oligonucleotides, but little is known about preferred substrates and mechanism. We show that Pol θ can extend both ssDNA and RNA substrates by unimolecular stem-loop synthesis initiated by only two 3' terminal base pairs. Given sufficient time, Pol θ uses alternative pairing configurations that greatly expand the repertoire of sequence outcomes. Further primer-template adjustments yield low-fidelity outcomes when the nucleotide pool is imbalanced. Unimolecular stem-loop synthesis competes with bimolecular end joining, even when a longer terminal microhomology for end joining is available. Both reactions are partially suppressed by the ssDNA-binding protein replication protein A. Protein-primer grasp residues that are specific to Pol θ are needed for rapid stem-loop synthesis. The ability to perform stem-loop synthesis from a minimally paired primer is rare among human DNA polymerases, but we show that human DNA polymerases Pol η and Pol λ can catalyze related reactions. Using purified human Pol θ, we reconstituted in vitro TMEJ incorporating an insertion arising from a stem-loop extension. These activities may help explain TMEJ repair events that include inverted repeat sequences.
Collapse
Affiliation(s)
- Denisse Carvajal-Maldonado
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA
| | - Yuzhen Li
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA
| | - Mark Returan
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA
| | - April M Averill
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA.
| |
Collapse
|
9
|
Thomas C, Avalos-Irving L, Victorino J, Green S, Andrews M, Rodrigues N, Ebirim S, Mudd A, Towle-Weicksel JB. Melanoma-Derived DNA Polymerase Theta Variants Exhibit Altered DNA Polymerase Activity. Biochemistry 2024; 63:1107-1117. [PMID: 38671548 PMCID: PMC11080051 DOI: 10.1021/acs.biochem.3c00670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
DNA polymerase θ (Pol θ or POLQ) is primarily involved in repairing double-stranded breaks in DNA through an alternative pathway known as microhomology-mediated end joining (MMEJ) or theta-mediated end joining (TMEJ). Unlike other DNA repair polymerases, Pol θ is thought to be highly error-prone yet critical for cell survival. We have identified several POLQ gene variants from human melanoma tumors that experience altered DNA polymerase activity, including a propensity for incorrect nucleotide selection and reduced polymerization rates compared to WT Pol θ. Variants are 30-fold less efficient at incorporating a nucleotide during repair and up to 70-fold less accurate at selecting the correct nucleotide opposite a templating base. This suggests that aberrant Pol θ has reduced DNA repair capabilities and may also contribute to increased mutagenesis. Moreover, the variants were identified in established tumors, suggesting that cancer cells may use mutated polymerases to promote metastasis and drug resistance.
Collapse
Affiliation(s)
- Corey Thomas
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Lisbeth Avalos-Irving
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Jorge Victorino
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Sydney Green
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Morgan Andrews
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Naisha Rodrigues
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Sarah Ebirim
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Ayden Mudd
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| | - Jamie B. Towle-Weicksel
- Department of Physical Sciences, Rhode Island College, 600 Mount Pleasant Avenue, Providence, Rhode Island 02908, United States
| |
Collapse
|
10
|
Jones KM, Bryan A, McCunn E, Lantz PE, Blalock H, Ojeda IC, Mehta K, Cosper PF. The Causes and Consequences of DNA Damage and Chromosomal Instability Induced by Human Papillomavirus. Cancers (Basel) 2024; 16:1662. [PMID: 38730612 PMCID: PMC11083350 DOI: 10.3390/cancers16091662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
High-risk human papillomaviruses (HPVs) are the main cause of cervical, oropharyngeal, and anogenital cancers, which are all treated with definitive chemoradiation therapy when locally advanced. HPV proteins are known to exploit the host DNA damage response to enable viral replication and the epithelial differentiation protocol. This has far-reaching consequences for the host genome, as the DNA damage response is critical for the maintenance of genomic stability. HPV+ cells therefore have increased DNA damage, leading to widespread genomic instability, a hallmark of cancer, which can contribute to tumorigenesis. Following transformation, high-risk HPV oncoproteins induce chromosomal instability, or chromosome missegregation during mitosis, which is associated with a further increase in DNA damage, particularly due to micronuclei and double-strand break formation. Thus, HPV induces significant DNA damage and activation of the DNA damage response in multiple contexts, which likely affects radiation sensitivity and efficacy. Here, we review how HPV activates the DNA damage response, how it induces chromosome missegregation and micronuclei formation, and discuss how these factors may affect radiation response. Understanding how HPV affects the DNA damage response in the context of radiation therapy may help determine potential mechanisms to improve therapeutic response.
Collapse
Affiliation(s)
- Kathryn M. Jones
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Ava Bryan
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Emily McCunn
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Pate E. Lantz
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
| | - Hunter Blalock
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Isabel C. Ojeda
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- University of Wisconsin School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Kavi Mehta
- Department of Comparative Biosciences, University of Wisconsin, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Pippa F. Cosper
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
11
|
Fijen C, Drogalis Beckham L, Terino D, Li Y, Ramsden DA, Wood RD, Doublié S, Rothenberg E. Sequential requirements for distinct Polθ domains during theta-mediated end joining. Mol Cell 2024; 84:1460-1474.e6. [PMID: 38640894 PMCID: PMC11031631 DOI: 10.1016/j.molcel.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 01/10/2024] [Accepted: 03/12/2024] [Indexed: 04/21/2024]
Abstract
DNA polymerase θ (Polθ) plays a central role in a DNA double-strand break repair pathway termed theta-mediated end joining (TMEJ). TMEJ functions by pairing short-sequence "microhomologies" (MHs) in single-stranded DNA at each end of a break and subsequently initiating DNA synthesis. It is not known how the Polθ helicase domain (HD) and polymerase domain (PD) operate to bring together MHs and facilitate repair. To resolve these transient processes in real time, we utilized in vitro single-molecule FRET approaches and biochemical analyses. We find that the Polθ-HD mediates the initial capture of two ssDNA strands, bringing them in close proximity. The Polθ-PD binds and stabilizes pre-annealed MHs to form a synaptic complex (SC) and initiate repair synthesis. Individual synthesis reactions show that Polθ is inherently non-processive, accounting for complex mutational patterns during TMEJ. Binding of Polθ-PD to stem-loop-forming sequences can substantially limit synapsis, depending on the available dNTPs and sequence context.
Collapse
Affiliation(s)
- Carel Fijen
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| | - Lea Drogalis Beckham
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Dante Terino
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Yuzhen Li
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Dale A Ramsden
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX 77230, USA
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA
| | - Eli Rothenberg
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
12
|
Fried W, Tyagi M, Minakhin L, Chandramouly G, Tredinnick T, Ramanjulu M, Auerbacher W, Calbert M, Rusanov T, Hoang T, Borisonnik N, Betsch R, Krais JJ, Wang Y, Vekariya UM, Gordon J, Morton G, Kent T, Skorski T, Johnson N, Childers W, Chen XS, Pomerantz RT. Discovery of a small-molecule inhibitor that traps Polθ on DNA and synergizes with PARP inhibitors. Nat Commun 2024; 15:2862. [PMID: 38580648 PMCID: PMC10997755 DOI: 10.1038/s41467-024-46593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024] Open
Abstract
The DNA damage response (DDR) protein DNA Polymerase θ (Polθ) is synthetic lethal with homologous recombination (HR) factors and is therefore a promising drug target in BRCA1/2 mutant cancers. We discover an allosteric Polθ inhibitor (Polθi) class with 4-6 nM IC50 that selectively kills HR-deficient cells and acts synergistically with PARP inhibitors (PARPi) in multiple genetic backgrounds. X-ray crystallography and biochemistry reveal that Polθi selectively inhibits Polθ polymerase (Polθ-pol) in the closed conformation on B-form DNA/DNA via an induced fit mechanism. In contrast, Polθi fails to inhibit Polθ-pol catalytic activity on A-form DNA/RNA in which the enzyme binds in the open configuration. Remarkably, Polθi binding to the Polθ-pol:DNA/DNA closed complex traps the polymerase on DNA for more than forty minutes which elucidates the inhibitory mechanism of action. These data reveal a unique small-molecule DNA polymerase:DNA trapping mechanism that induces synthetic lethality in HR-deficient cells and potentiates the activity of PARPi.
Collapse
Affiliation(s)
- William Fried
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Mrityunjay Tyagi
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Leonid Minakhin
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Taylor Tredinnick
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Mercy Ramanjulu
- Recombination Therapeutics, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - William Auerbacher
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Marissa Calbert
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
- Fels Cancer Institute for Personalized Medicine, Philadelphia, PA, USA
| | - Timur Rusanov
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | | | | | - Robert Betsch
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - John J Krais
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Yifan Wang
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Umeshkumar M Vekariya
- Fels Cancer Institute for Personalized Medicine, Philadelphia, PA, USA
- Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - John Gordon
- Fels Cancer Institute for Personalized Medicine, Philadelphia, PA, USA
| | - George Morton
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Tatiana Kent
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Tomasz Skorski
- Fels Cancer Institute for Personalized Medicine, Philadelphia, PA, USA
- Department of Cancer and Cellular Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, USA
| | - Neil Johnson
- Nuclear Dynamics Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Wayne Childers
- Recombination Therapeutics, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, Department of Biological Sciences and Chemistry, University of Southern California, Los Angeles, CA, USA
- Recombination Therapeutics, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA
| | - Richard T Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, 19107, USA.
- Recombination Therapeutics, Pennsylvania Biotechnology Center, Doylestown, PA, 18902, USA.
| |
Collapse
|
13
|
Thomas C, Avalos-Irving L, Victorino J, Green S, Andrews M, Rodrigues N, Ebirim S, Mudd A, Towle-Weicksel JB. Melanoma-derived DNA polymerase theta variants exhibit altered DNA polymerase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.14.566933. [PMID: 38014040 PMCID: PMC10680777 DOI: 10.1101/2023.11.14.566933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
DNA Polymerase θ (Pol θ or POLQ) is primarily involved in repairing double-stranded breaks in DNA through the alternative pathway known as microhomology-mediated end joining (MMEJ) or theta-mediated end joining (TMEJ). Unlike other DNA repair polymerases, Pol θ is thought to be highly error prone, yet critical for cell survival. We have identified several mutations in the POLQ gene from human melanoma tumors. Through biochemical analysis, we have demonstrated that all three cancer-associated variants experienced altered DNA polymerase activity including a propensity for incorrect nucleotide selection and reduced polymerization rates compared to WT Pol θ. Moreover, the variants are 30 fold less efficient at incorporating a nucleotide during repair and up to 70 fold less accurate at selecting the correct nucleotide opposite a templating base. Taken together, this suggests that aberrant Pol θ has reduced DNA repair capabilities and may also contribute to increased mutagenesis. While this may be beneficial to normal cell survival, the variants were identified in established tumors suggesting that cancer cells may use this promiscuous polymerase to its advantage to promote metastasis and drug resistance.
Collapse
|
14
|
Tredinnick T, Kent T, Minakhin L, Li Z, Madzo J, Chen XS, Pomerantz RT. Promoter-independent synthesis of chemically modified RNA by human DNA polymerase θ variants. RNA (NEW YORK, N.Y.) 2023; 29:1288-1300. [PMID: 37105714 PMCID: PMC10351887 DOI: 10.1261/rna.079396.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Synthetic RNA oligonucleotides composed of canonical and modified ribonucleotides are highly effective for RNA antisense therapeutics and RNA-based genome engineering applications utilizing CRISPR-Cas9. Yet, synthesis of synthetic RNA using phosphoramidite chemistry is highly inefficient and expensive relative to DNA oligonucleotides, especially for relatively long RNA oligonucleotides. Thus, new biotechnologies are needed to significantly reduce costs, while increasing synthesis rates and yields of synthetic RNA. Here, we engineer human DNA polymerase theta (Polθ) variants and demonstrate their ability to synthesize long (95-200 nt) RNA oligonucleotides with canonical ribonucleotides and ribonucleotide analogs commonly used for stabilizing RNA for therapeutic and genome engineering applications. In contrast to natural promoter-dependent RNA polymerases, Polθ variants synthesize RNA by initiating from DNA or RNA primers, which enables the production of RNA without short abortive byproducts. Remarkably, Polθ variants show the lower capacity to misincorporate ribonucleotides compared to T7 RNA polymerase. Automation of this enzymatic RNA synthesis technology can potentially increase yields while reducing costs of synthetic RNA oligonucleotide production.
Collapse
Affiliation(s)
- Taylor Tredinnick
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Tatiana Kent
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Leonid Minakhin
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | - Ziyuan Li
- Molecular and Computational Biology, USC Dornsife Department of Biological Sciences, University of Southern California, Los Angeles, California 90007, USA
| | - Jozef Madzo
- Coriell Institute for Medical Research, Camden, New Jersey 08103, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, USC Dornsife Department of Biological Sciences, University of Southern California, Los Angeles, California 90007, USA
| | - Richard T Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| |
Collapse
|
15
|
Oh JM, Kang Y, Park J, Sung Y, Kim D, Seo Y, Lee E, Ra J, Amarsanaa E, Park YU, Lee S, Hwang J, Kim H, Schärer O, Cho S, Lee C, Takata KI, Lee J, Myung K. MSH2-MSH3 promotes DNA end resection during homologous recombination and blocks polymerase theta-mediated end-joining through interaction with SMARCAD1 and EXO1. Nucleic Acids Res 2023; 51:5584-5602. [PMID: 37140056 PMCID: PMC10287916 DOI: 10.1093/nar/gkad308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
DNA double-strand break (DSB) repair via homologous recombination is initiated by end resection. The extent of DNA end resection determines the choice of the DSB repair pathway. Nucleases for end resection have been extensively studied. However, it is still unclear how the potential DNA structures generated by the initial short resection by MRE11-RAD50-NBS1 are recognized and recruit proteins, such as EXO1, to DSB sites to facilitate long-range resection. We found that the MSH2-MSH3 mismatch repair complex is recruited to DSB sites through interaction with the chromatin remodeling protein SMARCAD1. MSH2-MSH3 facilitates the recruitment of EXO1 for long-range resection and enhances its enzymatic activity. MSH2-MSH3 also inhibits access of POLθ, which promotes polymerase theta-mediated end-joining (TMEJ). Collectively, we present a direct role of MSH2-MSH3 in the initial stages of DSB repair by promoting end resection and influencing the DSB repair pathway by favoring homologous recombination over TMEJ.
Collapse
Affiliation(s)
- Jung-Min Oh
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Oral Biochemistry, Dental and Life Science Institute, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Yujin Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Jumi Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Yubin Sung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Dayoung Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Yuri Seo
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Eun A Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Enkhzul Amarsanaa
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Young-Un Park
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Seon Young Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jung Me Hwang
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Hongtae Kim
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Orlando Schärer
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Seung Woo Cho
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Changwook Lee
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Kei-ichi Takata
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Ja Yil Lee
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan44919, Republic of Korea
| |
Collapse
|
16
|
Yi G, Sung Y, Kim C, Ra JS, Hirakawa H, Kato T, Fujimori A, Kim H, Takata KI. DNA polymerase θ-mediated repair of high LET radiation-induced complex DNA double-strand breaks. Nucleic Acids Res 2023; 51:2257-2269. [PMID: 36805268 PMCID: PMC10018357 DOI: 10.1093/nar/gkad076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 02/22/2023] Open
Abstract
DNA polymerase θ (POLQ) is a unique DNA polymerase that is able to perform microhomology-mediated end-joining as well as translesion synthesis (TLS) across an abasic (AP) site and thymine glycol (Tg). However, the biological significance of the TLS activity is currently unknown. Herein we provide evidence that the TLS activity of POLQ plays a critical role in repairing complex DNA double-strand breaks (DSBs) induced by high linear energy transfer (LET) radiation. Radiotherapy with high LET radiation such as carbon ions leads to more deleterious biological effects than corresponding doses of low LET radiation such as X-rays. High LET-induced DSBs are considered to be complex, carrying additional DNA damage such as AP site and Tg in close proximity to the DSB sites. However, it is not clearly understood how complex DSBs are processed in mammalian cells. We demonstrated that genetic disruption of POLQ results in an increase of chromatid breaks and enhanced cellular sensitivity following treatment with high LET radiation. At the biochemical level, POLQ was able to bypass an AP site and Tg during end-joining and was able to anneal two single-stranded DNA tails when DNA lesions were located outside the microhomology. This study offers evidence that POLQ is directly involved in the repair of complex DSBs.
Collapse
Affiliation(s)
- Geunil Yi
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Yubin Sung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Chanwoo Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Hirokazu Hirakawa
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Chiba 263-8555, Japan
| | - Takamitsu A Kato
- Department of Environmental & Radiological Health Sciences, Colorado State University, Colorado 80523, USA
| | - Akira Fujimori
- Department of Charged Particle Therapy Research, Institute for Quantum Medical Science, Chiba 263-8555, Japan
| | - Hajin Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Kei-ichi Takata
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
17
|
Multifaceted Nature of DNA Polymerase θ. Int J Mol Sci 2023; 24:ijms24043619. [PMID: 36835031 PMCID: PMC9962433 DOI: 10.3390/ijms24043619] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/15/2023] Open
Abstract
DNA polymerase θ belongs to the A family of DNA polymerases and plays a key role in DNA repair and damage tolerance, including double-strand break repair and DNA translesion synthesis. Pol θ is often overexpressed in cancer cells and promotes their resistance to chemotherapeutic agents. In this review, we discuss unique biochemical properties and structural features of Pol θ, its multiple roles in protection of genome stability and the potential of Pol θ as a target for cancer treatment.
Collapse
|
18
|
Li C, Zhu H, Jin S, Maksoud LM, Jain N, Sun J, Gao Y. Structural basis of DNA polymerase θ mediated DNA end joining. Nucleic Acids Res 2023; 51:463-474. [PMID: 36583344 PMCID: PMC9841435 DOI: 10.1093/nar/gkac1201] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/31/2022] Open
Abstract
DNA polymerase θ (Pol θ) plays an essential role in the microhomology-mediated end joining (MMEJ) pathway for repairing DNA double-strand breaks. However, the mechanisms by which Pol θ recognizes microhomologous DNA ends and performs low-fidelity DNA synthesis remain unclear. Here, we present cryo-electron microscope structures of the polymerase domain of Lates calcarifer Pol θ with long and short duplex DNA at up to 2.4 Å resolution. Interestingly, Pol θ binds to long and short DNA substrates similarly, with extensive interactions around the active site. Moreover, Pol θ shares a similar active site as high-fidelity A-family polymerases with its finger domain well-closed but differs in having hydrophilic residues surrounding the nascent base pair. Computational simulations and mutagenesis studies suggest that the unique insertion loops of Pol θ help to stabilize short DNA binding and assemble the active site for MMEJ repair. Taken together, our results illustrate the structural basis of Pol θ-mediated MMEJ.
Collapse
Affiliation(s)
- Chuxuan Li
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Hanwen Zhu
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shikai Jin
- Department of Biosciences, Rice University, Houston, TX 77005, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA
| | - Leora M Maksoud
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| | - Nikhil Jain
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ji Sun
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yang Gao
- Department of Biosciences, Rice University, Houston, TX 77005, USA
| |
Collapse
|
19
|
Belan O, Sebald M, Adamowicz M, Anand R, Vancevska A, Neves J, Grinkevich V, Hewitt G, Segura-Bayona S, Bellelli R, Robinson HMR, Higgins GS, Smith GCM, West SC, Rueda DS, Boulton SJ. POLQ seals post-replicative ssDNA gaps to maintain genome stability in BRCA-deficient cancer cells. Mol Cell 2022; 82:4664-4680.e9. [PMID: 36455556 DOI: 10.1016/j.molcel.2022.11.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 12/03/2022]
Abstract
POLQ is a key effector of DSB repair by microhomology-mediated end-joining (MMEJ) and is overexpressed in many cancers. POLQ inhibitors confer synthetic lethality in HR and Shieldin-deficient cancer cells, which has been proposed to reflect a critical dependence on the DSB repair pathway by MMEJ. Whether POLQ also operates independent of MMEJ remains unexplored. Here, we show that POLQ-deficient cells accumulate post-replicative ssDNA gaps upon BRCA1/2 loss or PARP inhibitor treatment. Biochemically, cooperation between POLQ helicase and polymerase activities promotes RPA displacement and ssDNA-gap fill-in, respectively. POLQ is also capable of microhomology-mediated gap skipping (MMGS), which generates deletions during gap repair that resemble the genomic scars prevalent in POLQ overexpressing cancers. Our findings implicate POLQ in mutagenic post-replicative gap sealing, which could drive genome evolution in cancer and whose loss places a critical dependency on HR for gap protection and repair and cellular viability.
Collapse
Affiliation(s)
- Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marie Sebald
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Marek Adamowicz
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Aleksandra Vancevska
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Joana Neves
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Vera Grinkevich
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Graeme Hewitt
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Sandra Segura-Bayona
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - Roberto Bellelli
- Centre for Cancer Cell and Molecular Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - Helen M R Robinson
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Geoff S Higgins
- Medical Research Council Oxford Institute for Radiation Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Graeme C M Smith
- Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Stephen C West
- DNA Recombination and Repair Laboratory, The Francis Crick Institute, London NW1 1AT, UK
| | - David S Rueda
- Department of Infectious Disease, Faculty of Medicine, Imperial College London, London W12 0NN, UK; Single Molecule Imaging Group, MRC-London Institute of Medical Sciences, London W12 0NN, UK
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London NW1 1AT, UK; Artios Pharma Ltd., B940 Babraham Research Campus, Cambridge CB22 3FH, UK.
| |
Collapse
|
20
|
Delzell S, Nelson SW, Frost MP, Klingbeil MM. Trypanosoma brucei Mitochondrial DNA Polymerase POLIB Contains a Novel Polymerase Domain Insertion That Confers Dominant Exonuclease Activity. Biochemistry 2022; 61:2751-2765. [PMID: 36399653 PMCID: PMC9731263 DOI: 10.1021/acs.biochem.2c00392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/31/2022] [Indexed: 11/19/2022]
Abstract
Trypanosoma brucei and related parasites contain an unusual catenated mitochondrial genome known as kinetoplast DNA (kDNA) composed of maxicircles and minicircles. The kDNA structure and replication mechanism are divergent and essential for parasite survival. POLIB is one of three Family A DNA polymerases independently essential to maintain the kDNA network. However, the division of labor among the paralogs, particularly which might be a replicative, proofreading enzyme, remains enigmatic. De novo modeling of POLIB suggested a structure that is divergent from all other Family A polymerases, in which the thumb subdomain contains a 369 amino acid insertion with homology to DEDDh DnaQ family 3'-5' exonucleases. Here we demonstrate recombinant POLIB 3'-5' exonuclease prefers DNA vs RNA substrates and degrades single- and double-stranded DNA nonprocessively. Exonuclease activity prevails over polymerase activity on DNA substrates at pH 8.0, while DNA primer extension is favored at pH 6.0. Mutations that ablate POLIB polymerase activity slow the exonuclease rate suggesting crosstalk between the domains. We show that POLIB extends an RNA primer more efficiently than a DNA primer in the presence of dNTPs but does not incorporate rNTPs efficiently using either primer. Immunoprecipitation of Pol I-like paralogs from T. brucei corroborates the pH selectivity and RNA primer preferences of POLIB and revealed that the other paralogs efficiently extend a DNA primer. The enzymatic properties of POLIB suggest this paralog is not a replicative kDNA polymerase, and the noncanonical polymerase domain provides another example of exquisite diversity among DNA polymerases for specialized function.
Collapse
Affiliation(s)
- Stephanie
B. Delzell
- Department
of Microbiology, University of Massachusetts, Amherst, Massachusetts01003, United States
| | - Scott W. Nelson
- Roy
J. Carver Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa50011, United States
| | - Matthew P. Frost
- Department
of Microbiology, University of Massachusetts, Amherst, Massachusetts01003, United States
| | - Michele M. Klingbeil
- Department
of Microbiology, University of Massachusetts, Amherst, Massachusetts01003, United States
- The
Institute for Applied Life Sciences, University
of Massachusetts, Amherst, Massachusetts01003, United States
| |
Collapse
|
21
|
Abstract
DNA polymerase θ (Pol θ) is a DNA repair enzyme widely conserved in animals and plants. Pol θ uses short DNA sequence homologies to initiate repair of double-strand breaks by theta-mediated end joining. The DNA polymerase domain of Pol θ is at the C terminus and is connected to an N-terminal DNA helicase-like domain by a central linker. Pol θ is crucial for maintenance of damaged genomes during development, protects DNA against extensive deletions, and limits loss of heterozygosity. The cost of using Pol θ for genome protection is that a few nucleotides are usually deleted or added at the repair site. Inactivation of Pol θ often enhances the sensitivity of cells to DNA strand-breaking chemicals and radiation. Since some homologous recombination-defective cancers depend on Pol θ for growth, inhibitors of Pol θ may be useful in treating such tumors.
Collapse
Affiliation(s)
- Richard D Wood
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Center, Houston, Texas, USA;
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, Vermont, USA;
| |
Collapse
|
22
|
Schrempf A, Bernardo S, Arasa Verge EA, Ramirez Otero MA, Wilson J, Kirchhofer D, Timelthaler G, Ambros AM, Kaya A, Wieder M, Ecker GF, Winter GE, Costanzo V, Loizou JI. POLθ processes ssDNA gaps and promotes replication fork progression in BRCA1-deficient cells. Cell Rep 2022; 41:111716. [PMID: 36400033 DOI: 10.1016/j.celrep.2022.111716] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 08/21/2022] [Accepted: 11/02/2022] [Indexed: 11/19/2022] Open
Abstract
Polymerase theta (POLθ) is an error-prone DNA polymerase whose loss is synthetically lethal in cancer cells bearing breast cancer susceptibility proteins 1 and 2 (BRCA1/2) mutations. To investigate the basis of this genetic interaction, we utilized a small-molecule inhibitor targeting the POLθ polymerase domain. We found that POLθ processes single-stranded DNA (ssDNA) gaps that emerge in the absence of BRCA1, thus promoting unperturbed replication fork progression and survival of BRCA1 mutant cells. A genome-scale CRISPR-Cas9 knockout screen uncovered suppressors of the functional interaction between POLθ and BRCA1, including NBN, a component of the MRN complex, and cell-cycle regulators such as CDK6. While the MRN complex nucleolytically processes ssDNA gaps, CDK6 promotes cell-cycle progression, thereby exacerbating replication stress, a feature of BRCA1-deficient cells that lack POLθ activity. Thus, ssDNA gap formation, modulated by cell-cycle regulators and MRN complex activity, underlies the synthetic lethality between POLθ and BRCA1, an important insight for clinical trials with POLθ inhibitors.
Collapse
Affiliation(s)
- Anna Schrempf
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Sara Bernardo
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria
| | - Emili A Arasa Verge
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria
| | - Miguel A Ramirez Otero
- DNA Metabolism Laboratory, IFOM ETS, The AIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Jordan Wilson
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Dominik Kirchhofer
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria
| | - Gerald Timelthaler
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria
| | - Anna M Ambros
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Atilla Kaya
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Marcus Wieder
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Gerhard F Ecker
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Georg E Winter
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria
| | - Vincenzo Costanzo
- DNA Metabolism Laboratory, IFOM ETS, The AIRC Institute for Molecular Oncology, 20139 Milan, Italy
| | - Joanna I Loizou
- Center for Cancer Research, Comprehensive Cancer Centre, Medical University of Vienna, 1090 Vienna, Austria; CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria.
| |
Collapse
|
23
|
Mann A, Ramirez-Otero MA, De Antoni A, Hanthi YW, Sannino V, Baldi G, Falbo L, Schrempf A, Bernardo S, Loizou J, Costanzo V. POLθ prevents MRE11-NBS1-CtIP-dependent fork breakage in the absence of BRCA2/RAD51 by filling lagging-strand gaps. Mol Cell 2022; 82:4218-4231.e8. [PMID: 36400008 DOI: 10.1016/j.molcel.2022.09.013] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 07/16/2022] [Accepted: 09/09/2022] [Indexed: 11/18/2022]
Abstract
POLθ promotes repair of DNA double-strand breaks (DSBs) resulting from collapsed forks in homologous recombination (HR) defective tumors. Inactivation of POLθ results in synthetic lethality with the loss of HR genes BRCA1/2, which induces under-replicated DNA accumulation. However, it is unclear whether POLθ-dependent DNA replication prevents HR-deficiency-associated lethality. Here, we isolated Xenopus laevis POLθ and showed that it processes stalled Okazaki fragments, directly visualized by electron microscopy, thereby suppressing ssDNA gaps accumulating on lagging strands in the absence of RAD51 and preventing fork reversal. Inhibition of POLθ DNA polymerase activity leaves fork gaps unprotected, enabling their cleavage by the MRE11-NBS1-CtIP endonuclease, which produces broken forks with asymmetric single-ended DSBs, hampering BRCA2-defective cell survival. These results reveal a POLθ-dependent genome protection function preventing stalled forks rupture and highlight possible resistance mechanisms to POLθ inhibitors.
Collapse
Affiliation(s)
- Anjali Mann
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Miguel Angel Ramirez-Otero
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Anna De Antoni
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Yodhara Wijesekara Hanthi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Vincenzo Sannino
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Giorgio Baldi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Lucia Falbo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy
| | - Anna Schrempf
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Sara Bernardo
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Joanna Loizou
- Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Centre, Medical University of Vienna, Vienna, Austria
| | - Vincenzo Costanzo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy; Department of Oncology and Hematology-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
24
|
Liddiard K, Aston-Evans AN, Cleal K, Hendrickson E, Baird D. POLQ suppresses genome instability and alterations in DNA repeat tract lengths. NAR Cancer 2022; 4:zcac020. [PMID: 35774233 PMCID: PMC9241439 DOI: 10.1093/narcan/zcac020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/19/2022] [Accepted: 06/10/2022] [Indexed: 11/26/2022] Open
Abstract
DNA polymerase theta (POLQ) is a principal component of the alternative non-homologous end-joining (ANHEJ) DNA repair pathway that ligates DNA double-strand breaks. Utilizing independent models of POLQ insufficiency during telomere-driven crisis, we found that POLQ - /- cells are resistant to crisis-induced growth deceleration despite sustaining inter-chromosomal telomere fusion frequencies equivalent to wild-type (WT) cells. We recorded longer telomeres in POLQ - / - than WT cells pre- and post-crisis, notwithstanding elevated total telomere erosion and fusion rates. POLQ - /- cells emerging from crisis exhibited reduced incidence of clonal gross chromosomal abnormalities in accordance with increased genetic heterogeneity. High-throughput sequencing of telomere fusion amplicons from POLQ-deficient cells revealed significantly raised frequencies of inter-chromosomal fusions with correspondingly depreciated intra-chromosomal recombinations. Long-range interactions culminating in telomere fusions with centromere alpha-satellite repeats, as well as expansions in HSAT2 and HSAT3 satellite and contractions in ribosomal DNA repeats, were detected in POLQ - / - cells. In conjunction with the expanded telomere lengths of POLQ - /- cells, these results indicate a hitherto unrealized capacity of POLQ for regulation of repeat arrays within the genome. Our findings uncover novel considerations for the efficacy of POLQ inhibitors in clinical cancer interventions, where potential genome destabilizing consequences could drive clonal evolution and resistant disease.
Collapse
Affiliation(s)
- Kate Liddiard
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Alys N Aston-Evans
- Dementia Research Institute, School of Medicine, Cardiff University, Hadyn Ellis Building, Maindy Road, Cardiff CF24 4HQ, UK
| | - Kez Cleal
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Eric A Hendrickson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Duncan M Baird
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
25
|
Lv Q, Han S, Wang L, Xia J, Li P, Hu R, Wang J, Gao L, Chen Y, Wang Y, Du J, Bao F, Hu Y, Xu X, Xiao W, He Y. TEB/POLQ plays dual roles in protecting Arabidopsis from NO-induced DNA damage. Nucleic Acids Res 2022; 50:6820-6836. [PMID: 35736216 PMCID: PMC9262624 DOI: 10.1093/nar/gkac469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 05/07/2022] [Accepted: 06/10/2022] [Indexed: 12/24/2022] Open
Abstract
Nitric oxide (NO) is a key player in numerous physiological processes. Excessive NO induces DNA damage, but how plants respond to this damage remains unclear. We screened and identified an Arabidopsis NO hypersensitive mutant and found it to be allelic to TEBICHI/POLQ, encoding DNA polymerase θ. The teb mutant plants were preferentially sensitive to NO- and its derivative peroxynitrite-induced DNA damage and subsequent double-strand breaks (DSBs). Inactivation of TEB caused the accumulation of spontaneous DSBs largely attributed to endogenous NO and was synergistic to DSB repair pathway mutations with respect to growth. These effects were manifested in the presence of NO-inducing agents and relieved by NO scavengers. NO induced G2/M cell cycle arrest in the teb mutant, indicative of stalled replication forks. Genetic analyses indicate that Polθ is required for translesion DNA synthesis across NO-induced lesions, but not oxidation-induced lesions. Whole-genome sequencing revealed that Polθ bypasses NO-induced base adducts in an error-free manner and generates mutations characteristic of Polθ-mediated end joining. Our experimental data collectively suggests that Polθ plays dual roles in protecting plants from NO-induced DNA damage. Since Polθ is conserved in higher eukaryotes, mammalian Polθ may also be required for balancing NO physiological signaling and genotoxicity.
Collapse
Affiliation(s)
- Qiang Lv
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Shuang Han
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lei Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
| | - Jinchan Xia
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Peng Li
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Ruoyang Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jinzheng Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Lei Gao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yuli Chen
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yu Wang
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Jing Du
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Fang Bao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Yong Hu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Xingzhi Xu
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Guangdong Key Laboratory for Genome Stability & Disease Prevention and Carson International Cancer Center, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wei Xiao
- College of Life Sciences, Capital Normal University, Beijing 100048, China
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E5, Canada
| | - Yikun He
- College of Life Sciences, Capital Normal University, Beijing 100048, China
| |
Collapse
|
26
|
Ramsden DA, Carvajal-Garcia J, Gupta GP. Mechanism, cellular functions and cancer roles of polymerase-theta-mediated DNA end joining. Nat Rev Mol Cell Biol 2022; 23:125-140. [PMID: 34522048 DOI: 10.1038/s41580-021-00405-2] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/08/2023]
Abstract
Cellular pathways that repair chromosomal double-strand breaks (DSBs) have pivotal roles in cell growth, development and cancer. These DSB repair pathways have been the target of intensive investigation, but one pathway - alternative end joining (a-EJ) - has long resisted elucidation. In this Review, we highlight recent progress in our understanding of a-EJ, especially the assignment of DNA polymerase theta (Polθ) as the predominant mediator of a-EJ in most eukaryotes, and discuss a potential molecular mechanism by which Polθ-mediated end joining (TMEJ) occurs. We address possible cellular functions of TMEJ in resolving DSBs that are refractory to repair by non-homologous end joining (NHEJ), DSBs generated following replication fork collapse and DSBs present owing to stalling of repair by homologous recombination. We also discuss how these context-dependent cellular roles explain how TMEJ can both protect against and cause genome instability, and the emerging potential of Polθ as a therapeutic target in cancer.
Collapse
Affiliation(s)
- Dale A Ramsden
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Juan Carvajal-Garcia
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Gaorav P Gupta
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Radiation Oncology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
27
|
Chan KY, Li X, Ortega J, Gu L, Li GM. DNA polymerase θ promotes CAG•CTG repeat expansions in Huntington's disease via insertion sequences of its catalytic domain. J Biol Chem 2021; 297:101144. [PMID: 34473992 PMCID: PMC8463855 DOI: 10.1016/j.jbc.2021.101144] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 12/04/2022] Open
Abstract
Huntington's disease (HD), a neurodegenerative disease characterized by progressive dementia, psychiatric problems, and chorea, is known to be caused by CAG repeat expansions in the HD gene HTT. However, the mechanism of this pathology is not fully understood. The translesion DNA polymerase θ (Polθ) carries a large insertion sequence in its catalytic domain, which has been shown to allow DNA loop-outs in the primer strand. As a result of high levels of oxidative DNA damage in neural cells and Polθ's subsequent involvement in base excision repair of oxidative DNA damage, we hypothesized that Polθ contributes to CAG repeat expansion while repairing oxidative damage within HTT. Here, we performed Polθ-catalyzed in vitro DNA synthesis using various CAG•CTG repeat DNA substrates that are similar to base excision repair intermediates. We show that Polθ efficiently extends (CAG)n•(CTG)n hairpin primers, resulting in hairpin retention and repeat expansion. Polθ also triggers repeat expansions to pass the threshold for HD when the DNA template contains 35 repeats upward. Strikingly, Polθ depleted of the catalytic insertion fails to induce repeat expansions regardless of primers and templates used, indicating that the insertion sequence is responsible for Polθ's error-causing activity. In addition, the level of chromatin-bound Polθ in HD cells is significantly higher than in non-HD cells and exactly correlates with the degree of CAG repeat expansion, implying Polθ's involvement in triplet repeat instability. Therefore, we have identified Polθ as a potent factor that promotes CAG•CTG repeat expansions in HD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Kara Y Chan
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA
| | - Xueying Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Janice Ortega
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Liya Gu
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Guo-Min Li
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, Kentucky, USA.
| |
Collapse
|
28
|
Pan Q, Wang L, Liu Y, Li M, Zhang Y, Peng W, Deng T, Peng ML, Jiang JQ, Tang J, Wang J, Duan HX, Fan SS. Knockdown of POLQ interferes the development and progression of hepatocellular carcinoma through regulating cell proliferation, apoptosis and migration. Cancer Cell Int 2021; 21:482. [PMID: 34517891 PMCID: PMC8436534 DOI: 10.1186/s12935-021-02178-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 07/19/2021] [Indexed: 12/14/2022] Open
Abstract
Background DNA Polymerase Theta (POLQ) is a DNA polymerase involved in error-prone translesion DNA synthesis (TLS) and error-prone repair of DNA double-strand breaks (DSBs), whose function in hepatocellular carcinoma has not been investigated. Methods In the present study, both the data collected from the Cancer Genome Atlas (TCGA) and our group’s results showed higher POLQ expression in HCC tissues than the para-cancerous tissues, which was associated with higher malignancy and poor prognosis. POLQ knockdown HCC cell model (shPOLQ) was constructed along with the corresponding negative control (shCtrl) through lentivirus infection for loss-of-function study. Results We found that, upon knockdown of POLQ, the proliferation and migration of HCC cells decreased and apoptosis percentage increased. Moreover, the percentage of cells in G2 phase significantly increased in shPOLQ group compared with shCtrl group. Xenografts in mice grafted with shPOLQ cells grew much slower than that transplanted with shCtrl cells, and expressed lower Ki67 level. Furthermore, an apoptosis-related signaling array was used to explore the involvement of downstream signaling pathways, suggesting the enhanced phosphorylation of HSP27 and JNK, and the de-activation of mTOR, PRAS40, ERK1/2 and STAT3 pathways. Conclusions Collectively, our study revealed that POLQ may participate in the development of HCC, depletion of which may be a promising treatment strategy for HCC.
Collapse
Affiliation(s)
- Qi Pan
- Department of Hepatic Surgery, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lu Wang
- Department of Hepatic Surgery, Department of Oncology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yu Liu
- Department of Pathology, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Changsha, 410000, Hunan, China
| | - Min Li
- Oncology Department, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410000, Hunan, China
| | - Yao Zhang
- Oncology Department, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410000, Hunan, China
| | - Wei Peng
- Oncology Department, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410000, Hunan, China
| | - Tan Deng
- Oncology Department, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410000, Hunan, China
| | - Mei-Ling Peng
- Oncology Department, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410000, Hunan, China
| | - Jin-Qiong Jiang
- Oncology Department, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410000, Hunan, China
| | - Jiao Tang
- Oncology Department, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410000, Hunan, China
| | - Jingjing Wang
- Department of Oncology, The Second Xiangya Hospital of Central South University, Changsha, 410000, Hunan, China
| | - Hua-Xin Duan
- Oncology Department, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410000, Hunan, China.
| | - Sha-Sha Fan
- Oncology Department, The First Affiliated Hospital of Hunan Normal University, Hunan Provincial People's Hospital, Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Hunan Normal University, Changsha, 410000, Hunan, China.
| |
Collapse
|
29
|
Bacurio JHT, Yang H, Naldiga S, Powell BV, Ryan BJ, Freudenthal BD, Greenberg MM, Basu AK. Sequence context effects of replication of Fapy•dG in three mutational hot spot sequences of the p53 gene in human cells. DNA Repair (Amst) 2021; 108:103213. [PMID: 34464900 DOI: 10.1016/j.dnarep.2021.103213] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 01/01/2023]
Abstract
Fapy•dG and 8-OxodGuo are formed in DNA from a common N7-dG radical intermediate by reaction with hydroxyl radical. Although cellular levels of Fapy•dG are often greater, its effects on replication are less well understood than those of 8-OxodGuo. In this study plasmid DNA containing Fapy•dG in three mutational hotspots of human cancers, codons 248, 249, and 273 of the p53 tumor suppressor gene, was replicated in HEK 293T cells. TLS efficiencies for the Fapy•dG containing plasmids varied from 72 to 89%, and were further reduced in polymerase-deficient cells. The mutation frequency (MF) of Fapy•dG ranged from 7.3 to 11.6%, with G→T and G→A as major mutations in codons 248 and 249 compared to primarily G→T in codon 273. Increased MF in hPol ι-, hPol κ-, and hPol ζ-deficient cells suggested that these polymerases more frequently insert the correct nucleotide dC opposite Fapy•dG, whereas decreased G→A in codons 248 and 249 and reduction of all mutations in codon 273 in hPol λ-deficient cells indicated hPol λ's involvement in Fapy•dG mutagenesis. In vitro kinetic analysis using isolated translesion synthesis polymerases and hPol λ incompletely corroborated the mutagenesis experiments, indicating codependence on other proteins in the cellular milieu. In conclusion, Fapy•dG mutagenesis is dependent on the DNA sequence context, but its bypass by the TLS polymerases is largely error-free.
Collapse
Affiliation(s)
| | - Haozhe Yang
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Spandana Naldiga
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Brent V Powell
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA
| | - Benjamin J Ryan
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Marc M Greenberg
- Department of Chemistry, Johns Hopkins University, Baltimore, MD, 21218, USA.
| | - Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT, 06269, USA.
| |
Collapse
|
30
|
Chen XS, Pomerantz RT. DNA Polymerase θ: A Cancer Drug Target with Reverse Transcriptase Activity. Genes (Basel) 2021; 12:1146. [PMID: 34440316 PMCID: PMC8391894 DOI: 10.3390/genes12081146] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
The emergence of precision medicine from the development of Poly (ADP-ribose) polymerase (PARP) inhibitors that preferentially kill cells defective in homologous recombination has sparked wide interest in identifying and characterizing additional DNA repair enzymes that are synthetic lethal with HR factors. DNA polymerase theta (Polθ) is a validated anti-cancer drug target that is synthetic lethal with HR factors and other DNA repair proteins and confers cellular resistance to various genotoxic cancer therapies. Since its initial characterization as a helicase-polymerase fusion protein in 2003, many exciting and unexpected activities of Polθ in microhomology-mediated end-joining (MMEJ) and translesion synthesis (TLS) have been discovered. Here, we provide a short review of Polθ's DNA repair activities and its potential as a drug target and highlight a recent report that reveals Polθ as a naturally occurring reverse transcriptase (RT) in mammalian cells.
Collapse
Affiliation(s)
- Xiaojiang S. Chen
- Molecular and Computational Biology, USC Dornsife Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA;
| | - Richard T. Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
31
|
Chandramouly G, Zhao J, McDevitt S, Rusanov T, Hoang T, Borisonnik N, Treddinick T, Lopezcolorado FW, Kent T, Siddique LA, Mallon J, Huhn J, Shoda Z, Kashkina E, Brambati A, Stark JM, Chen XS, Pomerantz RT. Polθ reverse transcribes RNA and promotes RNA-templated DNA repair. SCIENCE ADVANCES 2021; 7:7/24/eabf1771. [PMID: 34117057 PMCID: PMC8195485 DOI: 10.1126/sciadv.abf1771] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 04/23/2021] [Indexed: 05/12/2023]
Abstract
Genome-embedded ribonucleotides arrest replicative DNA polymerases (Pols) and cause DNA breaks. Whether mammalian DNA repair Pols efficiently use template ribonucleotides and promote RNA-templated DNA repair synthesis remains unknown. We find that human Polθ reverse transcribes RNA, similar to retroviral reverse transcriptases (RTs). Polθ exhibits a significantly higher velocity and fidelity of deoxyribonucleotide incorporation on RNA versus DNA. The 3.2-Å crystal structure of Polθ on a DNA/RNA primer-template with bound deoxyribonucleotide reveals that the enzyme undergoes a major structural transformation within the thumb subdomain to accommodate A-form DNA/RNA and forms multiple hydrogen bonds with template ribose 2'-hydroxyl groups like retroviral RTs. Last, we find that Polθ promotes RNA-templated DNA repair in mammalian cells. These findings suggest that Polθ was selected to accommodate template ribonucleotides during DNA repair.
Collapse
Affiliation(s)
- Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jiemin Zhao
- Molecular and Computational Biology, USC Dornsife Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Shane McDevitt
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Timur Rusanov
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Trung Hoang
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Nikita Borisonnik
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Taylor Treddinick
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Tatiana Kent
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Labiba A Siddique
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joseph Mallon
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jacklyn Huhn
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Zainab Shoda
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ekaterina Kashkina
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | - Alessandra Brambati
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Jeremy M Stark
- Beckman Research Institute of the City of Hope, Duarte, CA, USA
| | - Xiaojiang S Chen
- Molecular and Computational Biology, USC Dornsife Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Richard T Pomerantz
- Department of Biochemistry and Molecular Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
32
|
Hoff CA, Schmidt SS, Hackert BJ, Worley TK, Courcelle J, Courcelle CT. Events associated with DNA replication disruption are not observed in hydrogen peroxide-treated Escherichia coli. G3-GENES GENOMES GENETICS 2021; 11:6137848. [PMID: 33591320 PMCID: PMC8759817 DOI: 10.1093/g3journal/jkab044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 02/05/2021] [Indexed: 02/05/2023]
Abstract
UV irradiation induces pyrimidine dimers that block polymerases and disrupt the replisome. Restoring replication depends on the recF pathway proteins which process and maintain the replication fork DNA to allow the lesion to be repaired before replication resumes. Oxidative DNA lesions, such as those induced by hydrogen peroxide (H2O2), are often thought to require similar processing events, yet far less is known about how cells process oxidative damage during replication. Here we show that replication is not disrupted by H2O2-induced DNA damage in vivo. Following an initial inhibition, replication resumes in the absence of either lesion removal or RecF-processing. Restoring DNA synthesis depends on the presence of manganese in the medium, which we show is required for replication, but not repair to occur. The results demonstrate that replication is enzymatically inactivated, rather than physically disrupted by H2O2-induced DNA damage; indicate that inactivation is likely caused by oxidation of an iron-dependent replication or replication-associated protein that requires manganese to restore activity and synthesis; and address a long standing paradox as to why oxidative glycosylase mutants are defective in repair, yet not hypersensitive to H2O2. The oxygen-sensitive pausing may represent an adaptation that prevents replication from occurring under potentially lethal or mutagenic conditions.
Collapse
Affiliation(s)
- Chettar A Hoff
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Sierra S Schmidt
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Brandy J Hackert
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Travis K Worley
- Department of Biology, Portland State University, Portland, OR97201, USA
| | - Justin Courcelle
- Department of Biology, Portland State University, Portland, OR97201, USA
| | | |
Collapse
|
33
|
Zahn KE, Jensen RB, Wood RD, Doublié S. RETRACTED: Human DNA polymerase θ harbors DNA end-trimming activity critical for DNA repair. Mol Cell 2021; 81:1534-1547.e4. [PMID: 33577776 PMCID: PMC8231307 DOI: 10.1016/j.molcel.2021.01.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/24/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022]
Abstract
Cancers with hereditary defects in homologous recombination rely on DNA polymerase θ (pol θ) for repair of DNA double-strand breaks. During end joining, pol θ aligns microhomology tracts internal to 5'-resected broken ends. An unidentified nuclease trims the 3' ends before synthesis can occur. Here we report that a nuclease activity, which differs from the proofreading activity often associated with DNA polymerases, is intrinsic to the polymerase domain of pol θ. Like the DNA synthesis activity, the nuclease activity requires conserved metal-binding residues, metal ions, and dNTPs and is inhibited by ddNTPs or chain-terminated DNA. Our data indicate that pol θ repurposes metal ions in the polymerase active site for endonucleolytic cleavage and that the polymerase-active and end-trimming conformations of the enzyme are distinct. We reveal a nimble strategy of substrate processing that allows pol θ to trim or extend DNA depending on the DNA repair context.
Collapse
Affiliation(s)
- Karl E Zahn
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave., Burlington, VT 05405, USA; Department of Therapeutic Radiology, Yale University, New Haven, CT 06510, USA
| | - Ryan B Jensen
- Department of Therapeutic Radiology, Yale University, New Haven, CT 06510, USA
| | - Richard D Wood
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 78957, USA.
| | - Sylvie Doublié
- Department of Microbiology and Molecular Genetics, University of Vermont, 89 Beaumont Ave., Burlington, VT 05405, USA.
| |
Collapse
|
34
|
Schrempf A, Slyskova J, Loizou JI. Targeting the DNA Repair Enzyme Polymerase θ in Cancer Therapy. Trends Cancer 2021; 7:98-111. [PMID: 33109489 DOI: 10.1016/j.trecan.2020.09.007] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/21/2022]
Abstract
Targeted cancer therapies represent a milestone towards personalized treatment as they function via inhibition of cancer-specific alterations. Polymerase θ (POLQ), an error-prone translesion polymerase, also involved in DNA double-strand break (DSB) repair, is often upregulated in cancer. POLQ is synthetic lethal with various DNA repair genes, including known cancer drivers such as BRCA1/2, making it essential in homologous recombination-deficient cancers. Thus, POLQ represents a promising target in cancer therapy and efforts for the development of POLQ inhibitors are actively underway with first clinical trials due to start in 2021. This review summarizes the journey of POLQ from a backup DNA repair enzyme to a promising therapeutic target for cancer treatment.
Collapse
Affiliation(s)
- Anna Schrempf
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria
| | - Jana Slyskova
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT 25.3, 1090 Vienna, Austria; Institute of Cancer Research, Department of Medicine I, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
35
|
Peralta-Castro A, García-Medel PL, Baruch-Torres N, Trasviña-Arenas CH, Juarez-Quintero V, Morales-Vazquez CM, Brieba LG. Plant Organellar DNA Polymerases Evolved Multifunctionality through the Acquisition of Novel Amino Acid Insertions. Genes (Basel) 2020; 11:genes11111370. [PMID: 33228188 PMCID: PMC7699545 DOI: 10.3390/genes11111370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/20/2022] Open
Abstract
The majority of DNA polymerases (DNAPs) are specialized enzymes with specific roles in DNA replication, translesion DNA synthesis (TLS), or DNA repair. The enzymatic characteristics to perform accurate DNA replication are in apparent contradiction with TLS or DNA repair abilities. For instance, replicative DNAPs incorporate nucleotides with high fidelity and processivity, whereas TLS DNAPs are low-fidelity polymerases with distributive nucleotide incorporation. Plant organelles (mitochondria and chloroplast) are replicated by family-A DNA polymerases that are both replicative and TLS DNAPs. Furthermore, plant organellar DNA polymerases from the plant model Arabidopsis thaliana (AtPOLIs) execute repair of double-stranded breaks by microhomology-mediated end-joining and perform Base Excision Repair (BER) using lyase and strand-displacement activities. AtPOLIs harbor three unique insertions in their polymerization domain that are associated with TLS, microhomology-mediated end-joining (MMEJ), strand-displacement, and lyase activities. We postulate that AtPOLIs are able to execute those different functions through the acquisition of these novel amino acid insertions, making them multifunctional enzymes able to participate in DNA replication and DNA repair.
Collapse
Affiliation(s)
- Antolín Peralta-Castro
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Paola L. García-Medel
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Noe Baruch-Torres
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Carlos H. Trasviña-Arenas
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
- Department of Chemistry, University of California, Davis, One Shields Ave, Davis, CA 95616, USA
| | - Víctor Juarez-Quintero
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Carlos M. Morales-Vazquez
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
| | - Luis G. Brieba
- Laboratorio Nacional de Genomica para la Biodiversidad, Centro de Investigacion y de Estudios Avanzados del IPN, Apartado Postal 629, Irapuato CP 36821, Mexico; (A.P.-C.); (P.L.G.-M.); (N.B.-T.); (C.H.T.-A.); (V.J.-Q.); (C.M.M.-V.)
- Correspondence: ; Tel.: +52-462-1663007
| |
Collapse
|
36
|
Plant organellar DNA polymerases bypass thymine glycol using two conserved lysine residues. Biochem J 2020; 477:1049-1059. [PMID: 32108856 DOI: 10.1042/bcj20200043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/25/2020] [Accepted: 02/28/2020] [Indexed: 02/07/2023]
Abstract
Plant organelles cope with endogenous DNA damaging agents, byproducts of respiration and photosynthesis, and exogenous agents like ultraviolet light. Plant organellar DNA polymerases (DNAPs) are not phylogenetically related to yeast and metazoan DNAPs and they harbor three insertions not present in any other DNAPs. Plant organellar DNAPs from Arabidopsis thaliana (AtPolIA and AtPolIB) are translesion synthesis (TLS) DNAPs able to bypass abasic sites, a lesion that poses a strong block to replicative polymerases. Besides abasic sites, reactive oxidative species and ionizing radiation react with thymine resulting in thymine glycol (Tg), a DNA adduct that is also a strong block to replication. Here, we report that AtPolIA and AtPolIB bypass Tg by inserting an adenine opposite the lesion and efficiently extend from a Tg-A base pair. The TLS ability of AtPolIB is mapped to two conserved lysine residues: K593 and K866. Residue K593 is situated in insertion 1 and K866 is in insertion 3. With basis on the location of both insertions on a structural model of AtPolIIB, we hypothesize that the two positively charged residues interact to form a clamp around the primer-template. In contrast with nuclear and bacterial replication, where lesion bypass involves an interplay between TLS and replicative DNA polymerases, we postulate that plant organellar DNAPs evolved to exert replicative and TLS activities.
Collapse
|
37
|
Leal AZ, Schwebs M, Briggs E, Weisert N, Reis H, Lemgruber L, Luko K, Wilkes J, Butter F, McCulloch R, Janzen CJ. Genome maintenance functions of a putative Trypanosoma brucei translesion DNA polymerase include telomere association and a role in antigenic variation. Nucleic Acids Res 2020; 48:9660-9680. [PMID: 32890403 PMCID: PMC7515707 DOI: 10.1093/nar/gkaa686] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 08/03/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
Maintenance of genome integrity is critical to guarantee transfer of an intact genome from parent to offspring during cell division. DNA polymerases (Pols) provide roles in both replication of the genome and the repair of a wide range of lesions. Amongst replicative DNA Pols, translesion DNA Pols play a particular role: replication to bypass DNA damage. All cells express a range of translesion Pols, but little work has examined their function in parasites, including whether the enzymes might contribute to host-parasite interactions. Here, we describe a dual function of one putative translesion Pol in African trypanosomes, which we now name TbPolIE. Previously, we demonstrated that TbPolIE is associated with telomeric sequences and here we show that RNAi-mediated depletion of TbPolIE transcripts results in slowed growth, altered DNA content, changes in cell morphology, and increased sensitivity to DNA damaging agents. We also show that TbPolIE displays pronounced localization at the nuclear periphery, and that its depletion leads to chromosome segregation defects and increased levels of endogenous DNA damage. Finally, we demonstrate that TbPolIE depletion leads to deregulation of telomeric variant surface glycoprotein genes, linking the function of this putative translesion DNA polymerase to host immune evasion by antigenic variation.
Collapse
Affiliation(s)
- Andrea Zurita Leal
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Marie Schwebs
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Emma Briggs
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Nadine Weisert
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Helena Reis
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Leandro Lemgruber
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Katarina Luko
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Jonathan Wilkes
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Falk Butter
- Quantitative Proteomics, Institute of Molecular Biology (IMB), Mainz, Germany
| | - Richard McCulloch
- The Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Christian J Janzen
- Department of Cell & Developmental Biology, Biocenter, University of Würzburg, Würzburg, Germany
| |
Collapse
|
38
|
Huang F, Tanaka H, Knudsen BS, Rutgers JK. Mutant POLQ and POLZ/REV3L DNA polymerases may contribute to the favorable survival of patients with tumors with POLE mutations outside the exonuclease domain. BMC MEDICAL GENETICS 2020; 21:167. [PMID: 32838755 PMCID: PMC7446057 DOI: 10.1186/s12881-020-01089-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/08/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Mutations in the exonuclease domain of POLE, a DNA polymerase associated with DNA replication and repair, lead to cancers with ultra-high mutation rates. Most studies focus on intestinal and uterine cancers with POLE mutations. These cancers exhibit a significant immune cell infiltrate and favorable prognosis. We questioned whether loss of function of other DNA polymerases can cooperate to POLE to generate the ultramutator phenotype. METHODS We used cases and data from 15 cancer types in The Cancer Genome Atlas to investigate mutation frequencies of 14 different DNA polymerases. We tested whether tumor mutation burden, patient outcome (disease-free survival) and immune cell infiltration measured by ESTIMATE can be attributed to mutations in POLQ and POLZ/REV3L. RESULTS Thirty six percent of colorectal, stomach and endometrial cancers with POLE mutations carried additional mutations in POLQ (E/Q), POLZ/REV3L (E/Z) or both DNA polymerases (E/Z/Q). The mutation burden in these tumors was significantly greater compared to POLE-only (E) mutant tumors (p < 0.001). In addition, E/Q, E/Z, and E/Q/Z mutant tumors possessed an increased frequency of mutations in the POLE exonuclease domain (p = 0.013). Colorectal, stomach and endometrial E/Q, E/Z, and E/Q/Z mutant tumors within TCGA demonstrated 100% disease-free survival, even if the POLE mutations occurred outside the exonuclease domain (p = 0.003). However, immune scores in these tumors were related to microsatellite instability (MSI) and not POLE mutation status. This suggests that the host immune response may not be the sole mechanism for prolonged disease-free survival of ultramutated tumors in this cohort. CONCLUSION Results in this study demonstrate that mutations in POLQ and REV3L in POLE mutant tumors should undergo further investigation to determine whether POLQ and REV3L mutations contribute to the ultramutator phenotype and favorable outcome of patients with POLE mutant tumors.
Collapse
Affiliation(s)
- Fangjin Huang
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Hisashi Tanaka
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Samuel Oschin Cancer Research Institute (SOCCI), Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Beatrice S Knudsen
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Samuel Oschin Cancer Research Institute (SOCCI), Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Joanne K Rutgers
- Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| |
Collapse
|
39
|
Thompson PS, Cortez D. New insights into abasic site repair and tolerance. DNA Repair (Amst) 2020; 90:102866. [PMID: 32417669 PMCID: PMC7299775 DOI: 10.1016/j.dnarep.2020.102866] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 12/13/2022]
Abstract
Thousands of apurinic/apyrimidinic (AP or abasic) sites form in each cell, each day. This simple DNA lesion can have profound consequences to cellular function, genome stability, and disease. As potent blocks to polymerases, they interfere with the reading and copying of the genome. Since they provide no coding information, they are potent sources of mutation. Due to their reactive chemistry, they are intermediates in the formation of lesions that are more challenging to repair including double-strand breaks, interstrand crosslinks, and DNA protein crosslinks. Given their prevalence and deleterious consequences, cells have multiple mechanisms of repairing and tolerating these lesions. While base excision repair of abasic sites in double-strand DNA has been studied for decades, new interest in abasic site processing has come from more recent insights into how they are processed in single-strand DNA. In this review, we discuss the source of abasic sites, their biological consequences, tolerance mechanisms, and how they are repaired in double and single-stranded DNA.
Collapse
Affiliation(s)
- Petria S Thompson
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN, 37232, USA
| | - David Cortez
- Vanderbilt University School of Medicine, Department of Biochemistry, Nashville, TN, 37232, USA.
| |
Collapse
|
40
|
Hoitsma NM, Whitaker AM, Schaich MA, Smith MR, Fairlamb MS, Freudenthal BD. Structure and function relationships in mammalian DNA polymerases. Cell Mol Life Sci 2020; 77:35-59. [PMID: 31722068 PMCID: PMC7050493 DOI: 10.1007/s00018-019-03368-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 12/19/2022]
Abstract
DNA polymerases are vital for the synthesis of new DNA strands. Since the discovery of DNA polymerase I in Escherichia coli, a diverse library of mammalian DNA polymerases involved in DNA replication, DNA repair, antibody generation, and cell checkpoint signaling has emerged. While the unique functions of these DNA polymerases are differentiated by their association with accessory factors and/or the presence of distinctive catalytic domains, atomic resolution structures of DNA polymerases in complex with their DNA substrates have revealed mechanistic subtleties that contribute to their specialization. In this review, the structure and function of all 15 mammalian DNA polymerases from families B, Y, X, and A will be reviewed and discussed with special emphasis on the insights gleaned from recently published atomic resolution structures.
Collapse
Affiliation(s)
- Nicole M Hoitsma
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Amy M Whitaker
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Matthew A Schaich
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Mallory R Smith
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Max S Fairlamb
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Bret D Freudenthal
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
41
|
Black SJ, Ozdemir AY, Kashkina E, Kent T, Rusanov T, Ristic D, Shin Y, Suma A, Hoang T, Chandramouly G, Siddique LA, Borisonnik N, Sullivan-Reed K, Mallon JS, Skorski T, Carnevale V, Murakami KS, Wyman C, Pomerantz RT. Molecular basis of microhomology-mediated end-joining by purified full-length Polθ. Nat Commun 2019; 10:4423. [PMID: 31562312 PMCID: PMC6764996 DOI: 10.1038/s41467-019-12272-9] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 08/30/2019] [Indexed: 11/08/2022] Open
Abstract
DNA polymerase θ (Polθ) is a unique polymerase-helicase fusion protein that promotes microhomology-mediated end-joining (MMEJ) of DNA double-strand breaks (DSBs). How full-length human Polθ performs MMEJ at the molecular level remains unknown. Using a biochemical approach, we find that the helicase is essential for Polθ MMEJ of long ssDNA overhangs which model resected DSBs. Remarkably, Polθ MMEJ of ssDNA overhangs requires polymerase-helicase attachment, but not the disordered central domain, and occurs independently of helicase ATPase activity. Using single-particle microscopy and biophysical methods, we find that polymerase-helicase attachment promotes multimeric gel-like Polθ complexes that facilitate DNA accumulation, DNA synapsis, and MMEJ. We further find that the central domain regulates Polθ multimerization and governs its DNA substrate requirements for MMEJ. These studies identify unexpected functions for the helicase and central domain and demonstrate the importance of polymerase-helicase tethering in MMEJ and the structural organization of Polθ.
Collapse
Affiliation(s)
- Samuel J Black
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ahmet Y Ozdemir
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Ekaterina Kashkina
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Tatiana Kent
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Timur Rusanov
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Dejan Ristic
- Department of Molecular Genetics and Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Yeonoh Shin
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Antonio Suma
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, USA
| | - Trung Hoang
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Gurushankar Chandramouly
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Labiba A Siddique
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Nikita Borisonnik
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Katherine Sullivan-Reed
- Fels Institute for Cancer Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Joseph S Mallon
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Tomasz Skorski
- Fels Institute for Cancer Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Vincenzo Carnevale
- Institute for Computational Molecular Science, Temple University, Philadelphia, PA, USA
| | - Katsuhiko S Murakami
- Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, Pennsylvania State University, University Park, PA, 16802, USA
| | - Claire Wyman
- Department of Molecular Genetics and Department of Radiation Oncology, Erasmus University Medical Center, 3000 CA, Rotterdam, The Netherlands
| | - Richard T Pomerantz
- Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
42
|
Kelso AA, Lopezcolorado FW, Bhargava R, Stark JM. Distinct roles of RAD52 and POLQ in chromosomal break repair and replication stress response. PLoS Genet 2019; 15:e1008319. [PMID: 31381562 PMCID: PMC6695211 DOI: 10.1371/journal.pgen.1008319] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/15/2019] [Accepted: 07/18/2019] [Indexed: 12/18/2022] Open
Abstract
Disrupting either the DNA annealing factor RAD52 or the A-family DNA polymerase POLQ can cause synthetic lethality with defects in BRCA1 and BRCA2, which are tumor suppressors important for homology-directed repair of DNA double-strand breaks (DSBs), and protection of stalled replication forks. A likely mechanism of this synthetic lethality is that RAD52 and/or POLQ are important for backup pathways for DSB repair and/or replication stress responses. The features of DSB repair events that require RAD52 vs. POLQ, and whether combined disruption of these factors causes distinct effects on genome maintenance, have been unclear. Using human U2OS cells, we generated a cell line with POLQ mutations upstream of the polymerase domain, a RAD52 knockout cell line, and a line with combined disruption of both genes. We also examined RAD52 and POLQ using RNA-interference. We find that combined disruption of RAD52 and POLQ causes at least additive hypersensitivity to cisplatin, and a synthetic reduction in replication fork restart velocity. We also examined the influence of RAD52 and POLQ on several DSB repair events. We find that RAD52 is particularly important for repair using ≥ 50 nt repeat sequences that flank the DSB, and that also involve removal of non-homologous sequences flanking the repeats. In contrast, POLQ is important for repair events using 6 nt (but not ≥ 18 nt) of flanking repeats that are at the edge of the break, as well as oligonucleotide microhomology-templated (i.e., 12-20 nt) repair events requiring nascent DNA synthesis. Finally, these factors show key distinctions with BRCA2, regarding effects on DSB repair events and response to stalled replication forks. These findings indicate that RAD52 and POLQ have distinct roles in genome maintenance, including for specific features of DSB repair events, such that combined disruption of these factors may be effective for genotoxin sensitization and/or synthetic lethal strategies.
Collapse
Affiliation(s)
- Andrew A. Kelso
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Felicia Wednesday Lopezcolorado
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Ragini Bhargava
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| | - Jeremy M. Stark
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute of the City of Hope, Duarte, California, United States of America
| |
Collapse
|
43
|
Mara K, Charlot F, Guyon-Debast A, Schaefer DG, Collonnier C, Grelon M, Nogué F. POLQ plays a key role in the repair of CRISPR/Cas9-induced double-stranded breaks in the moss Physcomitrella patens. THE NEW PHYTOLOGIST 2019; 222:1380-1391. [PMID: 30636294 DOI: 10.1111/nph.15680] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 01/05/2019] [Indexed: 05/19/2023]
Abstract
Double-stranded breaks can be repaired by different mechanisms such as homologous recombination (HR), classical nonhomologous end joining (C-NHEJ) and alternative end joining (Alt-EJ). Polymerase Q (POLQ) has been proposed to be the main factor involved in Alt-EJ-mediated DNA repair. Here we describe the role of POLQ in DNA repair and gene targeting in Physcomitrella patens. The disruption of the POLQ gene does not influence the genetic stability of P. patens nor its development. The polq mutant shows the same sensitivity as wild-type towards most of the genotoxic agents tested (ultraviolet (UV), methyl methanesulfonate (MMS) and cisplatin) with the notable exception of bleomycin for which it shows less sensitivity than the wild-type. Furthermore, we show that POLQ is involved in the repair of CRISPR-Cas9-induced double-stranded breaks in P. patens. We also demonstrate that POLQ is a potential competitor and/or inhibitor of the HR repair pathway. This finding has a consequence in terms of genetic engineering, as in the absence of POLQ the frequency of gene targeting is significantly increased and the number of clean two-sided HR-mediated insertions is enhanced. Therefore, the control of POLQ activity in plants could be a useful strategy to optimize the tools of genome engineering for plant breeding.
Collapse
Affiliation(s)
- Kostlend Mara
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Florence Charlot
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Anouchka Guyon-Debast
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Didier G Schaefer
- Laboratory of Cell and Molecular Biology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, CH-2009 Neuchâtel, Switzerland
| | - Cécile Collonnier
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Mathilde Grelon
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| | - Fabien Nogué
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, Versailles, 78000, France
| |
Collapse
|
44
|
Laverty DJ, Greenberg MM. Expanded Substrate Scope of DNA Polymerase θ and DNA Polymerase β: Lyase Activity on 5'-Overhangs and Clustered Lesions. Biochemistry 2018; 57:6119-6127. [PMID: 30299084 PMCID: PMC6200648 DOI: 10.1021/acs.biochem.8b00911] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
DNA polymerase θ (Pol θ) is a multifunctional enzyme with double-strand break (DSB) repair, translesion synthesis, and lyase activities. Pol θ lyase activity on ternary substrates containing a 5'-dRP that are produced during base excision repair of abasic sites (AP) is weak compared to that of DNA polymerase β (Pol β), a polymerase integrally involved in base excision repair. This led us to explore whether Pol θ utilizes its lyase activity to remove 5'-dRP and incise abasic sites from alternative substrates that might be produced during DNA damage and repair. We found that Pol θ exhibited lyase activity on abasic lesions near DSB termini and on clustered lesions. To calibrate the Pol θ activity, Pol β reactivity was examined with the same substrates. Pol β excised 5'-dRP from within a 5'-overhang 80 times faster than did Pol θ. Pol θ and Pol β also incised AP within clustered lesions but showed opposite preferences with respect to the polarity of the lesions. AP lesions in 5'-overhangs were typically excised by Pol β 35-50 times faster than those in a duplex substrate but 15-20-fold more slowly than 5'-dRP in a ternary complex. This is the first report of Pol θ exhibiting lyase activity within an unincised strand. These results suggest that bifunctional polymerases may exhibit lyase activity on a greater variety of substrates than previously recognized. A role in DSB repair could potentially be beneficial, while the aberrant activity exhibited on clustered lesions may be deleterious because of their conversion to DSBs.
Collapse
Affiliation(s)
- Daniel J. Laverty
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| | - Marc M. Greenberg
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218
| |
Collapse
|
45
|
Abstract
DNA Pol θ-mediated end joining (TMEJ) is a microhomology-based pathway for repairing double-strand breaks in eukaryotes. TMEJ is also a pathway for nonspecific integration of foreign DNAs into host genomes. DNA Pol θ shares structural homology with the high-fidelity replicases, and its polymerase domain (Polθ) has been shown to extend ssDNA without an apparent template. Using oligonucleotides with distinct sequences, we find that with Mg2+ and physiological salt concentrations, human Polθ has no terminal transferase activity and requires a minimum of 2 bp and optimally 4 bp between a template/primer pair for DNA synthesis. Polθ can tolerate a mismatched base pair at the primer end but loses >90% activity when the mismatch is 2 bp upstream from the active site. Polθ is severely inhibited when the template strand has a 3' overhang within 3-4 bp from the active site. In line with its TMEJ function, Polθ has limited strand-displacement activity, and the efficiency and extent of primer extension are similar with or without a downstream duplex.
Collapse
Affiliation(s)
- Peng He
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
46
|
Randrianjatovo-Gbalou I, Rosario S, Sismeiro O, Varet H, Legendre R, Coppée JY, Huteau V, Pochet S, Delarue M. Enzymatic synthesis of random sequences of RNA and RNA analogues by DNA polymerase theta mutants for the generation of aptamer libraries. Nucleic Acids Res 2018; 46:6271-6284. [PMID: 29788485 PMCID: PMC6158600 DOI: 10.1093/nar/gky413] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/12/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022] Open
Abstract
Nucleic acid aptamers, especially RNA, exhibit valuable advantages compared to protein therapeutics in terms of size, affinity and specificity. However, the synthesis of libraries of large random RNAs is still difficult and expensive. The engineering of polymerases able to directly generate these libraries has the potential to replace the chemical synthesis approach. Here, we start with a DNA polymerase that already displays a significant template-free nucleotidyltransferase activity, human DNA polymerase theta, and we mutate it based on the knowledge of its three-dimensional structure as well as previous mutational studies on members of the same polA family. One mutant exhibited a high tolerance towards ribonucleotides (NTPs) and displayed an efficient ribonucleotidyltransferase activity that resulted in the assembly of long RNA polymers. HPLC analysis and RNA sequencing of the products were used to quantify the incorporation of the four NTPs as a function of initial NTP concentrations and established the randomness of each generated nucleic acid sequence. The same mutant revealed a propensity to accept other modified nucleotides and to extend them in long fragments. Hence, this mutant can deliver random natural and modified RNA polymers libraries ready to use for SELEX, with custom lengths and balanced or unbalanced ratios.
Collapse
Affiliation(s)
- Irina Randrianjatovo-Gbalou
- Unit of Structural Dynamics of Biological Macromolecules, CNRS UMR 3528, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Sandrine Rosario
- Unit of Structural Dynamics of Biological Macromolecules, CNRS UMR 3528, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Odile Sismeiro
- Transcriptome and EpiGenome platform, BioMics, Center of Innovation and Technological Research, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Hugo Varet
- Transcriptome and EpiGenome platform, BioMics, Center of Innovation and Technological Research, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
- Hub informatique et Biostatistique, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756 IP-CNRS), Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Rachel Legendre
- Transcriptome and EpiGenome platform, BioMics, Center of Innovation and Technological Research, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
- Hub informatique et Biostatistique, Centre de Bioinformatique, Biostatistique et Biologie Intégrative (C3BI, USR 3756 IP-CNRS), Institut Pasteur, 28 Rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Jean-Yves Coppée
- Transcriptome and EpiGenome platform, BioMics, Center of Innovation and Technological Research, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Valérie Huteau
- Unité de Chimie et Biocatalyse, CNRS UMR 3523, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Sylvie Pochet
- Unité de Chimie et Biocatalyse, CNRS UMR 3523, Institut Pasteur, 28 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | - Marc Delarue
- Unit of Structural Dynamics of Biological Macromolecules, CNRS UMR 3528, Institut Pasteur, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
47
|
Vaisman A, Woodgate R. Ribonucleotide discrimination by translesion synthesis DNA polymerases. Crit Rev Biochem Mol Biol 2018; 53:382-402. [PMID: 29972306 DOI: 10.1080/10409238.2018.1483889] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The well-being of all living organisms relies on the accurate duplication of their genomes. This is usually achieved by highly elaborate replicase complexes which ensure that this task is accomplished timely and efficiently. However, cells often must resort to the help of various additional "specialized" DNA polymerases that gain access to genomic DNA when replication fork progression is hindered. One such specialized polymerase family consists of the so-called "translesion synthesis" (TLS) polymerases; enzymes that have evolved to replicate damaged DNA. To fulfill their main cellular mission, TLS polymerases often must sacrifice precision when selecting nucleotide substrates. Low base-substitution fidelity is a well-documented inherent property of these enzymes. However, incorrect nucleotide substrates are not only those which do not comply with Watson-Crick base complementarity, but also those whose sugar moiety is incorrect. Does relaxed base-selectivity automatically mean that the TLS polymerases are unable to efficiently discriminate between ribonucleoside triphosphates and deoxyribonucleoside triphosphates that differ by only a single atom? Which strategies do TLS polymerases employ to select suitable nucleotide substrates? In this review, we will collate and summarize data accumulated over the past decade from biochemical and structural studies, which aim to answer these questions.
Collapse
Affiliation(s)
- Alexandra Vaisman
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| | - Roger Woodgate
- a Laboratory of Genomic Integrity , National Institute of Child Health and Human Development, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
48
|
Ozdemir AY, Rusanov T, Kent T, Siddique LA, Pomerantz RT. Polymerase θ-helicase efficiently unwinds DNA and RNA-DNA hybrids. J Biol Chem 2018; 293:5259-5269. [PMID: 29444826 PMCID: PMC5892577 DOI: 10.1074/jbc.ra117.000565] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Revised: 02/07/2018] [Indexed: 11/06/2022] Open
Abstract
POLQ is a unique multifunctional replication and repair gene that encodes for a N-terminal superfamily 2 helicase and a C-terminal A-family polymerase. Although the function of the polymerase domain has been investigated, little is understood regarding the helicase domain. Multiple studies have reported that polymerase θ-helicase (Polθ-helicase) is unable to unwind DNA. However, it exhibits ATPase activity that is stimulated by single-stranded DNA, which presents a biochemical conundrum. In contrast to previous reports, we demonstrate that Polθ-helicase (residues 1-894) efficiently unwinds DNA with 3'-5' polarity, including DNA with 3' or 5' overhangs, blunt-ended DNA, and replication forks. Polθ-helicase also efficiently unwinds RNA-DNA hybrids and exhibits a preference for unwinding the lagging strand at replication forks, similar to related HELQ helicase. Finally, we find that Polθ-helicase can facilitate strand displacement synthesis by Polθ-polymerase, suggesting a plausible function for the helicase domain. Taken together, these findings indicate nucleic acid unwinding as a relevant activity for Polθ in replication repair.
Collapse
Affiliation(s)
- Ahmet Y Ozdemir
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Timur Rusanov
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Tatiana Kent
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Labiba A Siddique
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| | - Richard T Pomerantz
- From the Fels Institute for Cancer Research, Department of Medical Genetics and Molecular Biochemistry, Temple University Lewis Katz School of Medicine, Philadelphia, Pennsylvania, 19140
| |
Collapse
|
49
|
Zafar MK, Maddukuri L, Ketkar A, Penthala NR, Reed MR, Eddy S, Crooks PA, Eoff RL. A Small-Molecule Inhibitor of Human DNA Polymerase η Potentiates the Effects of Cisplatin in Tumor Cells. Biochemistry 2018; 57:1262-1273. [PMID: 29345908 DOI: 10.1021/acs.biochem.7b01176] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Translesion DNA synthesis (TLS) performed by human DNA polymerase eta (hpol η) allows tolerance of damage from cis-diamminedichloroplatinum(II) (CDDP or cisplatin). We have developed hpol η inhibitors derived from N-aryl-substituted indole barbituric acid (IBA), indole thiobarbituric acid (ITBA), and indole quinuclidine scaffolds and identified 5-((5-chloro-1-(naphthalen-2-ylmethyl)-1H-indol-3-yl)methylene)-2-thioxodihydropyrimidine-4,6(1H,5H)-dione (PNR-7-02), an ITBA derivative that inhibited hpol η activity with an IC50 value of 8 μM and exhibited 5-10-fold specificity for hpol η over replicative pols. We conclude from kinetic analyses, chemical footprinting assays, and molecular docking that PNR-7-02 binds to a site on the little finger domain and interferes with the proper orientation of template DNA to inhibit hpol η. A synergistic increase in CDDP toxicity was observed in hpol η-proficient cells co-treated with PNR-7-02 (combination index values = 0.4-0.6). Increased γH2AX formation accompanied treatment of hpol η-proficient cells with CDDP and PNR-7-02. Importantly, PNR-7-02 did not impact the effect of CDDP on cell viability or γH2AX in hpol η-deficient cells. In summary, we observed hpol η-dependent effects on DNA damage/replication stress and sensitivity to CDDP in cells treated with PNR-7-02. The ability to employ a small-molecule inhibitor of hpol η to improve the cytotoxic effect of CDDP may aid in the development of more effective chemotherapeutic strategies.
Collapse
Affiliation(s)
- Maroof K Zafar
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Leena Maddukuri
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Amit Ketkar
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Narsimha R Penthala
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Megan R Reed
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Sarah Eddy
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Peter A Crooks
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| | - Robert L Eoff
- Department of Biochemistry and Molecular Biology, ‡Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences , Little Rock, Arkansas 72205-7199, United States
| |
Collapse
|
50
|
Baruch-Torres N, Brieba LG. Plant organellar DNA polymerases are replicative and translesion DNA synthesis polymerases. Nucleic Acids Res 2017; 45:10751-10763. [PMID: 28977655 PMCID: PMC5737093 DOI: 10.1093/nar/gkx744] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/14/2017] [Indexed: 02/01/2023] Open
Abstract
Genomes acquire lesions that can block the replication fork and some lesions must be bypassed to allow survival. The nuclear genome of flowering plants encodes two family-A DNA polymerases (DNAPs), the result of a duplication event, that are the sole DNAPs in plant organelles. These DNAPs, dubbed Plant Organellar Polymerases (POPs), resemble the Klenow fragment of bacterial DNAP I and are not related to metazoan and fungal mitochondrial DNAPs. Herein we report that replicative POPs from the plant model Arabidopsis thaliana (AtPolI) efficiently bypass one the most insidious DNA lesions, an apurinic/apyrimidinic (AP) site. AtPolIs accomplish lesion bypass with high catalytic efficiency during nucleotide insertion and extension. Lesion bypass depends on two unique polymerization domain insertions evolutionarily unrelated to the insertions responsible for lesion bypass by DNAP θ, an analogous lesion bypass polymerase. AtPolIs exhibit an insertion fidelity that ranks between the fidelity of replicative and lesion bypass DNAPs, moderate 3′-5′ exonuclease activity and strong strand-displacement. AtPolIs are the first known example of a family-A DNAP evolved to function in both DNA replication and lesion bypass. The lesion bypass capabilities of POPs may be required to prevent replication fork collapse in plant organelles.
Collapse
Affiliation(s)
- Noe Baruch-Torres
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821 Irapuato Guanajuato, México
| | - Luis G Brieba
- Langebio-Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera. Irapuato-León, 36821 Irapuato Guanajuato, México
| |
Collapse
|