1
|
Gupta M, Hudait A, Yeager M, Voth GA. Kinetic implications of IP 6 anion binding on the molecular switch of HIV-1 capsid assembly. SCIENCE ADVANCES 2025; 11:eadt7818. [PMID: 40238893 PMCID: PMC12002132 DOI: 10.1126/sciadv.adt7818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
HIV-1 capsid (CA) proteins self-assemble into a fullerene-shaped CA, enabling cellular transport and nuclear entry of the viral genome. A structural switch comprising the Thr-Val-Gly- Gly (TVGG) motif either assumes a disordered coil or a 310 helix conformation to regulate hexamer or pentamer assembly, respectively. The cellular polyanion inositol hexakisphosphate (IP6) binds to a positively charged pore of CA capsomers rich in arginine and lysine residues mediated by electrostatic interactions. Both IP6 binding and TVGG coil-to-helix transition are essential for pentamer formation. However, the connection between IP6 binding and TVGG conformational switch remains unclear. Using extensive atomistic simulations, we show that IP6 imparts structural order at the central ring, which results in multiple kinetically controlled events leading to the coil-to-helix conformational change of the TVGG motif. IP6 facilitates the helix-to-coil transition by allowing the formation of intermediate conformations. Our results suggest a key kinetic role of IP6 in HIV-1 pentamer formation.
Collapse
Affiliation(s)
- Manish Gupta
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Arpa Hudait
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | - Mark Yeager
- Frost Institute for Chemistry and Molecular Science, University of Miami, Coral Gables, FL 33124, USA
- Department of Chemistry, University of Miami, Coral Gables, FL 33146, USA
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
2
|
Stacey JCV, Hrebík D, Nand E, Shetty SD, Qu K, Boicu M, Anders-Össwein M, Uchil PD, Dick RA, Mothes W, Kräusslich HG, Müller B, Briggs JAG. The conserved HIV-1 spacer peptide 2 triggers matrix lattice maturation. Nature 2025; 640:258-264. [PMID: 40011770 PMCID: PMC11964938 DOI: 10.1038/s41586-025-08624-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
The virus particles of human immunodeficiency virus type 1 (HIV-1) are released in an immature, non-infectious form. Proteolytic cleavage of the main structural polyprotein Gag into functional domains induces rearrangement into mature, infectious virions. In immature virus particles, the Gag membrane-binding domain, MA, forms a hexameric protein lattice that undergoes structural transition, following cleavage, into a distinct, mature MA lattice1. The mechanism of MA lattice maturation is unknown. Here we show that released spacer peptide 2 (SP2), a conserved peptide of unknown function situated about 300 residues downstream of MA, binds MA to induce structural maturation. By high-resolution in-virus structure determination of MA, we show that MA does not bind lipid into a side pocket as previously thought1, but instead binds SP2 as an integral part of the protein-protein interfaces that stabilize the mature lattice. Analysis of Gag cleavage site mutants showed that SP2 release is required for MA maturation, and we demonstrate that SP2 is sufficient to induce maturation of purified MA on lipid monolayers in vitro. SP2-triggered MA maturation correlated with faster fusion of virus with target cells. Our results reveal a new, unexpected interaction between two HIV-1 components, provide a high-resolution structure of mature MA, establish the trigger of MA structural maturation and assign function to the SP2 peptide.
Collapse
Affiliation(s)
- James C V Stacey
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Dominik Hrebík
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Elizabeth Nand
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | | | - Kun Qu
- Infectious Diseases Translational Research Programme, Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Marius Boicu
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Maria Anders-Össwein
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - Pradeep D Uchil
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Robert A Dick
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Walther Mothes
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT, USA
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
- German Center for Infection Research, Heidelberg, Germany
| | - Barbara Müller
- Department of Infectious Diseases, Virology, Heidelberg University, Heidelberg, Germany
| | - John A G Briggs
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany.
| |
Collapse
|
3
|
Gupta M, Hudait A, Yeager M, Voth GA. Kinetic Implications of IP 6 Anion Binding on the Molecular Switch of the HIV-1 Capsid Assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.05.627050. [PMID: 39677604 PMCID: PMC11643084 DOI: 10.1101/2024.12.05.627050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
HIV-1 capsid proteins (CA) self-assemble into a fullerene-shaped capsid, enabling cellular transport and nuclear entry of the viral genome. A structural switch comprising the Thr-Val-Gly-Gly (TVGG) motif either assumes a disordered coil or a 310 helix conformation to regulate hexamer or pentamer assembly, respectively. The cellular polyanion inositol hexakisphosphate (IP6) binds to a positively charged pore of CA capsomers rich in arginine and lysine residues mediated by electrostatic interactions. Both IP6 binding and TVGG coil-to-helix transition are essential for pentamer formation. However, the connection between IP6 binding and TVGG conformational switch remains unclear. Using extensive atomistic simulations, we show that IP6 imparts structural order at the central ring, which results in multiple kinetically controlled events leading to the coil- to-helix conformational change of the TVGG motif. IP6 facilitates the helix-to-coil transition by allowing the formation of intermediate conformations. Our results identify the key kinetic role of IP6 in HIV-1 pentamer formation.
Collapse
Affiliation(s)
- Manish Gupta
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, United States of America
| | - Arpa Hudait
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, United States of America
| | - Mark Yeager
- Frost Institute for Chemistry and Molecular Science, University of Miami, Coral Gables, FL 33124, United States of America
- Department of Chemistry, University of Miami, Coral Gables, FL, 33146, United States of America
| | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, United States of America
| |
Collapse
|
4
|
Baratam K, Srivastava A. SOP-MULTI: A Self-Organized Polymer-Based Coarse-Grained Model for Multidomain and Intrinsically Disordered Proteins with Conformation Ensemble Consistent with Experimental Scattering Data. J Chem Theory Comput 2024; 20:10179-10198. [PMID: 39499823 DOI: 10.1021/acs.jctc.4c00579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Multidomain proteins with long flexible linkers and full-length intrinsically disordered proteins (IDPs) are best defined as an ensemble of conformations rather than a single structure. Determining high-resolution ensemble structures of such proteins poses various challenges by using tools from experimental structural biophysics. Integrative approaches combining available low-resolution ensemble-averaged experimental data and in silico biomolecular reconstructions are now often used for the purpose. However, extensive Boltzmann weighted conformation sampling for large proteins, especially for ones where both the folded and disordered domains exist in the same polypeptide chain, remains a challenge. In this work, we present a 2-site per amino-acid resolution SOP-MULTI force field for simulating coarse-grained models of multidomain proteins. SOP-MULTI combines two well-established self-organized polymer models─: (i) SOP-SC models for folded systems and (ii) SOP-IDP for IDPs. For the SOP-MULTI, we introduce cross-interaction terms between the beads belonging to the folded and disordered regions to generate conformation ensembles for full-length multidomain proteins such as hnRNP A1, TDP-43, G3BP1, hGHR-ECD, TIA1, HIV-1 Gag, polyubiquitin, and FUS. When back-mapped to all-atom resolution, SOP-MULTI trajectories faithfully recapitulate the scattering data over the range of the reciprocal space. We also show that individual folded domains preserve native contacts with respect to solved folded structures, and root-mean-square fluctuations of residues in folded domains match those obtained from all-atom molecular dynamics simulation trajectories of the same folded systems. SOP-MULTI force field is made available as a LAMMPS-compatible user package along with setup codes for generating the required files for any full-length protein with folded and disordered regions.
Collapse
Affiliation(s)
- Krishnakanth Baratam
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Anand Srivastava
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
5
|
Gruenke P, Mayer MD, Aneja R, Schulze WJ, Song Z, Burke DH, Heng X, Lange MJ. A Branched SELEX Approach Identifies RNA Aptamers That Bind Distinct HIV-1 Capsid Structural Components. ACS Infect Dis 2024; 10:2637-2655. [PMID: 39016538 PMCID: PMC11320578 DOI: 10.1021/acsinfecdis.3c00708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
The HIV-1 capsid protein (CA) assumes distinct structural forms during replication, each presenting unique, solvent-accessible surfaces that facilitate multifaceted functions and host factor interactions. However, functional contributions of individual CA structures remain unclear, as evaluation of CA presents several technical challenges. To address this knowledge gap, we identified CA-targeting aptamers with different structural specificities, which emerged through a branched SELEX approach using an aptamer library previously selected to bind the CA hexamer lattice. Subsets were either highly specific for the CA lattice or bound both the CA lattice and CA hexamer. We then evaluated four representatives to reveal aptamer regions required for binding, highlighting interesting structural features and challenges in aptamer structure determination. Further, we demonstrate binding to biologically relevant CA structural forms and aptamer-mediated affinity purification of CA from cell lysates without virus or host modification, supporting the development of structural form-specific aptamers as exciting new tools for the study of CA.
Collapse
Affiliation(s)
- Paige
R. Gruenke
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Bond
Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Miles D. Mayer
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Rachna Aneja
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
| | - William J. Schulze
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
| | - Zhenwei Song
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Donald H. Burke
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Bond
Life Sciences Center, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiao Heng
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Margaret J. Lange
- Department
of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, United States
- Department
of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
6
|
Eschbach JE, Puray-Chavez M, Mohammed S, Wang Q, Xia M, Huang LC, Shan L, Kutluay SB. HIV-1 capsid stability and reverse transcription are finely balanced to minimize sensing of reverse transcription products via the cGAS-STING pathway. mBio 2024; 15:e0034824. [PMID: 38530034 PMCID: PMC11077976 DOI: 10.1128/mbio.00348-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/05/2024] [Indexed: 03/27/2024] Open
Abstract
A critical determinant for early post-entry events, the HIV-1 capsid (CA) protein forms the conical core when it rearranges around the dimeric RNA genome and associated viral proteins. Although mutations in CA have been reported to alter innate immune sensing of HIV-1, a direct link between core stability and sensing of HIV-1 nucleic acids has not been established. Herein, we assessed how manipulating the stability of the CA lattice through chemical and genetic approaches affects innate immune recognition of HIV-1. We found that destabilization of the CA lattice resulted in potent sensing of reverse transcription products when destabilization per se does not completely block reverse transcription. Surprisingly, due to the combined effects of enhanced reverse transcription and defects in nuclear entry, two separate CA mutants that form hyperstable cores induced innate immune sensing more potently than destabilizing CA mutations. At low concentrations that allowed the accumulation of reverse transcription products, CA-targeting compounds GS-CA1 and lenacapavir measurably impacted CA lattice stability in cells and modestly enhanced innate immune sensing of HIV. Interestingly, innate immune activation observed with viruses containing unstable cores was abolished by low doses of lenacapavir. Innate immune activation observed with both hyperstable and unstable CA mutants was dependent on the cGAS-STING DNA-sensing pathway and reverse transcription. Overall, our findings demonstrate that CA lattice stability and reverse transcription are finely balanced to support reverse transcription and minimize cGAS-STING-mediated sensing of the resulting viral DNA. IMPORTANCE In HIV-1 particles, the dimeric RNA genome and associated viral proteins and enzymes are encased in a proteinaceous lattice composed of the viral capsid protein. Herein, we assessed how altering the stability of this capsid lattice through orthogonal genetic and chemical approaches impacts the induction of innate immune responses. Specifically, we found that decreasing capsid lattice stability results in more potent sensing of viral reverse transcription products, but not the genomic RNA, in a cGAS-STING-dependent manner. The recently developed capsid inhibitors lenacapavir and GS-CA1 enhanced the innate immune sensing of HIV-1. Unexpectedly, due to increased levels of reverse transcription and cytosolic accumulation of the resulting viral cDNA, capsid mutants with hyperstable cores also resulted in the potent induction of type I interferon-mediated innate immunity. Our findings suggest that HIV-1 capsid lattice stability and reverse transcription are finely balanced to minimize exposure of reverse transcription products in the cytosol of host cells.
Collapse
Affiliation(s)
- Jenna E. Eschbach
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Maritza Puray-Chavez
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shawn Mohammed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Qiankun Wang
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ming Xia
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Lin-Chen Huang
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Liang Shan
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Durden H, Preece B, Gallegos R, Saha I, MacArthur B, Petersen A, Peppel W, Saffarian S. Competitive assembly resolves the stoichiometry of essential proteins in infectious HIV-1 virions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.10.584319. [PMID: 38559103 PMCID: PMC10979864 DOI: 10.1101/2024.03.10.584319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
During assembly on the plasma membrane, HIV-1 virions incorporate Gag-Pol as well as gp120/gp41 trimers. The Pol region consists of protease, reverse transcriptase and integrase precursors which are essential enzymes required for maturation, reverse transcription, and integration of the viral genome in the next host. gp120/gp41 trimers catalyze the fusion of the virion with its next host. Only a fraction of released virions are infectious. The stoichiometry of gp120/gp41 and Gag-Pol proteins in HIV virions was previously measured using cryotomography and ratiometric protein analysis, but what is the stoichiometry of these proteins in infectious virions remained to be determined. Here we developed a method based on competition between infectious HIV backbones with noninfectious mutants and measured 100 ± 10 Gag-Pol and 15 ± 3 gp120/gp41 proteins incorporated in infectious virions assembled in HEK293 cells from NL4.3 HIV-1 backbone. Our measurements are in broad agreement with cryotomography and ratiometric protein analysis and therefore stoichiometry of gp120/gp41 and Gag-Pol in infectious virions is the same as all released virions. With the development of appropriate mutants and infectivity assays, our method is applicable to other infectious viruses. Statement of significance There are 30 million people who have succumbed to the AIDS pandemic with 600,000 additional deaths per year. HIV has an accelerated rate of mutational accumulation with the virus mutating out of neutralizing antibodies within the same patient making development of vaccines challenging. Like most enveloped viruses, only a fraction of released virions are infectious and the question of what selects these virions has remained a mystery. The method developed in this article will allow stoichiometric measurements on infectious virions and therefore allows further studies of causes of infectivity.
Collapse
|
8
|
Gifford LB, Melikyan GB. HIV-1 Capsid Uncoating Is a Multistep Process That Proceeds through Defect Formation Followed by Disassembly of the Capsid Lattice. ACS NANO 2024; 18:2928-2947. [PMID: 38241476 PMCID: PMC10832047 DOI: 10.1021/acsnano.3c07678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/21/2024]
Abstract
The HIV-1 core consists of a cone-shaped capsid shell made of capsid protein (CA) hexamers and pentamers encapsulating the viral genome. HIV-1 capsid disassembly, referred to as uncoating, is important for productive infection; however, the location, timing, and regulation of uncoating remain controversial. Here, we employ amber codon suppression to directly label CA. In addition, a fluid phase fluorescent probe is incorporated into the viral core to detect small defects in the capsid lattice. This double-labeling strategy enables the visualization of uncoating of single cores in vitro and in living cells, which we found to always proceed through at least two distinct steps─the formation of a defect in the capsid lattice that initiates gradual loss of CA below a detectable level. Importantly, intact cores containing the fluid phase and CA fluorescent markers enter and uncoat in the nucleus, as evidenced by a sequential loss of both markers, prior to establishing productive infection. This two-step uncoating process is observed in different cells, including a macrophage line. Notably, the lag between the release of fluid phase marker and terminal loss of CA appears to be independent of the cell type or reverse transcription and is much longer (>5-fold) for nuclear capsids compared to cell-free cores or cores in the cytosol, suggesting that the capsid lattice is stabilized by capsid-binding nuclear factors. Our results imply that intact HIV-1 cores enter the cell nucleus and that uncoating is initiated through a localized defect in the capsid lattice prior to a global loss of CA.
Collapse
Affiliation(s)
- Levi B. Gifford
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
| | - Gregory B. Melikyan
- Department
of Pediatrics, Emory University School of
Medicine, Atlanta, Georgia 30322, United States
- Children’s
Healthcare of Atlanta, Atlanta, Georgia 30322, United States
| |
Collapse
|
9
|
Dibsy R, Inamdar K, Favard C, Muriaux D. Visualizing HIV-1 Assembly at the T-Cell Plasma Membrane Using Single-Molecule Localization Microscopy. Methods Mol Biol 2024; 2807:61-76. [PMID: 38743221 DOI: 10.1007/978-1-0716-3862-0_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The 20-year revolution in optical fluorescence microscopy, supported by the optimization of both spatial resolution and timely acquisition, allows the visualization of nanoscaled objects in cell biology. Currently, the use of a recent generation of super-resolution fluorescence microscope coupled with improved fluorescent probes gives the possibility to study the replicative cycle of viruses in living cells, at the single-virus particle or protein level. Here, we highlight the protocol for visualizing HIV-1 Gag assembly at the host T-cell plasma membrane using super-resolution light microscopy. Total internal reflection fluorescence microscopy (TIRF-M) coupled with single-molecule localization microscopy (SMLM) enables the detection and characterization of the assembly of viral proteins at the plasma membrane of infected host cells at the single protein level. Here, we describe the TIRF equipment, the T-cell culture for HIV-1, the sample preparation for single-molecule localization microscopies such as PALM and STORM, acquisition protocols, and Gag assembling cluster analysis.
Collapse
Affiliation(s)
- Rayane Dibsy
- CNRS, University of Montpellier, Institut de Recherche en Infectiologie de Montpellier - IRIM, UMR9004, Montpellier, France
| | - Kaushik Inamdar
- CNRS, University of Montpellier, Institut de Recherche en Infectiologie de Montpellier - IRIM, UMR9004, Montpellier, France
| | - Cyril Favard
- CNRS, University of Montpellier, Institut de Recherche en Infectiologie de Montpellier - IRIM, UMR9004, Montpellier, France
| | - Delphine Muriaux
- CNRS, University of Montpellier, Institut de Recherche en Infectiologie de Montpellier - IRIM, UMR9004, Montpellier, France.
| |
Collapse
|
10
|
Gruenke PR, Mayer MD, Aneja R, Song Z, Burke DH, Heng X, Lange MJ. Differentiation SELEX approach identifies RNA aptamers with different specificities for HIV-1 capsid assembly forms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.11.571135. [PMID: 38168417 PMCID: PMC10760009 DOI: 10.1101/2023.12.11.571135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The HIV-1 capsid protein (CA) assumes distinct assembly forms during replication, each presenting unique, solvent-accessible surfaces that facilitate multifaceted functions and host factor interactions. However, contributions of individual CA assemblies remain unclear, as the evaluation of CA in cells presents several technical challenges. To address this need, we sought to identify CA assembly form-specific aptamers. Aptamer subsets with different specificities emerged from within a highly converged, pre-enriched aptamer library previously selected to bind the CA hexamer lattice. Subsets were either highly specific for CA lattice or bound both CA lattice and CA hexamer. We further evaluated four representatives to reveal aptamer structural features required for binding, highlighting interesting features and challenges in aptamer structure determination. Importantly, our aptamers bind biologically relevant forms of CA and we demonstrate aptamer-mediated affinity purification of CA from cell lysates without virus or host modification. Thus, we have identified CA assembly form-specific aptamers that represent exciting new tools for the study of CA.
Collapse
|
11
|
Hudait A, Hurley JH, Voth GA. Dynamics of upstream ESCRT organization at the HIV-1 budding site. Biophys J 2023; 122:2655-2674. [PMID: 37218128 PMCID: PMC10397573 DOI: 10.1016/j.bpj.2023.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In the late stages of the HIV-1 life cycle, membrane localization and self-assembly of Gag polyproteins induce membrane deformation and budding. Release of the virion requires direct interaction between immature Gag lattice and upstream ESCRT machinery at the viral budding site, followed by assembly of downstream ESCRT-III factors, culminating in membrane scission. However, molecular details of upstream ESCRT assembly dynamics at the viral budding site remain unclear. In this work, using coarse-grained (CG) molecular dynamics (MD) simulations, we investigated the interactions between Gag, ESCRT-I, ESCRT-II, and membrane to delineate the dynamical mechanisms by which upstream ESCRTs assemble templated by late-stage immature Gag lattice. We first systematically derived "bottom-up" CG molecular models and interactions of upstream ESCRT proteins from experimental structural data and extensive all-atom MD simulations. Using these molecular models, we performed CG MD simulations of ESCRT-I oligomerization and ESCRT-I/II supercomplex formation at the neck of the budding virion. Our simulations demonstrate that ESCRT-I can effectively oligomerize to higher-order complexes templated by the immature Gag lattice both in the absence of ESCRT-II and when multiple copies of ESCRT-II are localized at the bud neck. The ESCRT-I/II supercomplexes formed in our simulations exhibit predominantly columnar structures, which has important implications for the nucleation pathway of downstream ESCRT-III polymers. Importantly, ESCRT-I/II supercomplexes bound to Gag initiate membrane neck constriction by pulling the inner edge of the bud neck closer to the ESCRT-I headpiece ring. Our findings serve to elucidate a network of interactions between upstream ESCRT machinery, immature Gag lattice, and membrane neck that regulate protein assembly dynamics at the HIV-1 budding site.
Collapse
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
12
|
Wu C, Xiong Y. Enrich and switch: IP6 and maturation of HIV-1 capsid. Nat Struct Mol Biol 2023; 30:239-241. [PMID: 36849641 PMCID: PMC10033439 DOI: 10.1038/s41594-023-00940-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Recent studies offer new insight on the mechanisms of IP6-mediated HIV-1 capsid assembly. The immature Gag lattice enables enrichment of IP6 into virions, aiding capsid maturation. Structures of capsid protein (CA) assemblies reveal motifs serving as switches modulating the conformations of CA pentamers/hexamers and affect co-factor accessibility.
Collapse
Affiliation(s)
- Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
13
|
Gupta M, Pak AJ, Voth GA. Critical mechanistic features of HIV-1 viral capsid assembly. SCIENCE ADVANCES 2023; 9:eadd7434. [PMID: 36608139 PMCID: PMC9821859 DOI: 10.1126/sciadv.add7434 10.1126/sciadv.add7434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/08/2022] [Indexed: 11/04/2023]
Abstract
The maturation of HIV-1 capsid protein (CA) into a cone-shaped lattice capsid is critical for viral infectivity. CA can self-assemble into a range of capsid morphologies made of ~175 to 250 hexamers and 12 pentamers. The cellular polyanion inositol hexakisphosphate (IP6) has recently been demonstrated to facilitate conical capsid formation by coordinating a ring of arginine residues within the central cavity of capsid hexamers and pentamers. However, the kinetic interplay of events during IP6 and CA coassembly is unclear. In this work, we use coarse-grained molecular dynamics simulations to elucidate the molecular mechanism of capsid formation, including the role played by IP6. We show that IP6, in small quantities at first, promotes curvature generation by trapping pentameric defects in the growing lattice and shifts assembly behavior toward kinetically favored outcomes. Our analysis also suggests that IP6 can stabilize metastable capsid intermediates and can induce structural pleomorphism in mature capsids.
Collapse
Affiliation(s)
- Manish Gupta
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| | | | - Gregory A. Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
14
|
Gupta M, Pak AJ, Voth GA. Critical mechanistic features of HIV-1 viral capsid assembly. SCIENCE ADVANCES 2023; 9:eadd7434. [PMID: 36608139 PMCID: PMC9821859 DOI: 10.1126/sciadv.add7434] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/08/2022] [Indexed: 05/29/2023]
Abstract
The maturation of HIV-1 capsid protein (CA) into a cone-shaped lattice capsid is critical for viral infectivity. CA can self-assemble into a range of capsid morphologies made of ~175 to 250 hexamers and 12 pentamers. The cellular polyanion inositol hexakisphosphate (IP6) has recently been demonstrated to facilitate conical capsid formation by coordinating a ring of arginine residues within the central cavity of capsid hexamers and pentamers. However, the kinetic interplay of events during IP6 and CA coassembly is unclear. In this work, we use coarse-grained molecular dynamics simulations to elucidate the molecular mechanism of capsid formation, including the role played by IP6. We show that IP6, in small quantities at first, promotes curvature generation by trapping pentameric defects in the growing lattice and shifts assembly behavior toward kinetically favored outcomes. Our analysis also suggests that IP6 can stabilize metastable capsid intermediates and can induce structural pleomorphism in mature capsids.
Collapse
|
15
|
Yang H, Talledge N, Arndt WG, Zhang W, Mansky LM. Human Immunodeficiency Virus Type 2 Capsid Protein Mutagenesis Reveals Amino Acid Residues Important for Virus Particle Assembly. J Mol Biol 2022; 434:167753. [PMID: 35868362 PMCID: PMC11057910 DOI: 10.1016/j.jmb.2022.167753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/16/2022]
Abstract
Human immunodeficiency virus (HIV) Gag drives virus particle assembly. The capsid (CA) domain is critical for Gag multimerization mediated by protein-protein interactions. The Gag protein interaction network defines critical aspects of the retroviral lifecycle at steps such as particle assembly and maturation. Previous studies have demonstrated that the immature particle morphology of HIV-2 is intriguingly distinct relative to that of HIV-1. Based upon this observation, we sought to determine the amino acid residues important for virus assembly that might help explain the differences between HIV-1 and HIV-2. To do this, we conducted site-directed mutagenesis of targeted locations in the HIV-2 CA domain of Gag and analyzed various aspects of virus particle assembly. A panel of 31 site-directed mutants of residues that reside at the HIV-2 CA inter-hexamer interface, intra-hexamer interface and CA inter-domain linker were created and analyzed for their effects on the efficiency of particle production, particle morphology, particle infectivity, Gag subcellular distribution and in vitro protein assembly. Seven conserved residues between HIV-1 and HIV-2 (L19, A41, I152, K153, K157, N194, D196) and two non-conserved residues (G38, N127) were found to significantly impact Gag multimerization and particle assembly. Taken together, these observations complement structural analyses of immature HIV-2 particle morphology and Gag lattice organization as well as provide important comparative insights into the key amino acid residues that can help explain the observed differences between HIV immature particle morphology and its association with virus replication and particle infectivity.
Collapse
Affiliation(s)
- Huixin Yang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA
| | - Nathaniel Talledge
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - William G Arndt
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Biochemistry, Molecular Biology & Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| | - Wei Zhang
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Characterization Facility, College of Sciences and Engineering, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| | - Louis M Mansky
- Institute for Molecular Virology, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Division of Basic Sciences, School of Dentistry, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA; Comparative Molecular Biosciences Graduate Program, University of Minnesota - Twin Cities, St. Paul, MN 55108, USA; Biochemistry, Molecular Biology & Biophysics Graduate Program, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA.
| |
Collapse
|
16
|
Localization and functions of native and eGFP-tagged capsid proteins in HIV-1 particles. PLoS Pathog 2022; 18:e1010754. [PMID: 35951676 PMCID: PMC9426931 DOI: 10.1371/journal.ppat.1010754] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 08/30/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
In infectious HIV-1 particles, the capsid protein (CA) forms a cone-shaped shell called the capsid, which encases the viral ribonucleoprotein complex (vRNP). Following cellular entry, the capsid is disassembled through a poorly understood process referred to as uncoating, which is required to release the reverse transcribed HIV-1 genome for integration into host chromatin. Whereas single virus imaging using indirect CA labeling techniques suggested uncoating to occur in the cytoplasm or at the nuclear pore, a recent study using eGFP-tagged CA reported uncoating in the nucleus. To delineate the HIV-1 uncoating site, we investigated the mechanism of eGFP-tagged CA incorporation into capsids and the utility of this fluorescent marker for visualizing HIV-1 uncoating. We find that virion incorporated eGFP-tagged CA is effectively excluded from the capsid shell, and that a subset of the tagged CA is vRNP associated. These results thus imply that eGFP-tagged CA is not a direct marker for capsid uncoating. We further show that native CA co-immunoprecipitates with vRNP components, providing a basis for retention of eGFP-tagged and untagged CA by sub-viral complexes in the nucleus. Moreover, we find that functional viral replication complexes become accessible to integrase-interacting host factors at the nuclear pore, leading to inhibition of infection and demonstrating capsid permeabilization prior to nuclear import. Finally, we find that HIV-1 cores containing a mixture of wild-type and mutant CA interact differently with cytoplasmic versus nuclear pools of the CA-binding host cofactor CPSF6. Our results suggest that capsid remodeling (including a loss of capsid integrity) is the predominant pathway for HIV-1 nuclear entry and provide new insights into the mechanism of CA retention in the nucleus via interaction with vRNP components. The timing, location and mechanisms of HIV-1 capsid disassembly which is referred to as uncoating remains unclear. Direct labeling of HIV-1 capsids, by incorporating a few green fluorescent proteins (GFP) tagged capsid protein (CA) into virions allows to image the spatio-temporal loss of HIV-1 CA during virus infection. However, the localization and functions of a few virion incorporated eGFP-tagged CA proteins remain unclear, since <50% of virus packaged CA proteins participate to form the conical capsid shell that protects the HIV-1 genome. Here we developed several approaches to test the localization and function of eGFP-tagged CA proteins in virions. We found that eGFP-tagged CA proteins are excluded from the conical capsid shell and that a subset of these proteins is associated with the viral ribonucleoprotein complex (vRNPs), through direct interactions between CA and vRNP components. eGFP-tagged CA is retained in the nucleus by virtue of vRNP association and is unlikely to report on HIV-1 capsid disassembly. We also found that HIV-1 capsids become permeabilized and are remodeled during their transport into the nucleus. Our study provides new insights into the ability of CA to interact with vRNPs for its retention in the nucleus and highlights capsid remodeling as a preferred pathway for HIV-1 entry into the nucleus.
Collapse
|
17
|
Harrison JJEK, Passos DO, Bruhn JF, Bauman JD, Tuberty L, DeStefano JJ, Ruiz FX, Lyumkis D, Arnold E. Cryo-EM structure of the HIV-1 Pol polyprotein provides insights into virion maturation. SCIENCE ADVANCES 2022; 8:eabn9874. [PMID: 35857464 PMCID: PMC9258950 DOI: 10.1126/sciadv.abn9874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Key proteins of retroviruses and other RNA viruses are translated and subsequently processed from polyprotein precursors by the viral protease (PR). Processing of the HIV Gag-Pol polyprotein yields the HIV structural proteins and enzymes. Structures of the mature enzymes PR, reverse transcriptase (RT), and integrase (IN) aided understanding of catalysis and design of antiretrovirals, but knowledge of the Pol precursor architecture and function before PR cleavage is limited. We developed a system to produce stable HIV-1 Pol and determined its cryo-electron microscopy structure. RT in Pol has a similar arrangement to the mature RT heterodimer, and its dimerization may draw together two PR monomers to activate proteolytic processing. HIV-1 thus may leverage the dimerization interfaces in Pol to regulate assembly and maturation of polyprotein precursors.
Collapse
Affiliation(s)
- Jerry Joe E. K. Harrison
- Center for Advanced Biotechnology and Medicine (CABM), Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
- Department of Chemistry, University of Ghana, Legon, Ghana
| | | | - Jessica F. Bruhn
- The Salk Institute for Biological Studies, La Jolla, CA, USA
- NanoImaging Services, San Diego, CA, USA
| | - Joseph D. Bauman
- Center for Advanced Biotechnology and Medicine (CABM), Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Lynda Tuberty
- Center for Advanced Biotechnology and Medicine (CABM), Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Jeffrey J. DeStefano
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
- Maryland Pathogen Research Institute, University of Maryland, College Park, MD, USA
| | - Francesc Xavier Ruiz
- Center for Advanced Biotechnology and Medicine (CABM), Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Dmitry Lyumkis
- The Salk Institute for Biological Studies, La Jolla, CA, USA
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, USA
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine (CABM), Piscataway, NJ, USA
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
18
|
Balasubramaniam M, Davids BO, Bryer A, Xu C, Thapa S, Shi J, Aiken C, Pandhare J, Perilla JR, Dash C. HIV-1 mutants that escape the cytotoxic T-lymphocytes are defective in viral DNA integration. PNAS NEXUS 2022; 1:pgac064. [PMID: 35719891 PMCID: PMC9198661 DOI: 10.1093/pnasnexus/pgac064] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022]
Abstract
HIV-1 replication is durably controlled without antiretroviral therapy (ART) in certain infected individuals called elite controllers (ECs). These individuals express specific human leukocyte antigens (HLA) that tag HIV-infected cells for elimination by presenting viral epitopes to CD8+ cytotoxic T-lymphocytes (CTL). In HIV-infected individuals expressing HLA-B27, CTLs primarily target the viral capsid protein (CA)-derived KK10 epitope. While selection of CA mutation R264K helps HIV-1 escape this potent CTL response, the accompanying fitness cost severely diminishes virus infectivity. Interestingly, selection of a compensatory CA mutation S173A restores HIV-1 replication. However, the molecular mechanism(s) underlying HIV-1 escape from this ART-free virus control by CTLs is not fully understood. Here, we report that the R264K mutation-associated infectivity defect arises primarily from impaired HIV-1 DNA integration, which is restored by the S173A mutation. Unexpectedly, the integration defect of the R264K variant was also restored upon depletion of the host cyclophilin A. These findings reveal a nuclear crosstalk between CA and HIV-1 integration as well as identify a previously unknown role of cyclophilin A in viral DNA integration. Finally, our study identifies a novel immune escape mechanism of an HIV-1 variant escaping a CA-directed CTL response.
Collapse
Affiliation(s)
| | - Benem-Orom Davids
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Alex Bryer
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Chaoyi Xu
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Santosh Thapa
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Jiong Shi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN - 37232, USA
| | - Christopher Aiken
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN - 37232, USA
| | - Jui Pandhare
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| | - Juan R Perilla
- Department of Chemistry, University of Delaware, Newark, DE - 19716, USA
| | - Chandravanu Dash
- The Center for AIDS Health Disparities Research, Meharry Medical College, Nashville, TN - 37208, USA
| |
Collapse
|
19
|
Jadhav S, Yenorkar N, Bondre R, Karemore M, Bali N. Nanomedicines encountering HIV dementia: A guiding star for neurotherapeutics. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
20
|
Targeting the Virus Capsid as a Tool to Fight RNA Viruses. Viruses 2022; 14:v14020174. [PMID: 35215767 PMCID: PMC8879806 DOI: 10.3390/v14020174] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 12/10/2022] Open
Abstract
Several strategies have been developed to fight viral infections, not only in humans but also in animals and plants. Some of them are based on the development of efficient vaccines, to target the virus by developed antibodies, others focus on finding antiviral compounds with activities that inhibit selected virus replication steps. Currently, there is an increasing number of antiviral drugs on the market; however, some have unpleasant side effects, are toxic to cells, or the viruses quickly develop resistance to them. As the current situation shows, the combination of multiple antiviral strategies or the combination of the use of various compounds within one strategy is very important. The most desirable are combinations of drugs that inhibit different steps in the virus life cycle. This is an important issue especially for RNA viruses, which replicate their genomes using error-prone RNA polymerases and rapidly develop mutants resistant to applied antiviral compounds. Here, we focus on compounds targeting viral structural capsid proteins, thereby inhibiting virus assembly or disassembly, virus binding to cellular receptors, or acting by inhibiting other virus replication mechanisms. This review is an update of existing papers on a similar topic, by focusing on the most recent advances in the rapidly evolving research of compounds targeting capsid proteins of RNA viruses.
Collapse
|
21
|
Krebs AS, Mendonça LM, Zhang P. Structural Analysis of Retrovirus Assembly and Maturation. Viruses 2021; 14:54. [PMID: 35062258 PMCID: PMC8778513 DOI: 10.3390/v14010054] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/30/2022] Open
Abstract
Retroviruses have a very complex and tightly controlled life cycle which has been studied intensely for decades. After a virus enters the cell, it reverse-transcribes its genome, which is then integrated into the host genome, and subsequently all structural and regulatory proteins are transcribed and translated. The proteins, along with the viral genome, assemble into a new virion, which buds off the host cell and matures into a newly infectious virion. If any one of these steps are faulty, the virus cannot produce infectious viral progeny. Recent advances in structural and molecular techniques have made it possible to better understand this class of viruses, including details about how they regulate and coordinate the different steps of the virus life cycle. In this review we summarize the molecular analysis of the assembly and maturation steps of the life cycle by providing an overview on structural and biochemical studies to understand these processes. We also outline the differences between various retrovirus families with regards to these processes.
Collapse
Affiliation(s)
- Anna-Sophia Krebs
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.-S.K.); (L.M.M.)
| | - Luiza M. Mendonça
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.-S.K.); (L.M.M.)
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (A.-S.K.); (L.M.M.)
- Electron Bio-Imaging Centre, Diamond Light Source, Harwell Science and Innovation Campus, Didcot OX11 0DE, UK
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
22
|
Saha I, Preece B, Peterson A, Durden H, MacArthur B, Lowe J, Belnap D, Vershinin M, Saffarian S. Gag-Gag Interactions Are Insufficient to Fully Stabilize and Order the Immature HIV Gag Lattice. Viruses 2021; 13:1946. [PMID: 34696376 PMCID: PMC8540168 DOI: 10.3390/v13101946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/16/2022] Open
Abstract
Immature HIV virions harbor a lattice of Gag molecules with significant ordering in CA-NTD, CA-CTD and SP1 regions. This ordering plays a major role during HIV maturation. To test the condition in which the Gag lattice forms in vivo, we assembled virus like particles (VLPs) by expressing only HIV Gag in mammalian cells. Here we show that these VLPs incorporate a similar number of Gag molecules compared to immature HIV virions. However, within these VLPs, Gag molecules diffuse with a pseudo-diffusion rate of 10 nm2/s, this pseudo-diffusion is abrogated in the presence of melittin and is sensitive to mutations within the SP1 region. Using cryotomography, we show that unlike immature HIV virions, in the Gag lattice of VLPs the CA-CTD and SP1 regions are significantly less ordered. Our observations suggest that within immature HIV virions, other viral factors in addition to Gag, contribute to ordering in the CA-CTD and SP1 regions.
Collapse
Affiliation(s)
- Ipsita Saha
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA;
| | - Benjamin Preece
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Abby Peterson
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Haley Durden
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Brian MacArthur
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
| | - Jake Lowe
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.L.); (D.B.)
| | - David Belnap
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.L.); (D.B.)
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael Vershinin
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.L.); (D.B.)
| | - Saveez Saffarian
- Center for Cell and Genome Science, University of Utah, Salt Lake City, UT 84112, USA; (B.P.); (A.P.); (H.D.); (B.M.); (M.V.)
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT 84112, USA
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA; (J.L.); (D.B.)
| |
Collapse
|
23
|
Wang Y, Guo C, Wang X, Xu L, Li R, Wang J. The Zinc Content of HIV-1 NCp7 Affects Its Selectivity for Packaging Signal and Affinity for Stem-Loop 3. Viruses 2021; 13:v13101922. [PMID: 34696351 PMCID: PMC8540335 DOI: 10.3390/v13101922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/19/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
The nucleocapsid (NC) protein of human immunodeficiency (HIV) is a small, highly basic protein containing two CCHC zinc-finger motifs, which is cleaved from the NC domain of the Gag polyprotein during virus maturation. We previously reported that recombinant HIV-1 Gag and NCp7 overexpressed in an E. coli host contains two and one zinc ions, respectively, and Gag exhibited much higher selectivity for packaging signal (Psi) and affinity for the stem-loop (SL)-3 of Psi than NCp7. In this study, we prepared NCp7 containing 0 (0NCp7), 1 (NCp7) or 2 (2NCp7) zinc ions, and compared their secondary structure, Psi-selectivity and SL3-affinity. Along with the decrease of the zinc content, less ordered conformations were detected. Compared to NCp7, 2NCp7 exhibited a much higher Psi-selectivity and SL3-affinity, similar to Gag, whereas 0NCp7 exhibited a lower Psi-selectivity and SL3-affinity, similar to the H23&H44K double mutant of NCp7, indicating that the different RNA-binding property of Gag NC domain and the mature NCp7 may be resulted, at least partially, from their different zinc content. This study will be helpful to elucidate the critical roles that zinc played in the viral life cycle, and benefit further investigations of the functional switch from the NC domain of Gag to the mature NCp7.
Collapse
Affiliation(s)
- Ying Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; (Y.W.); (X.W.); (L.X.); (R.L.)
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
| | - Chao Guo
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China;
| | - Xing Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; (Y.W.); (X.W.); (L.X.); (R.L.)
| | - Lianmei Xu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; (Y.W.); (X.W.); (L.X.); (R.L.)
| | - Rui Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; (Y.W.); (X.W.); (L.X.); (R.L.)
| | - Jinzhong Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin 300457, China; (Y.W.); (X.W.); (L.X.); (R.L.)
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin 300457, China
- Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin 300457, China
- Correspondence:
| |
Collapse
|
24
|
Human TRIM5α: Autophagy Connects Cell-Intrinsic HIV-1 Restriction and Innate Immune Sensor Functioning. Viruses 2021; 13:v13020320. [PMID: 33669846 PMCID: PMC7923229 DOI: 10.3390/v13020320] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/13/2021] [Indexed: 12/12/2022] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) persists as a global health concern, with an incidence rate of approximately 2 million, and estimated global prevalence of over 35 million. Combination antiretroviral treatment is highly effective, but HIV-1 patients that have been treated still suffer from chronic inflammation and residual viral replication. It is therefore paramount to identify therapeutically efficacious strategies to eradicate viral reservoirs and ultimately develop a cure for HIV-1. It has been long accepted that the restriction factor tripartite motif protein 5 isoform alpha (TRIM5α) restricts HIV-1 infection in a species-specific manner, with rhesus macaque TRIM5α strongly restricting HIV-1, and human TRIM5α having a minimal restriction capacity. However, several recent studies underscore human TRIM5α as a cell-dependent HIV-1 restriction factor. Here, we present an overview of the latest research on human TRIM5α and propose a novel conceptualization of TRIM5α as a restriction factor with a varied portfolio of antiviral functions, including mediating HIV-1 degradation through autophagy- and proteasome-mediated mechanisms, and acting as a viral sensor and effector of antiviral signaling. We have also expanded on the protective antiviral roles of autophagy and outline the therapeutic potential of autophagy modulation to intervene in chronic HIV-1 infection.
Collapse
|
25
|
Application of Advanced Light Microscopy to the Study of HIV and Its Interactions with the Host. Viruses 2021; 13:v13020223. [PMID: 33535486 PMCID: PMC7912744 DOI: 10.3390/v13020223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/26/2021] [Accepted: 01/27/2021] [Indexed: 11/24/2022] Open
Abstract
This review highlights the significant observations of human immunodeficiency virus (HIV) assembly, release and maturation made possible with advanced light microscopy techniques. The advances in technology which now enables these light microscopy measurements are discussed with special emphasis on live imaging approaches including Total Internal Reflection Fluorescence (TIRF), high-resolution light microscopy techniques including PALM and STORM and single molecule measurements, including Fluorescence Resonance Energy Transfer (FRET). The review concludes with a discussion on what new insights and understanding can be expected from these measurements.
Collapse
|
26
|
Imaging Viral Infection by Fluorescence Microscopy: Focus on HIV-1 Early Stage. Viruses 2021; 13:v13020213. [PMID: 33573241 PMCID: PMC7911428 DOI: 10.3390/v13020213] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/28/2021] [Accepted: 01/28/2021] [Indexed: 12/15/2022] Open
Abstract
During the last two decades, progresses in bioimaging and the development of various strategies to fluorescently label the viral components opened a wide range of possibilities to visualize the early phase of Human Immunodeficiency Virus 1 (HIV-1) life cycle directly in infected cells. After fusion of the viral envelope with the cell membrane, the viral core is released into the cytoplasm and the viral RNA (vRNA) is retro-transcribed into DNA by the reverse transcriptase. During this process, the RNA-based viral complex transforms into a pre-integration complex (PIC), composed of the viral genomic DNA (vDNA) coated with viral and host cellular proteins. The protective capsid shell disassembles during a process called uncoating. The viral genome is transported into the cell nucleus and integrates into the host cell chromatin. Unlike biochemical approaches that provide global data about the whole population of viral particles, imaging techniques enable following individual viruses on a single particle level. In this context, quantitative microscopy has brought original data shedding light on the dynamics of the viral entry into the host cell, the cytoplasmic transport, the nuclear import, and the selection of the integration site. In parallel, multi-color imaging studies have elucidated the mechanism of action of host cell factors implicated in HIV-1 viral cycle progression. In this review, we describe the labeling strategies used for HIV-1 fluorescence imaging and report on the main advancements that imaging studies have brought in the understanding of the infection mechanisms from the viral entry into the host cell until the provirus integration step.
Collapse
|
27
|
Capsid Lattice Destabilization Leads to Premature Loss of the Viral Genome and Integrase Enzyme during HIV-1 Infection. J Virol 2020; 95:JVI.00984-20. [PMID: 33115869 DOI: 10.1128/jvi.00984-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 10/24/2020] [Indexed: 01/28/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein forms a conical lattice around the viral ribonucleoprotein complex (vRNP) consisting of a dimeric viral genome and associated proteins, together constituting the viral core. Upon entry into target cells, the viral core undergoes a process termed uncoating, during which CA molecules are shed from the lattice. Although the timing and degree of uncoating are important for reverse transcription and integration, the molecular basis of this phenomenon remains unclear. Using complementary approaches, we assessed the impact of core destabilization on the intrinsic stability of the CA lattice in vitro and fates of viral core components in infected cells. We found that substitutions in CA can impact the intrinsic stability of the CA lattice in vitro in the absence of vRNPs, which mirrored findings from an assessment of CA stability in virions. Altering CA stability tended to increase the propensity to form morphologically aberrant particles, in which the vRNPs were mislocalized between the CA lattice and the viral lipid envelope. Importantly, destabilization of the CA lattice led to premature dissociation of CA from vRNPs in target cells, which was accompanied by proteasomal-independent losses of the viral genome and integrase enzyme. Overall, our studies show that the CA lattice protects the vRNP from untimely degradation in target cells and provide the mechanistic basis of how CA stability influences reverse transcription.IMPORTANCE The human immunodeficiency virus type 1 (HIV-1) capsid (CA) protein forms a conical lattice around the viral RNA genome and the associated viral enzymes and proteins, together constituting the viral core. Upon infection of a new cell, viral cores are released into the cytoplasm where they undergo a process termed "uncoating," i.e., shedding of CA molecules from the conical lattice. Although proper and timely uncoating has been shown to be important for reverse transcription, the molecular mechanisms that link these two events remain poorly understood. In this study, we show that destabilization of the CA lattice leads to premature dissociation of CA from viral cores, which exposes the viral genome and the integrase enzyme for degradation in target cells. Thus, our studies demonstrate that the CA lattice protects the viral ribonucleoprotein complexes from untimely degradation in target cells and provide the first causal link between how CA stability affects reverse transcription.
Collapse
|
28
|
Francis AC, Marin M, Prellberg MJ, Palermino-Rowland K, Melikyan GB. HIV-1 Uncoating and Nuclear Import Precede the Completion of Reverse Transcription in Cell Lines and in Primary Macrophages. Viruses 2020; 12:E1234. [PMID: 33143125 PMCID: PMC7693591 DOI: 10.3390/v12111234] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 10/25/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
An assembly of capsid proteins (CA) form the mature viral core enclosing the HIV-1 ribonucleoprotein complex. Discrepant findings have been reported regarding the cellular sites and the extent of core disassembly (uncoating) in infected cells. Here, we combined single-virus imaging and time-of-drug-addition assays to elucidate the kinetic relationship between uncoating, reverse transcription, and nuclear import of HIV-1 complexes in cell lines and monocyte-derived macrophages (MDMs). By using cyclophilin A-DsRed (CDR) as a marker for CA, we show that, in contrast to TZM-bl cells, early cytoplasmic uncoating (loss of CDR) is limited in MDMs and is correlated with the efficiency of reverse transcription. However, we find that reverse transcription is dispensable for HIV-1 nuclear import, which progressed through an uncoating step at the nuclear pore. Comparison of the kinetics of nuclear import and the virus escape from inhibitors targeting distinct steps of infection, as well as direct quantification of viral DNA synthesis, revealed that reverse transcription is completed after nuclear import of HIV-1 complexes. Collectively, these results suggest that reverse transcription is dispensable for the uncoating step at the nuclear pore and that vDNA synthesis is completed in the nucleus of unrelated target cells.
Collapse
Affiliation(s)
- Ashwanth C. Francis
- Department of Pediatrics, Division of Infectious Diseases Emory University School of Medicine, Atlanta, GA 30322, USA; (M.M.); (M.J.P.); (K.P.-R.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mariana Marin
- Department of Pediatrics, Division of Infectious Diseases Emory University School of Medicine, Atlanta, GA 30322, USA; (M.M.); (M.J.P.); (K.P.-R.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Mathew J. Prellberg
- Department of Pediatrics, Division of Infectious Diseases Emory University School of Medicine, Atlanta, GA 30322, USA; (M.M.); (M.J.P.); (K.P.-R.)
| | - Kristina Palermino-Rowland
- Department of Pediatrics, Division of Infectious Diseases Emory University School of Medicine, Atlanta, GA 30322, USA; (M.M.); (M.J.P.); (K.P.-R.)
| | - Gregory B. Melikyan
- Department of Pediatrics, Division of Infectious Diseases Emory University School of Medicine, Atlanta, GA 30322, USA; (M.M.); (M.J.P.); (K.P.-R.)
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
29
|
Guo C, Yao X, Wang K, Wang J, Wang Y. Comparison of HIV-1 Gag and NCp7 in their selectivity for package signal, affinity for stem-loop 3, and Zn 2+ content. Biochimie 2020; 179:135-145. [PMID: 32987107 DOI: 10.1016/j.biochi.2020.09.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/22/2020] [Accepted: 09/23/2020] [Indexed: 11/17/2022]
Abstract
The human immunodeficiency virus type 1 (HIV-1) Gag recognizes viral packaging signal (Psi) specifically via its nucleocapsid (NC) domain, resulting in the encapsidation of two copies of genomic RNA (gRNA) into the viral particle. The NCp7, which is cleaved from Gag during viral maturation, is a nucleic acid chaperone, coating and protecting the gRNA. In this study, an RT-qPCR-based approach was developed to quantitatively compare the Psi-selectivity of Gag and NCp7 in the presence of bacterial or 293T total RNAs. The binding affinity of Gag and NCp7 to the stem-loop (SL) 3 of Psi was also compared using surface plasmon resonance. We found that Gag selected more Psi-RNA than NCp7 from both E. coli BL21 (DE3) and in vitro binding reactions, and Gag bound to SL3-RNA with a higher affinity than NCp7. Moreover, Gag contained two Zn2+ whereas NCp7 contained one. The N-terminal zinc-finger motif of NCp7 lost most of its Zn2+-binding activity. Deletion of N-terminal amino acids 1-11 of NCp7 resulted in increased Psi-selectivity, SL3-affinity and Zn2+ content. These results indicated that Zn2+ coordination of Gag is critical for Psi-binding and selection. Removal of Zn2+ from the first zinc-finger motif during or after Gag cleavage to generate mature NCp7 might serve as a switch to regulate the functions of Gag NC domain and mature NCp7. Our study will be helpful to elucidate the important roles that Zn2+ plays in the viral life cycle, and may benefit further investigations of the function of HIV-1 Gag and NCp7.
Collapse
Affiliation(s)
- Chao Guo
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Xiaohong Yao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Kangkang Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Jinzhong Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin, 300457, China.
| | - Ying Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin, 300457, China.
| |
Collapse
|
30
|
Elliott JL, Kutluay SB. Going beyond Integration: The Emerging Role of HIV-1 Integrase in Virion Morphogenesis. Viruses 2020; 12:E1005. [PMID: 32916894 PMCID: PMC7551943 DOI: 10.3390/v12091005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
The HIV-1 integrase enzyme (IN) plays a critical role in the viral life cycle by integrating the reverse-transcribed viral DNA into the host chromosome. This function of IN has been well studied, and the knowledge gained has informed the design of small molecule inhibitors that now form key components of antiretroviral therapy regimens. Recent discoveries unveiled that IN has an under-studied yet equally vital second function in human immunodeficiency virus type 1 (HIV-1) replication. This involves IN binding to the viral RNA genome in virions, which is necessary for proper virion maturation and morphogenesis. Inhibition of IN binding to the viral RNA genome results in mislocalization of the viral genome inside the virus particle, and its premature exposure and degradation in target cells. The roles of IN in integration and virion morphogenesis share a number of common elements, including interaction with viral nucleic acids and assembly of higher-order IN multimers. Herein we describe these two functions of IN within the context of the HIV-1 life cycle, how IN binding to the viral genome is coordinated by the major structural protein, Gag, and discuss the value of targeting the second role of IN in virion morphogenesis.
Collapse
Affiliation(s)
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA;
| |
Collapse
|
31
|
Thermal stressed human immunodeficiency virus type 1 nucleocapsid protein NCp7 maintains nucleic acid-binding activity. Biochem Biophys Res Commun 2020; 526:721-727. [DOI: 10.1016/j.bbrc.2020.03.167] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 03/28/2020] [Indexed: 11/23/2022]
|
32
|
Dick A, Cocklin S. Recent Advances in HIV-1 Gag Inhibitor Design and Development. Molecules 2020; 25:molecules25071687. [PMID: 32272714 PMCID: PMC7181048 DOI: 10.3390/molecules25071687] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/31/2020] [Accepted: 04/05/2020] [Indexed: 02/06/2023] Open
Abstract
Acquired Immune Deficiency Syndrome (AIDS) treatment with combination antiretroviral therapy (cART) has improved the life quality of many patients since its implementation. However, resistance mutations and the accumulation of severe side effects associated with cART remain enormous challenges that need to be addressed with the continual design and redesign of anti-HIV drugs. In this review, we focus on the importance of the HIV-1 Gag polyprotein as the master coordinator of HIV-1 assembly and maturation and as an emerging drug target. Due to its multiple roles in the HIV-1 life cycle, the individual Gag domains are attractive but also challenging targets for inhibitor design. However, recent encouraging developments in targeting the Gag domains such as the capsid protein with highly potent and potentially long-acting inhibitors, as well as the exploration and successful targeting of challenging HIV-1 proteins such as the matrix protein, have demonstrated the therapeutic viability of this important protein. Such Gag-directed inhibitors have great potential for combating the AIDS pandemic and to be useful tools to dissect HIV-1 biology.
Collapse
|
33
|
Chen S, Xu J, Liu M, Rao ALN, Zandi R, Gill SS, Mohideen U. Investigation of HIV-1 Gag binding with RNAs and lipids using Atomic Force Microscopy. PLoS One 2020; 15:e0228036. [PMID: 32015565 PMCID: PMC6996966 DOI: 10.1371/journal.pone.0228036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 01/06/2020] [Indexed: 11/22/2022] Open
Abstract
Atomic Force Microscopy was utilized to study the morphology of Gag, ΨRNA, and their binding complexes with lipids in a solution environment with 0.1Å vertical and 1nm lateral resolution. TARpolyA RNA was used as a RNA control. The lipid used was phospha-tidylinositol-(4,5)-bisphosphate (PI(4,5)P2). The morphology of specific complexes Gag-ΨRNA, Gag-TARpolyA RNA, Gag-PI(4,5)P2 and PI(4,5)P2-ΨRNA-Gag were studied. They were imaged on either positively or negatively charged mica substrates depending on the net charges carried. Gag and its complexes consist of monomers, dimers and tetramers, which was confirmed by gel electrophoresis. The addition of specific ΨRNA to Gag is found to increase Gag multimerization. Non-specific TARpolyA RNA was found not to lead to an increase in Gag multimerization. The addition PI(4,5)P2 to Gag increases Gag multimerization, but to a lesser extent than ΨRNA. When both ΨRNA and PI(4,5)P2 are present Gag undergoes comformational changes and an even higher degree of multimerization.
Collapse
Affiliation(s)
- Shaolong Chen
- Department of Physics & Astronomy, University of California, Riverside, California, United States of America
| | - Jun Xu
- Department of Physics & Astronomy, University of California, Riverside, California, United States of America
| | - Mingyue Liu
- Department of Physics & Astronomy, University of California, Riverside, California, United States of America
| | - A. L. N. Rao
- Department of Plant Pathology & Microbiology, University of California, Riverside, California, United States of America
| | - Roya Zandi
- Department of Physics & Astronomy, University of California, Riverside, California, United States of America
| | - Sarjeet S. Gill
- Department of Cell Biology & Neuroscience, University of California, Riverside, California, United States of America
| | - Umar Mohideen
- Department of Physics & Astronomy, University of California, Riverside, California, United States of America
- * E-mail:
| |
Collapse
|
34
|
Fluorescent Protein Inserts in between NC and SP2 are Tolerated for Assembly, Release and Maturation of HIV with Limited Infectivity. Viruses 2019; 11:v11110973. [PMID: 31652757 PMCID: PMC6893430 DOI: 10.3390/v11110973] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/08/2019] [Accepted: 10/14/2019] [Indexed: 01/07/2023] Open
Abstract
We report the design of a fluorescent HIV construct that is labeled by insertion of fluorescent protein between the nucleocapsid (NC) and spacer peptide 2 (SP2) domains of Gag and further show that the fluorescent protein is released from its confines within Gag during maturation. This fluorescent HIV is capable of budding and maturation with similar efficiency to the parental virus. Virions generated using this design within the R8 HIV backbone pseudotyped with VSV-G were capable of delivering small RNA genomes encoding GFP to the target cells; however, the same design within the NL4-3 backbone has limited HIV infectivity. The virions generated by these constructs are approximately 165 ± 35 nm in size, which is significantly larger than wild type HIV. We suggest that this design has the potential to be a vehicle for protein and small guide RNA delivery.
Collapse
|
35
|
Obr M, Schur FKM. Structural analysis of pleomorphic and asymmetric viruses using cryo-electron tomography and subtomogram averaging. Adv Virus Res 2019; 105:117-159. [PMID: 31522703 DOI: 10.1016/bs.aivir.2019.07.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Describing the protein interactions that form pleomorphic and asymmetric viruses represents a considerable challenge to most structural biology techniques, including X-ray crystallography and single particle cryo-electron microscopy. Obtaining a detailed understanding of these interactions is nevertheless important, considering the number of relevant human pathogens that do not follow strict icosahedral or helical symmetry. Cryo-electron tomography and subtomogram averaging methods provide structural insights into complex biological environments and are well suited to go beyond structures of perfectly symmetric viruses. This chapter discusses recent developments showing that cryo-ET and subtomogram averaging can provide high-resolution insights into hitherto unknown structural features of pleomorphic and asymmetric virus particles. It also describes how these methods have significantly added to our understanding of retrovirus capsid assemblies in immature and mature viruses. Additional examples of irregular viruses and their associated proteins, whose structures have been studied via cryo-ET and subtomogram averaging, further support the versatility of these methods.
Collapse
Affiliation(s)
- Martin Obr
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Florian K M Schur
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria.
| |
Collapse
|
36
|
Allosteric Regulation of HIV-1 Capsid Structure for Gag Assembly, Virion Production, and Viral Infectivity by a Disordered Interdomain Linker. J Virol 2019; 93:JVI.00381-19. [PMID: 31189701 DOI: 10.1128/jvi.00381-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022] Open
Abstract
The retroviral Gag capsid (Gag-CA) interdomain linker is an unstructured peptide segment connecting structured N-terminal and C-terminal domains. Although the region is reported to play roles in virion morphogenesis and infectivity, underlying molecular mechanisms remain unexplored. To address this issue, we determined biological and molecular phenotypes of HIV-1 CA linker mutants by experimental and in silico approaches. Among the nine linker mutants tested, eight exhibited attenuation of viral particle production to various extents mostly in parallel with a reduction in viral infectivity. Sucrose density gradient, confocal microscopy, and live-cell protein interaction analyses indicated that the defect is accompanied by attenuation of Gag-Gag interactions following Gag plasma membrane targeting in the cells. In silico analyses revealed distinct distributions of interaction-prone hydrophobic patches between immature and mature CA proteins. Molecular dynamics simulations predicted that the linker mutations can allosterically alter structural fluctuations, including the interaction surfaces apart from the mutation sites in both the immature and mature CA proteins. These results suggest that the HIV-1 CA interdomain linker is a cis-modulator of the CA interaction surfaces to optimize efficiency of Gag assembly, virion production, and viral infectivity.IMPORTANCE HIV-1 particle production and infection are highly ordered processes. Viral Gag proteins play a central role in the assembly and disassembly of viral molecules. Of these, capsid protein (CA) is a major contributor to the Gag-Gag interactions. CA consists of two structured domains, i.e., N-terminal (NTD) and C-terminal (CTD) domains, connected by an unstructured domain named the interdomain linker. While multiple regions in the NTD and CTD are reported to play roles in virion morphogenesis and infectivity, the roles of the linker region in Gag assembly and virus particle formation remain elusive. In this study, we showed by biological and molecular analyses that the linker region functions as an intramolecular modulator to tune Gag assembly, virion production, and viral infectivity. Our study thus illustrates a hitherto-unrecognized mechanism, an allosteric regulation of CA structure by the disordered protein element, for HIV-1 replication.
Collapse
|
37
|
Cervera L, Gòdia F, Tarrés-Freixas F, Aguilar-Gurrieri C, Carrillo J, Blanco J, Gutiérrez-Granados S. Production of HIV-1-based virus-like particles for vaccination: achievements and limits. Appl Microbiol Biotechnol 2019; 103:7367-7384. [DOI: 10.1007/s00253-019-10038-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 12/20/2022]
|
38
|
A Novel Phenotype Links HIV-1 Capsid Stability to cGAS-Mediated DNA Sensing. J Virol 2019; 93:JVI.00706-19. [PMID: 31167922 DOI: 10.1128/jvi.00706-19] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/19/2019] [Indexed: 01/27/2023] Open
Abstract
The HIV-1 capsid executes essential functions that are regulated by capsid stability and host factors. In contrast to increasing knowledge on functional roles of capsid-interacting host proteins during postentry steps, less is known about capsid stability and its impact on intracellular events. Here, using the antiviral compound PF-3450074 (PF74) as a probe for capsid function, we uncovered a novel phenotype of capsid stability that has a profound effect on innate sensing of viral DNA by the DNA sensor cGAS. A single mutation, R143A, in the capsid protein conferred resistance to high concentrations of PF74, without affecting capsid binding to PF74. A cell-free assay showed that the R143A mutant partially counteracted the capsid-destabilizing activity of PF74, pointing to capsid stabilization as a resistance mechanism for the R143A mutant. In monocytic THP-1 cells, the R143A virus, but not the wild-type virus, suppressed cGAS-dependent innate immune activation. These results suggest that capsid stabilization improves the shielding of viral DNA from innate sensing. We found that a naturally occurring transmitted founder (T/F) variant shares the same properties as the R143A mutant with respect to PF74 resistance and DNA sensing. Imaging assays revealed delayed uncoating kinetics of this T/F variant and the R143A mutant. All these phenotypes of this T/F variant were controlled by a genetic polymorphism located at the trimeric interface between capsid hexamers, thus linking these capsid-dependent properties. Overall, this work functionally connects capsid stability to innate sensing of viral DNA and reveals naturally occurring phenotypic variation in HIV-1 capsid stability.IMPORTANCE The HIV-1 capsid, which is made from individual viral capsid proteins (CA), is a target for a number of antiviral compounds, including the small-molecule inhibitor PF74. In the present study, we utilized PF74 to identify a transmitted/founder (T/F) strain that shows increased capsid stability. Interestingly, PF74-resistant variants prevented cGAS-dependent innate immune activation under a condition where the other T/F strains induced type I interferon. These observations thus reveal a new CA-specific phenotype that couples capsid stability to viral DNA recognition by cytosolic DNA sensors.
Collapse
|
39
|
Gorai B, Das S, Maiti PK. Prediction and validation of HIV-1 gp41 ecto-transmembrane domain post-fusion trimeric structure using molecular modeling. J Biomol Struct Dyn 2019; 38:2592-2603. [DOI: 10.1080/07391102.2019.1635916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Biswajit Gorai
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Satyabrata Das
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| | - Prabal K. Maiti
- Department of Physics, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
40
|
Thermostable properties of the equine infectious anemia virus nucleocapsid protein NCp11. Biochem Biophys Res Commun 2019; 510:472-478. [DOI: 10.1016/j.bbrc.2019.01.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/31/2019] [Indexed: 11/20/2022]
|
41
|
Insight into the mechanism of action of EP-39, a bevirimat derivative that inhibits HIV-1 maturation. Antiviral Res 2019; 164:162-175. [PMID: 30825471 DOI: 10.1016/j.antiviral.2019.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/19/2019] [Accepted: 02/22/2019] [Indexed: 12/15/2022]
Abstract
Maturation of human immunodeficiency virus type 1 (HIV-1) particles is a key step for viral infectivity. This process can be blocked using maturation inhibitors (MIs) that affect the cleavage of the capsid-spacer peptide 1 (CA-SP1) junction. Here, we investigated the mechanisms underlying the activity of EP-39, a bevirimat (BVM) derivative with better hydrosolubility. To this aim, we selected in vitro EP-39- and BVM-resistant mutants. We found that EP-39-resistant viruses have four mutations within the CA domain (CA-A194T, CA-T200N, CA-V230I, and CA-V230A) and one in the first residue of SP1 (SP1-A1V). We also identified six mutations that confer BVM resistance (CA-A194T, CA-L231F, CA-L231M, SP1-A1V, SP1-S5N and SP1-V7A). To characterize the EP-39 and BVM-resistant mutants, we studied EP-39 effects on mutant virus replication and performed a biochemical analysis with both MIs. We observed common and distinct characteristics, suggesting that, although EP-39 and BVM share the same chemical skeleton, they could interact in a different way with the Gag polyprotein precursor (Pr55Gag). Using an in silico approach, we observed that EP-39 and BVM present different predicted positions on the hexameric crystal structure of the CACTD-SP1 Gag fragment. To clearly understand the relationship between assembly and maturation, we investigated the impact of all identified mutations on virus assembly by expressing Pr55Gag mutants. Finally, using NMR, we have shown that the interaction of EP-39 with a peptide carrying the SP1-A1V mutation (CA-SP1(A1V)-NC) is almost suppressed in comparison with the wild type peptide. These results suggest that EP-39 and BVM could interact differently with the Pr55Gag lattice and that the mutation of the first SP1 residue induces a loss of interaction between Pr55Gag and EP-39.
Collapse
|
42
|
Annealing of ssDNA and compaction of dsDNA by the HIV-1 nucleocapsid and Gag proteins visualized using nanofluidic channels. Q Rev Biophys 2019; 52:e2. [DOI: 10.1017/s0033583518000124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
The nucleocapsid protein NC is a crucial component in the human immunodeficiency virus type 1 life cycle. It functions both in its processed mature form and as part of the polyprotein Gag that plays a key role in the formation of new viruses. NC can protect nucleic acids (NAs) from degradation by compacting them to a dense coil. Moreover, through its NA chaperone activity, NC can also promote the most stable conformation of NAs. Here, we explore the balance between these activities for NC and Gag by confining DNA–protein complexes in nanochannels. The chaperone activity is visualized as concatemerization and circularization of long DNA via annealing of short single-stranded DNA overhangs. The first ten amino acids of NC are important for the chaperone activity that is almost completely absent for Gag. Gag condenses DNA more efficiently than mature NC, suggesting that additional residues of Gag are involved. Importantly, this is the first single DNA molecule study of full-length Gag and we reveal important differences to the truncated Δ-p6 Gag that has been used before. In addition, the study also highlights how nanochannels can be used to study reactions on ends of long single DNA molecules, which is not trivial with competing single DNA molecule techniques.
Collapse
|
43
|
A New Model System for Exploring Assembly Mechanisms of the HIV-1 Immature Capsid In Vivo. Bull Math Biol 2019; 81:1506-1526. [PMID: 30706326 DOI: 10.1007/s11538-019-00571-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
The assembly of the HIV-1 immature capsid (HIC) is an essential step in the virus life cycle. In vivo, the HIC is composed of [Formula: see text] hexameric building blocks, and it takes 5-6 min to complete the assembly process. The involvement of numerous building blocks and the rapid timecourse makes it difficult to understand the HIC assembly process. In this work, we study HIC assembly in vivo by using differential equations. We first obtain a full model with 420 differential equations. Then, we reduce six addition reactions for separate building blocks to a single complex reaction. This strategy reduces the full model to 70 equations. Subsequently, the theoretical analysis of the reduced model shows that it might not be an effective way to decrease the HIC concentration at the equilibrium state by decreasing the microscopic on-rate constants. Based on experimental data, we estimate that the nucleating structure is much smaller than the HIC. We also estimate that the microscopic on-rate constant for nucleation reactions is far less than that for elongation reactions. The parametric collinearity investigation testifies the reliability of these two characteristics, which might explain why free building blocks do not readily polymerize into higher-order polymers until their concentration reaches a threshold value. These results can provide further insight into the assembly mechanisms of the HIC in vivo.
Collapse
|
44
|
Quantitative monitoring of the cytoplasmic release of NCp7 proteins from individual HIV-1 viral cores during the early steps of infection. Sci Rep 2019; 9:945. [PMID: 30700731 PMCID: PMC6353972 DOI: 10.1038/s41598-018-37150-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/29/2018] [Indexed: 12/15/2022] Open
Abstract
Fluorescence microscopy imaging of individual HIV-1 viruses necessitates a specific labeling of viral structures that minimally perturbs the infection process. Herein, we used HIV-1 pseudoviruses containing NCp7 fused to a tetracystein (TC) tag, labeled by a biarsenical fluorescein derivative (FlAsH) to quantitatively monitor the NCp7 protein concentration in the viral cores during the early stages of infection. Single particle imaging of individual pseudoviruses with defined ratios of TC-tagged to non tagged NCp7 proteins, together with theoretical modeling of energy transfer between FlAsH dyes, showed that the high packaging of TC-tagged proteins in the viral cores causes a strong fluorescence quenching of FlAsH and that the fluorescence intensity of individual viral complexes is an appropriate parameter to monitor changes in the amount of NCp7 molecules within the viral particles during infection. Interestingly, we observed a dramatic fluorescence increase of individual FlAsH-labeled pseudoviruses containing 100% TC-tagged NCp7 proteins in infected cells at 8 and 16 h post-infection. This effect was significantly lower for pseudoviruses expressing TC-tagged integrase. Therefore, this fluorescence increase is likely related to the cytoplasmic viral transformation and the release of NCp7 molecules from the viral complexes. This loss of quenching effect is largely reduced when reverse transcriptase is inhibited, showing that NCp7 release is connected to viral DNA synthesis. A spatial analysis further revealed that NCp7-TC release is more pronounced in the perinuclear space, where capsid disassembly is thought to be completed. Quantification of NCp7-TC content based on fluorescence quenching presented in this study evidences for the first time the cytoplasmic release of NCp7 during the remodeling of HIV-1 viral particles on their journey toward the nucleus. The developed approach can be applied to quantify dye concentrations in a wide range of nano-objects by fluorescence microscopy techniques.
Collapse
|
45
|
Inamdar K, Floderer C, Favard C, Muriaux D. Monitoring HIV-1 Assembly in Living Cells: Insights from Dynamic and Single Molecule Microscopy. Viruses 2019; 11:v11010072. [PMID: 30654596 PMCID: PMC6357049 DOI: 10.3390/v11010072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/31/2018] [Accepted: 01/12/2019] [Indexed: 12/20/2022] Open
Abstract
The HIV-1 assembly process is a multi-complex mechanism that takes place at the host cell plasma membrane. It requires a spatio-temporal coordination of events to end up with a full mature and infectious virus. The molecular mechanisms of HIV-1 assembly have been extensively studied during the past decades, in order to dissect the respective roles of the structural and non-structural viral proteins of the viral RNA genome and of some host cell factors. Nevertheless, the time course of HIV-1 assembly was observed in living cells only a decade ago. The very recent revolution of optical microscopy, combining high speed and high spatial resolution, in addition to improved fluorescent tags for proteins, now permits study of HIV-1 assembly at the single molecule level within living cells. In this review, after a short description of these new approaches, we will discuss how HIV-1 assembly at the cell plasma membrane has been revisited using advanced super resolution microscopy techniques and how it can bridge the study of viral assembly from the single molecule to the entire host cell.
Collapse
Affiliation(s)
- Kaushik Inamdar
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| | - Charlotte Floderer
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| | - Cyril Favard
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| | - Delphine Muriaux
- IRIM, CNRS UMR9004, CNRS & University of Montpellier, 34293 Montpellier, France.
| |
Collapse
|
46
|
High-resolution structures of HIV-1 Gag cleavage mutants determine structural switch for virus maturation. Proc Natl Acad Sci U S A 2018; 115:E9401-E9410. [PMID: 30217893 PMCID: PMC6176557 DOI: 10.1073/pnas.1811237115] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The main structural component of HIV-1 is the Gag polyprotein. During virus release, Gag is cleaved by the viral protease at five sites, triggering a major change in the structure and morphology of the virus. This transition, called maturation, is required to make an infectious virion. We used cryoelectron tomography to obtain high-resolution structures of Gag inside virus particles carrying mutations that block specific combinations of cleavage sites. Analysis of these structures suggests that different combinations of cleavages can destabilize a bundle of alpha-helices at the C terminus of CA. This destabilization, rather than formation of a beta-hairpin at the N terminus of CA as previously suggested, acts as the structural switch for maturation of the virus into its infectious form. HIV-1 maturation occurs via multiple proteolytic cleavages of the Gag polyprotein, causing rearrangement of the virus particle required for infectivity. Cleavage results in beta-hairpin formation at the N terminus of the CA (capsid) protein and loss of a six-helix bundle formed by the C terminus of CA and the neighboring SP1 peptide. How individual cleavages contribute to changes in protein structure and interactions, and how the mature, conical capsid forms, are poorly understood. Here, we employed cryoelectron tomography to determine morphology and high-resolution CA lattice structures for HIV-1 derivatives in which Gag cleavage sites are mutated. These analyses prompt us to revise current models for the crucial maturation switch. Unlike previously proposed, cleavage on either terminus of CA was sufficient, in principle, for lattice maturation, while complete processing was needed for conical capsid formation. We conclude that destabilization of the six-helix bundle, rather than beta-hairpin formation, represents the main determinant of structural maturation.
Collapse
|
47
|
Lysova I, Spiegelhalter C, Réal E, Zgheib S, Anton H, Mély Y. ReAsH/tetracystein-based correlative light-electron microscopy for HIV-1 imaging during the early stages of infection. Methods Appl Fluoresc 2018; 6:045001. [PMID: 29938685 DOI: 10.1088/2050-6120/aacec1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Visualization of viruses in the host cell during the course of infection by correlative light-electron microscopy (CLEM) requires a specific labelling of the viral structures in order to recognize the nanometric viral cores in the intracellular environment. For Human immunodeficiency virus type 1 (HIV-1), the labelling approaches developed for fluorescence microscopy are generally not suited for transmission electron microscopy (TEM), so that imaging of HIV-1 particles in infected cells by CLEM is not straightforward. Herein, we adapt the labeling approach with a tetracystein tag (TC) and a biarsenical resorufin-based label (ReAsH) for monitoring the HIV-1 particles during the early stages of HIV-1 infection by CLEM. In this approach, the ReAsH fluorophore triggers the photo-conversion of 3,3-diaminobenzidine tetrahydrochloride (DAB), generating a precipitate sensitive to osmium tetroxide staining that can be visualized by transmission electron microscopy. The TC tag is fused to the nucleocapsid protein NCp7, a nucleic acid chaperone that binds to the viral genome. HeLa cells, infected by ReAsH-labeled pseudoviruses containg NCp7-TC proteins exhibit strong fluorescent cytoplasmic spots that overlap with dark precipitates in the TEM sections. The DAB precipitates corresponding to single viral cores are observed all over the cytoplasm, and notably near microtubules and nuclear pores. This work describes for the first time a specific contrast given by HIV-1 viral proteins in TEM images and opens new perspectives for the use of CLEM to monitor the intracellular traffic of viral complexes.
Collapse
Affiliation(s)
- Iryna Lysova
- Laboratoire de Bioimagerie et Pathologies, CNRS UMR 7021, Strasbourg University, Faculty of Pharmacy, 74 route du Rhin, Illkirch, France
| | | | | | | | | | | |
Collapse
|
48
|
Píchalová R, Füzik T, Vokatá B, Rumlová M, Llano M, Dostálková A, Křížová I, Ruml T, Ulbrich P. Conserved cysteines in Mason-Pfizer monkey virus capsid protein are essential for infectious mature particle formation. Virology 2018; 521:108-117. [PMID: 29906704 DOI: 10.1016/j.virol.2018.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/31/2018] [Accepted: 06/01/2018] [Indexed: 10/14/2022]
Abstract
Retrovirus assembly is driven mostly by Gag polyprotein oligomerization, which is mediated by inter and intra protein-protein interactions among its capsid (CA) domains. Mason-Pfizer monkey virus (M-PMV) CA contains three cysteines (C82, C193 and C213), where the latter two are highly conserved among most retroviruses. To determine the importance of these cysteines, we introduced mutations of these residues in both bacterial and proviral vectors and studied their impact on the M-PMV life cycle. These studies revealed that the presence of both conserved cysteines of M-PMV CA is necessary for both proper assembly and virus infectivity. Our findings suggest a crucial role of these cysteines in the formation of infectious mature particles.
Collapse
Affiliation(s)
- Růžena Píchalová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Tibor Füzik
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Barbora Vokatá
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Michaela Rumlová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Manuel Llano
- Department of Biological Sciences, University of Texas at El Paso, 500 West University El Paso, TX 79902, USA.
| | - Alžběta Dostálková
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Ivana Křížová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| | - Pavel Ulbrich
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic.
| |
Collapse
|
49
|
Live-Cell Imaging of Early Steps of Single HIV-1 Infection. Viruses 2018; 10:v10050275. [PMID: 29783762 PMCID: PMC5977268 DOI: 10.3390/v10050275] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 01/10/2023] Open
Abstract
Live-cell imaging of single HIV-1 entry offers a unique opportunity to delineate the spatio-temporal regulation of infection. Novel virus labeling and imaging approaches enable the visualization of key steps of HIV-1 entry leading to nuclear import, integration into the host genome, and viral protein expression. Here, we discuss single virus imaging strategies, focusing on live-cell imaging of single virus fusion and productive uncoating that culminates in HIV-1 infection.
Collapse
|
50
|
Bieniasz PD, Kutluay SB. CLIP-related methodologies and their application to retrovirology. Retrovirology 2018; 15:35. [PMID: 29716635 PMCID: PMC5930818 DOI: 10.1186/s12977-018-0417-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/17/2018] [Indexed: 01/28/2023] Open
Abstract
Virtually every step of HIV-1 replication and numerous cellular antiviral defense mechanisms are regulated by the binding of a viral or cellular RNA-binding protein (RBP) to distinct sequence or structural elements on HIV-1 RNAs. Until recently, these protein-RNA interactions were studied largely by in vitro binding assays complemented with genetics approaches. However, these methods are highly limited in the identification of the relevant targets of RBPs in physiologically relevant settings. Development of crosslinking-immunoprecipitation sequencing (CLIP) methodology has revolutionized the analysis of protein-nucleic acid complexes. CLIP combines immunoprecipitation of covalently crosslinked protein-RNA complexes with high-throughput sequencing, providing a global account of RNA sequences bound by a RBP of interest in cells (or virions) at near-nucleotide resolution. Numerous variants of the CLIP protocol have recently been developed, some with major improvements over the original. Herein, we briefly review these methodologies and give examples of how CLIP has been successfully applied to retrovirology research.
Collapse
Affiliation(s)
- Paul D. Bieniasz
- Howard Hughes Medical Institute and Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065 USA
| | - Sebla B. Kutluay
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110 USA
| |
Collapse
|