1
|
Avci AB, Feist E, Burmester GR. Targeting IL-6 or IL-6 Receptor in Rheumatoid Arthritis: What Have We Learned? BioDrugs 2024; 38:61-71. [PMID: 37989892 PMCID: PMC10789669 DOI: 10.1007/s40259-023-00634-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/23/2023]
Abstract
The use of different pathways in the treatment of rheumatoid arthritis has led to a significant decrease in the number of treatment-resistant patients. In this context, interleukin (IL)-6 inhibition has filled an important gap in rheumatoid arthritis treatment with its effectiveness and safety in both monotherapy and combinations. The process of IL-6 inhibition initiated with IL-6 receptor blockers has prompted questions regarding the potential impact and safety of different inhibitions of this pathway, such as the direct blockade of IL-6. Following the termination of the development of sirukumab because of mortality data in early studies, the investigation of olokizumab, which targets a different region of the IL-6 cytokine, has renewed the hope in this area and the safety concerns have been largely alleviated by the open-label extension data. In addition, the efficacy and safety of tocilizumab and sarilumab have led to a rapid investigation of biosimilars and new potent IL-6 receptor blockers. A comprehensive understanding of mechanisms of this pathway with further long-term clinical data and basic research may provide a decisive impact on selecting the appropriate mechanism as the first choice in personalized treatments.
Collapse
Affiliation(s)
- Ali Berkant Avci
- Department of Internal Medicine, Rheumatology, Medical Park Antalya Hospital, Antalya, Türkiye
| | - Eugen Feist
- Department of Rheumatology, Helios Fachklinik Vogelsang-Gommern, Cooperation Partner of the Otto-von-Guericke University Magdeburg, Gommern, Germany
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Medizinische Klinik für Rheumatologie und Klinische Immunologie, Charitéplatz 1, 10117, Berlin, Germany.
| |
Collapse
|
2
|
England E, Rees DG, Scott IC, Carmen S, Chan DTY, Chaillan Huntington CE, Houslay KF, Erngren T, Penney M, Majithiya JB, Rapley L, Sims DA, Hollins C, Hinchy EC, Strain MD, Kemp BP, Corkill DJ, May RD, Vousden KA, Butler RJ, Mustelin T, Vaughan TJ, Lowe DC, Colley C, Cohen ES. Tozorakimab (MEDI3506): an anti-IL-33 antibody that inhibits IL-33 signalling via ST2 and RAGE/EGFR to reduce inflammation and epithelial dysfunction. Sci Rep 2023; 13:9825. [PMID: 37330528 PMCID: PMC10276851 DOI: 10.1038/s41598-023-36642-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 06/19/2023] Open
Abstract
Interleukin (IL)-33 is a broad-acting alarmin cytokine that can drive inflammatory responses following tissue damage or infection and is a promising target for treatment of inflammatory disease. Here, we describe the identification of tozorakimab (MEDI3506), a potent, human anti-IL-33 monoclonal antibody, which can inhibit reduced IL-33 (IL-33red) and oxidized IL-33 (IL-33ox) activities through distinct serum-stimulated 2 (ST2) and receptor for advanced glycation end products/epidermal growth factor receptor (RAGE/EGFR complex) signalling pathways. We hypothesized that a therapeutic antibody would require an affinity higher than that of ST2 for IL-33, with an association rate greater than 107 M-1 s-1, to effectively neutralize IL-33 following rapid release from damaged tissue. An innovative antibody generation campaign identified tozorakimab, an antibody with a femtomolar affinity for IL-33red and a fast association rate (8.5 × 107 M-1 s-1), which was comparable to soluble ST2. Tozorakimab potently inhibited ST2-dependent inflammatory responses driven by IL-33 in primary human cells and in a murine model of lung epithelial injury. Additionally, tozorakimab prevented the oxidation of IL-33 and its activity via the RAGE/EGFR signalling pathway, thus increasing in vitro epithelial cell migration and repair. Tozorakimab is a novel therapeutic agent with a dual mechanism of action that blocks IL-33red and IL-33ox signalling, offering potential to reduce inflammation and epithelial dysfunction in human disease.
Collapse
Affiliation(s)
| | - D Gareth Rees
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | - Ian Christopher Scott
- Translational Science and Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sara Carmen
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | | | - Kirsty F Houslay
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Teodor Erngren
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Mark Penney
- Early Oncology DMPK, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Jayesh B Majithiya
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Laura Rapley
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Dorothy A Sims
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Claire Hollins
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Elizabeth C Hinchy
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Dominic J Corkill
- Bioscience In Vivo, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Richard D May
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | | | | | - Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, USA
| | | | - David C Lowe
- Biologics Engineering, R&D, AstraZeneca, Cambridge, UK
| | | | - E Suzanne Cohen
- Bioscience Asthma and Skin Immunity, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
3
|
Liu J, Zhang H, Su Y, Zhang B. Application and prospect of targeting innate immune sensors in the treatment of autoimmune diseases. Cell Biosci 2022; 12:68. [PMID: 35619184 PMCID: PMC9134593 DOI: 10.1186/s13578-022-00810-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 05/09/2022] [Indexed: 12/22/2022] Open
Abstract
Dysregulation of auto-reactive T cells and autoantibody-producing B cells and excessive inflammation are responsible for the occurrence and development of autoimmune diseases. The suppression of autoreactive T cell activation and autoantibody production, as well as inhibition of inflammatory cytokine production have been utilized to ameliorate autoimmune disease symptoms. However, the existing treatment strategies are not sufficient to cure autoimmune diseases since patients can quickly suffer a relapse following the end of treatments. Pattern recognition receptors (PRRs), including Toll-like receptors (TLRs), Nod-like receptors (NLRs), RIG-I like receptors (RLRs), C-type lectin receptors (CLRs) and various nucleic acid sensors, are expressed in both innate and adaptive immune cells and are involved in the development of autoimmune diseases. Here, we have summarized advances of PRRs signaling pathways, association between PRRs and autoimmune diseases, application of inhibitors targeting PRRs and the corresponding signaling molecules relevant to strategies targeting autoimmune diseases. This review emphasizes the roles of different PRRs in activating both innate and adaptive immunity, which can coordinate to trigger autoimmune responses. The review may also prompt the formulation of novel ideas for developing therapeutic strategies against autoimmune diseases by targeting PRRs-related signals.
Collapse
Affiliation(s)
- Jun Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hui Zhang
- NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yanhong Su
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Institute of Infection and Immunity, Translational Medicine Institute, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China. .,Key Laboratory of Environment and Genes Related to Diseases, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China. .,Basic and Translational Research Laboratory of Immune Related Diseases, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
4
|
Ko S, Jo M, Jung ST. Recent Achievements and Challenges in Prolonging the Serum Half-Lives of Therapeutic IgG Antibodies Through Fc Engineering. BioDrugs 2021; 35:147-157. [PMID: 33608823 PMCID: PMC7894971 DOI: 10.1007/s40259-021-00471-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2021] [Indexed: 01/02/2023]
Abstract
Association of FcRn molecules to the Fc region of IgG in acidified endosomes and subsequent dissociation of the interaction in neutral pH serum enables IgG molecules to be recycled for prolonged serum persistence after internalization by endothelial cells, rather than being degraded in the serum and in the lysosomes inside the cells. Exploiting this intracellular trafficking and recycling mechanism, many researchers have engineered the Fc region to further extend the serum half-lives of therapeutic antibodies by optimizing the pH-dependent IgG Fc-FcRn interaction, and have generated various Fc variants exhibiting significantly improved circulating half-lives of therapeutic IgG antibodies. In order to estimate pharmacokinetic profiles of IgG Fc variants in human serum, not only a variety of in vitro techniques to determine the equilibrium binding constants and instantaneous rate constants for pH-dependent FcRn binding, but also diverse in vivo animal models including wild-type mouse, human FcRn transgenic mouse (Tg32 and Tg276), humanized mouse (Scarlet), or cynomolgus monkey have been harnessed. Currently, multiple IgG Fc variants that have been validated for their prolonged therapeutic potency in preclinical models have been successfully entered into human clinical trials for cancer, infectious diseases, and autoimmune diseases.
Collapse
Affiliation(s)
- Sanghwan Ko
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Institute of Human Genetics, Korea University College of Medicine, Seoul, Republic of Korea
| | - Migyeong Jo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea. .,Institute of Human Genetics, Korea University College of Medicine, Seoul, Republic of Korea. .,BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea. .,Department of Biomedical Sciences, Graduate School, Korea University, Seoul, Republic of Korea. .,Biomedical Research Center, Korea University Anam Hospital, Seoul, Republic of Korea.
| |
Collapse
|
5
|
Kopruszinski CM, Thornton P, Arnold J, Newton P, Lowne D, Navratilova E, Swiokla J, Dodick DW, Dobson C, Gurrell I, Chessell IP, Porreca F. Characterization and preclinical evaluation of a protease activated receptor 2 (PAR2) monoclonal antibody as a preventive therapy for migraine. Cephalalgia 2020; 40:1535-1550. [PMID: 33131305 DOI: 10.1177/0333102420966581] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIM Migraine pain is thought to result from activation of meningeal nociceptors that might involve dural mast cell degranulation and release of proteases and pronociceptive mediators. Tryptase, the most abundant dural mast cell protease, has been demonstrated to stimulate dural mast cells, as well as trigeminal nociceptors by activating the protease activated receptor 2. Mast cell or neuronal protease activated receptors 2 may therefore represent a novel target for migraine treatment. In this study, we characterized and evaluated a novel protease activated receptor 2 monoclonal antibody as a preventive anti-migraine pain therapy in preclinical models. METHODS Flow cytometry, immunocytochemistry, calcium imaging, Homogeneous Time Resolved Technology (HTRF) epitope competition assay and serum pharmacokinetic (PK) assay in rats were performed to confirm the activity, specificity and in vivo stability of PAR650097, a novel anti- protease activated receptor 2 monoclonal antibody. In vivo assessment was performed in female C57BL/6J mice by evaluation of PAR650097 in preventing cutaneous allodynia elicited by (a) supradural injection of the protease activated receptor 2 agonist, Ser-Leu-Ile-Gly-Arg-Leu-amide trifluoroacetate (SLIGRL), or calcitonin gene-related (CGRP) peptide, and (b) induction of latent sensitization by priming with three daily episodes of restraint stress followed by challenge with a subthreshold inhalational exposure to umbellulone (UMB), a transient receptor potential ankyrin 1 (TRPA1) agonist. PAR650097 was administered as a pretreatment prior to the first restraint stress, umbellulone exposure, SLIGRL or calcitonin gene-related peptide injection. Additionally, fremanezumab, a calcitonin gene-related peptide antibody was administered as pre-treatment prior to supradural administration of calcitonin gene-related peptide or SLIGRL. RESULTS In vitro, PAR650097 demonstrated rapid interaction with protease activated receptor 2, enabling it to fully inhibit protease-induced protease activated receptor 2 activation, in human and mouse cells, with high potency. Furthermore, PAR650097 was highly selective for protease activated receptor 2, demonstrating no affinity for protease activated receptor 1 protein and no functional effect on the activation of cellular protease activated receptor 1 with thrombin. In addition, PAR650097 had an acceptable PK profile, compatible with testing the effects of selective protease activated receptor 2 inhibition in vivo. In vivo, PAR650097 blocked cutaneous allodynia induced by either supradural SLIGRL or calcitonin gene-related peptide. Fremanezumab abolished cutaneous allodynia induced by supradural CGRP, and partially attenuated cutaneous allodynia induced by SLIGRL. Administration of PAR650097, before the first restraint stress episode, did not prevent the acute stress-induced cutaneous allodynia or restraint stress priming revealed by cutaneous allodynia induced by inhalational umbellulone. In contrast, PAR650097 prevented expression of cutaneous allodynia when given before the umbellulone challenge in restraint stress-primed animals. CONCLUSION PAR650097 specifically inhibits endogenously expressed protease activated receptor 2 in human and mouse cells with high potency. This antibody has an acceptable PK profile in rodents and effectively blocked SLIGR-induced cutaneous allodynia. PAR650097 additionally prevented cutaneous allodynia induced by supradural calcitonin gene-related peptide, indicating that the protease activated receptor 2 receptor is a downstream consequence of calcitonin gene-related peptide actions. Fremanezumab effectively blocked calcitonin gene-related peptide-induced cutaneous allodynia and only partially reduced cutaneous allodynia induced by a protease activated receptor 2 activator, suggesting both calcitonin gene-related peptide-dependent and -independent mechanisms in promoting migraine pain. While PAR650097 did not prevent stress-induced cutaneous allodynia or priming, it effectively prevented cutaneous allodynia induced by a TRPA1 agonist in animals with latent sensitization. Activation of protease activated receptor 2, therefore, contributes to both calcitonin gene-related peptide-dependent and -independent mechanisms in promoting migraine-like pain. Therapeutic targeting of protease activated receptor 2 receptors may represent an anti-migraine pain strategy with a potentially broad efficacy profile.
Collapse
Affiliation(s)
| | - Peter Thornton
- Neuroscience, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
| | - Joanne Arnold
- ADPE, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
| | - Philip Newton
- ADPE, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
| | - David Lowne
- ADPE, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - Juliana Swiokla
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | | | - Claire Dobson
- ADPE, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
| | - Ian Gurrell
- Neuroscience, R&D BioPharmaceuticals, AstraZeneca, Cambridge, UK
| | | | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.,Department of Neurology, Mayo Clinic, Phoenix, AZ, USA
| |
Collapse
|
6
|
In vitro evolution of antibody affinity via insertional scanning mutagenesis of an entire antibody variable region. Proc Natl Acad Sci U S A 2020; 117:27307-27318. [PMID: 33067389 DOI: 10.1073/pnas.2002954117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We report a systematic combinatorial exploration of affinity enhancement of antibodies by insertions and deletions (InDels). Transposon-based introduction of InDels via the method TRIAD (transposition-based random insertion and deletion mutagenesis) was used to generate large libraries with random in-frame InDels across the entire single-chain variable fragment gene that were further recombined and screened by ribosome display. Knowledge of potential insertion points from TRIAD libraries formed the basis of exploration of length and sequence diversity of novel insertions by insertional-scanning mutagenesis (InScaM). An overall 256-fold affinity improvement of an anti-IL-13 antibody BAK1 as a result of InDel mutagenesis and combination with known point mutations validates this approach, and suggests that the results of this InDel mutagenesis and conventional exploration of point mutations can synergize to generate antibodies with higher affinity.
Collapse
|
7
|
Chan DTY, Jenkinson L, Haynes SW, Austin M, Diamandakis A, Burschowsky D, Seewooruthun C, Addyman A, Fiedler S, Ryman S, Whitehouse J, Slater LH, Gowans E, Shibata Y, Barnard M, Wilkinson RW, Vaughan TJ, Holt SV, Cerundolo V, Carr MD, Groves MAT. Extensive sequence and structural evolution of Arginase 2 inhibitory antibodies enabled by an unbiased approach to affinity maturation. Proc Natl Acad Sci U S A 2020; 117:16949-16960. [PMID: 32616569 PMCID: PMC7382286 DOI: 10.1073/pnas.1919565117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Affinity maturation is a powerful technique in antibody engineering for the in vitro evolution of antigen binding interactions. Key to the success of this process is the expansion of sequence and combinatorial diversity to increase the structural repertoire from which superior binding variants may be selected. However, conventional strategies are often restrictive and only focus on small regions of the antibody at a time. In this study, we used a method that combined antibody chain shuffling and a staggered-extension process to produce unbiased libraries, which recombined beneficial mutations from all six complementarity-determining regions (CDRs) in the affinity maturation of an inhibitory antibody to Arginase 2 (ARG2). We made use of the vast display capacity of ribosome display to accommodate the sequence space required for the diverse library builds. Further diversity was introduced through pool maturation to optimize seven leads of interest simultaneously. This resulted in antibodies with substantial improvements in binding properties and inhibition potency. The extensive sequence changes resulting from this approach were translated into striking structural changes for parent and affinity-matured antibodies bound to ARG2, with a large reorientation of the binding paratope facilitating increases in contact surface and shape complementarity to the antigen. The considerable gains in therapeutic properties seen from extensive sequence and structural evolution of the parent ARG2 inhibitory antibody clearly illustrate the advantages of the unbiased approach developed, which was key to the identification of high-affinity antibodies with the desired inhibitory potency and specificity.
Collapse
Affiliation(s)
- Denice T Y Chan
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Lesley Jenkinson
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Stuart W Haynes
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Mark Austin
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
- Antibody Discovery & Protein Engineering, BioPharmaceuticals Research & Development, AstraZeneca, CB21 6GH Cambridge, United Kingdom
| | - Agata Diamandakis
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Daniel Burschowsky
- Leicester Institute of Structural and Chemical Biology, University of Leicester, LE1 7HB Leicester, United Kingdom
- Department of Molecular and Cell Biology, University of Leicester, LE1 7HB Leicester, United Kingdom
| | - Chitra Seewooruthun
- Leicester Institute of Structural and Chemical Biology, University of Leicester, LE1 7HB Leicester, United Kingdom
- Department of Molecular and Cell Biology, University of Leicester, LE1 7HB Leicester, United Kingdom
| | - Alexandra Addyman
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Sebastian Fiedler
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Stephanie Ryman
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Jessica Whitehouse
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Louise H Slater
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Ellen Gowans
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Yoko Shibata
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Michelle Barnard
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Robert W Wilkinson
- Early Oncology Discovery, Oncology Research & Development, AstraZeneca, CB21 6GH Cambridge, United Kingdom
| | - Tristan J Vaughan
- Antibody Discovery & Protein Engineering, BioPharmaceuticals Research & Development, AstraZeneca, CB21 6GH Cambridge, United Kingdom
| | - Sarah V Holt
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom
| | - Vincenzo Cerundolo
- Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, OX3 9DS Oxford, United Kingdom
| | - Mark D Carr
- Leicester Institute of Structural and Chemical Biology, University of Leicester, LE1 7HB Leicester, United Kingdom;
- Department of Molecular and Cell Biology, University of Leicester, LE1 7HB Leicester, United Kingdom
| | - Maria A T Groves
- Cancer Research UK-AstraZeneca Antibody Alliance Laboratory, CB21 6GP Cambridge, United Kingdom;
- Antibody Discovery & Protein Engineering, BioPharmaceuticals Research & Development, AstraZeneca, CB21 6GH Cambridge, United Kingdom
| |
Collapse
|
8
|
Vainshtein I, Sun B, Roskos LK, Liang M. A novel approach to assess domain specificity of anti-drug antibodies to moxetumomab pasudotox, an immunotoxin with two functional domains. J Immunol Methods 2020; 477:112688. [PMID: 31676342 DOI: 10.1016/j.jim.2019.112688] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/23/2019] [Accepted: 10/22/2019] [Indexed: 11/28/2022]
Abstract
Biologics are potentially immunogenic and can elicit immune response. Complex biologics, such as bispecific antibodies or multi-domain molecules can induce anti-drug antibodies (ADA) with specificity to different domains. Domain specific ADAs may differently affect drug efficacy and safety, and thus, characterization of ADA domain specificity has become a regulatory expectation for multi-domain biologics. Unlike well-established methods for screening, confirmation, titer and neutralizing ADA detection, characterization of ADA domain specificity is an emerging field. The conventional approach for determination of ADA domain specificity is a competitive inhibition with domain-containing molecules. When developing a conventional domain specificity assay for moxetumomab pasudotox, a recombinant anti-CD22 immunotoxin, comprised of two functional domains (CD22-binding fragment and truncated Pseudomonas exotoxin A (PE38), we encountered a bioanalytical challenge. The method was able to detect immunodominant anti-PE38 (ADA-PE) but generated false negative results for low abundant CD22-binding domain ADA (ADA-BD) in a polyclonal sample. Troubleshooting experiments using control samples with varying levels of each ADA subtype demonstrated that a major factor for successful ADA identification was the ratio of the ADA signals contributed by each ADA subtype. To overcome this unique bioanalytical challenge, we developed a novel approach, which ensures detection of a domain-specific ADA subtype regardless of its relative level in a polyclonal ADA sample by evaluating signal inhibition by a respective domain-containing molecule at the condition when signals from all other ADAs are fully blocked. The method has been used for characterization of ADA domain specificity in moxetumomab pasudotox clinical trials, including study 1053, the pivotal Phase III study in hairy cell leukemia patients. It allowed for successful detection of ADA-BD in the presence of immunodominant ADA-PE, enabling accurate determination of domain specificity for moxetumomab pasudotox. The results demonstrated that the method was superior than the conventional approach. The method could be applied broadly to other biologics with two or more domains when there is a need to detect a minor ADA subtype in polyclonal samples.
Collapse
Affiliation(s)
- Inna Vainshtein
- BioPharmaceuticals R&D, AstraZeneca, South San Francisco, CA 94080, USA.
| | - Bo Sun
- BioPharmaceuticals R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - Lorin K Roskos
- BioPharmaceuticals R&D, AstraZeneca, South San Francisco, CA 94080, USA
| | - Meina Liang
- BioPharmaceuticals R&D, AstraZeneca, South San Francisco, CA 94080, USA.
| |
Collapse
|
9
|
Affinity-matured variants derived from nimotuzumab keep the original fine specificity and exhibit superior biological activity. Sci Rep 2020; 10:1194. [PMID: 31988343 PMCID: PMC6985160 DOI: 10.1038/s41598-019-57279-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 12/26/2019] [Indexed: 12/11/2022] Open
Abstract
Nimotuzumab is a humanized monoclonal antibody against the Epidermal Growth Factor Receptor with a long history of therapeutic use, recognizing an epitope different from the ones targeted by other antibodies against the same antigen. It is also distinguished by much less toxicity resulting in a better safety profile, which has been attributed to its lower affinity compared to these other antibodies. Nevertheless, the ideal affinity window for optimizing the balance between anti-tumor activity and toxic effects has not been determined. In the current work, the paratope of the phage-displayed nimotuzumab Fab fragment was evolved in vitro to obtain affinity-matured variants. Soft-randomization of heavy chain variable region CDRs and phage selection resulted in mutated variants with improved binding ability. Two recombinant antibodies were constructed using these variable regions, which kept the original fine epitope specificity and showed moderate affinity increases against the target (3-4-fold). Such differences were translated into a greatly enhanced inhibitory capacity upon ligand-induced receptor phosphorylation on tumor cells. The new antibodies, named K4 and K5, are valuable tools to explore the role of affinity in nimotuzumab biological properties, and could be used for applications requiring a fine-tuning of the balance between binding to tumor cells and healthy tissues.
Collapse
|
10
|
Avci AB, Feist E, Burmester GR. Targeting IL-6 or IL-6 Receptor in Rheumatoid Arthritis: What's the Difference? BioDrugs 2019; 32:531-546. [PMID: 30488231 DOI: 10.1007/s40259-018-0320-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Interleukin-6 (IL-6) signaling is a critical target in inflammatory pathways. Today, tocilizumab (TCZ) and sarilumab (SAR), two IL-6 receptor-inhibiting monoclonal antibodies, are widely used in the treatment of rheumatoid arthritis (RA), with a favorable efficacy/safety profile. Successful introduction of such agents in the treatment of RA has encouraged the development of other agents targeting different points of the pathway. Sirukumab (SRK), a human anti-IL-6 monoclonal antibody, has been evaluated in clinical trials and showed largely similar clinical efficacy compared with TCZ and other IL-6 pathway-targeting agents. Furthermore, the drug safety profile seemed to reflect the profile of adverse effects and laboratory abnormalities seen in other inhibitors of the IL-6 pathway. However, increased death rates under SRK treatment compared with placebo raised safety concerns, which led to the decision by the FDA to decline the approval of SRK in August 2017. However, during the 18-week true placebo-controlled period, mortality rates were identical in the placebo- and SRK-treated patients. Comparisons after week 18 may be confounded by some factors, and also the 'crossover' design resulted in various treatment groups with varying drug exposure periods. The limited placebo exposure relative to SRK exposure makes interpretation of mortality rates difficult. We do not know whether the imbalance in mortality rates seen for SRK is a true safety signal or a result of bias due to the study design. Therefore, further long-term clinical data as well as basic research is needed to allow deeper insight into IL-6 signaling.
Collapse
MESH Headings
- Antibodies, Monoclonal/pharmacology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antirheumatic Agents/pharmacology
- Antirheumatic Agents/therapeutic use
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/immunology
- Arthritis, Rheumatoid/mortality
- Clinical Trials as Topic
- Drug Approval
- Humans
- Interleukin-6/antagonists & inhibitors
- Interleukin-6/immunology
- Receptors, Interleukin-6/antagonists & inhibitors
- Receptors, Interleukin-6/immunology
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Survival Rate
- Treatment Outcome
Collapse
Affiliation(s)
- Ali Berkant Avci
- Department of Internal Medicine, Rheumatology, Life Hospital, Antalya, Turkey
| | - Eugen Feist
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany.
| | - Gerd Rüdiger Burmester
- Department of Rheumatology and Clinical Immunology, Charité-Universitätsmedizin, Berlin, Germany
| |
Collapse
|
11
|
Leipold D, Prabhu S. Pharmacokinetic and Pharmacodynamic Considerations in the Design of Therapeutic Antibodies. Clin Transl Sci 2018; 12:130-139. [PMID: 30414357 PMCID: PMC6440574 DOI: 10.1111/cts.12597] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/01/2018] [Indexed: 12/12/2022] Open
Abstract
The design and development of therapeutic monoclonal antibodies (mAbs) through optimizing their pharmacokinetic (PK) and pharmacodynamic (PD) properties is crucial to improve efficacy while minimizing adverse events. Many of these properties are interdependent, which highlights the inherent challenges in therapeutic antibody design, where improving one antibody property can sometimes lead to changes in others. Here, we discuss optimization approaches for PK/PD properties of therapeutic mAbs.
Collapse
Affiliation(s)
- Douglas Leipold
- Preclinical and Translational Pharmacokinetics/Pharmacodynamics, Genentech, South San Francisco, California, USA
| | - Saileta Prabhu
- Preclinical and Translational Pharmacokinetics/Pharmacodynamics, Genentech, South San Francisco, California, USA
| |
Collapse
|
12
|
Improvement of pharmacokinetic properties of therapeutic antibodies by antibody engineering. Drug Metab Pharmacokinet 2018; 34:25-41. [PMID: 30472066 DOI: 10.1016/j.dmpk.2018.10.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/13/2018] [Accepted: 10/23/2018] [Indexed: 01/17/2023]
Abstract
Monoclonal antibodies (mAbs) have become an important therapeutic option for several diseases. Since several mAbs have shown promising efficacy in clinic, the competition to develop mAbs has become severe. In efforts to gain a competitive advantage over other mAbs and provide significant benefits to patients, innovations in antibody engineering have aimed at improving the pharmacokinetic properties of mAbs. Because engineering can provide therapeutics that are more convenient, safer, and more efficacious for patients in several disease areas, it is an attractive approach to provide significant benefits to patients. Further advances in engineering mAbs to modulate their pharmacokinetics were driven by the increase of total soluble target antigen concentration that is often observed after injecting a mAb, which then requires a high dosage to antagonize. To decrease the required dosage, several antibody engineering techniques have been invented that reduce the total concentration of soluble target antigen. Here, we review the various ways that antibody engineering can improve the pharmacokinetic properties of mAbs.
Collapse
|
13
|
|
14
|
Piche-Nicholas NM, Avery LB, King AC, Kavosi M, Wang M, O'Hara DM, Tchistiakova L, Katragadda M. Changes in complementarity-determining regions significantly alter IgG binding to the neonatal Fc receptor (FcRn) and pharmacokinetics. MAbs 2017; 10:81-94. [PMID: 28991504 PMCID: PMC5800364 DOI: 10.1080/19420862.2017.1389355] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A large body of data exists demonstrating that neonatal Fc receptor (FcRn) binding of an IgG via its Fc CH2-CH3 interface trends with the pharmacokinetics (PK) of IgG. We have observed that PK of IgG molecules vary widely, even when they share identical Fc domains. This led us to hypothesize that domains distal from the Fc could contribute to FcRn binding and affect PK. In this study, we explored the role of these IgG domains in altering the affinity between IgG and FcRn. Using a surface plasmon resonance-based assay developed to examine the steady-state binding affinity (KD) of IgG molecules to FcRn, we dissected the contributions of IgG domains in modulating the affinity between FcRn and IgG. Through analysis of a broad collection of therapeutic antibodies containing more than 50 unique IgG molecules, we demonstrated that variable domains, and in particular complementarity-determining regions (CDRs), significantly alter binding affinity to FcRn in vitro. Furthermore, a panel of IgG molecules differing only by 1–5 mutations in CDRs altered binding affinity to FcRn in vitro, by up to 79-fold, and the affinity values correlated with calculated isoelectric point values of both variable domains and CDR-L3. In addition, tighter affinity values trend with faster in vivo clearance of a set of IgG molecules differing only by 1–3 mutations in human FcRn transgenic mice. Understanding the role of CDRs in modulation of IgG affinity to FcRn in vitro and their effect on PK of IgG may have far-reaching implications in the optimization of IgG therapeutics.
Collapse
Affiliation(s)
| | | | - Amy C King
- a BioMedicine Design, Pfizer Inc. , Cambridge , MA , USA
| | - Mania Kavosi
- b BioMedicine Design, Pfizer Inc. , Andover , MA , USA
| | - Mengmeng Wang
- b BioMedicine Design, Pfizer Inc. , Andover , MA , USA
| | | | | | | |
Collapse
|
15
|
Rapid and accurate in silico solubility screening of a monoclonal antibody library. Sci Rep 2017; 7:8200. [PMID: 28811609 PMCID: PMC5558012 DOI: 10.1038/s41598-017-07800-w] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/29/2017] [Indexed: 01/20/2023] Open
Abstract
Antibodies represent essential tools in research and diagnostics and are rapidly growing in importance as therapeutics. Commonly used methods to obtain novel antibodies typically yield several candidates capable of engaging a given target. The development steps that follow, however, are usually performed with only one or few candidates since they can be resource demanding, thereby increasing the risk of failure of the overall antibody discovery program. In particular, insufficient solubility, which may lead to aggregation under typical storage conditions, often hinders the ability of a candidate antibody to be developed and manufactured. Here we show that the selection of soluble lead antibodies from an initial library screening can be greatly facilitated by a fast computational prediction of solubility that requires only the amino acid sequence as input. We quantitatively validate this approach on a panel of nine distinct monoclonal antibodies targeting nerve growth factor (NGF), for which we compare the predicted and measured solubilities finding a very close match, and we further benchmark our predictions with published experimental data on aggregation hotspots and solubility of mutational variants of one of these antibodies.
Collapse
|
16
|
Engineering the surface properties of a human monoclonal antibody prevents self-association and rapid clearance in vivo. Sci Rep 2016; 6:38644. [PMID: 27995962 PMCID: PMC5171805 DOI: 10.1038/srep38644] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/11/2016] [Indexed: 12/13/2022] Open
Abstract
Uncontrolled self-association is a major challenge in the exploitation of proteins as therapeutics. Here we describe the development of a structural proteomics approach to identify the amino acids responsible for aberrant self-association of monoclonal antibodies and the design of a variant with reduced aggregation and increased serum persistence in vivo. We show that the human monoclonal antibody, MEDI1912, selected against nerve growth factor binds with picomolar affinity, but undergoes reversible self-association and has a poor pharmacokinetic profile in both rat and cynomolgus monkeys. Using hydrogen/deuterium exchange and cross-linking-mass spectrometry we map the residues responsible for self-association of MEDI1912 and show that disruption of the self-interaction interface by three mutations enhances its biophysical properties and serum persistence, whilst maintaining high affinity and potency. Immunohistochemistry suggests that this is achieved via reduction of non-specific tissue binding. The strategy developed represents a powerful and generic approach to improve the properties of therapeutic proteins.
Collapse
|
17
|
Nixon J, Newbold P, Mustelin T, Anderson GP, Kolbeck R. Monoclonal antibody therapy for the treatment of asthma and chronic obstructive pulmonary disease with eosinophilic inflammation. Pharmacol Ther 2016; 169:57-77. [PMID: 27773786 DOI: 10.1016/j.pharmthera.2016.10.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Eosinophils have been linked with asthma for more than a century, but their role has been unclear. This review discusses the roles of eosinophils in asthma and chronic obstructive pulmonary disease (COPD) and describes therapeutic antibodies that affect eosinophilia. The aims of pharmacologic treatments for pulmonary conditions are to reduce symptoms, slow decline or improve lung function, and reduce the frequency and severity of exacerbations. Inhaled corticosteroids (ICS) are important in managing symptoms and exacerbations in asthma and COPD. However, control with these agents is often suboptimal, especially for patients with severe disease. Recently, new biologics that target eosinophilic inflammation, used as adjunctive therapy to corticosteroids, have proven beneficial and support a pivotal role for eosinophils in the pathology of asthma. Nucala® (mepolizumab; anti-interleukin [IL]-5) and Cinquair® (reslizumab; anti-IL-5), the second and third biologics approved, respectively, for the treatment of asthma, exemplifies these new treatment options. Emerging evidence suggests that eosinophils may contribute to exacerbations and possibly to lung function decline for a subset of patients with COPD. Here we describe the pharmacology of therapeutic antibodies inhibiting IL-5 or targeting the IL-5 receptor, as well as other cytokines contributing to eosinophilic inflammation. We discuss their roles as adjuncts to conventional therapeutic approaches, especially ICS therapy, when disease is suboptimally controlled. These agents have achieved a place in the therapeutic armamentarium for asthma and COPD and will deepen our understanding of the pathogenic role of eosinophils.
Collapse
Affiliation(s)
| | | | | | - Gary P Anderson
- Lung Health Research Centre, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
18
|
Alves CH, Farrell E, Vis M, Colin EM, Lubberts E. Animal Models of Bone Loss in Inflammatory Arthritis: from Cytokines in the Bench to Novel Treatments for Bone Loss in the Bedside-a Comprehensive Review. Clin Rev Allergy Immunol 2016; 51:27-47. [PMID: 26634933 PMCID: PMC4961736 DOI: 10.1007/s12016-015-8522-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Throughout life, bone is continuously remodelled. Bone is formed by osteoblasts, from mesenchymal origin, while osteoclasts induce bone resorption. This process is tightly regulated. During inflammation, several growth factors and cytokines are increased inducing osteoclast differentiation and activation, and chronic inflammation is a condition that initiates systemic bone loss. Rheumatoid arthritis (RA) is a chronic inflammatory auto-immune disease that is characterised by active synovitis and is associated with early peri-articular bone loss. Peri-articular bone loss precedes focal bone erosions, which may progress to bone destruction and disability. The incidence of generalised osteoporosis is associated with the severity of arthritis in RA and increased osteoporotic vertebral and hip fracture risk. In this review, we will give an overview of different animal models of inflammatory arthritis related to RA with focus on bone erosion and involvement of pro-inflammatory cytokines. In addition, a humanised endochondral ossification model will be discussed, which can be used in a translational approach to answer osteoimmunological questions.
Collapse
Affiliation(s)
- C Henrique Alves
- Department of Rheumatology, Erasmus MC, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Eric Farrell
- Department of Oral and Maxillofacial Surgery, Special Dental Care and Orthodontics, Erasmus MC, University Medical Center, Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Marijn Vis
- Department of Rheumatology, Erasmus MC, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Edgar M Colin
- Department of Rheumatology, Erasmus MC, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Rheumatology, ZGT Almelo, Zilvermeeuw 1, 7600 SZ, Almelo, The Netherlands
| | - Erik Lubberts
- Department of Rheumatology, Erasmus MC, University Medical Center, Wytemaweg 80, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
- Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
19
|
Haraya K, Tachibana T, Nezu J. Predicting pharmacokinetic profile of therapeutic antibodies after iv injection from only the data after sc injection in cynomolgus monkey. Xenobiotica 2016; 47:194-201. [PMID: 27151820 DOI: 10.1080/00498254.2016.1174792] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
1. The number of developed therapeutic monoclonal antibodies (mAbs) has increased in this decade. This study aims to predict their pharmacokinetic profiles after intravenous (iv) injection using only the data taken after subcutaneous (sc) injection in cynomolgus monkey. 2. Two-compartment model parameters, Q, Vc and Vp, were collected from the published data after iv injection in cynomolgus monkey for 21 mAbs (Group A). Bioavailability after sc injection (F), CL and serum/plasma concentration after iv injection of other published 19 mAbs (Group B) were predicted using the estimated geometric means of Q, Vc and Vp in Group A and the serum/plasma concentration after sc injection in Group B. 3. F and CL of 18 out of 19 mAbs in Group B were successfully predicted within 30% difference of observed value. Moreover, most of the observed serum/plasma concentrations after iv injection of mAbs in Group B were successfully predicted within 2-fold difference. Our approach suggests that iv injection might not be required to evaluate absorption of mAbs after sc injection in cynomolgus monkey. Therefore, our approach might reduce the time and cost of drug development, reduce the burden on resources, and also contribute to animal welfare.
Collapse
Affiliation(s)
- Kenta Haraya
- a Chugai Pharmabody Research Pte. Ltd , Synapse , Singapore
| | | | - Junichi Nezu
- a Chugai Pharmabody Research Pte. Ltd , Synapse , Singapore
| |
Collapse
|
20
|
Finkel KA, Warner KA, Kerk S, Bradford CR, McLean SA, Prince ME, Zhong H, Hurt EM, Hollingsworth RE, Wicha MS, Tice DA, Nör JE. IL-6 Inhibition With MEDI5117 Decreases The Fraction of Head and Neck Cancer Stem Cells and Prevents Tumor Recurrence. Neoplasia 2016; 18:273-281. [PMID: 27237319 PMCID: PMC4887598 DOI: 10.1016/j.neo.2016.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 01/06/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) exhibit a small population of uniquely tumorigenic cancer stem cells (CSC) endowed with self-renewal and multipotency. We have recently shown that IL-6 enhances the survival and tumorigenic potential of head and neck cancer stem cells (i.e. ALDH(high)CD44(high) cells). Here, we characterized the effect of therapeutic inhibition of IL-6 with a novel humanized anti-IL-6 antibody (MEDI5117) using three low-passage patient-derived xenograft (PDX) models of HNSCC. We observed that single agent MEDI5117 inhibited the growth of PDX-SCC-M1 tumors (P < .05). This PDX model was generated from a previously untreated HNSCC. In contrast, MEDI5117 was not effective at reducing overall tumor volume for PDX models representing resistant disease (PDX-SCC-M0, PDX-SCC-M11). Low dose MEDI5117 (3 mg/kg) consistently decreased the fraction of cancer stem cells in PDX models of HNSCC when compared to IgG-treated controls, as follows: PDX-SCC-M0 (P < .001), PDX-SCC-M1 (P < .001), PDX-SCC-M11 (P = .04). Interestingly, high dose MEDI5117 (30 mg/kg) decreased the CSC fraction in the PDX-SCC-M11 model (P = .002), but not in PDX-SCC-M0 and PDX-SCC-M1. MEDI5117 mediated a dose-dependent decrease in the number of orospheres generated by ALDH(high)CD44(high) cells cultured in ultra-low attachment plates (P < .05), supporting an inhibitory effect on head and neck cancer stem cells. Notably, single agent MEDI5117 reduced the overall recurrence rate of PDX-SCC-M0, a PDX generated from the local recurrence of human HNSCC. Collectively, these data demonstrate that therapeutic inhibition of IL-6 with low-dose MEDI5117 decreases the fraction of cancer stem cells, and that adjuvant MEDI5117 inhibits recurrence in preclinical models of HNSCC.
Collapse
Affiliation(s)
- Kelsey A Finkel
- *Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Kristy A Warner
- *Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Samuel Kerk
- *Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Carol R Bradford
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - Scott A McLean
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | - Mark E Prince
- Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | | | | | | | - Max S Wicha
- Department of Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI, USA; University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA
| | | | - Jacques E Nör
- *Department of Restorative Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA; Department of Otolaryngology, University of Michigan School of Medicine, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan College of Engineering, Ann Arbor, MI, USA; University of Michigan Comprehensive Cancer Center, Ann Arbor, MI, USA.
| |
Collapse
|
21
|
Klarenbeek A, Blanchetot C, Schragel G, Sadi AS, Ongenae N, Hemrika W, Wijdenes J, Spinelli S, Desmyter A, Cambillau C, Hultberg A, Kretz-Rommel A, Dreier T, De Haard HJW, Roovers RC. Combining somatic mutations present in different in vivo affinity-matured antibodies isolated from immunized Lama glama yields ultra-potent antibody therapeutics. Protein Eng Des Sel 2016; 29:123-33. [PMID: 26945588 DOI: 10.1093/protein/gzw003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 01/26/2016] [Indexed: 12/28/2022] Open
Abstract
Highly potent human antibodies are required to therapeutically neutralize cytokines such as interleukin-6 (IL-6) that is involved in many inflammatory diseases and malignancies. Although a number of mutagenesis approaches exist to perform antibody affinity maturation, these may cause antibody instability and production issues. Thus, a robust and easy antibody affinity maturation strategy to increase antibody potency remains highly desirable. By immunizing llama, cloning the 'immune' antibody repertoire and using phage display, we selected a diverse set of IL-6 antagonistic Fabs. Heavy chain shuffling was performed on the Fab with lowest off-rate, resulting in a panel of variants with even lower off-rate. Structural analysis of the Fab:IL-6 complex suggests that the increased affinity was partly due to a serine to tyrosine switch in HCDR2. This translated into neutralizing capacity in an in vivo model of IL-6 induced SAA production. Finally, a novel Fab library was designed, encoding all variations found in the natural repertoire of VH genes identified after heavy chain shuffling. High stringency selections resulted in identification of a Fab with 250-fold increased potency when re-formatted into IgG1. Compared with a heavily engineered anti-IL-6 monoclonal antibody currently in clinical development, this IgG was at least equally potent, showing the engineering process to have had led to a highly potent anti-IL-6 antibody.
Collapse
Affiliation(s)
- Alex Klarenbeek
- arGEN-X BVBA, Technologiepark 30, Zwijnaarde 9052, Belgium Department of Cell Biology, Science Faculty, Utrecht University, Padualaan 8, Utrecht CH 3584, The Netherlands
| | | | - Georg Schragel
- Department of Cell Biology, Science Faculty, Utrecht University, Padualaan 8, Utrecht CH 3584, The Netherlands
| | - Ava S Sadi
- Department of Cell Biology, Science Faculty, Utrecht University, Padualaan 8, Utrecht CH 3584, The Netherlands
| | - Nico Ongenae
- arGEN-X BVBA, Technologiepark 30, Zwijnaarde 9052, Belgium
| | - Wieger Hemrika
- U-Protein Express BV, Padualaan 8, Utrecht CH 3584, The Netherlands
| | - John Wijdenes
- INSERM, Unité 1098, University of Franche-Comté, 1 bd A. Fleming, Besançon 25020, France
| | - Silvia Spinelli
- Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257 Centre National de la Recherche Scientifique and Aix-Marseille University, Marseille Cedex 09 13288, France
| | - Aline Desmyter
- Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257 Centre National de la Recherche Scientifique and Aix-Marseille University, Marseille Cedex 09 13288, France
| | - Christian Cambillau
- Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257 Centre National de la Recherche Scientifique and Aix-Marseille University, Marseille Cedex 09 13288, France
| | - Anna Hultberg
- arGEN-X BVBA, Technologiepark 30, Zwijnaarde 9052, Belgium
| | | | - Torsten Dreier
- arGEN-X BVBA, Technologiepark 30, Zwijnaarde 9052, Belgium
| | - Hans J W De Haard
- arGEN-X BVBA, Technologiepark 30, Zwijnaarde 9052, Belgium Department of Cell Biology, Science Faculty, Utrecht University, Padualaan 8, Utrecht CH 3584, The Netherlands
| | - Rob C Roovers
- Department of Cell Biology, Science Faculty, Utrecht University, Padualaan 8, Utrecht CH 3584, The Netherlands
| |
Collapse
|
22
|
Zhong H, Davis A, Ouzounova M, Carrasco RA, Chen C, Breen S, Chang YS, Huang J, Liu Z, Yao Y, Hurt E, Moisan J, Fung M, Tice DA, Clouthier SG, Xiao Z, Wicha MS, Korkaya H, Hollingsworth RE. A Novel IL6 Antibody Sensitizes Multiple Tumor Types to Chemotherapy Including Trastuzumab-Resistant Tumors. Cancer Res 2016; 76:480-90. [PMID: 26744529 DOI: 10.1158/0008-5472.can-15-0883] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/02/2015] [Indexed: 11/16/2022]
Abstract
Elevated levels of the proinflammatory cytokine IL6 are associated with poor survival outcomes in many cancers. Antibodies targeting IL6 and its receptor have been developed for chronic inflammatory disease, but they have not yet been shown to clearly benefit cancer patients, possibly due to antibody potency or the settings in which they have been tested. In this study, we describe the development of a novel high-affinity anti-IL6 antibody, MEDI5117, which features an extended half-life and potent inhibitory effects on IL6 biologic activity. MEDI5117 inhibited IL6-mediated activation of STAT3, suppressing the growth of several tumor types driven by IL6 autocrine signaling. In the same models, MEDI5117 displayed superior preclinical activity relative to a previously developed anti-IL6 antibody. Consistent with roles for IL6 in promoting tumor angiogenesis, we found that MEDI5117 inhibited the growth of endothelial cells, which can produce IL6 and support tumorigenesis. Notably, in tumor xenograft assays in mice, we documented the ability of MEDI5117 to enhance the antitumor activities of chemotherapy or gefitinib in combination treatment regimens. MEDI5117 also displayed robust activity on its own against trastuzumab-resistant HER2(+) tumor cells by targeting the CD44(+)CD24(-) cancer stem cell population. Collectively, our findings extend the evidence of important pleiotropic roles of IL6 in tumorigenesis and drug resistance, and offer a preclinical proof of concept for the use of IL6 antibodies in combination regimens to heighten therapeutic responses and overcome drug resistance.
Collapse
Affiliation(s)
- Haihong Zhong
- Oncology Research, MedImmune, Gaithersburg, Maryland
| | - April Davis
- Translational Science, MedImmune, Gaithersburg, Maryland
| | | | | | - Cui Chen
- Oncology Research, MedImmune, Gaithersburg, Maryland
| | - Shannon Breen
- Oncology Research, MedImmune, Gaithersburg, Maryland
| | - Yong S Chang
- University of Michigan Comprehensive Cancer Center, Ann Arbor, Michigan
| | - Jiaqi Huang
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, Georgia
| | - Zheng Liu
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, Georgia
| | - Yihong Yao
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, Georgia
| | - Elaine Hurt
- Oncology Research, MedImmune, Gaithersburg, Maryland
| | | | - Michael Fung
- Department of Biochemistry and Molecular Biology, Georgia Regents University, Augusta, Georgia
| | - David A Tice
- Oncology Research, MedImmune, Gaithersburg, Maryland
| | | | - Zhan Xiao
- Oncology Research, MedImmune, Gaithersburg, Maryland
| | - Max S Wicha
- Translational Science, MedImmune, Gaithersburg, Maryland
| | - Hasan Korkaya
- Aileron Therapeutics, Inc., Cambridge, Massachusetts.
| | | |
Collapse
|
23
|
Self-reactive IgE exacerbates interferon responses associated with autoimmunity. Nat Immunol 2015; 17:196-203. [PMID: 26692173 PMCID: PMC4718782 DOI: 10.1038/ni.3326] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022]
Abstract
Canonically, immunoglobulin E (IgE) mediates allergic immune responses by triggering mast cells and basophils to release histamine and type 2 helper cytokines. Here we found that in human systemic lupus erythematosus (SLE), IgE antibodies specific for double-stranded DNA (dsDNA) activated plasmacytoid dendritic cells (pDCs), a type of cell of the immune system linked to viral defense, which led to the secretion of substantial amounts of interferon-α (IFN-α). The concentration of dsDNA-specific IgE found in patient serum correlated with disease severity and greatly potentiated pDC function by triggering phagocytosis via the high-affinity FcɛRI receptor for IgE, followed by Toll-like receptor 9 (TLR9)-mediated sensing of DNA in phagosomes. Our findings expand the known pathogenic mechanisms of IgE-mediated inflammation beyond those found in allergy and demonstrate that IgE can trigger interferon responses capable of exacerbating self-destructive autoimmune responses.
Collapse
|
24
|
Ho LJ, Luo SF, Lai JH. Biological effects of interleukin-6: Clinical applications in autoimmune diseases and cancers. Biochem Pharmacol 2015; 97:16-26. [DOI: 10.1016/j.bcp.2015.06.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 06/09/2015] [Indexed: 01/13/2023]
|
25
|
Yu F, Gudmundsdotter L, Akal A, Gunneriusson E, Frejd F, Nygren PÅ. An affibody-adalimumab hybrid blocks combined IL-6 and TNF-triggered serum amyloid A secretion in vivo. MAbs 2015; 6:1598-607. [PMID: 25484067 PMCID: PMC4622551 DOI: 10.4161/mabs.36089] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In inflammatory disease conditions, the regulation of the cytokine system is impaired, leading to tissue damages. Here, we used protein engineering to develop biologicals suitable for blocking a combination of inflammation driving cytokines by a single construct. From a set of interleukin (IL)-6-binding affibody molecules selected by phage display, five variants with a capability of blocking the interaction between complexes of soluble IL-6 receptor α (sIL-6Rα) and IL-6 and the co-receptor gp130 were identified. In cell assays designed to analyze any blocking capacity of the classical or the alternative (trans) signaling IL-6 pathways, one variant, ZIL-6_13 with an affinity (KD) for IL-6 of ∼500 pM, showed the best performance. To construct fusion proteins (“AffiMabs”) with dual cytokine specificities, ZIL-6_13 was fused to either the N- or C-terminus of both the heavy and light chains of the anti-tumor necrosis factor (TNF) monoclonal antibody adalimumab (Humira®). One AffiMab construct with ZIL-6_13 positioned at the N-terminus of the heavy chain, denoted ZIL-6_13-HCAda, was determined to be the most optimal, and it was subsequently evaluated in an acute Serum Amyloid A (SAA) model in mice. Administration of the AffiMab or adalimumab prior to challenge with a mix of IL-6 and TNF reduced the levels of serum SAA in a dose-dependent manner. Interestingly, the highest dose (70 mg/kg body weight) of adalimumab only resulted in a 50% reduction of SAA-levels, whereas the corresponding dose of the ZIL-6_13-HCAda AffiMab with combined IL-6/TNF specificity, resulted in SAA levels below the detection limit.
Collapse
Affiliation(s)
- Feifan Yu
- a Division of Protein Technology; KTH Royal Institute of Technology ; AlbaNova University Center ; Stockholm , Sweden
| | | | | | | | | | | |
Collapse
|
26
|
The neonatal Fc receptor, FcRn, as a target for drug delivery and therapy. Adv Drug Deliv Rev 2015; 91:109-24. [PMID: 25703189 DOI: 10.1016/j.addr.2015.02.005] [Citation(s) in RCA: 174] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/22/2022]
Abstract
Immunoglobulin G (IgG)-based drugs are arguably the most successful class of protein therapeutics due in part to their remarkably long blood circulation. This arises from IgG interaction with the neonatal Fc receptor, FcRn. FcRn is the central regulator of IgG and albumin homeostasis throughout life and is increasingly being recognized as an important player in autoimmune disease, mucosal immunity, and tumor immune surveillance. Various engineering approaches that hijack or disrupt the FcRn-mediated transport pathway have been devised to develop long-lasting and non-invasive protein therapeutics, protein subunit vaccines, and therapeutics for treatment of autoimmune and infectious disease. In this review, we highlight the diverse biological functions of FcRn, emerging therapeutic opportunities, as well as the associated challenges of targeting FcRn for drug delivery and disease therapy.
Collapse
|
27
|
Henne KR, Ason B, Howard M, Wang W, Sun J, Higbee J, Tang J, Matsuda KC, Xu R, Zhou L, Chan JCY, King C, Piper DE, Ketchem RR, Michaels ML, Jackson SM, Retter MW. Anti-PCSK9 antibody pharmacokinetics and low-density lipoprotein-cholesterol pharmacodynamics in nonhuman primates are antigen affinity-dependent and exhibit limited sensitivity to neonatal Fc receptor-binding enhancement. J Pharmacol Exp Ther 2015; 353:119-31. [PMID: 25653417 DOI: 10.1124/jpet.114.221242] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as an attractive therapeutic target for cardiovascular disease. Monoclonal antibodies (mAbs) that bind PCSK9 and prevent PCSK9:low-density lipoprotein receptor complex formation reduce serum low-density lipoprotein-cholesterol (LDL-C) in vivo. PCSK9-mediated lysosomal degradation of bound mAb, however, dramatically reduces mAb exposure and limits duration of effect. Administration of high-affinity mAb1:PCSK9 complex (1:2) to mice resulted in significantly lower mAb1 exposure compared with mAb1 dosed alone in normal mice or in PCSK9 knockout mice lacking antigen. To identify mAb-binding characteristics that minimize lysosomal disposition, the pharmacokinetic behavior of four mAbs representing a diverse range of PCSK9-binding affinities at neutral (serum) and acidic (endosomal) pH was evaluated in cynomolgus monkeys. Results revealed an inverse correlation between affinity and both mAb exposure and duration of LDL-C lowering. High-affinity mAb1 exhibited the lowest exposure and shortest duration of action (6 days), whereas mAb2 displayed prolonged exposure and LDL-C reduction (51 days) as a consequence of lower affinity and pH-sensitive PCSK9 binding. mAbs with shorter endosomal PCSK9:mAb complex dissociation half-lives (<20 seconds) produced optimal exposure-response profiles. Interestingly, incorporation of previously reported Fc-region amino acid substitutions or novel loop-insertion peptides that enhance in vitro neonatal Fc receptor binding, led to only modest pharmacokinetic improvements for mAbs with pH-dependent PCSK9 binding, with only limited augmentation of pharmacodynamic activity relative to native mAbs. A pivotal role for PCSK9 in mAb clearance was demonstrated, more broadly suggesting that therapeutic mAb-binding characteristics require optimization based on target pharmacology.
Collapse
Affiliation(s)
- Kirk R Henne
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Brandon Ason
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Monique Howard
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Wei Wang
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Jeonghoon Sun
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Jared Higbee
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Jie Tang
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Katherine C Matsuda
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Ren Xu
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Lei Zhou
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Joyce C Y Chan
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Chadwick King
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Derek E Piper
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Randal R Ketchem
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Mark Leo Michaels
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Simon M Jackson
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| | - Marc W Retter
- Departments of Pharmacokinetics and Drug Metabolism (K.R.H., K.C.M., M.W.R.), Metabolic Disorders (B.A., J.C.Y.C., S.M.J.), Therapeutic Discovery (M.H., W.W., J.S., J.H., J.T., C.K., D.E.P., R.R.K., M.L.M.), Molecular Sciences (R.X.), and Biostatistics (L.Z.), Amgen, South San Francisco, California
| |
Collapse
|
28
|
Kim GW, Lee NR, Pi RH, Lim YS, Lee YM, Lee JM, Jeong HS, Chung SH. IL-6 inhibitors for treatment of rheumatoid arthritis: past, present, and future. Arch Pharm Res 2015; 38:575-84. [PMID: 25648633 DOI: 10.1007/s12272-015-0569-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 01/23/2015] [Indexed: 10/24/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by polyarthritis. Numerous agents with varying mechanisms are used in the treatment of RA, including non-steroidal anti-inflammatory drugs, disease-modifying anti-rheumatic drugs, and some biological agents. Studies to uncover the cause of RA have recently ended up scrutinizing the importance of pro-inflammatory cytokine such as tumor necrosis factor α (TNF-α) and interleukin (IL)-6 in the pathogenesis of RA. TNF-α inhibitors are increasingly used to treat RA patients who are non-responsive to conventional anti-arthritis drugs. Despite its effectiveness in a large patient population, up to two thirds of RA patients are found to be partially responsive to anti-TNF therapy. Therefore, agents targeting IL-6 such as tocilizumab (TCZ) attracted significant attention as a promising agent in RA treatment. In this article, we review the mechanism of anti-IL-6 in the treatment of RA, provide the key efficacy and safety data from clinical trials of approved anti-IL-6, TCZ, as well as six candidate IL-6 blockers including sarilumab, ALX-0061, sirukumab, MEDI5117, clazakizumab, and olokizumab, and their future perspectives in the treatment of RA.
Collapse
Affiliation(s)
- Go Woon Kim
- Department of Pharmacology and Clinical Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, 130-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Monnet C, Jorieux S, Urbain R, Fournier N, Bouayadi K, De Romeuf C, Behrens CK, Fontayne A, Mondon P. Selection of IgG Variants with Increased FcRn Binding Using Random and Directed Mutagenesis: Impact on Effector Functions. Front Immunol 2015; 6:39. [PMID: 25699055 PMCID: PMC4316771 DOI: 10.3389/fimmu.2015.00039] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/21/2015] [Indexed: 12/26/2022] Open
Abstract
Despite the reasonably long half-life of immunoglogulin G (IgGs), market pressure for higher patient convenience while conserving efficacy continues to drive IgG half-life improvement. IgG half-life is dependent on the neonatal Fc receptor (FcRn), which among other functions, protects IgG from catabolism. FcRn binds the Fc domain of IgG at an acidic pH ensuring that endocytosed IgG will not be degraded in lysosomal compartments and will then be released into the bloodstream. Consistent with this mechanism of action, several Fc-engineered IgG with increased FcRn affinity and conserved pH dependency were designed and resulted in longer half-life in vivo in human FcRn-transgenic mice (hFcRn), cynomolgus monkeys, and recently in healthy humans. These IgG variants were usually obtained by in silico approaches or directed mutagenesis in the FcRn-binding site. Using random mutagenesis, combined with a pH-dependent phage display selection process, we isolated IgG variants with improved FcRn-binding, which exhibited longer in vivo half-life in hFcRn mice. Interestingly, many mutations enhancing Fc/FcRn interaction were located at a distance from the FcRn-binding site validating our random molecular approach. Directed mutagenesis was then applied to generate new variants to further characterize our IgG variants and the effect of the mutations selected. Since these mutations are distributed over the whole Fc sequence, binding to other Fc effectors, such as complement C1q and FcγRs, was dramatically modified, even by mutations distant from these effectors’ binding sites. Hence, we obtained numerous IgG variants with increased FcRn-binding and different binding patterns to other Fc effectors, including variants without any effector function, providing distinct “fit-for-purpose” Fc molecules. We therefore provide evidence that half-life and effector functions should be optimized simultaneously as mutations can have unexpected effects on all Fc receptors that are critical for IgG therapeutic efficacy.
Collapse
|
30
|
Chin SE, Ferraro F, Groves M, Liang M, Vaughan TJ, Dobson CL. Isolation of high-affinity, neutralizing anti-idiotype antibodies by phage and ribosome display for application in immunogenicity and pharmacokinetic analyses. J Immunol Methods 2015; 416:49-58. [DOI: 10.1016/j.jim.2014.10.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 10/24/2014] [Accepted: 10/30/2014] [Indexed: 10/24/2022]
|
31
|
Groves MAT, Amanuel L, Campbell JI, Rees DG, Sridharan S, Finch DK, Lowe DC, Vaughan TJ. Antibody VH and VL recombination using phage and ribosome display technologies reveals distinct structural routes to affinity improvements with VH-VL interface residues providing important structural diversity. MAbs 2014; 6:236-45. [PMID: 24256948 DOI: 10.4161/mabs.27261] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In vitro selection technologies are an important means of affinity maturing antibodies to generate the optimal therapeutic profile for a particular disease target. Here, we describe the isolation of a parent antibody, KENB061 using phage display and solution phase selections with soluble biotinylated human IL-1R1. KENB061 was affinity matured using phage display and targeted mutagenesis of VH and VL CDR3 using NNS randomization. Affinity matured VHCDR3 and VLCDR3 library blocks were recombined and selected using phage and ribosome display protocol. A direct comparison of the phage and ribosome display antibodies generated was made to determine their functional characteristics.In our analyses, we observed distinct differences in the pattern of beneficial mutations in antibodies derived from phage and ribosome display selections, and discovered the lead antibody Jedi067 had a ~3700-fold improvement in KD over the parent KENB061. We constructed a homology model of the Fv region of Jedi067 to map the specific positions where mutations occurred in the CDR3 loops. For VL CDR3, positions 94 to 97 carry greater diversity in the ribosome display variants compared with the phage display. The positions 95a, 95b and 96 of VLCDR3 form part of the interface with VH in this model. The model shows that positions 96, 98, 100e, 100f, 100 g, 100h, 100i and 101 of the VHCDR3 include residues at the VH and VL interface. Importantly, Leu96 and Tyr98 are conserved at the interface positions in both phage and ribosome display indicating their importance in maintaining the VH-VL interface. For antibodies derived from ribosome display, there is significant diversity at residues 100a to 100f of the VH CDR3 compared with phage display. A unique deletion of isoleucine at position 102 of the lead candidate, Jedi067, also occurs in the VHCDR3.As anticipated, recombining the mutations via ribosome display led to a greater structural diversity, particularly in the heavy chain CDR3, which in turn led to antibodies with improved potencies. For this particular analysis, we also found that VH-VL interface positions provided a source of structural diversity for those derived from the ribosome display selections. This greater diversity is a likely consequence of the presence of a larger pool of recombinants in the ribosome display system, or the evolutionary capacity of ribosome display, but may also reflect differential selection of antibodies in the two systems.
Collapse
|
32
|
Genovese MC, Fleischmann R, Furst D, Janssen N, Carter J, Dasgupta B, Bryson J, Duncan B, Zhu W, Pitzalis C, Durez P, Kretsos K. Efficacy and safety of olokizumab in patients with rheumatoid arthritis with an inadequate response to TNF inhibitor therapy: outcomes of a randomised Phase IIb study. Ann Rheum Dis 2014; 73:1607-15. [PMID: 24641941 PMCID: PMC4145439 DOI: 10.1136/annrheumdis-2013-204760] [Citation(s) in RCA: 125] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/27/2014] [Accepted: 02/16/2014] [Indexed: 11/04/2022]
Abstract
OBJECTIVES The aim of this 12-week Phase IIb study was to assess the efficacy and safety of olokizumab (OKZ), a humanised anti-IL6 monoclonal antibody, in patients with rheumatoid arthritis (RA) with moderate-to-severe disease activity who had previously failed tumour necrosis factor (TNF) inhibitor therapy. The dose-exposure-response relationship for OKZ was also investigated. METHODS Patients were randomised to one of nine treatment arms receiving placebo (PBO) or OKZ (60, 120 or 240 mg) every 4 weeks (Q4W) or every 2 weeks (Q2W), or 8 mg/kg tocilizumab (TCZ) Q4W. The primary endpoint was change from baseline in DAS28(C-reactive protein, CRP) at Week 12. Secondary efficacy endpoints were American College of Rheumatology 20 (ACR20), ACR50 and ACR70 response rates at Week 12. Exploratory analyses included comparisons of OKZ efficacy with TCZ. RESULTS Across 221 randomised patients, OKZ treatment produced significantly greater reductions in DAS28(CRP) from baseline levels at Week 12, compared to PBO (p<0.001), at all the OKZ doses tested (60 mg OKZ p=0.0001, 120 and 240 mg OKZ p<0.0001). Additionally, ACR20 and ACR50 responses were numerically higher for OKZ than PBO (ACR20: PBO=17.1-29.9%, OKZ=32.5-60.7%; ACR50: PBO=1.3-4.9%, OKZ=11.5-33.2%). OKZ treatment, at several doses, demonstrated similar efficacy to TCZ across multiple endpoints. Most adverse events were mild or moderate and comparable between OKZ and TCZ treatment groups. Pharmacokinetic/pharmacodynamic modelling demonstrated a shallow dose/exposure response relationship in terms of percentage of patients with DAS28(CRP) <2.6. CONCLUSIONS OKZ produced significantly greater reductions in DAS28(CRP) from baseline at Week 12 compared with PBO. Reported AEs were consistent with the safety profile expected of this class of drug, with no new safety signals identified. TRIAL REGISTER NUMBER NCT01242488.
Collapse
Affiliation(s)
- Mark C Genovese
- Division of Immunology and Rheumatology, Stanford University Medical Center, Stanford, USA
| | - Roy Fleischmann
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, USA
| | - Daniel Furst
- Department of Medicine, UCLA, Los Angeles, California, USA
| | | | - John Carter
- Division of Rheumatology, University of South Florida Health, Tampa, Florida, USA
| | - Bhaskar Dasgupta
- Department of Rheumatology, Southend University Hospital, Westcliff-on-Sea, UK
| | | | | | | | - Costantino Pitzalis
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patrick Durez
- Service et Pôle de Rhumatologie, Cliniques Universitaires Saint-Luc, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|
33
|
Semerano L, Thiolat A, Minichiello E, Clavel G, Bessis N, Boissier MC. Targeting IL-6 for the treatment of rheumatoid arthritis: Phase II investigational drugs. Expert Opin Investig Drugs 2014; 23:979-99. [DOI: 10.1517/13543784.2014.912276] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Luca Semerano
- Inserm UMR 1125,
74, rue Marcel Cachin 93017 Bobigny, France
- Sorbonne Paris Cité – Université Paris 13,
74, rue Marcel Cachin 93017 Bobigny, France
- Assistance Publique – Hôpitaux de Paris (AP-HP) Groupe Hospitalier Avicenne – Jean Verdier – René Muret, Service de Rhumatologie,
125 rue de Stalingrad 93017 Bobigny, France
| | - Allan Thiolat
- Inserm UMR 1125,
74, rue Marcel Cachin 93017 Bobigny, France
- Sorbonne Paris Cité – Université Paris 13,
74, rue Marcel Cachin 93017 Bobigny, France
| | - Emeline Minichiello
- Inserm UMR 1125,
74, rue Marcel Cachin 93017 Bobigny, France
- Sorbonne Paris Cité – Université Paris 13,
74, rue Marcel Cachin 93017 Bobigny, France
- Assistance Publique – Hôpitaux de Paris (AP-HP) Groupe Hospitalier Avicenne – Jean Verdier – René Muret, Service de Rhumatologie,
125 rue de Stalingrad 93017 Bobigny, France
| | - Gaëlle Clavel
- Inserm UMR 1125,
74, rue Marcel Cachin 93017 Bobigny, France
- Sorbonne Paris Cité – Université Paris 13,
74, rue Marcel Cachin 93017 Bobigny, France
- Service de Médecine Interne, Fondation Ophtalmologique A de Rothschild,
75019 Paris, France
| | - Natacha Bessis
- Inserm UMR 1125,
74, rue Marcel Cachin 93017 Bobigny, France
- Sorbonne Paris Cité – Université Paris 13,
74, rue Marcel Cachin 93017 Bobigny, France
| | - Marie-Christophe Boissier
- Inserm UMR 1125,
74, rue Marcel Cachin 93017 Bobigny, France
- Sorbonne Paris Cité – Université Paris 13,
74, rue Marcel Cachin 93017 Bobigny, France
- Assistance Publique – Hôpitaux de Paris (AP-HP) Groupe Hospitalier Avicenne – Jean Verdier – René Muret, Service de Rhumatologie,
125 rue de Stalingrad 93017 Bobigny, France
| |
Collapse
|
34
|
Doerner A, Rhiel L, Zielonka S, Kolmar H. Therapeutic antibody engineering by high efficiency cell screening. FEBS Lett 2013; 588:278-87. [PMID: 24291259 DOI: 10.1016/j.febslet.2013.11.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/17/2013] [Accepted: 11/18/2013] [Indexed: 12/11/2022]
Abstract
In recent years, several cell-based screening technologies for the isolation of antibodies with prescribed properties emerged. They rely on the multi-copy display of antibodies or antibody fragments on a cell surface in functional form followed by high through put screening and isolation of cell clones that carry an antibody variant with the desired affinity, specificity, and stability. Particularly yeast surface display in combination with high-throughput fluorescence-activated cell sorting has proven successful in the last fifteen years as a very powerful technology that has some advantages over classical generation of monoclonals using the hybridoma technology or bacteriophage-based antibody display and screening. Cell-based screening harbours the benefit of single-cell online and real-time analysis and characterisation of individual library candidates. Moreover, when using eukaryotic expression hosts, intrinsic quality control machineries for proper protein folding and stability exist that allow for co-selection of high-level expression and stability simultaneously to the binding functionality. Recently, promising technologies emerged that directly rely on antibody display on higher eukaryotic cell lines using lentiviral transfection or direct screening on B-cells. The combination of immunisation, B-cell screening and next generation sequencing may open new avenues for the isolation of therapeutic antibodies with prescribed physicochemical and functional characteristics.
Collapse
Affiliation(s)
- Achim Doerner
- Protein Engineering and Antibody Technologies, Merck Serono, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Laura Rhiel
- Protein Engineering and Antibody Technologies, Merck Serono, Merck KGaA, Frankfurter Straße 250, D-64293 Darmstadt, Germany
| | - Stefan Zielonka
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Alarich-Weiss-Strasse 4, D-64287 Darmstadt, Germany.
| |
Collapse
|
35
|
Pharmacokinetic studies of protein drugs: past, present and future. Adv Drug Deliv Rev 2013; 65:1065-73. [PMID: 23541379 DOI: 10.1016/j.addr.2013.03.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 12/11/2022]
Abstract
Among the growing number of therapeutic proteins on the market, there is an emergence of biotherapeutics designed from our comprehension of the physiological mechanisms responsible for their peripheral and tissue pharmacokinetics. Most of them have been optimized to increase their half-life through glycosylation engineering, polyethylene glycol conjugation or Fc fusion. However, our understanding of biological drug behaviors is still its infancy compared to the huge amount of data regarding small molecular weight drugs accumulated over half a century. Unfortunately, therapeutic proteins share few resemblances with these drugs. For instance drug-targeted-mediated disposition, binding to glycoreceptors, lysosomal recycling, large hydrodynamic volume and electrostatic charge are typical critical characteristics that cannot be derived from our anterior knowledge of classical drugs. However, the numerous discoveries made in the two last decades have driven and will continue to drive new options in biochemical engineering and support the design of complex delivery systems. Most of these new developments will be supported by novel analytical methods for assessing in vitro or in vivo metabolism parameters.
Collapse
|
36
|
Engineered monoclonal antibody with novel antigen-sweeping activity in vivo. PLoS One 2013; 8:e63236. [PMID: 23667591 PMCID: PMC3646756 DOI: 10.1371/journal.pone.0063236] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 04/01/2013] [Indexed: 11/19/2022] Open
Abstract
Monoclonal antibodies are widely used to target disease-related antigens. However, because conventional antibody binds to the antigen but cannot eliminate the antigen from plasma, and rather increases the plasma antigen concentration by reducing the clearance of the antigen, some clinically important antigens are still difficult to target with monoclonal antibodies because of the huge dosages required. While conventional antibody can only bind to the antigen, some natural endocytic receptors not only bind to the ligands but also continuously eliminate them from plasma by pH-dependent dissociation of the ligands within the acidic endosome and subsequent receptor recycling to the cell surface. Here, we demonstrate that an engineered antibody, named sweeping antibody, having both pH-dependent antigen binding (to mimic the receptor-ligand interaction) and increased binding to cell surface neonatal Fc receptor (FcRn) at neutral pH (to mimic the cell-bound form of the receptor), selectively eliminated the antigen from plasma. With this novel antigen-sweeping activity, antibody without in vitro neutralizing activity exerted in vivo efficacy by directly eliminating the antigen from plasma. Moreover, conversion of conventional antibody with in vitro neutralizing activity into sweeping antibody further potentiated the in vivo efficacy. Depending on the binding affinity to FcRn at neutral pH, sweeping antibody reduced antigen concentration 50- to 1000-fold compared to conventional antibody. Thereby, sweeping antibody antagonized excess amounts of antigen in plasma against which conventional antibody was completely ineffective, and could afford marked reduction of dosage to a level that conventional antibody can never achieve. Thus, the novel mode of action of sweeping antibody provides potential advantages over conventional antibody and may allow access to the target antigens which were previously undruggable by conventional antibody.
Collapse
|