1
|
Laitano R, Calzetta L, Cavalli F, Cazzola M, Rogliani P. Delivering monoclonal antibodies via inhalation: a systematic review of clinical trials in asthma and COPD. Expert Opin Drug Deliv 2023; 20:1041-1054. [PMID: 37342873 DOI: 10.1080/17425247.2023.2228681] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/20/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Advances in understanding the pathophysiology of asthma and chronic obstructive pulmonary disease (COPD) led to investigation of biologic drugs targeting specific inflammatory pathways. No biologics are licensed for COPD while all the approved monoclonal antibodies (mAbs) for severe asthma treatment are systemically administered. Systemic administration is associated with low target tissue exposure and risk of systemic adverse events. Thus, delivering mAbs via inhalation may be an attractive approach for asthma and COPD treatment due to direct targeting of the airways. AREAS COVERED This systematic review of randomized control trials (RCTs) evaluated the potential role of delivering mAbs via inhalation in asthma and COPD treatment. Five RCTs were deemed eligible for a qualitative analysis. EXPERT OPINION Compared to systemic administration, delivering mAbs via inhalation is associated with rapid onset of action, greater efficacy at lower doses, minimal systemic exposure, and lower risk of adverse events. Although some of the inhaled mAbs included in this study showed a certain level of efficacy and safety in asthmatic patients, delivering mAbs via inhalation is still challenging and controversial. Further adequately powered and well-designed RCTs are needed to assess the potential role of inhaled mAbs in the treatment of asthma and COPD.
Collapse
Affiliation(s)
- Rossella Laitano
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Luigino Calzetta
- Department of Medicine and Surgery, Respiratory Disease and Lung Function Unit, University of Parma, Parma, Italy
| | - Francesco Cavalli
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
2
|
Davé E, Durrant O, Dhami N, Compson J, Broadbridge J, Archer S, Maroof A, Whale K, Menochet K, Bonnaillie P, Barry E, Wild G, Peerboom C, Bhatta P, Ellis M, Hinchliffe M, Humphreys DP, Heywood SP. TRYBE®: an Fc-free antibody format with three monovalent targeting arms engineered for long in vivo half-life. MAbs 2023; 15:2160229. [PMID: 36788124 PMCID: PMC9937000 DOI: 10.1080/19420862.2022.2160229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
TrYbe® is an Fc-free therapeutic antibody format, capable of engaging up to three targets simultaneously, with long in vivo half-life conferred by albumin binding. This format is shown by small-angle X-ray scattering to be conformationally flexible with favorable 'reach' properties. We demonstrate the format's broad functionality by co-targeting of soluble and cell surface antigens. The benefit of monovalent target binding is illustrated by the lack of formation of large immune complexes when co-targeting multivalent antigens. TrYbes® are manufactured using standard mammalian cell culture and protein A affinity capture processes. TrYbes® have been formulated at high concentrations and have favorable drug-like properties, including stability, solubility, and low viscosity. The unique functionality and inherent developability of the TrYbe® makes it a promising multi-specific antibody fragment format for antibody therapy.
Collapse
Affiliation(s)
- Emma Davé
- Early Solutions, UCB Biopharma UK, Slough, UK
| | | | - Neha Dhami
- Early Solutions, UCB Biopharma UK, Slough, UK
| | | | | | | | | | - Kevin Whale
- Early Solutions, UCB Biopharma UK, Slough, UK
| | | | | | - Emily Barry
- Early Solutions, UCB Biopharma UK, Slough, UK
| | - Gavin Wild
- PV Supply and Technology Solutions, UCB Biopharma UK, Slough, UK
| | - Claude Peerboom
- PV Supply and Technology Solutions, UCB Biopharma SRL, Braine-l'Alleud, Belgium, EU
| | | | - Mark Ellis
- Early Solutions, UCB Biopharma UK, Slough, UK
| | | | | | - Sam P. Heywood
- Early Solutions, UCB Biopharma UK, Slough, UK,CONTACT Sam P. Heywood Early Solutions, UCB Biopharma UK, 208 Bath Road, Slough, SL1 3XE, Slough, UK
| |
Collapse
|
3
|
|
4
|
Aggregates Associated with Instability of Antibodies during Aerosolization Induce Adverse Immunological Effects. Pharmaceutics 2022; 14:pharmaceutics14030671. [PMID: 35336045 PMCID: PMC8949695 DOI: 10.3390/pharmaceutics14030671] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 01/27/2023] Open
Abstract
Background: Immunogenicity refers to the inherent ability of a molecule to stimulate an immune response. Aggregates are one of the major risk factors for the undesired immunogenicity of therapeutic antibodies (Ab) and may ultimately result in immune-mediated adverse effects. For Ab delivered by inhalation, it is necessary to consider the interaction between aggregates resulting from the instability of the Ab during aerosolization and the lung mucosa. The aim of this study was to determine the impact of aggregates produced during aerosolization of therapeutic Ab on the immune system. Methods: Human and murine immunoglobulin G (IgG) were aerosolized using a clinically-relevant nebulizer and their immunogenic potency was assessed, both in vitro using a standard human monocyte-derived dendritic cell (MoDC) reporter assay and in vivo in immune cells in the airway compartment, lung parenchyma and spleen of healthy C57BL/6 mice after pulmonary administration. Results: IgG aggregates, produced during nebulization, induced a dose-dependent activation of MoDC characterized by the enhanced production of cytokines and expression of co-stimulatory markers. Interestingly, in vivo administration of high amounts of nebulization-mediated IgG aggregates resulted in a profound and sustained local and systemic depletion of immune cells, which was attributable to cell death. This cytotoxic effect was observed when nebulized IgG was administered locally in the airways as compared to a systemic administration but was mitigated by improving IgG stability during nebulization, through the addition of polysorbates to the formulation. Conclusion: Although inhalation delivery represents an attractive alternative route for delivering Ab to treat respiratory infections, our findings indicate that it is critical to prevent IgG aggregation during the nebulization process to avoid pro-inflammatory and cytotoxic effects. The optimization of Ab formulation can mitigate adverse effects induced by nebulization.
Collapse
|
5
|
Cruz-Teran C, Tiruthani K, McSweeney M, Ma A, Pickles R, Lai SK. Challenges and opportunities for antiviral monoclonal antibodies as COVID-19 therapy. Adv Drug Deliv Rev 2021; 169:100-117. [PMID: 33309815 PMCID: PMC7833882 DOI: 10.1016/j.addr.2020.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/30/2020] [Accepted: 12/05/2020] [Indexed: 01/08/2023]
Abstract
To address the COVID-19 pandemic, there has been an unprecedented global effort to advance potent neutralizing mAbs against SARS-CoV-2 as therapeutics. However, historical efforts to advance antiviral monoclonal antibodies (mAbs) for the treatment of other respiratory infections have been met with categorical failures in the clinic. By investigating the mechanism by which SARS-CoV-2 and similar viruses spread within the lung, along with available biodistribution data for systemically injected mAb, we highlight the challenges faced by current antiviral mAbs for COVID-19. We summarize some of the leading mAbs currently in development, and present the evidence supporting inhaled delivery of antiviral mAb as an early intervention against COVID-19 that could prevent important pulmonary morbidities associated with the infection.
Collapse
Affiliation(s)
- Carlos Cruz-Teran
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karthik Tiruthani
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Alice Ma
- UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Raymond Pickles
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Samuel K Lai
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Inhalon Biopharma, Durham, NC 27709, USA; UNC/NCSU Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
6
|
Lightwood DJ, Munro RJ, Porter J, McMillan D, Carrington B, Turner A, Scott-Tucker A, Hickford ES, Schmidt A, Fox D, Maloney A, Ceska T, Bourne T, O'Connell J, Lawson ADG. A conformation-selective monoclonal antibody against a small molecule-stabilised signalling-deficient form of TNF. Nat Commun 2021; 12:583. [PMID: 33495445 PMCID: PMC7835358 DOI: 10.1038/s41467-020-20825-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/04/2020] [Indexed: 02/08/2023] Open
Abstract
We have recently described the development of a series of small-molecule inhibitors of human tumour necrosis factor (TNF) that stabilise an open, asymmetric, signalling-deficient form of the soluble TNF trimer. Here, we describe the generation, characterisation, and utility of a monoclonal antibody that selectively binds with high affinity to the asymmetric TNF trimer-small molecule complex. The antibody helps to define the molecular dynamics of the apo TNF trimer, reveals the mode of action and specificity of the small molecule inhibitors, acts as a chaperone in solving the human TNF-TNFR1 complex crystal structure, and facilitates the measurement of small molecule target occupancy in complex biological samples. We believe this work defines a role for monoclonal antibodies as tools to facilitate the discovery and development of small-molecule inhibitors of protein-protein interactions.
Collapse
Affiliation(s)
| | | | - John Porter
- UCB Pharma, 208 Bath Road, Slough, SL1 3WE, UK
| | | | | | | | | | | | | | - David Fox
- UCB Pharma, 7869 NE Day Road W, Bainbridge Island, WA, 98110, USA
| | | | - Tom Ceska
- UCB Pharma, 208 Bath Road, Slough, SL1 3WE, UK
| | - Tim Bourne
- UCB Pharma, 208 Bath Road, Slough, SL1 3WE, UK
| | | | | |
Collapse
|
7
|
Matera MG, Calzetta L, Ora J, Rogliani P, Cazzola M. Pharmacokinetic/pharmacodynamic approaches to drug delivery design for inhalation drugs. Expert Opin Drug Deliv 2021; 18:891-906. [PMID: 33412922 DOI: 10.1080/17425247.2021.1873271] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Inhaled drugs are important in the treatment of many lung pathologies, but to be therapeutically effective they must reach unbound concentrations at their effect site in the lung that are adequate to interact with their pharmacodynamic properties (PD) and exert the pharmacological action over an appropriate dosing interval. Therefore, the evaluation of pharmacokinetic (PK)/PD relationship is critical to predict their possible therapeutic effect.Areas covered: We review the approaches used to assess the PK/PD relationship of the major classes of inhaled drugs that are prescribed to treat pulmonary pathologies.Expert opinion: There are still great difficulties in producing data on lung concentrations of inhaled drugs and interpreting them as to their ability to induce the desired therapeutic action. The structural complexity of the lungs, the multiplicity of processes involved simultaneously and the physical interactions between the lungs and drug make any PK/PD approach to drug delivery design for inhalation medications extremely challenging. New approaches/methods are increasing our understanding about what happens to inhaled drugs, but they are still not ready for regulatory purposes. Therefore, we must still rely on plasma concentrations based on the axiom that they reflect both the extent and the pattern of deposition within the lungs.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Dept. Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Disease and Lung Function, Dept. Medicine and Surgery, University of Parma, Parma, Italy
| | - Josuel Ora
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Dept. Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| |
Collapse
|
8
|
Airway Delivery of Anti-influenza Monoclonal Antibodies Results in Enhanced Antiviral Activities and Enables Broad-Coverage Combination Therapies. J Virol 2020; 94:JVI.00052-20. [PMID: 32847855 PMCID: PMC7592225 DOI: 10.1128/jvi.00052-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/02/2020] [Indexed: 12/12/2022] Open
Abstract
Influenza causes widespread illness in humans and can result in morbidity and death, especially in the very young and elderly populations. Because influenza vaccination can be poorly effective some years, and the immune systems of the most susceptible populations are often compromised, passive immunization treatments using broadly neutralizing antibodies is a promising therapeutic approach. However, large amounts of a single antibody are required for effectiveness when delivered through systemic administration (typically intravenous infusion), precluding the feasible dosing of antibody combinations via this route. The significance of our research is the demonstration that effective therapeutic treatments of multiple relevant influenza types (H1N1, H3N2, and B) can be achieved by airway administration of a single combination of relatively small amounts of three anti-influenza antibodies. This advance exploits the discovery that airway delivery is a more potent way of administering anti-influenza antibodies compared to systemic delivery, making this a feasible and cost-effective therapeutic approach. Effective and reliable anti-influenza treatments are acutely needed and passive immunizations using broadly neutralizing anti-influenza monoclonal antibodies (bNAbs) are a promising emerging approach. Because influenza infections are initiated in and localized to the pulmonary tract, and newly formed viral particles egress from the apical side of the lung epithelium, we compared the effectiveness of hemagglutinin (HA) stalk-binding bNAbs administered through the airway (intranasal or via nebulization) versus the systemic route (intraperitoneal or intravenous). Airway deliveries of various bNAbs were 10- to 50-fold more effective than systemic deliveries of the same bNAbs in treating H1N1, H3N2, B/Victoria-, and B/Yamagata-lineage influenza viral infections in mouse models. The potency of airway-delivered anti-HA bNAbs was highly dependent on antiviral neutralization activity, with little dependence on the effector function of the antibody. In contrast, the effectiveness of systemically delivered anti-HA bNAbs was not dependent on antiviral neutralization, but critically dependent on antibody effector functions. Concurrent administration of a neutralizing/effector function-positive bNAb via the airway and systemic routes showed increased effectiveness. The small amount of airway-delivered bNAbs needed for effective influenza treatment creates the opportunity to combine potent bNAbs with different anti-influenza specificities to generate a cost-effective antiviral therapy that provides broad coverage against all circulating influenza strains infecting humans. A 3 mg/kg dose of the novel triple antibody combination CF-404 (i.e., 1 mg/kg of each component bNAb) delivered to the airway was shown to effectively prevent weight loss and death in mice challenged with ten 50% lethal dose (LD50) inoculums of either H1N1, H3N2, B/Victoria-lineage, or B/Yamagata-lineage influenza viruses. IMPORTANCE Influenza causes widespread illness in humans and can result in morbidity and death, especially in the very young and elderly populations. Because influenza vaccination can be poorly effective some years, and the immune systems of the most susceptible populations are often compromised, passive immunization treatments using broadly neutralizing antibodies is a promising therapeutic approach. However, large amounts of a single antibody are required for effectiveness when delivered through systemic administration (typically intravenous infusion), precluding the feasible dosing of antibody combinations via this route. The significance of our research is the demonstration that effective therapeutic treatments of multiple relevant influenza types (H1N1, H3N2, and B) can be achieved by airway administration of a single combination of relatively small amounts of three anti-influenza antibodies. This advance exploits the discovery that airway delivery is a more potent way of administering anti-influenza antibodies compared to systemic delivery, making this a feasible and cost-effective therapeutic approach.
Collapse
|
9
|
McCarthy SD, González HE, Higgins BD. Future Trends in Nebulized Therapies for Pulmonary Disease. J Pers Med 2020; 10:E37. [PMID: 32397615 PMCID: PMC7354528 DOI: 10.3390/jpm10020037] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 12/15/2022] Open
Abstract
Aerosol therapy is a key modality for drug delivery to the lungs of respiratory disease patients. Aerosol therapy improves therapeutic effects by directly targeting diseased lung regions for rapid onset of action, requiring smaller doses than oral or intravenous delivery and minimizing systemic side effects. In order to optimize treatment of critically ill patients, the efficacy of aerosol therapy depends on lung morphology, breathing patterns, aerosol droplet characteristics, disease, mechanical ventilation, pharmacokinetics, and the pharmacodynamics of cell-drug interactions. While aerosol characteristics are influenced by drug formulations and device mechanisms, most other factors are reliant on individual patient variables. This has led to increased efforts towards more personalized therapeutic approaches to optimize pulmonary drug delivery and improve selection of effective drug types for individual patients. Vibrating mesh nebulizers (VMN) are the dominant device in clinical trials involving mechanical ventilation and emerging drugs. In this review, we consider the use of VMN during mechanical ventilation in intensive care units. We aim to link VMN fundamentals to applications in mechanically ventilated patients and look to the future use of VMN in emerging personalized therapeutic drugs.
Collapse
Affiliation(s)
- Sean D. McCarthy
- Anaesthesia, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (S.D.M.); (H.E.G.)
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Héctor E. González
- Anaesthesia, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland; (S.D.M.); (H.E.G.)
- Lung Biology Group, Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, National University of Ireland Galway, H91 TK33 Galway, Ireland
| | - Brendan D. Higgins
- Physiology, School of Medicine, National University of Ireland Galway, H91 TK33 Galway, Ireland
| |
Collapse
|
10
|
Lightwood D, Tservistas M, Zehentleitner M, Sarkar K, Turner A, Bracher M, Smith B, Lamour S, Bourne T, Shaw S, Gozzard N, Palframan RT. Efficacy of an Inhaled IL-13 Antibody Fragment in a Model of Chronic Asthma. Am J Respir Crit Care Med 2019; 198:610-619. [PMID: 29883204 DOI: 10.1164/rccm.201712-2382oc] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
RATIONALE IL-13 is an important cytokine implicated in the pathogenesis of allergic asthma and is an attractive target for an inhaled therapeutic. OBJECTIVE To investigate the efficacy of CDP7766, a nebulized inhaled anti-IL-13 monoclonal antibody Fab fragment, in a model of allergic asthma in cynomolgus macaques naturally sensitized to Ascaris suum. METHODS CDP7766 was nebulized using a vibrating-membrane nebulizer on the basis of eFlow technology. The aerosol generated was analyzed to determine the particle size profile and the biophysical and functional properties of CDP7766. Nebulized CDP7766 (0.1-60 mg/animal, once daily for 5 d) was delivered via the inhaled route. MEASUREMENTS AND MAIN RESULTS The investigational eFlow nebulizer used in this study generated a respirable aerosol of CDP7766 with no evidence of degradation, loss of potency, aggregation, or formation of particulates. Inhaled CDP7766 was well tolerated in the model (no adverse effects related to local irritation) and significantly inhibited BAL allergen-induced cytokine and chemokine upregulation (60 mg vs. vehicle: eotaxin-3, P < 0.0008; MIP [macrophage inflammatory protein]-1β, IL-8, IFN-γ, P ≤ 0.01). CDP7766 significantly inhibited the increase in pulmonary resistance stimulated by inhaled allergen, measured 15 minutes and 24 hours after allergen challenge. CONCLUSION Inhaled CDP7766 potently inhibited the function of IL-13 generated during the airway response to inhaled allergen in cynomolgus macaques, demonstrating the potential of inhaled anti-IL-13 therapeutics for the treatment of allergic asthma.
Collapse
Affiliation(s)
| | | | | | | | - Alison Turner
- 1 UCB Pharma, Slough, Berkshire, United Kingdom; and
| | | | - Bryan Smith
- 1 UCB Pharma, Slough, Berkshire, United Kingdom; and
| | | | - Tim Bourne
- 1 UCB Pharma, Slough, Berkshire, United Kingdom; and
| | - Stevan Shaw
- 1 UCB Pharma, Slough, Berkshire, United Kingdom; and
| | - Neil Gozzard
- 1 UCB Pharma, Slough, Berkshire, United Kingdom; and
| | | |
Collapse
|
11
|
Matera MG, Calzetta L, Rogliani P, Cazzola M. Monoclonal antibodies for severe asthma: Pharmacokinetic profiles. Respir Med 2019; 153:3-13. [PMID: 31136930 DOI: 10.1016/j.rmed.2019.05.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/05/2019] [Accepted: 05/09/2019] [Indexed: 12/27/2022]
Abstract
Several monoclonal antibodies (mAbs) (omalizumab, mepolizumab, reslizumab, benralizumab, and dupilumab) are currently approved for the treatment of severe asthma. They have complex pharmacokinetic profiles. These profiles are unique in that they are dependent on their structure as well as can be markedly influenced by the biology of their target antigen, but their general behaviour can still be considered a class property, similar to their endogenous IgG counterpart. They cannot be administered by oral route, have a slow distribution into tissue, are metabolized to peptides and amino acids in several tissues but are protected from degradation by binding to protective receptors (the FcRn), which explains their long elimination half-lives. Their clearance is nonlinear because of the saturation of the target-mediated elimination. Also anti-drug antibody (ADA) response and off-target binding, as well as their glycosylation pattern, can influence the pharmacokinetics of mAbs.
Collapse
Affiliation(s)
- Maria Gabriella Matera
- Unit of Pharmacology, Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luigino Calzetta
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Mario Cazzola
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
12
|
Sécher T, Dalonneau E, Ferreira M, Parent C, Azzopardi N, Paintaud G, Si-Tahar M, Heuzé-Vourc'h N. In a murine model of acute lung infection, airway administration of a therapeutic antibody confers greater protection than parenteral administration. J Control Release 2019; 303:24-33. [PMID: 30981816 DOI: 10.1016/j.jconrel.2019.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 03/06/2019] [Accepted: 04/03/2019] [Indexed: 11/28/2022]
Abstract
Due to growing antibiotic resistance, pneumonia caused by Pseudomonas aeruginosa is a major threat to human health and is driving the development of novel anti-infectious agents. Preventively or curatively administered pathogen-specific therapeutic antibodies (Abs) have several advantages, including a low level of toxicity and a unique pharmacological profile. At present, most Abs against respiratory infections are administered parenterally; this may not be optimal for therapeutics that have to reach the lungs to be effective. Although the airways constitute a logical delivery route for biologics designed to treat respiratory diseases, there are few scientific data on the advantages or disadvantages of this route in the context of pneumonia treatment. The objective of the present study was to evaluate the efficacy and fate of an anti-P. aeruginosa Ab targeting pcrV (mAb166) as a function of the administration route during pneumonia. The airway-administered mAb166 displayed a favorable pharmacokinetic profile during the acute phase of the infection, and was associated with greater protection (relative to other delivery routes) of infected animals. Airway administration was associated with lower levels of lung inflammation, greater bacterial clearance, and recruitment of neutrophils in the airways. In conclusion, the present study is the first to have compared the pharmacokinetics and efficacy of an anti-infectious Ab administered by different routes in an animal model of pneumonia. Our findings suggest that local delivery to the airways is associated with a more potent anti-bacterial response (relative to parenteral administration), and thus open up new perspectives for the prevention and treatment of pneumonia with Abs.
Collapse
Affiliation(s)
- Thomas Sécher
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Emilie Dalonneau
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Marion Ferreira
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France; CHRU de Tours, Département de Pneumologie et d'exploration respiratoire fonctionnelle, F-37032 Tours, France
| | - Christelle Parent
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France
| | | | - Gilles Paintaud
- Université de Tours, GICC, PATCH Team, F-37032 Tours, France; CHRU de Tours, Laboratoire de Pharmacologie-Toxicologie, F-37032 Tours, France
| | - Mustapha Si-Tahar
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France
| | - Nathalie Heuzé-Vourc'h
- INSERM, Centre d'Etude des Pathologies Respiratoires, U1100, F-37032 Tours, France; Université de Tours, F-37032 Tours, France.
| |
Collapse
|
13
|
Busse WW, Brusselle GG, Korn S, Kuna P, Magnan A, Cohen D, Bowen K, Piechowiak T, Wang MM, Colice G. Tralokinumab did not demonstrate oral corticosteroid-sparing effects in severe asthma. Eur Respir J 2019; 53:13993003.00948-2018. [PMID: 30442714 DOI: 10.1183/13993003.00948-2018] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/30/2018] [Indexed: 12/15/2022]
Abstract
Long-term oral corticosteroid (OCS) use in patients with severe asthma is associated with significant adverse effects.This 40-week, randomised, double-blind trial evaluated the OCS-sparing potential of tralokinumab in patients with severe, uncontrolled asthma requiring maintenance OCS treatment plus inhaled corticosteroids/long-acting β2-agonists. Overall, 140 patients were randomised to tralokinumab 300 mg or placebo (n=70 in each group) administered subcutaneously every 2 weeks. The primary end-point was percentage change from baseline in average OCS dose at week 40, while maintaining asthma control. Secondary end-points included proportion of patients with a prescribed maintenance OCS dose of ≤5 mg, those with a ≥50% reduction in prescribed maintenance OCS dose and asthma exacerbation rate. Safety was also assessed.At week 40, the percentage reduction from baseline in the final daily average OCS dose was not significantly different between tralokinumab and placebo (37.62% versus 29.85%; p=0.271). There were no significant between-treatment differences for any secondary end-point. Overall, reporting of adverse events and serious adverse events were similar for the tralokinumab and placebo groups. Although a greater proportion of tralokinumab-treated patients reported upper respiratory tract infections (35.7% versus 14.3%), there were no reported cases of pneumonia.Overall, tralokinumab did not demonstrate an OCS-sparing effect in patients with severe asthma.
Collapse
Affiliation(s)
- William W Busse
- Dept of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Guy G Brusselle
- Dept of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Stephanie Korn
- Pulmonary Dept, Mainz University Hospital, Mainz, Germany
| | - Piotr Kuna
- Dept of Internal Medicine, Asthma and Allergy, Medical University of Lodz, Lodz, Poland
| | - Antoine Magnan
- Institut du Thorax, INSERM CNRS, Université de Nantes, CHU de Nantes, Nantes, France
| | | | | | | | | | | |
Collapse
|
14
|
Courade JP, Angers R, Mairet-Coello G, Pacico N, Tyson K, Lightwood D, Munro R, McMillan D, Griffin R, Baker T, Starkie D, Nan R, Westwood M, Mushikiwabo ML, Jung S, Odede G, Sweeney B, Popplewell A, Burgess G, Downey P, Citron M. Epitope determines efficacy of therapeutic anti-Tau antibodies in a functional assay with human Alzheimer Tau. Acta Neuropathol 2018; 136:729-745. [PMID: 30238240 PMCID: PMC6208734 DOI: 10.1007/s00401-018-1911-2] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 11/02/2022]
Abstract
In Alzheimer's disease (AD) and other tauopathies, the cytosolic protein Tau misfolds and forms intracellular aggregates which accumulate within the brain leading to neurodegeneration. Clinical progression is tightly linked to the progressive spread of Tau pathology throughout the brain, and several lines of evidence suggest that Tau aggregates or "seeds" may propagate pathology by spreading from cell to cell in a "prion like" manner. Accordingly, blocking the spread of extracellular seeds with an antibody could be a viable therapeutic approach. However, as the structure of Tau seeds is unknown, it is only possible to rationally design therapeutic Tau antibodies by making a priori assumptions. To avoid this, we developed a robust and quantitative cell based assay and employed an unbiased screening approach to identify the antibody with the highest activity against human Tau seeds. The selected antibody (D), directed to the mid-region of Tau (amino acids 235-250), potently blocked the seeding of human AD Tau and was also fully efficacious against seeds from progressive supranuclear palsy. When we compared this antibody with previously described reference antibodies, we were surprised to find that none of these antibodies showed comparable efficacy against human pathological seeds. Our data highlight the difficulty of predicting antibody accessible epitopes on pathological Tau seeds and question the potential efficacy of some of the Tau antibodies that are currently in clinical development.
Collapse
|
15
|
Smith B, Kiessling A, Lledo-Garcia R, Dixon KL, Christodoulou L, Catley MC, Atherfold P, D'Hooghe LE, Finney H, Greenslade K, Hailu H, Kevorkian L, Lightwood D, Meier C, Munro R, Qureshi O, Sarkar K, Shaw SP, Tewari R, Turner A, Tyson K, West S, Shaw S, Brennan FR. Generation and characterization of a high affinity anti-human FcRn antibody, rozanolixizumab, and the effects of different molecular formats on the reduction of plasma IgG concentration. MAbs 2018; 10:1111-1130. [PMID: 30130439 PMCID: PMC6291300 DOI: 10.1080/19420862.2018.1505464] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Rozanolixizumab (UCB7665), a humanized high-affinity anti-human neonatal Fc receptor (FcRn) monoclonal antibody (IgG4P), has been developed to reduce pathogenic IgG in autoimmune and alloimmune diseases. We document the antibody isolation and compare rozanolixizumab with the same variable region expressed in various mono-, bi- and trivalent formats. We report activity data for rozanolixizumab and the different molecular formats in human cells, FcRn-transgenic mice, and cynomolgus monkeys. Rozanolixizumab, considered the most effective molecular format, dose-dependently and selectively reduced plasma IgG concentrations in an FcRn-transgenic mouse model (no effect on albumin). Intravenous (IV) rozanolixizumab dosing in cynomolgus monkeys demonstrated non-linear pharmacokinetics indicative of target-mediated drug disposition; single IV rozanolixizumab doses (30 mg/kg) in cynomolgus monkeys reduced plasma IgG concentration by 69% by Day 7 post-administration. Daily IV administration of rozanolixizumab (initial 30 mg/kg loading dose; 5 mg/kg daily thereafter) reduced plasma IgG concentrations in all cynomolgus monkeys, with low concentrations maintained throughout the treatment period (42 days). In a 13-week toxicology study in cynomolgus monkeys, supra-pharmacological subcutaneous and IV doses of rozanolixizumab (≤ 150 mg/kg every 3 days) were well tolerated, inducing sustained (but reversible) reductions in IgG concentrations by up to 85%, with no adverse events observed. We have demonstrated accelerated natural catabolism of IgG through inhibition of IgG:FcRn interactions in mice and cynomolgus monkeys. Inhibition of FcRn with rozanolixizumab may provide a novel therapeutic approach to reduce pathogenic IgG in human autoimmune disease. Rozanolixizumab is being investigated in patients with immune thrombocytopenia (NCT02718716) and myasthenia gravis (NCT03052751).
Collapse
|
16
|
PEGylation prolongs the pulmonary retention of an anti-IL-17A Fab’ antibody fragment after pulmonary delivery in three different species. Int J Pharm 2017; 521:120-129. [DOI: 10.1016/j.ijpharm.2017.02.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Revised: 02/07/2017] [Accepted: 02/08/2017] [Indexed: 01/04/2023]
|
17
|
Adams R, Burnley RJ, Valenzano CR, Qureshi O, Doyle C, Lumb S, Del Carmen Lopez M, Griffin R, McMillan D, Taylor RD, Meier C, Mori P, Griffin LM, Wernery U, Kinne J, Rapecki S, Baker TS, Lawson ADG, Wright M, Ettorre A. Discovery of a junctional epitope antibody that stabilizes IL-6 and gp80 protein:protein interaction and modulates its downstream signaling. Sci Rep 2017; 7:37716. [PMID: 28134246 PMCID: PMC5278397 DOI: 10.1038/srep37716] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 09/15/2016] [Indexed: 12/24/2022] Open
Abstract
Protein:protein interactions are fundamental in living organism homeostasis. Here we introduce VHH6, a junctional epitope antibody capable of specifically recognizing a neo-epitope when two proteins interact, albeit transiently, to form a complex. Orthogonal biophysical techniques have been used to prove the "junctional epitope" nature of VHH6, a camelid single domain antibody recognizing the IL-6-gp80 complex but not the individual components alone. X-ray crystallography, HDX-MS and SPR analysis confirmed that the CDR regions of VHH6 interact simultaneously with IL-6 and gp80, locking the two proteins together. At the cellular level, VHH6 was able to alter the response of endothelial cells to exogenous IL-6, promoting a sustained STAT3 phosphorylation signal, an accumulation of IL-6 in vesicles and an overall pro-inflammatory phenotype supported further by transcriptomic analysis. Junctional epitope antibodies, like VHH6, not only offer new opportunities in screening and structure-aided drug discovery, but could also be exploited as therapeutics to modulate complex protein:protein interactions.
Collapse
Affiliation(s)
- Ralph Adams
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | | | | | - Omar Qureshi
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - Carl Doyle
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - Simon Lumb
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | | | - Robert Griffin
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - David McMillan
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | | | - Chris Meier
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - Prashant Mori
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - Laura M Griffin
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - Ulrich Wernery
- Central Veterinary Research Laboratory, P.O.Box 597, Dubai, United Arab Emirates
| | - Jörg Kinne
- Central Veterinary Research Laboratory, P.O.Box 597, Dubai, United Arab Emirates
| | - Stephen Rapecki
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - Terry S Baker
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | | | - Michael Wright
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| | - Anna Ettorre
- New Medicines, UCB-Celltech, 208 Bath Road, SL1 3WE, Slough UK
| |
Collapse
|
18
|
Matera MG, Page C, Rogliani P, Calzetta L, Cazzola M. Therapeutic Monoclonal Antibodies for the Treatment of Chronic Obstructive Pulmonary Disease. Drugs 2016; 76:1257-1270. [DOI: 10.1007/s40265-016-0625-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
19
|
May RD, Fung M. Strategies targeting the IL-4/IL-13 axes in disease. Cytokine 2016; 75:89-116. [PMID: 26255210 DOI: 10.1016/j.cyto.2015.05.018] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 05/15/2015] [Indexed: 02/07/2023]
Abstract
IL-4 and IL-13 are pleiotropic Th2 cytokines produced by a wide variety of different cell types and responsible for a broad range of biology and functions. Physiologically, Th2 cytokines are known to mediate host defense against parasites but they can also trigger disease if their activities are dysregulated. In this review we discuss the rationale for targeting the IL-4/IL-13 axes in asthma, atopic dermatitis, allergic rhinitis, COPD, cancer, inflammatory bowel disease, autoimmune disease and fibrotic disease as well as evaluating the associated clinical data derived from blocking IL-4, IL-13 or IL-4 and IL-13 together.
Collapse
|
20
|
Desoubeaux G, Reichert JM, Sleeman M, Reckamp KL, Ryffel B, Adamczewski JP, Sweeney TD, Vanbever R, Diot P, Owen CA, Page C, Lerondel S, Le Pape A, Heuze-Vourc'h N. Therapeutic monoclonal antibodies for respiratory diseases: Current challenges and perspectives, March 31 - April 1, 2016, Tours, France. MAbs 2016; 8:999-1009. [PMID: 27266390 PMCID: PMC4968091 DOI: 10.1080/19420862.2016.1196521] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Monoclonal antibody (mAb) therapeutics have tremendous potential to benefit patients with lung diseases, for which there remains substantial unmet medical need. To capture the current state of mAb research and development in the area of respiratory diseases, the Research Center of Respiratory Diseases (CEPR-INSERM U1100), the Laboratory of Excellence “MAbImprove,” the GDR 3260 “Antibodies and therapeutic targeting,” and the Grant Research program ARD2020 “Biotherapeutics” invited speakers from industry, academic and government organizations to present their recent research results at the Therapeutic Monoclonal Antibodies for Respiratory Diseases: Current challenges and perspectives congress held March 31 – April 1, 2016 in Tours, France.
Collapse
Affiliation(s)
- Guillaume Desoubeaux
- a Université François-Rabelais , Tours , France.,b INSERM, Center d'Etude des Pathologies Respiratoires , Tours , France.,c Centre Hospitalo-Universitaire de Tours , Tours , France
| | - Janice M Reichert
- d The Antibody Society , Framingham , MA , USA.,e Reichert Biotechnology Consulting LLC , Framingham MA , USA
| | | | - Karen L Reckamp
- g City of Hope, Comprehensive Cancer Center , Duarte , CA , USA
| | - Bernhard Ryffel
- h Université d'Orléans , Orléans , France.,i University of Cape Town, Institute of Infectious Disease and Molecular Medicine (IDM) , Cape Town , South Africa
| | | | | | - Rita Vanbever
- l Université Catholique de Louvain, Louvain Drug Research Institute , Brussels , Belgium
| | - Patrice Diot
- a Université François-Rabelais , Tours , France.,b INSERM, Center d'Etude des Pathologies Respiratoires , Tours , France.,c Centre Hospitalo-Universitaire de Tours , Tours , France
| | - Caroline A Owen
- m Harvard Medical School, Brigham and Women's Hospital , Boston , MA , USA.,n Lovelace Respiratory Research Institute , Albuquerque , NM , USA
| | - Clive Page
- o King's College, Sackler Institute of Pulmonary Pharmacology , London , UK
| | | | - Alain Le Pape
- a Université François-Rabelais , Tours , France.,b INSERM, Center d'Etude des Pathologies Respiratoires , Tours , France.,p PHENOMIN-TAAM CNRS, CIPA , Orléans , France
| | - Nathalie Heuze-Vourc'h
- a Université François-Rabelais , Tours , France.,b INSERM, Center d'Etude des Pathologies Respiratoires , Tours , France
| |
Collapse
|
21
|
Fellner RC, Terryah ST, Tarran R. Inhaled protein/peptide-based therapies for respiratory disease. Mol Cell Pediatr 2016; 3:16. [PMID: 27098663 PMCID: PMC4839019 DOI: 10.1186/s40348-016-0044-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/13/2016] [Indexed: 11/10/2022] Open
Abstract
Asthma, chronic obstructive pulmonary disease (COPD), and cystic fibrosis (CF) are all chronic pulmonary diseases, albeit with different etiologies, that are characterized by airflow limitation, chronic inflammation, and abnormal mucus production/rheology. Small synthetic molecule-based therapies are commonly prescribed for all three diseases. However, there has been increased interest in “biologicals” to treat these diseases. Biologicals typically constitute protein- or peptide-based therapies and are often more potent than small molecule-based drugs. In this review, we shall describe the pros and cons of several different biological-based therapies for respiratory disease, including dornase alfa, a recombinant DNAase that reduces mucus viscosity and short palate lung and nasal epithelial clone 1 (SPLUNC1)-derived peptides that treat Na+ hyperabsorption and rebalance CF airway surface liquid homeostasis.
Collapse
Affiliation(s)
- Robert C Fellner
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, 7102 Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC, 27599-7248, USA
| | - Shawn T Terryah
- Spyryx Biosciences, 801-9 Capitola Drive, Durham, NC, 27713, USA
| | - Robert Tarran
- Cystic Fibrosis and Pulmonary Diseases Research and Treatment Center, University of North Carolina, 7102 Marsico Hall, 125 Mason Farm Road, Chapel Hill, NC, 27599-7248, USA. .,Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
22
|
Generation of Recombinant Monoclonal Antibodies from Immunised Mice and Rabbits via Flow Cytometry and Sorting of Antigen-Specific IgG+ Memory B Cells. PLoS One 2016; 11:e0152282. [PMID: 27022949 PMCID: PMC4811437 DOI: 10.1371/journal.pone.0152282] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/12/2016] [Indexed: 11/29/2022] Open
Abstract
Single B cell screening strategies, which avoid both hybridoma fusion and combinatorial display, have emerged as important technologies for efficiently sampling the natural antibody repertoire of immunized animals and humans. Having access to a range of methods to interrogate different B cell subsets provides an attractive option to ensure large and diverse panels of high quality antibody are produced. The generation of multiple antibodies and having the ability to find rare B cell clones producing IgG with unique and desirable characteristics facilitates the identification of fit-for-purpose molecules that can be developed into therapeutic agents or research reagents. Here, we describe a multi-parameter flow cytometry single-cell sorting technique for the generation of antigen-specific recombinant monoclonal antibodies from single IgG+ memory B cells. Both mouse splenocytes and rabbit PBMC from immunised animals were used as a source of B cells. Reagents staining both B cells and other unwanted cell types enabled efficient identification of class-switched IgG+ memory B cells. Concurrent staining with antigen labelled separately with two spectrally-distinct fluorophores enabled antigen-specific B cells to be identified, i.e. those which bind to both antigen conjugates (double-positive). These cells were then typically sorted at one cell per well using FACS directly into a 96-well plate containing reverse transcriptase reaction mix. Following production of cDNA, PCR was performed to amplify cognate heavy and light chain variable region genes and generate transcriptionally-active PCR (TAP) fragments. These linear expression cassettes were then used directly in a mammalian cell transfection to generate recombinant antibody for further testing. We were able to successfully generate antigen-specific recombinant antibodies from both the rabbit and mouse IgG+ memory B cell subset within one week. This included the generation of an anti-TNFR2 blocking antibody from mice with an affinity of 90 pM.
Collapse
|
23
|
Ojima-Kato T, Hashimura D, Kojima T, Minabe S, Nakano H. In vitro generation of rabbit anti-Listeria monocytogenes monoclonal antibody using single cell based RT-PCR linked cell-free expression systems. J Immunol Methods 2015; 427:58-65. [DOI: 10.1016/j.jim.2015.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 01/14/2023]
|
24
|
Huang XL, Wang YJ, Yan JW, Wan YN, Chen B, Li BZ, Yang GJ, Wang J. Role of anti-inflammatory cytokines IL-4 and IL-13 in systemic sclerosis. Inflamm Res 2015; 64:151-9. [PMID: 25725697 DOI: 10.1007/s00011-015-0806-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Accepted: 02/16/2015] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The aim of this paper is to review the anti-inflammatory cytokines IL-4 and IL-13 and their receptor signals; we discuss new insight into their possible roles in systemic sclerosis (SSc) and their overlapping function in SSc. INTRODUCTION SSc is a connective tissue disease characterized by fibrosis. The exact etiology of SSc is unknown, and no therapy has been proved effective in modifying its course. Recently the roles of IL-4 and IL-13 in the development of SSc have been extensively considered. The possible roles of IL-4 and IL-13, especially their overlapping function, in SSc are not well documented. METHODS A literature survey was performed using a PubMed database search to gather complete information regarding IL-4 and IL-13 and their role in inflammation. RESULTS AND CONCLUSIONS The participation of complex pathways of IL-4 and IL-13 in the process of inflammation and fibrosis action in SSc is still not very clear, and some pathogenesis of regulation found in vitro needs to be further proved. There is still more work which could be done to achieve useful developments with therapeutic benefit in SSc.
Collapse
Affiliation(s)
- Xiao-Lei Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, No. 81, Meishan Road, 230032, Hefei, Anhui, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Respaud R, Vecellio L, Diot P, Heuzé-Vourc’h N. Nebulization as a delivery method for mAbs in respiratory diseases. Expert Opin Drug Deliv 2015; 12:1027-39. [DOI: 10.1517/17425247.2015.999039] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Guilleminault L, Azzopardi N, Arnoult C, Sobilo J, Hervé V, Montharu J, Guillon A, Andres C, Herault O, Le Pape A, Diot P, Lemarié E, Paintaud G, Gouilleux-Gruart V, Heuzé-Vourc'h N. Fate of inhaled monoclonal antibodies after the deposition of aerosolized particles in the respiratory system. J Control Release 2014; 196:344-54. [DOI: 10.1016/j.jconrel.2014.10.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 09/30/2014] [Accepted: 10/02/2014] [Indexed: 12/18/2022]
|
27
|
Respaud R, Marchand D, Parent C, Pelat T, Thullier P, Tournamille JF, Viaud-Massuard MC, Diot P, Si-Tahar M, Vecellio L, Heuzé-Vourc'h N. Effect of formulation on the stability and aerosol performance of a nebulized antibody. MAbs 2014; 6:1347-55. [PMID: 25517319 DOI: 10.4161/mabs.29938] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Most monoclonal antibodies (mAbs) are administered to patients intravenously to ensure high bioavailability as rapidly as possible. The airways, however, are an attractive delivery route for mAbs for the treatment of lung diseases, making it possible to increase their concentration in the target organ while limiting their systemic passage. Several challenges must be overcome for translation into clinical practice. For example, the drug and device must be paired for the efficient and reliable deposition of a pharmacologically active and safe mAb in the lung region of interest. Mesh nebulizers appear to be the most effective aerosol-producing devices for delivering large amounts of biopharmaceutical while limiting protein instability during nebulization. We used metrological and analytic methods to analyze the effect of both antibody concentration and surfactant addition on aerosol performance and antibody integrity. These two factors had a limited effect on aerosol performance, but affected antibody aggregation. The addition of surfactants to antibody formulations at concentrations appropriate for lung administration markedly reduced the formation of medium or large aggregates, as shown by dynamic light scattering and fluorescence microscopy. Aggregation was also dependent on the type of mesh nebulizer, highlighting the need to optimize drug and device together.
Collapse
Affiliation(s)
- Renaud Respaud
- a Génétique, Immunothérapie, Chimie et Cancer; UMR 7292/EA6306 ; Tours , France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Clargo AM, Hudson AR, Ndlovu W, Wootton RJ, Cremin LA, O'Dowd VL, Nowosad CR, Starkie DO, Shaw SP, Compson JE, White DP, MacKenzie B, Snowden JR, Newnham LE, Wright M, Stephens PE, Griffiths MR, Lawson ADG, Lightwood DJ. The rapid generation of recombinant functional monoclonal antibodies from individual, antigen-specific bone marrow-derived plasma cells isolated using a novel fluorescence-based method. MAbs 2014; 6:143-59. [PMID: 24423622 DOI: 10.4161/mabs.27044] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Single B cell technologies, which avoid traditional hybridoma fusion and combinatorial display, provide a means to interrogate the naturally-selected antibody repertoire of immunized animals. Many methods enable the sampling of memory B cell subsets, but few allow for the direct interrogation of the plasma cell repertoire, i.e., the subset of B cells responsible for producing immunoglobulin in serum. Here, we describe the use of a robust and simple fluorescence-based technique, called the fluorescent foci method, for the identification and isolation of antigen-specific IgG-secreting cells, such as plasma cells, from heterogeneous bone marrow preparations. Following micromanipulation of single cells, cognate pairs of heavy and light chain variable region genes were recovered by reverse transcription (RT)-polymerase chain reaction (PCR). During the PCR, variable regions were combined with a promoter fragment and a relevant constant region fragment to produce two separate transcriptionally-active PCR (TAP) fragments that were directly co-transfected into a HEK-293F cell line for recombinant antibody expression. The technique was successfully applied to the generation of a diverse panel of high-affinity, functional recombinant antibodies to human tumor necrosis factor (TNF) receptor 2 and TNF derived from the bone marrow of immunized rabbits and rats, respectively. Progression from a bone marrow sample to a panel of functional recombinant antibodies was possible within a 2-week timeframe.
Collapse
|
29
|
King J, Alexander M, Byrne J, MacMillan K, Mollo A, Kirsa S, Green M. A review of the evidence for occupational exposure risks to novel anticancer agents – A focus on monoclonal antibodies. J Oncol Pharm Pract 2014; 22:121-34. [DOI: 10.1177/1078155214550729] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Introduction Evidence of occupational exposure risks to novel anticancer agents is limited and yet to be formally evaluated from the Australian healthcare perspective. Methods From March to September 2013 medical databases, organizational policies, drug monographs, and the World Wide Web were searched for evidence relating to occupational exposure to monoclonal antibodies, fusion proteins, gene therapies, and other unclassified novel anticancer agents. Results Australian legislation, national and international guidelines, and drug company information excluded novel agents or provided inconsistent risk assessments and safe handling recommendations. Monoclonal antibody guidelines reported conflicting information and were often divergent with available evidence and pharmacologic rationale demonstrating minimal internalisation ability and occupational exposure risk. Despite similar physiochemical, pharmacologic, and internalisation properties to monoclonal antibodies, fusion proteins were included in only a minority of guidelines. Clinical directives for the safe handling of gene therapies and live vaccines were limited, where available focusing on prevention against exposure and cross-contamination. Although mechanistically different, novel small molecule agents (proteasome inhibitors), possess similar physiochemical and internalisation properties to traditional cytotoxic agents warranting cytotoxic classification and handling. Conclusion Novel agents are rapidly emerging into clinical practice, and healthcare personnel have few resources to evaluate risk and provide safety recommendations. Novel agents possess differing physical, molecular and pharmacological profiles compared to traditional cytotoxic anticancer agents. Evaluation of occupational exposure risk should consider both toxicity and internalisation. Evidence-based guidance able to direct safe handling practices for novel anticancer agents across a variety of clinical settings is urgently required.
Collapse
Affiliation(s)
- Julie King
- Pharmacy Department, Western Health, Melbourne, Australia
| | - Marliese Alexander
- Pharmacy Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Jenny Byrne
- Western and Central Melbourne Integrated Cancer Service, Melbourne, Australia
| | - Kent MacMillan
- Pharmacy Department, Western Health, Melbourne, Australia
| | | | - Sue Kirsa
- Pharmacy Department, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Michael Green
- Department of Cancer Services, Western Health, Melbourne, Australia
| |
Collapse
|
30
|
Ranasinghe C, Trivedi S, Wijesundara DK, Jackson RJ. IL-4 and IL-13 receptors: Roles in immunity and powerful vaccine adjuvants. Cytokine Growth Factor Rev 2014; 25:437-42. [DOI: 10.1016/j.cytogfr.2014.07.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 07/15/2014] [Indexed: 01/01/2023]
|
31
|
Sadavarte R, Spearman M, Okun N, Butler M, Ghosh R. Purification of chimeric heavy chain monoclonal antibody EG2-hFc using hydrophobic interaction membrane chromatography: an alternative to protein-A affinity chromatography. Biotechnol Bioeng 2014; 111:1139-49. [PMID: 24449405 DOI: 10.1002/bit.25193] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/13/2014] [Accepted: 01/15/2014] [Indexed: 01/11/2023]
Abstract
Heavy chain monoclonal antibodies are being considered as alternative to whole-IgG monoclonal antibodies for certain niche applications. Protein-A chromatography which is widely used for purifying IgG monoclonal antibodies is also used for purifying heavy chain monoclonal antibodies as these molecules possess fully functional Fc regions. However, the acidic conditions used to elute bound antibody may sometimes also leach protein-A, which is immunotoxic. Low pH conditions also tend to make the mAb molecules unstable and prone to aggregation. Moreover, protein-A affinity chromatography does not remove aggregates already present in the feed. Hydrophobic interaction membrane chromatography (or HIMC) has already been studied as an alternative to protein-A chromatography for purifying whole-IgG monoclonal antibodies. This paper describes the use of HIMC for capturing a humanized chimeric heavy chain monoclonal antibody (EG2-hFC). Binding and eluting conditions were suitably optimized using pure EG2-hFC. Based on this, an HIMC method was developed for capture of EG2-hFC directly from cell culture supernatant. The EG2-hFc purity obtained in this single-step process was high. The glycan profiles of protein-A and HIMC purified monoclonal antibody samples were similar, clearly demonstrating that both techniques captured similarly glycosylated population of EG2-hFc. Moreover, this technique was able to resolve aggregates from monomeric form of the EG2-hFc.
Collapse
Affiliation(s)
- Rahul Sadavarte
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | | | | | | | | |
Collapse
|
32
|
A mixture of functionally oligoclonal humanized monoclonal antibodies that neutralize Clostridium difficile TcdA and TcdB with high levels of in vitro potency shows in vivo protection in a hamster infection model. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:377-90. [PMID: 23324518 DOI: 10.1128/cvi.00625-12] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clostridium difficile infections are a major cause of antibiotic-associated diarrhea in hospital and care facility patients. In spite of the availability of effective antibiotic treatments, C. difficile infection (CDI) is still a major cause of patient suffering, death, and substantial health care costs. Clostridium difficile exerts its major pathological effects through the actions of two protein exotoxins, TcdA and TcdB, which bind to and disrupt gut tissue. Antibiotics target the infecting bacteria but not the exotoxins. Administering neutralizing antibodies against TcdA and TcdB to patients receiving antibiotic treatment might modulate the effects of the exotoxins directly. We have developed a mixture of three humanized IgG1 monoclonal antibodies (MAbs) which neutralize TcdA and TcdB to address three clinical needs: reduction of the severity and duration of diarrhea, reduction of death rates, and reduction of the rate of recurrence. The UCB MAb mixture showed higher potency in a variety of in vitro binding and neutralization assays (∼10-fold improvements), higher levels of protection in a hamster model of CDI (82% versus 18% at 28 days), and higher valencies of toxin binding (12 versus 2 for TcdA and 3 versus 2 for TcdB) than other agents in clinical development. Comparisons of the MAb properties also offered some insight into the potential relative importance of TcdA and TcdB in the disease process.
Collapse
|