1
|
Balla T. Phosphatidylinositol 4-phosphate; A minor lipid with multiple personalities. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159615. [PMID: 40262701 DOI: 10.1016/j.bbalip.2025.159615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
Phosphorylated products of phosphatidylinositol (PI), named Diphosphoinositide (DPI) and triphosphoinositide (TPI) were identified long time ago and found to exhibit high turnover rates based on their rapid 32P-phosphate labeling. The PI kinase activities that were responsible for their production were subsequently identified and found to be associated with different organelle membranes, including the plasma membrane. These activities were then linked with a certain group of cell surface receptors that activated phospholipase C enzymes to hydrolyze PI and used calcium or cGMP as a second messenger. This visionary concept was introduced in the seminal BBA review written by Robert Michell, exactly 50 years ago. The enzymology and functional diversity of PI 4-phosphate (PI4P) (the term that has replaced DPI) has since underwent an expansion that could not have been foreseen. In this review I will attempt to revisit this expansion with some historical reflections celebrating the 50th anniversary of the Michell review.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Trybus M, Hryniewicz-Jankowska A, Czogalla A, Sikorski AF. EFR3A, an Intriguing Gene, and Protein with a Scaffolding Function. Cells 2025; 14:445. [PMID: 40136694 PMCID: PMC11941745 DOI: 10.3390/cells14060445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
The EFR3 (Eighty-Five Requiring 3) protein and its homologs are rather poorly understood eukaryotic plasma membrane peripheral proteins. They belong to the armadillo-like family of superhelical proteins. In higher vertebrates two paralog genes, A and B were found, each expressing at least 2-3 protein isoforms. EFR3s are involved in several physiological functions, mostly including phosphatidyl inositide phosphates, e.g., phototransduction (insects), GPCRs, and insulin receptors regulated processes (mammals). Mutations in the EFR3A were linked to several types of human disorders, i.e., neurological, cardiovascular, and several tumors. Structural data on the atomic level indicate the extended superhelical rod-like structure of the first two-thirds of the molecule with a typical armadillo repeat motif (ARM) in the N-terminal part and a triple helical motif in its C-terminal part. EFR3s' best-known molecular function is anchoring the giant phosphatidylinositol 4-kinase A complex to the plasma membrane crucial for cell signaling, also linked directly to the KRAS mutant oncogenic function. Another function connected to the newly uncovered interaction of EFR3A with flotillin-2 may be the participation of the former in the organization and regulation of the membrane raft domain. This review presents EFR3A as an intriguing subject of future studies.
Collapse
Affiliation(s)
- Magdalena Trybus
- Research and Development Centre, Regional Specialist Hospital, ul. Kamieńskiego 73a, 51-124 Wrocław, Poland;
| | - Anita Hryniewicz-Jankowska
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-363 Wrocław, Poland;
| | - Aleksander Czogalla
- Department of Cytobiochemistry, Faculty of Biotechnology, University of Wrocław, ul. Joliot-Curie 14a, 50-363 Wrocław, Poland;
| | - Aleksander F. Sikorski
- Research and Development Centre, Regional Specialist Hospital, ul. Kamieńskiego 73a, 51-124 Wrocław, Poland;
| |
Collapse
|
3
|
Suresh S, Shaw AL, Pemberton JG, Scott MK, Harris NJ, Parson MAH, Jenkins ML, Rohilla P, Alvarez-Prats A, Balla T, Yip CK, Burke JE. Molecular basis for plasma membrane recruitment of PI4KA by EFR3. SCIENCE ADVANCES 2024; 10:eadp6660. [PMID: 39705356 DOI: 10.1126/sciadv.adp6660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/18/2024] [Indexed: 12/22/2024]
Abstract
The lipid kinase phosphatidylinositol 4 kinase III α (PI4KIIIα/PI4KA) is a master regulator of the lipid composition and asymmetry of the plasma membrane. PI4KA exists primarily in a heterotrimeric complex with its regulatory proteins TTC7 and FAM126. Fundamental to PI4KA activity is its targeted recruitment to the plasma membrane by the lipidated proteins EFR3A and EFR3B. Here, we report a cryogenic electron microscopy structure of the C terminus of EFR3A bound to the PI4KA-TTC7B-FAM126A complex, with extensive validation using both hydrogen deuterium exchange mass spectrometry, and mutational analysis. The EFR3A C terminus undergoes a disorder-order transition upon binding to the PI4KA complex, with an unexpected direct interaction with both TTC7B and FAM126A. Complex disrupting mutations in TTC7B, FAM126A, and EFR3 decrease PI4KA recruitment to the plasma membrane. Multiple posttranslational modifications and disease linked mutations map to this site, providing insight into how PI4KA membrane recruitment can be regulated and disrupted in human disease.
Collapse
Affiliation(s)
- Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Mackenzie K Scott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
| | - Pooja Rohilla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Shaw AL, Suresh S, Parson MAH, Harris NJ, Jenkins ML, Yip CK, Burke JE. Structure of calcineurin bound to PI4KA reveals dual interface in both PI4KA and FAM126A. Structure 2024; 32:1973-1983.e6. [PMID: 39216471 DOI: 10.1016/j.str.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/02/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Phosphatidylinositol 4-kinase alpha (PI4KA) maintains the phosphatidylinositol 4-phosphate (PI4P) and phosphatidylserine pools of the plasma membrane. A key regulator of PI4KA is its association into a complex with TTC7 and FAM126 proteins. This complex can be regulated by the CNAβ1 isoform of the phosphatase calcineurin. We previously identified that CNAβ1 directly binds to FAM126A. Here, we report a cryoelectron microscopic (cryo-EM) structure of a truncated PI4KA complex bound to calcineurin, revealing a unique direct interaction between PI4KA and calcineurin. Hydrogen deuterium exchange mass spectrometry (HDX-MS) and computational analysis show that calcineurin forms a complex with an evolutionarily conserved IKISVT sequence in PI4KA's horn domain. We also characterized conserved LTLT and PSISIT calcineurin binding sequences in the C terminus of FAM126A. These dual sites in PI4KA and FAM126A are both in close proximity to phosphorylation sites in the PI4KA complex, suggesting key roles of calcineurin-regulated phosphosites in PI4KA regulation. This work reveals novel insight into how calcineurin can regulate PI4KA activity.
Collapse
Affiliation(s)
- Alexandria L Shaw
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada.
| |
Collapse
|
5
|
Langford JB, Ahmed E, Fang M, Cupp-Sutton K, Smith K, Wu S. Strategies for Top-Down Hydrogen Deuterium Exchange-Mass Spectrometry: A Mini Review and Perspective. JOURNAL OF MASS SPECTROMETRY : JMS 2024; 59:e5097. [PMID: 39402881 PMCID: PMC11736408 DOI: 10.1002/jms.5097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/16/2024] [Indexed: 01/16/2025]
Abstract
Hydrogen deuterium-exchange mass spectrometry (HDX-MS) is commonly used in the study of protein dynamics and protein interactions. By measuring the isotopic exchange of backbone amide hydrogens in solution, HDX-MS offers valuable structural insights into challenging biological systems. Traditional HDX-MS approaches utilize bottom-up (BU) proteomics, in which deuterated proteins are digested before MS analysis. BU-HDX enables the characterization of proteins with various sizes in simple protein mixtures or complex biological samples such as cell lysates. However, BU methods are inherently limited by the inability to resolve protein sub-populations arising from different protein conformations, such as those arising from post-translational modifications (PTMs). Alternatively, top-down (TD) HDX-MS detects the global deuterium uptake at the intact proteoform level, allowing direct probing of structural changes due to protein-protein interactions, PTMs, or conformational changes. Combining TD-HDX-MS with electron-based fragmentation techniques, such as electron capture dissociation (ECD) and electron transfer dissociation (ETD), has demonstrated the feasibility of studying intact protein interactions with amino acid-level resolution. Here, we present a brief overview of methodologies, limitations, and applications of TD-HDX-MS using direct infusion techniques and LC-based approaches. Furthermore, we conclude with a perspective on the future directions for TD-HDX-MS.
Collapse
Affiliation(s)
- Joel B. Langford
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Elizabeth Ahmed
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Mulin Fang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73019
| | - Kellye Cupp-Sutton
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL 35487, USA
| | - Kenneth Smith
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Si Wu
- Department of Chemistry and Biochemistry, University of Alabama, 250 Hackberry ln, Tuscaloosa, AL 35487, USA
| |
Collapse
|
6
|
Saettini F, Guerra F, Mauri M, Salter CG, Adam MP, Adams D, Baple EL, Barredo E, Bhatia S, Borkhardt A, Brusco A, Bugarin C, Chinello C, Crosby AH, D'Souza P, Denti V, Fazio G, Giuliani S, Kuehn HS, Amel H, Elmi A, Lo B, Malighetti F, Mandrile G, Martín-Nalda A, Mefford HC, Moratto D, Emam Mousavi F, Nelson Z, Gutiérrez-Solana LG, Macnamara E, Michaud V, O'Leary M, Pagani L, Pavinato L, Santamaria PVV, Planas-Serra L, Quadri M, Raspall-Chaure M, Rebellato S, Rosenzweig SD, Roubertie A, Holzinger D, Deal C, Vockley CW, Savino AM, L Stoddard J, Uhlig HH, Pujol A, Magni F, Paglia G, Cazzaniga G, Piazza R, Barberis M, Biondi A. Biallelic PI4KA Mutations Disrupt B-Cell Metabolism and Cause B-Cell Lymphopenia and Hypogammaglobulinemia. J Clin Immunol 2024; 45:15. [PMID: 39312004 DOI: 10.1007/s10875-024-01793-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/23/2024] [Indexed: 12/06/2024]
Abstract
PURPOSE PI4KA-related disorder is a highly clinically variable condition characterized by neurological (limb spasticity, developmental delay, intellectual disability, seizures, ataxia, nystagmus) and gastrointestinal (inflammatory bowel disease and multiple intestinal atresia) manifestations. Although features consistent with immunodeficiency (autoimmunity/autoinflammation and recurrent infections) have been reported in a subset of patients, the burden of B-cell deficiency and hypogammaglobulinemia has not been extensively investigated. We sought to describe the clinical presentation and manifestations of patients with PI4KA-related disorder and to investigate the metabolic consequences of biallelic PI4KA variants in B cells. METHODS Clinical data from patients with PI4KA variants were obtained. Multi-omics analyses combining transcriptome, proteome, lipidome and metabolome analyses in conjunction with functional assays were performed in EBV-transformed B cells. RESULTS Clinical and laboratory data of 13 patients were collected. Recurrent infections (7/13), autoimmune/autoinflammatory manifestations (5/13), B-cell deficiency (8/13) and hypogammaglobulinemia (8/13) were frequently observed. Patients' B cells frequently showed increased transitional and decreased switched memory B-cell subsets. Pathway analyses based on differentially expressed transcripts and proteins confirmed the central role of PI4KA in B cell differentiation with altered B-cell receptor (BCR) complex and signalling. By altering lipids production and tricarboxylic acid cycle regulation, and causing increased endoplasmic reticulum stress, biallelic PI4KA mutations disrupt B cell metabolism inducing mitochondrial dysfunction. As a result, B cells show hyperactive PI3K/mTOR pathway, increased autophagy and deranged cytoskeleton organization. CONCLUSION By altering lipid metabolism and TCA cycle, impairing mitochondrial activity, hyperactivating mTOR pathway and increasing autophagy, PI4KA-related disorder causes a syndromic inborn error of immunity presenting with B-cell deficiency and hypogammaglobulinemia.
Collapse
Affiliation(s)
- Francesco Saettini
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.
| | - Fabiola Guerra
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Pediatria, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Mario Mauri
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Claire G Salter
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
- Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Margaret P Adam
- Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - David Adams
- NIH Undiagnosed Diseases Program, NIH, Bethesda, MD, USA
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
- Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| | - Estibaliz Barredo
- Neuropediatric Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Sanil Bhatia
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Arndt Borkhardt
- Department of Paediatric Oncology, Haematology and Clinical Immunology, Medical Faculty, Heinrich-Heine University Dusseldorf, Düsseldorf, Germany
| | - Alfredo Brusco
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin, Italy
- Medical Genetics Unit, Città della Salute e della Scienza University Hospital, Turin, Italy
| | - Cristina Bugarin
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Clizia Chinello
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | | | - Vanna Denti
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Grazia Fazio
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Silvia Giuliani
- Pediatria, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Hye Sun Kuehn
- Immunology Service, DLM, NIH Clinical Center, Bethesda, MD, USA
| | - Hassan Amel
- Pediatric Allergy and Immunology Department, Sidra Medicine, Doha, Qatar
| | - Asha Elmi
- Research Branch, Sidra Medicine, Doha, Qatar
| | - Bernice Lo
- Research Branch, Sidra Medicine, Doha, Qatar
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Federica Malighetti
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Giorgia Mandrile
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Hospital Universitari Vall d'Hebron, Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Heather C Mefford
- Genetic Medicine, Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Daniele Moratto
- Flow Cytometry Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Fatemeh Emam Mousavi
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, Surrey, United Kingdom
| | - Zoe Nelson
- Vascular Anomalies Program, Seattle Children's Hospital, Seattle, WA, USA
| | | | | | - Vincent Michaud
- Molecular Genetics Laboratory, Bordeaux University Hospital, Bordeaux, Aquitaine, France. INSERM U1211, Rare Diseases Laboratory: Genetics and Metabolism, University of Bordeaux, Aquitaine, Talence, France
| | - Melanie O'Leary
- Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lisa Pagani
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Lisa Pavinato
- Department of Neurosciences Rita Levi-Montalcini, University of Turin, Turin, Italy
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Patricia VVelez Santamaria
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain
| | - Laura Planas-Serra
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain
- Centre for Biomedical Research in Network on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Manuel Quadri
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Miquel Raspall-Chaure
- Department of Paediatric Neurology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Stefano Rebellato
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | | | - Agathe Roubertie
- Département de Neuropédiatrie, CIC, CHU de Montpellier, INM, Univ Montpellier, INSERM U 1298, Montpellier, France
| | - Dirk Holzinger
- Department of Pediatric Haematology-Oncology, Pediatrics III, University of Duisburg-Essen, Essen, Germany
- Department of Applied Health Sciences, University of Applied Sciences Bochum, Bochum, Germany
| | - Christin Deal
- Division of Pediatric Allergy and Immunology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA
| | - Catherine Walsh Vockley
- Division of Genetic and Genomic Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, USA
| | - Angela Maria Savino
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | | | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxfordshire, UK
- Department of Paediatrics, University of Oxford, Oxfordshire, UK
- Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, 08908, Barcelona, Catalonia, Spain
- Centre for Biomedical Research in Network on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Fulvio Magni
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Giuseppe Paglia
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Gianni Cazzaniga
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Rocco Piazza
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| | - Matteo Barberis
- Molecular Systems Biology, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford, Surrey, United Kingdom
| | - Andrea Biondi
- Centro Tettamanti, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Pediatria, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
- Dipartimento di Medicina e Chirurgia, Università degli Studi Milano-Bicocca, Monza, Italy
| |
Collapse
|
7
|
Suresh S, Shaw AL, Pemberton JG, Scott MK, Harris NJ, Parson MAH, Jenkins ML, Rohilla P, Alvarez-Prats A, Balla T, Yip CK, Burke JE. Molecular basis for plasma membrane recruitment of PI4KA by EFR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.587787. [PMID: 38746453 PMCID: PMC11092606 DOI: 10.1101/2024.04.30.587787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The lipid kinase phosphatidylinositol 4 kinase III alpha (PI4KIIIa/PI4KA) is a master regulator of the lipid composition and asymmetry of the plasma membrane. PI4KA exists primarily in a heterotrimeric complex with its regulatory proteins TTC7 and FAM126. Fundamental to PI4KA activity is its targeted recruitment to the plasma membrane by the lipidated proteins EFR3A and EFR3B. Here, we report a cryo-EM structure of the C-terminus of EFR3A bound to the PI4KA-TTC7B-FAM126A complex, with extensive validation using both hydrogen deuterium exchange mass spectrometry (HDX-MS), and mutational analysis. The EFR3A C-terminus undergoes a disorder-order transition upon binding to the PI4KA complex, with an unexpected direct interaction with both TTC7B and FAM126A. Complex disrupting mutations in TTC7B, FAM126A, and EFR3 decrease PI4KA recruitment to the plasma membrane. Multiple post-translational modifications and disease linked mutations map to this site, providing insight into how PI4KA membrane recruitment can be regulated and disrupted in human disease.
Collapse
Affiliation(s)
- Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Current address: Department of Biology, Western University, London, ON, N6A 3K7 Canada
| | - Mackenzie K Scott
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Noah J Harris
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Matthew AH Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Pooja Rohilla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Alejandro Alvarez-Prats
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Calvin K Yip
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 2Y2, Canada
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
8
|
Suresh S, Burke JE. Structural basis for the conserved roles of PI4KA and its regulatory partners and their misregulation in disease. Adv Biol Regul 2023; 90:100996. [PMID: 37979461 DOI: 10.1016/j.jbior.2023.100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 10/17/2023] [Indexed: 11/20/2023]
Abstract
The type III Phosphatidylinositol 4-kinase alpha (PI4KA) is an essential lipid kinase that is a master regulator of phosphoinositide signalling at the plasma membrane (PM). It produces the predominant pool of phosphatidylinositol 4-phosphate (PI4P) at the PM, with this being essential in lipid transport and in regulating the PLC and PI3K signalling pathways. PI4KA is essential and is highly conserved in all eukaryotes. In yeast, the PI4KA ortholog stt4 predominantly exists as a heterodimer with its regulatory partner ypp1. In higher eukaryotes, PI4KA instead primarily forms a heterotrimer with a TTC7 subunit (ortholog of ypp1) and a FAM126 subunit. In all eukaryotes PI4KA is recruited to the plasma membrane by the protein EFR3, which does not directly bind PI4KA, but instead binds to the TTC7/ypp1 regulatory partner. Misregulation in PI4KA or its regulatory partners is involved in myriad human diseases, including loss of function mutations in neurodevelopmental and inflammatory intestinal disorders and gain of function in human cancers. This review describes an in-depth analysis of the structure function of PI4KA and its regulatory partners, with a major focus on comparing and contrasting the differences in regulation of PI4KA throughout evolution.
Collapse
Affiliation(s)
- Sushant Suresh
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| |
Collapse
|
9
|
Gajardo T, Bernard M, Lô M, Turck E, Leveau C, El-Daher MT, Deslys A, Panikulam P, Menche C, Kurowska M, Le Lay G, Barbier L, Moshous D, Neven B, Farin HF, Fischer A, Ménasché G, de Saint Basile G, Vargas P, Sepulveda FE. Actin dynamics regulation by TTC7A/PI4KIIIα limits DNA damage and cell death under confinement. J Allergy Clin Immunol 2023; 152:949-960. [PMID: 37390900 DOI: 10.1016/j.jaci.2023.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND The actin cytoskeleton has a crucial role in the maintenance of the immune homeostasis by controlling various cellular processes, including cell migration. Mutations in TTC7A have been described as the cause of a primary immunodeficiency associated to different degrees of gut involvement and alterations in the actin cytoskeleton dynamics. OBJECTIVES This study investigates the impact of TTC7A deficiency in immune homeostasis. In particular, the role of the TTC7A/phosphatidylinositol 4 kinase type III α pathway in the control of leukocyte migration and actin dynamics. METHODS Microfabricated devices were leveraged to study cell migration and actin dynamics of murine and patient-derived leukocytes under confinement at the single-cell level. RESULTS We show that TTC7A-deficient lymphocytes exhibit an altered cell migration and reduced capacity to deform through narrow gaps. Mechanistically, TTC7A-deficient phenotype resulted from impaired phosphoinositide signaling, leading to the downregulation of the phosphoinositide 3-kinase/AKT/RHOA regulatory axis and imbalanced actin cytoskeleton dynamics. TTC7A-associated phenotype resulted in impaired cell motility, accumulation of DNA damage, and increased cell death in dense 3-dimensional gels in the presence of chemokines. CONCLUSIONS These results highlight a novel role of TTC7A as a critical regulator of lymphocyte migration. Impairment of this cellular function is likely to contribute to the pathophysiology underlying progressive immunodeficiency in patients.
Collapse
Affiliation(s)
- Tania Gajardo
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Mathilde Bernard
- UMR 144, Institut Curie, Paris, France; Institut Pierre-Gilles de Gennes, Paris Sciences and Letters Research University, Paris, France
| | - Marie Lô
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Elisa Turck
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Claire Leveau
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Marie-Thérèse El-Daher
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Alexandre Deslys
- Leukomotion Lab, Université de Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, F-75015 Paris, France
| | - Patricia Panikulam
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Constantin Menche
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Mathieu Kurowska
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Gregoire Le Lay
- UMR 144, Institut Curie, Paris, France; Institut Pierre-Gilles de Gennes, Paris Sciences and Letters Research University, Paris, France
| | - Lucie Barbier
- UMR 144, Institut Curie, Paris, France; Institut Pierre-Gilles de Gennes, Paris Sciences and Letters Research University, Paris, France
| | - Despina Moshous
- Imagine Institute, Université de Paris Cité, Paris, France; Pediatric Immunology Hematology and Rheumatology Department, Université Paris Cité, Paris, France
| | - Bénédicte Neven
- Imagine Institute, Université de Paris Cité, Paris, France; Pediatric Immunology Hematology and Rheumatology Department, Université Paris Cité, Paris, France
| | - Henner F Farin
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Main, Germany; Frankfurt Cancer Institute, Goethe University Frankfurt, Frankfurt, Germany
| | - Alain Fischer
- Imagine Institute, Université de Paris Cité, Paris, France; Pediatric Immunology Hematology and Rheumatology Department, Université Paris Cité, Paris, France; Collège de France, Paris, France
| | - Gaël Ménasché
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France
| | - Geneviève de Saint Basile
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France; Centre d'Etude des Déficits Immunitaires, Necker-Enfants Malades University Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Cité, Paris, France
| | - Pablo Vargas
- UMR 144, Institut Curie, Paris, France; Institut Pierre-Gilles de Gennes, Paris Sciences and Letters Research University, Paris, France; Leukomotion Lab, Université de Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, F-75015 Paris, France.
| | - Fernando E Sepulveda
- Molecular Basis of Altered Immune Homeostasis Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM) Unite Mixte de Recherche (UMR) 1163, Paris, France; Imagine Institute, Université de Paris Cité, Paris, France; CNRS, Paris, France.
| |
Collapse
|
10
|
Barlow-Busch I, Shaw AL, Burke JE. PI4KA and PIKfyve: Essential phosphoinositide signaling enzymes involved in myriad human diseases. Curr Opin Cell Biol 2023; 83:102207. [PMID: 37453227 DOI: 10.1016/j.ceb.2023.102207] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Lipid phosphoinositides are master regulators of multiple cellular functions. Misregulation of the activity of the lipid kinases that generate phosphoinositides is causative of human diseases, including cancer, neurodegeneration, developmental disorders, immunodeficiencies, and inflammatory disease. This review will present a summary of recent discoveries on the roles of two phosphoinositide kinases (PI4KA and PIKfyve), which have emerged as targets for therapeutic intervention. Phosphatidylinositol 4-kinase alpha (PI4KA) generates PI4P at the plasma membrane and PIKfyve generates PI(3,5)P2 at endo-lysosomal membranes. Both of these enzymes exist as multi-protein mega complexes that are under myriad levels of regulation. Human disease can be caused by either loss or gain-of-function of these complexes, so understanding how they are regulated will be essential in the design of therapeutics. We will summarize insight into how these enzymes are regulated by their protein-binding partners, with a major focus on the unanswered questions of how their activity is controlled.
Collapse
Affiliation(s)
- Isobel Barlow-Busch
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada
| | - Alexandria L Shaw
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 2Y2, Canada; Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada.
| |
Collapse
|
11
|
Bura A, Čabrijan S, Đurić I, Bruketa T, Jurak Begonja A. A Plethora of Functions Condensed into Tiny Phospholipids: The Story of PI4P and PI(4,5)P 2. Cells 2023; 12:1411. [PMID: 37408244 PMCID: PMC10216963 DOI: 10.3390/cells12101411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 07/07/2023] Open
Abstract
Phosphoinositides (PIs) are small, phosphorylated lipids that serve many functions in the cell. They regulate endo- and exocytosis, vesicular trafficking, actin reorganization, and cell mobility, and they act as signaling molecules. The most abundant PIs in the cell are phosphatidylinositol-4-monophosphate (PI4P) and phosphatidylinositol-4,5-bisphosphate [PI(4,5)P2]. PI4P is mostly localized at the Golgi apparatus where it regulates the anterograde trafficking from the Golgi apparatus to the plasma membrane (PM), but it also localizes at the PM. On the other hand, the main localization site of PI(4,5)P2 is the PM where it regulates the formation of endocytic vesicles. The levels of PIs are regulated by many kinases and phosphatases. Four main kinases phosphorylate the precursor molecule phosphatidylinositol into PI4P, divided into two classes (PI4KIIα, PI4KIIβ, PI4KIIIα, and PI4KIIIβ), and three main kinases phosphorylate PI4P to form PI(4,5)P2 (PI4P5KIα, PI4P5KIβ, and PI4P5KIγ). In this review, we discuss the localization and function of the kinases that produce PI4P and PI(4,5)P2, as well as the localization and function of their product molecules with an overview of tools for the detection of these PIs.
Collapse
Affiliation(s)
| | | | | | | | - Antonija Jurak Begonja
- Laboratory of Hematopoiesis, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000 Rijeka, Croatia
| |
Collapse
|
12
|
McPhail JA, Burke JE. Molecular mechanisms of PI4K regulation and their involvement in viral replication. Traffic 2023; 24:131-145. [PMID: 35579216 DOI: 10.1111/tra.12841] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/07/2022] [Accepted: 03/30/2022] [Indexed: 11/28/2022]
Abstract
Lipid phosphoinositides are master signaling molecules in eukaryotic cells and key markers of organelle identity. Because of these important roles, the kinases and phosphatases that generate phosphoinositides must be tightly regulated. Viruses can manipulate this regulation, with the Type III phosphatidylinositol 4-kinases (PI4KA and PI4KB) being hijacked by many RNA viruses to mediate their intracellular replication through the formation of phosphatidylinositol 4-phosphate (PI4P)-enriched replication organelles (ROs). Different viruses have evolved unique approaches toward activating PI4K enzymes to form ROs, through both direct binding of PI4Ks and modulation of PI4K accessory proteins. This review will focus on PI4KA and PI4KB and discuss their roles in signaling, functions in membrane trafficking and manipulation by viruses. Our focus will be the molecular basis for how PI4KA and PI4KB are activated by both protein-binding partners and post-translational modifications, with an emphasis on understanding the different molecular mechanisms viruses have evolved to usurp PI4Ks. We will also discuss the chemical tools available to study the role of PI4Ks in viral infection.
Collapse
Affiliation(s)
- Jacob A McPhail
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
13
|
Ulengin-Talkish I, Cyert MS. A cellular atlas of calcineurin signaling. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119366. [PMID: 36191737 PMCID: PMC9948804 DOI: 10.1016/j.bbamcr.2022.119366] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
Intracellular Ca2+ signals are temporally controlled and spatially restricted. Signaling occurs adjacent to sites of Ca2+ entry and/or release, where Ca2+-dependent effectors and their substrates co-localize to form signaling microdomains. Here we review signaling by calcineurin, the Ca2+/calmodulin regulated protein phosphatase and target of immunosuppressant drugs, Cyclosporin A and FK506. Although well known for its activation of the adaptive immune response via NFAT dephosphorylation, systematic mapping of human calcineurin substrates and regulators reveals unexpected roles for this versatile phosphatase throughout the cell. We discuss calcineurin function, with an emphasis on where signaling occurs and mechanisms that target calcineurin and its substrates to signaling microdomains, especially binding of cognate short linear peptide motifs (SLiMs). Calcineurin is ubiquitously expressed and regulates events at the plasma membrane, other intracellular membranes, mitochondria, the nuclear pore complex and centrosomes/cilia. Based on our expanding knowledge of localized CN actions, we describe a cellular atlas of Ca2+/calcineurin signaling.
Collapse
Affiliation(s)
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA 94035, United States.
| |
Collapse
|
14
|
Investigating how intrinsically disordered regions contribute to protein function using HDX-MS. Biochem Soc Trans 2022; 50:1607-1617. [DOI: 10.1042/bst20220206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 12/02/2022]
Abstract
A large amount of the human proteome is composed of highly dynamic regions that do not adopt a single static conformation. These regions are defined as intrinsically disordered, and they are found in a third of all eukaryotic proteins. They play instrumental roles in many aspects of protein signaling, but can be challenging to characterize by biophysical methods. Intriguingly, many of these regions can adopt stable secondary structure upon interaction with a variety of binding partners, including proteins, lipids, and ligands. This review will discuss the application of Hydrogen-deuterium exchange mass spectrometry (HDX-MS) as a powerful biophysical tool that is particularly well suited for structural and functional characterization of intrinsically disordered regions in proteins. A focus will be on the theory of hydrogen exchange, and its practical application to identify disordered regions, as well as characterize how they participate in protein–protein and protein–membrane interfaces. A particular emphasis will be on how HDX-MS data can be presented specifically tailored for analysis of intrinsically disordered regions, as well as the technical aspects that are critical to consider when designing HDX-MS experiments for proteins containing intrinsically disordered regions.
Collapse
|
15
|
Zhang K, Kang L, Zhang H, Bai L, Pang H, Liu Q, Zhang X, Chen D, Yu H, Lv Y, Gao M, Liu Y, Gai Z, Wang D, Li X. A synonymous mutation in PI4KA impacts the transcription and translation process of gene expression. Front Immunol 2022; 13:987666. [DOI: 10.3389/fimmu.2022.987666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylinositol-4-kinase alpha (PI4KIIIα), encoded by the PI4KA gene, can synthesize phosphatidylinositol-4-phosphate (PI-4-P), which serves as a specific membrane marker and is instrumental in signal transduction. PI4KA mutations can cause autosomal recessive diseases involving neurological, intestinal, and immunological conditions (OMIM:619621, 616531, 619708). We detected sepsis, severe diarrhea, and decreased immunoglobulin levels in one neonate. Two novel compound heterozygous mutations, c.5846T>C (p.Leu1949Pro) and c.3453C>T (p.Gly1151=), were identified in the neonate from the father and the mother, respectively. Sanger sequencing and reverse transcription polymerase chain reaction (RT-PCR) for peripheral blood and minigene splicing assays showed a deletion of five bases (GTGAG) with the c.3453C>T variant at the mRNA level, which could result in a truncated protein (p.Gly1151GlyfsTer17). The missense mutation c.5846T>C (p.Leu1949Pro) kinase activity was measured, and little or no catalytic activity was detected. According to the clinical characteristics and gene mutations with functional verification, our pediatricians diagnosed the child with a combined immunodeficiency and intestinal disorder close to gastrointestinal defects and immunodeficiency syndrome 2 (GIDID2; OMIM: 619708). Medicines such as immunomodulators are prescribed to balance immune dysregulation. This study is the first report of a synonymous mutation in the PI4KA gene that influences alternative splicing. Our findings expand the mutation spectrum leading to PI4KIIIa deficiency-related diseases and provide exact information for genetic counseling.
Collapse
|
16
|
Dannheim K, Ouahed J, Field M, Snapper S, Raphael BP, Glover SC, Bishop PR, Bhesania N, Kamin D, Thiagarajah JR, Goldsmith JD. Pediatric Gastrointestinal Histopathology in Patients With Tetratricopeptide Repeat Domain 7A (TTC7A) Germline Mutations: A Rare Condition Leading to Multiple Intestinal Atresias, Severe Combined Immunodeficiency, and Congenital Enteropathy. Am J Surg Pathol 2022; 46:846-853. [PMID: 34985046 PMCID: PMC9106838 DOI: 10.1097/pas.0000000000001856] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Mutations in the tetratricopeptide repeat domain 7A (TTC7A) gene are a rare cause of congenital enteropathy that can result in significant morbidity. TTC7A deficiency leads to disruption of the intestinal epithelium. The histopathology of this condition has been partly described in case reports and clinical studies. This manuscript describes an in-depth investigation of the pediatric gastrointestinal pathology of the largest histologically examined cohort with confirmed TTC7A mutations reported to date and, for the first time, compared the findings to age-matched and sex-matched control patients with intestinal atresia not thought to be associated with TTC7A mutations. Hematoxylin and eosin-stained slides of endoscopically obtained mucosal biopsies and surgical resection specimens from 7 patients with known TTC7A mutations were examined retrospectively. The microscopic findings were found to be on a spectrum from atresia-predominant to those with predominantly epithelial abnormalities. Several unique histopathologic characteristics were observed when compared with controls. These included neutrophilic colitis and prominent lamina propria eosinophilia throughout the gastrointestinal tract. Striking architectural abnormalities of the epithelium were observed in 4 of the 7 patients. The 5 patients with intestinal atresia demonstrated hypertrophy and disorganization of the colonic muscularis mucosae accompanied by bland spindle cell nodules within the intestinal wall. The components of the latter were further elucidated using immunohistochemistry, and we subsequently hypothesize that they represent obliterated mucosa with remnants of the muscularis mucosae. Finally, atrophic gastritis was noted in 4 patients. In conclusion, the unique histopathologic characteristics of TTC7A mutation-associated enteropathy described herein more fully describe this novel disease entity in infants who present with congenital enteropathy or enterocolitis.
Collapse
Affiliation(s)
- Katelyn Dannheim
- Department of Pathology, Rhode Island and Hasbro Children’s Hospitals, Providence, RI
| | - Jodie Ouahed
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA
| | - Michael Field
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA
| | - Scott Snapper
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA
| | | | - Sarah C. Glover
- Division of Digestive Diseases and Division of Pediatric Gastroenterology, University of Mississippi Medical Center, Jackson, MS
| | - Phyllis R. Bishop
- Division of Digestive Diseases and Division of Pediatric Gastroenterology, University of Mississippi Medical Center, Jackson, MS
| | - Natalie Bhesania
- Division of Digestive Diseases and Division of Pediatric Gastroenterology, University of Mississippi Medical Center, Jackson, MS
| | - Daniel Kamin
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA
| | - Jay R. Thiagarajah
- Division of Gastroenterology, Hepatology, and Nutrition, Boston Children’s Hospital, Boston, MA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA
| | - Jeffrey D. Goldsmith
- Department of Pathology, Boston Children’s Hospital, Boston, MA
- Congenital Enteropathy Program, Boston Children’s Hospital, Boston, MA
| |
Collapse
|
17
|
Batrouni AG, Bag N, Phan HT, Baird BA, Baskin JM. A palmitoylation code controls PI4KIIIα complex formation and PI(4,5)P2 homeostasis at the plasma membrane. J Cell Sci 2022; 135:272297. [PMID: 34569608 DOI: 10.1242/jcs.259365] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Phosphatidylinositol 4-kinase IIIα (PI4KIIIα) is the major enzyme responsible for generating phosphatidylinositol (4)-phosphate [PI(4)P] at the plasma membrane. This lipid kinase forms two multicomponent complexes, both including a palmitoylated anchor, EFR3. Whereas both PI4KIIIα complexes support production of PI(4)P, the distinct functions of each complex and mechanisms underlying the interplay between them remain unknown. Here, we present roles for differential palmitoylation patterns within a tri-cysteine motif in EFR3B (Cys5, Cys7 and Cys8) in controlling the distribution of PI4KIIIα between these two complexes at the plasma membrane and corresponding functions in phosphoinositide homeostasis. Spacing of palmitoyl groups within three doubly palmitoylated EFR3B 'lipoforms' affects both interactions between EFR3B and TMEM150A, a transmembrane protein governing formation of a PI4KIIIα complex functioning in rapid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] resynthesis following phospholipase C signaling, and EFR3B partitioning within liquid-ordered and -disordered regions of the plasma membrane. This work identifies a palmitoylation code involved in controlling protein-protein and protein-lipid interactions that affect a plasma membrane-resident lipid biosynthetic pathway.
Collapse
Affiliation(s)
- Alex G Batrouni
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA.,Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| | - Nirmalya Bag
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Henry T Phan
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Barbara A Baird
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M Baskin
- Weill Institute for Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA.,Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
18
|
Noack LC, Bayle V, Armengot L, Rozier F, Mamode-Cassim A, Stevens FD, Caillaud MC, Munnik T, Mongrand S, Pleskot R, Jaillais Y. A nanodomain-anchored scaffolding complex is required for the function and localization of phosphatidylinositol 4-kinase alpha in plants. THE PLANT CELL 2022; 34:302-332. [PMID: 34010411 PMCID: PMC8774046 DOI: 10.1093/plcell/koab135] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/10/2021] [Indexed: 05/24/2023]
Abstract
Phosphoinositides are low-abundant lipids that participate in the acquisition of membrane identity through their spatiotemporal enrichment in specific compartments. Phosphatidylinositol 4-phosphate (PI4P) accumulates at the plant plasma membrane driving its high electrostatic potential, and thereby facilitating interactions with polybasic regions of proteins. PI4Kα1 has been suggested to produce PI4P at the plasma membrane, but how it is recruited to this compartment is unknown. Here, we pin-point the mechanism that tethers Arabidopsis thaliana phosphatidylinositol 4-kinase alpha1 (PI4Kα1) to the plasma membrane via a nanodomain-anchored scaffolding complex. We established that PI4Kα1 is part of a complex composed of proteins from the NO-POLLEN-GERMINATION, EFR3-OF-PLANTS, and HYCCIN-CONTAINING families. Comprehensive knockout and knockdown strategies revealed that subunits of the PI4Kα1 complex are essential for pollen, embryonic, and post-embryonic development. We further found that the PI4Kα1 complex is immobilized in plasma membrane nanodomains. Using synthetic mis-targeting strategies, we demonstrate that a combination of lipid anchoring and scaffolding localizes PI4Kα1 to the plasma membrane, which is essential for its function. Together, this work opens perspectives on the mechanisms and function of plasma membrane nanopatterning by lipid kinases.
Collapse
Affiliation(s)
- Lise C Noack
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Laia Armengot
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Adiilah Mamode-Cassim
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France
- Agroécologie, AgroSup Dijon, CNRS, INRA, University Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Floris D Stevens
- Research Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1090 GE, The Netherlands
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, F-69342, Lyon, France
| | - Teun Munnik
- Research Cluster Green Life Sciences, Section Plant Cell Biology, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1090 GE, The Netherlands
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR5200, Université de Bordeaux, CNRS, 33140 Villenave d’Ornon, France
| | - Roman Pleskot
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 16502 Prague 6, Czech Republic
| | | |
Collapse
|
19
|
Bugda Gwilt K, Thiagarajah JR. Membrane Lipids in Epithelial Polarity: Sorting out the PIPs. Front Cell Dev Biol 2022; 10:893960. [PMID: 35712665 PMCID: PMC9197455 DOI: 10.3389/fcell.2022.893960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
The development of cell polarity in epithelia, is critical for tissue morphogenesis and vectorial transport between the environment and the underlying tissue. Epithelial polarity is defined by the development of distinct plasma membrane domains: the apical membrane interfacing with the exterior lumen compartment, and the basolateral membrane directly contacting the underlying tissue. The de novo generation of polarity is a tightly regulated process, both spatially and temporally, involving changes in the distribution of plasma membrane lipids, localization of apical and basolateral membrane proteins, and vesicular trafficking. Historically, the process of epithelial polarity has been primarily described in relation to the localization and function of protein 'polarity complexes.' However, a critical and foundational role is emerging for plasma membrane lipids, and in particular phosphoinositide species. Here, we broadly review the evidence for a primary role for membrane lipids in the generation of epithelial polarity and highlight key areas requiring further research. We discuss the complex interchange that exists between lipid species and briefly examine how major membrane lipid constituents are generated and intersect with vesicular trafficking to be preferentially localized to different membrane domains with a focus on some of the key protein-enzyme complexes involved in these processes.
Collapse
Affiliation(s)
- Katlynn Bugda Gwilt
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jay R Thiagarajah
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
20
|
Ulengin-Talkish I, Parson MAH, Jenkins ML, Roy J, Shih AZL, St-Denis N, Gulyas G, Balla T, Gingras AC, Várnai P, Conibear E, Burke JE, Cyert MS. Palmitoylation targets the calcineurin phosphatase to the phosphatidylinositol 4-kinase complex at the plasma membrane. Nat Commun 2021; 12:6064. [PMID: 34663815 PMCID: PMC8523714 DOI: 10.1038/s41467-021-26326-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/29/2021] [Indexed: 11/25/2022] Open
Abstract
Calcineurin, the conserved protein phosphatase and target of immunosuppressants, is a critical mediator of Ca2+ signaling. Here, to discover calcineurin-regulated processes we examined an understudied isoform, CNAβ1. We show that unlike canonical cytosolic calcineurin, CNAβ1 localizes to the plasma membrane and Golgi due to palmitoylation of its divergent C-terminal tail, which is reversed by the ABHD17A depalmitoylase. Palmitoylation targets CNAβ1 to a distinct set of membrane-associated interactors including the phosphatidylinositol 4-kinase (PI4KA) complex containing EFR3B, PI4KA, TTC7B and FAM126A. Hydrogen-deuterium exchange reveals multiple calcineurin-PI4KA complex contacts, including a calcineurin-binding peptide motif in the disordered tail of FAM126A, which we establish as a calcineurin substrate. Calcineurin inhibitors decrease PI4P production during Gq-coupled GPCR signaling, suggesting that calcineurin dephosphorylates and promotes PI4KA complex activity. In sum, this work discovers a calcineurin-regulated signaling pathway which highlights the PI4KA complex as a regulatory target and reveals that dynamic palmitoylation confers unique localization, substrate specificity and regulation to CNAβ1.
Collapse
Affiliation(s)
| | - Matthew A H Parson
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Meredith L Jenkins
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| | - Jagoree Roy
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Alexis Z L Shih
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
- Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nicole St-Denis
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, Canada
- High-Fidelity Science Communications, Summerside, PE, Canada
| | - Gergo Gulyas
- Section on Molecular Signal Transduction, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Tamas Balla
- Section on Molecular Signal Transduction, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, University of Toronto, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Péter Várnai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Elizabeth Conibear
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
- Department of Biochemistry, The University of British Columbia, Vancouver, BC, Canada
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
21
|
James EI, Murphree TA, Vorauer C, Engen JR, Guttman M. Advances in Hydrogen/Deuterium Exchange Mass Spectrometry and the Pursuit of Challenging Biological Systems. Chem Rev 2021; 122:7562-7623. [PMID: 34493042 PMCID: PMC9053315 DOI: 10.1021/acs.chemrev.1c00279] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Solution-phase hydrogen/deuterium
exchange (HDX) coupled to mass
spectrometry (MS) is a widespread tool for structural analysis across
academia and the biopharmaceutical industry. By monitoring the exchangeability
of backbone amide protons, HDX-MS can reveal information about higher-order
structure and dynamics throughout a protein, can track protein folding
pathways, map interaction sites, and assess conformational states
of protein samples. The combination of the versatility of the hydrogen/deuterium
exchange reaction with the sensitivity of mass spectrometry has enabled
the study of extremely challenging protein systems, some of which
cannot be suitably studied using other techniques. Improvements over
the past three decades have continually increased throughput, robustness,
and expanded the limits of what is feasible for HDX-MS investigations.
To provide an overview for researchers seeking to utilize and derive
the most from HDX-MS for protein structural analysis, we summarize
the fundamental principles, basic methodology, strengths and weaknesses,
and the established applications of HDX-MS while highlighting new
developments and applications.
Collapse
Affiliation(s)
- Ellie I James
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Taylor A Murphree
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Clint Vorauer
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - John R Engen
- Department of Chemistry & Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
22
|
Salter CG, Cai Y, Lo B, Helman G, Taylor H, McCartney A, Leslie JS, Accogoli A, Zara F, Traverso M, Fasham J, Lees JA, Ferla M, Chioza BA, Wenger O, Scott E, Cross HE, Crawford J, Warshawsky I, Keisling M, Agamanolis D, Melver CW, Cox H, Elawad M, Marton T, Wakeling M, Holzinger D, Tippelt S, Munteanu M, Valcheva D, Deal C, Van Meerbeke S, Vockley CW, Butte MJ, Acar U, van der Knaap MS, Korenke GC, Kotzaeridou U, Balla T, Simons C, Uhlig HH, Crosby AH, De Camilli P, Wolf NI, Baple EL. Biallelic PI4KA variants cause neurological, intestinal and immunological disease. Brain 2021; 144:3597-3610. [PMID: 34415310 PMCID: PMC8719846 DOI: 10.1093/brain/awab313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 11/22/2022] Open
Abstract
Phosphatidylinositol 4-kinase IIIα (PI4KIIIα/PI4KA/OMIM:600286) is a lipid kinase generating phosphatidylinositol 4-phosphate (PI4P), a membrane phospholipid with critical roles in the physiology of multiple cell types. PI4KIIIα’s role in PI4P generation requires its assembly into a heterotetrameric complex with EFR3, TTC7 and FAM126. Sequence alterations in two of these molecular partners, TTC7 (encoded by TTC7A or TCC7B) and FAM126, have been associated with a heterogeneous group of either neurological (FAM126A) or intestinal and immunological (TTC7A) conditions. Here we show that biallelic PI4KA sequence alterations in humans are associated with neurological disease, in particular hypomyelinating leukodystrophy. In addition, affected individuals may present with inflammatory bowel disease, multiple intestinal atresia and combined immunodeficiency. Our cellular, biochemical and structural modelling studies indicate that PI4KA-associated phenotypical outcomes probably stem from impairment of PI4KIIIα-TTC7-FAM126's organ-specific functions, due to defective catalytic activity or altered intra-complex functional interactions. Together, these data define PI4KA gene alteration as a cause of a variable phenotypical spectrum and provide fundamental new insight into the combinatorial biology of the PI4KIIIα-FAM126-TTC7-EFR3 molecular complex.
Collapse
Affiliation(s)
- Claire G Salter
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK.,Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK
| | - Yiying Cai
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Bernice Lo
- Research Branch, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Guy Helman
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Henry Taylor
- Department of surgery and Cancer, Imperial College London, London, UK
| | - Amber McCartney
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph S Leslie
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | | | | | | | - James Fasham
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK.,Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| | - Joshua A Lees
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA
| | - Matteo Ferla
- Wellcome Centre Human Genetics, University of Oxford, Oxford, UK
| | - Barry A Chioza
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | | | | | - Harold E Cross
- Department of Ophthalmology, University of Arizona College of Medicine, Tucson, AZ, USA
| | - Joanna Crawford
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, Australia
| | | | | | | | | | - Helen Cox
- West Midlands Clinical Genetics Service, Birmingham Women's Hospital, Birmingham, UK
| | - Mamoun Elawad
- Department of Gastroenterology, Sidra Medicine, Doha, Qatar
| | - Tamas Marton
- West Midlands Perinatal Pathology, Birmingham Women's Hospital, Edgbaston, Birmingham, UK
| | - Matthew Wakeling
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | - Dirk Holzinger
- Department of Pediatric Haematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Stephan Tippelt
- Department of Pediatric Haematology-Oncology, University of Duisburg-Essen, Essen, Germany
| | - Martin Munteanu
- Institute for Human Genetics, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | | | - Christin Deal
- Children's Hospital of Pittsburgh, UPMC, Division of Pediatric Allergy and Immunology, Pittsburgh, USA
| | - Sara Van Meerbeke
- Children's Hospital of Pittsburgh, UPMC, Division of Pediatric Allergy and Immunology, Pittsburgh, USA
| | - Catherine Walsh Vockley
- Children's Hospital of Pittsburgh, UPMC, Division of Genetic and Genomic Medicine, Pittsburgh, USA
| | - Manish J Butte
- Department of Paediatrics, Division of Immunology, Allergy, and Rheumatology, UCLA, Los Angeles, CA, USA
| | - Utkucan Acar
- Department of Paediatrics, Division of Immunology, Allergy, and Rheumatology, UCLA, Los Angeles, CA, USA
| | - Marjo S van der Knaap
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands.,Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - G Christoph Korenke
- Department of Neuropediatrics, University Children's Hospital, Klinikum Oldenburg, 26133 Oldenburg, Germany
| | - Urania Kotzaeridou
- Department of Child Neurology and Metabolic Medicine, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, D-69120 Heidelberg, Germany
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Cas Simons
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Melbourne, Australia.,Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Holm H Uhlig
- Translational Gastroenterology Unit, NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, University of Oxford, Oxfordshire, UK.,Department of Paediatrics, University of Oxford, Oxfordshire, UK.,Oxford NIHR Biomedical Research Centre, Oxford, UK
| | - Andrew H Crosby
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK
| | - Pietro De Camilli
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.,Department of Cell Biology, Yale University School of Medicine, New Haven, CT, USA.,Program in Cellular Neuroscience Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, USA.,Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, CT, USA.,Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Nicole I Wolf
- Amsterdam Leukodystrophy Center, Department of Child Neurology, Emma Children's Hospital, Amsterdam University Medical Center, VU University Amsterdam and Amsterdam Neuroscience, 1081 HV Amsterdam, The Netherlands.,Department of Functional Genomics, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Emma L Baple
- RILD Wellcome Wolfson Centre, University of Exeter Medical School, Exeter, UK.,Peninsula Clinical Genetics Service, Royal Devon and Exeter Hospital, Exeter, UK
| |
Collapse
|
23
|
Batrouni AG, Baskin JM. The chemistry and biology of phosphatidylinositol 4-phosphate at the plasma membrane. Bioorg Med Chem 2021; 40:116190. [PMID: 33965837 DOI: 10.1016/j.bmc.2021.116190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Phosphoinositides are an important class of anionic, low abundance signaling lipids distributed throughout intracellular membranes. The plasma membrane contains three phosphoinositides: PI(4)P, PI(4,5)P2, and PI(3,4,5)P3. Of these, PI(4)P has remained the most mysterious, despite its characterization in this membrane more than a half-century ago. Fortunately, recent methodological innovations at the chemistry-biology interface have spurred a renaissance of interest in PI(4)P. Here, we describe these new toolsets and how they have revealed novel functions for the plasma membrane PI(4)P pool. We examine high-resolution structural characterization of the plasma membrane PI 4-kinase complex that produces PI(4)P, tools for modulating PI(4)P levels including isoform-selective PI 4-kinase inhibitors, and fluorescent probes for visualizing PI(4)P. Collectively, these chemical and biochemical approaches have revealed insights into how cells regulate synthesis of PI(4)P and its downstream metabolites as well as new roles for plasma membrane PI(4)P in non-vesicular lipid transport, membrane homeostasis and trafficking, and cell signaling pathways.
Collapse
Affiliation(s)
- Alex G Batrouni
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
24
|
Zewe JP, Miller AM, Sangappa S, Wills RC, Goulden BD, Hammond GRV. Probing the subcellular distribution of phosphatidylinositol reveals a surprising lack at the plasma membrane. J Cell Biol 2020; 219:133808. [PMID: 32211893 PMCID: PMC7054989 DOI: 10.1083/jcb.201906127] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/14/2019] [Accepted: 11/19/2019] [Indexed: 12/16/2022] Open
Abstract
The polyphosphoinositides (PPIn) are central regulatory lipids that direct membrane function in eukaryotic cells. Understanding how their synthesis is regulated is crucial to revealing these lipids’ role in health and disease. PPIn are derived from the major structural lipid, phosphatidylinositol (PI). However, although the distribution of most PPIn has been characterized, the subcellular localization of PI available for PPIn synthesis is not known. Here, we used several orthogonal approaches to map the subcellular distribution of PI, including localizing exogenous fluorescent PI, as well as detecting lipid conversion products of endogenous PI after acute chemogenetic activation of PI-specific phospholipase and 4-kinase. We report that PI is broadly distributed throughout intracellular membrane compartments. However, there is a surprising lack of PI in the plasma membrane compared with the PPIn. These experiments implicate regulation of PI supply to the plasma membrane, as opposed to regulation of PPIn-kinases, as crucial to the control of PPIn synthesis and function at the PM.
Collapse
Affiliation(s)
- James P Zewe
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - April M Miller
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Sahana Sangappa
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Rachel C Wills
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Brady D Goulden
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
25
|
Pemberton JG, Kim YJ, Balla T. Integrated regulation of the phosphatidylinositol cycle and phosphoinositide-driven lipid transport at ER-PM contact sites. Traffic 2019; 21:200-219. [PMID: 31650663 DOI: 10.1111/tra.12709] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 10/02/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
Among the structural phospholipids that form the bulk of eukaryotic cell membranes, phosphatidylinositol (PtdIns) is unique in that it also serves as the common precursor for low-abundance regulatory lipids, collectively referred to as polyphosphoinositides (PPIn). The metabolic turnover of PPIn species has received immense attention because of the essential functions of these lipids as universal regulators of membrane biology and their dysregulation in numerous human pathologies. The diverse functions of PPIn lipids occur, in part, by orchestrating the spatial organization and conformational dynamics of peripheral or integral membrane proteins within defined subcellular compartments. The emerging role of stable contact sites between adjacent membranes as specialized platforms for the coordinate control of ion exchange, cytoskeletal dynamics, and lipid transport has also revealed important new roles for PPIn species. In this review, we highlight the importance of membrane contact sites formed between the endoplasmic reticulum (ER) and plasma membrane (PM) for the integrated regulation of PPIn metabolism within the PM. Special emphasis will be placed on non-vesicular lipid transport during control of the PtdIns biosynthetic cycle as well as toward balancing the turnover of the signaling PPIn species that define PM identity.
Collapse
Affiliation(s)
- Joshua G Pemberton
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Yeun Ju Kim
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| | - Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
26
|
Shanbhogue P, Hoffmann RM, Airola MV, Maini R, Hamelin DJ, Garcia-Diaz M, Burke JE, Hannun YA. The juxtamembrane linker in neutral sphingomyelinase-2 functions as an intramolecular allosteric switch that activates the enzyme. J Biol Chem 2019; 294:7488-7502. [PMID: 30890560 DOI: 10.1074/jbc.ra118.007288] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/08/2019] [Indexed: 11/06/2022] Open
Abstract
Neutral sphingomyelinase 2 (nSMase2) produces the bioactive lipid ceramide and has important roles in neurodegeneration, cancer, and exosome formation. Although nSMase2 has low basal activity, it is fully activated by phosphatidylserine (PS). Previous work showed that interdomain interactions within nSMase2 are needed for PS activation. Here, we use multiple approaches, including small angle X-ray scattering, hydrogen-deuterium exchange-MS, circular dichroism and thermal shift assays, and membrane yeast two-hybrid assays, to define the mechanism mediating this interdomain interactions within nSMase2. In contrast to what we previously assumed, we demonstrate that PS binding at the N-terminal and juxtamembrane regions of nSMase2 rather acts as a conformational switch leading to interdomain interactions that are critical to enzyme activation. Our work assigns a unique function for a class of linkers of lipid-activated, membrane-associated proteins. It indicates that the linker actively participates in the activation mechanism via intramolecular interactions, unlike the canonical linkers that typically aid protein dimerization or localization.
Collapse
Affiliation(s)
- Prajna Shanbhogue
- From the Departments of Biochemistry and Cell Biology.,the Stony Brook University Cancer Center, Stony Brook, New York 11794, and
| | - Reece M Hoffmann
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8N 1A1, Canada
| | | | - Rohan Maini
- From the Departments of Biochemistry and Cell Biology
| | - David J Hamelin
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8N 1A1, Canada
| | - Miguel Garcia-Diaz
- Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794
| | - John E Burke
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8N 1A1, Canada
| | - Yusuf A Hannun
- From the Departments of Biochemistry and Cell Biology, .,the Stony Brook University Cancer Center, Stony Brook, New York 11794, and.,Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794.,Medicine, and
| |
Collapse
|