1
|
Liu DH, Li F, Yang RZ, Wu Z, Meng XY, Li SM, Li WX, Li JK, Wang DD, Wang RY, Li SA, Liu PP, Kang JS. Pulmonary mitochondrial DNA release and activation of the cGAS-STING pathway in Lethal Stx12 knockout mice. Cell Commun Signal 2025; 23:174. [PMID: 40200300 PMCID: PMC11980072 DOI: 10.1186/s12964-025-02141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/07/2025] [Indexed: 04/10/2025] Open
Abstract
STX12 (syntaxin12 or syntaxin13), a member of the SNARE protein family, plays a crucial role in intracellular vesicle transport and membrane fusion. Our previous research demonstrated that Stx12 knockout mice exhibit perinatal lethality with iron deficiency anemia. Despite its importance, the comprehensive physiological and pathological mechanism of STX12 remains largely unknown. Here, we revealed that STX12 deficiency causes the depolarization of mitochondrial membrane potential in zebrafish embryos and mouse embryonic fibroblasts. Additionally, the loss of STX12 decreased the levels of mitochondrial complex subunits, accompanied by mitochondrial DNA (mtDNA) release and activated cGAS-STING pathway and Type I interferon pathway in the lung tissue of Stx12-/- mice. Additionally, we observed a substantial increase in cytokines and neutrophil infiltration within the lung tissues of Stx12 knockout mice, indicating severe inflammation, which could be a contributing factor for Stx12-/- mortality. Various interventions have failed to rescue the lethal phenotype, suggesting that systemic effects may contribute to lethality. Further research is warranted to elucidate potential intervention strategies. Overall, our findings uncover the critical role of STX12 in maintaining mitochondrial function and mtDNA stability in pulmonary cells, and reveal that STX12 depletion results in pulmonary mtDNA release and activates mtDNA-dependent innate immunity.
Collapse
Affiliation(s)
- Dan-Hua Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Clinical College, Zhengzhou University, Zhengzhou, China
| | - Fang Li
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Run-Zhou Yang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhuanbin Wu
- Shanghai Model Organisms Center, Inc., Shanghai, China
| | - Xiao-Yan Meng
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Clinical College, Zhengzhou University, Zhengzhou, China
| | - Sen-Miao Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Clinical College, Zhengzhou University, Zhengzhou, China
| | - Wen-Xiu Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Clinical College, Zhengzhou University, Zhengzhou, China
| | - Jia-Kang Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Clinical College, Zhengzhou University, Zhengzhou, China
| | - Dian-Dian Wang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Clinical College, Zhengzhou University, Zhengzhou, China
| | - Rui-Yu Wang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- The First Clinical College, Zhengzhou University, Zhengzhou, China
| | - Shu-Ang Li
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pei-Pei Liu
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jian-Sheng Kang
- Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- The First Clinical College, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
2
|
Makam AA, Sharma S, Nagle P, Sundaram NM, Prasad VM, Gandasi NR. tPA-GFP is a reliable probe for detecting compound exocytosis in human pancreatic β-cells. FASEB Bioadv 2025; 7:e1482. [PMID: 39917393 PMCID: PMC11795275 DOI: 10.1096/fba.2024-00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 02/09/2025] Open
Abstract
Pancreatic β-cells secrete insulin stored in large dense core vesicles (LDCV) by fusion of vesicle and plasma membrane during a process called insulin exocytosis. Insulin secretion is biphasic with a fast first phase and a sustained second phase. Previous studies have pointed out that exocytosis of insulin can occur via (1) single LDCVs fusing with the plasma membrane to release their content or (2) multiple vesicles are involved during a process called compound exocytosis. Compound exocytosis represents a specialized form of secretion in which vesicles undergo homotypic fusion either before (multi-vesicular exocytosis) or continuous fusion in a sequential manner from (sequential exocytosis) within the same site at the plasma membrane. We see that the number of multi-vesicles is few and not localized in the vicinity of the plasma membrane. Studying the kinetics of this process and correlating it with biphasic insulin secretion is not possible since there are no specific probes to detect them. It is challenging to identify compound exocytosis with probes that exist for simple exocytosis. To advance our understanding, we need a fluorescent probe that could detect secretory vesicles undergoing compound exocytosis and allow us to distinguish it from other modes of exocytosis. Here, we used two cargo proteins (NPY and tPA) labeled with different fluorescent proteins (mCherry GFP and eGFP) and employed total internal reflection fluorescence microscopy (TIRF-M) to capture distinct single-granule and multi-granular fusion events. We identified tPA-GFP as a better probe for studying compound exocytosis, as it can detect both simple and sequential exocytosis reliably. Using these probes, we have studied the kinetics of compound exocytosis in human β-cells. These observations, with additional experiments, may open a whole new field to study the impact of compound exocytosis on biphasic secretion of insulin. Identifying targets to increase the compound exocytosis process can help potentiate insulin secretion in diabetics.
Collapse
Affiliation(s)
- Aishwarya A. Makam
- Department of Developmental Biology and Genetics (DBG)Indian Institute of Science (IISc)BengaluruKarnatakaIndia
| | - Shruti Sharma
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruKarnatakaIndia
- Center for Infectious Disease ResearchIndian Institute of ScienceBengaluruKarnatakaIndia
| | - Prajwal Nagle
- Department of Developmental Biology and Genetics (DBG)Indian Institute of Science (IISc)BengaluruKarnatakaIndia
| | - Nandhini M. Sundaram
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruKarnatakaIndia
- Center for Infectious Disease ResearchIndian Institute of ScienceBengaluruKarnatakaIndia
| | - Vidya Mangala Prasad
- Molecular Biophysics UnitIndian Institute of ScienceBengaluruKarnatakaIndia
- Center for Infectious Disease ResearchIndian Institute of ScienceBengaluruKarnatakaIndia
| | - Nikhil R. Gandasi
- Department of Developmental Biology and Genetics (DBG)Indian Institute of Science (IISc)BengaluruKarnatakaIndia
- Department of Medical Cell BiologyUppsala UniversityUppsalaSweden
| |
Collapse
|
3
|
Hatamie A, He X, Ewing A, Rorsman P. From Insulin Measurement to Partial Exocytosis Model: Advances in Single Pancreatic Beta Cell Amperometry over Four Decades. ACS MEASUREMENT SCIENCE AU 2024; 4:629-637. [PMID: 39713028 PMCID: PMC11659994 DOI: 10.1021/acsmeasuresciau.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 12/24/2024]
Abstract
Single cell Amperometry (SCA) is a powerful, sensitive, high temporal resolution electrochemical technique used to quantify secreted molecular messengers from individual cells and vesicles. This technique has been extensively applied to study the process of exocytosis, and it has also been applied, albeit less frequently, to investigate insulin exocytosis from single pancreatic beta cells. Insufficient insulin release can lead to diabetes, a chronic lifestyle disorder that affects millions of people worldwide. This review aims to summarize and highlight electrochemical measurements of insulin via monitoring its secretion from beta cells by SCA with micro- and nanoelectrodes since the 1990s and to explain how and why serotonin is used as a proxy for monitoring insulin during exocytosis from single beta cells. Finally, we describe how the combination of SCA measurements with the intracellular vesicle impact electrochemical cytometry (IVIEC) technique has led to important findings regarding fractional release types in beta cells. These findings, reported recently, have opened a new window in the study of pore formation, exocytosis from single vesicles, and the mechanisms of insulin secretion. This sensitive cellular electroanalysis approach should help in the development of novel therapeutic strategies targeting diabetes in the future.
Collapse
Affiliation(s)
- Amir Hatamie
- Department
of Physiology, Sahlgrenska Academy, University
of Gothenburg, Medicinaregatan 11−13, 41390 Gothenburg, Sweden
- Department
of Chemistry and Molecular Biology, University
of Gothenburg, Kemivägen 10, 412 96, Gothenburg, Sweden
- Department
of Chemistry, Institute for Advanced Studies
in Basic Sciences (IASBS), Prof. Sobouti Boulevard, PO-Box 45195-1159, Zanjan, 45137-66731, Iran
| | - Xiulan He
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Andrew Ewing
- Department
of Physiology, Sahlgrenska Academy, University
of Gothenburg, Medicinaregatan 11−13, 41390 Gothenburg, Sweden
| | - Patrik Rorsman
- Department
of Physiology, Sahlgrenska Academy, University
of Gothenburg, Medicinaregatan 11−13, 41390 Gothenburg, Sweden
- Oxford
Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LJ, U.K.
| |
Collapse
|
4
|
Norris N, Yau B, Famularo C, Webster H, Loudovaris T, Thomas HE, Larance M, Senior AM, Kebede MA. Optimized Proteomic Analysis of Insulin Granules From MIN6 Cells Identifies Scamp3, a Novel Regulator of Insulin Secretion and Content. Diabetes 2024; 73:2045-2054. [PMID: 39320956 PMCID: PMC11579411 DOI: 10.2337/db24-0355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/20/2024] [Indexed: 09/27/2024]
Abstract
Pancreatic β-cells in the islets of Langerhans are key to maintaining glucose homeostasis by secreting the peptide hormone insulin. Insulin is packaged within vesicles named insulin secretory granules (ISGs), which recently have been considered to have intrinsic structures and proteins that regulate insulin granule maturation, trafficking, and secretion. Previously, studies have identified a handful of novel ISG-associated proteins, using different separation techniques. The present study combines an optimized ISG isolation technique and mass spectrometry-based proteomics, with an unbiased protein correlation profiling and targeted machine-learning approach to uncover 211 ISG-associated proteins with confidence. Four of these proteins, syntaxin-7, synaptophysin, synaptotagmin-13, and Scamp3 have not been previously associated with ISG. Through colocalization analysis of confocal imaging, we validate the association of these proteins to the ISG in MIN6 and human β-cells. We further validate the role for one (Scamp3) in regulating insulin content and secretion from β-cells for the first time. Scamp3 knockdown INS-1 cells have reduced insulin content and dysfunctional insulin secretion. These data provide the basis for future investigation of Scamp3 in β-cell biology and the regulation of insulin secretion. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Nicholas Norris
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Belinda Yau
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Carlo Famularo
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Hayley Webster
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Thomas Loudovaris
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Helen E. Thomas
- St. Vincent's Institute, Fitzroy, Victoria, Australia
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Mark Larance
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| | - Alistair M. Senior
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, New South Wales, Australia
| | - Melkam A. Kebede
- Charles Perkins Centre, The University of Sydney, Camperdown, New South Wales, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
| |
Collapse
|
5
|
Yau B, Madsen S, Nelson ME, Cooke KC, Fritzen AM, Thorius IH, Stöckli J, James DE, Kebede MA. Genetics and diet shape the relationship between islet function and whole body metabolism. Am J Physiol Endocrinol Metab 2024; 326:E663-E672. [PMID: 38568150 PMCID: PMC11376487 DOI: 10.1152/ajpendo.00060.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/28/2024] [Accepted: 03/30/2024] [Indexed: 05/08/2024]
Abstract
Despite the fact that genes and the environment are known to play a central role in islet function, our knowledge of how these parameters interact to modulate insulin secretory function remains relatively poor. Presently, we performed ex vivo glucose-stimulated insulin secretion and insulin content assays in islets of 213 mice from 13 inbred mouse strains on chow, Western diet (WD), and a high-fat, carbohydrate-free (KETO) diet. Strikingly, among these 13 strains, islets from the commonly used C57BL/6J mouse strain were the least glucose responsive. Using matched metabolic phenotyping data, we performed correlation analyses of isolated islet parameters and found a positive correlation between basal and glucose-stimulated insulin secretion, but no relationship between insulin secretion and insulin content. Using in vivo metabolic measures, we found that glucose tolerance determines the relationship between ex vivo islet insulin secretion and plasma insulin levels. Finally, we showed that islet glucose-stimulated insulin secretion decreased with KETO in almost all strains, concomitant with broader phenotypic changes, such as increased adiposity and glucose intolerance. This is an important finding as it should caution against the application of KETO diet for beta-cell health. Together these data offer key insights into the intersection of diet and genetic background on islet function and whole body glucose metabolism.NEW & NOTEWORTHY Thirteen strains of mice on chow, Western diet, and high-fat, carbohydrate-free (KETO), correlating whole body phenotypes to ex vivo pancreatic islet functional measurements, were used. The study finds a huge spectrum of functional islet responses and insulin phenotypes across all strains and diets, with the ubiquitous C57Bl/6J mouse exhibiting the lowest secretory response of all strains, highlighting the overall importance of considering genetic background when investigating islet function. Ex vivo basal and stimulated insulin secretion are correlated in the islet, and KETO imparts widescale downregulation of islet insulin secretion.
Collapse
Affiliation(s)
- Belinda Yau
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| | - Søren Madsen
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Marin E Nelson
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Kristen C Cooke
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Andreas M Fritzen
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Ida H Thorius
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Jacqueline Stöckli
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - David E James
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
- School of Life and Environmental Sciences, University of Sydney, Camperdown, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Melkam A Kebede
- School of Medical Science, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
- Charles Perkins Centre, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
6
|
Szodorai E, Hevesi Z, Wagner L, Hökfelt TGM, Harkany T, Schnell R. A hydrophobic groove in secretagogin allows for alternate interactions with SNAP-25 and syntaxin-4 in endocrine tissues. Proc Natl Acad Sci U S A 2024; 121:e2309211121. [PMID: 38593081 PMCID: PMC11032447 DOI: 10.1073/pnas.2309211121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 03/09/2024] [Indexed: 04/11/2024] Open
Abstract
Vesicular release of neurotransmitters and hormones relies on the dynamic assembly of the exocytosis/trans-SNARE complex through sequential interactions of synaptobrevins, syntaxins, and SNAP-25. Despite SNARE-mediated release being fundamental for intercellular communication in all excitable tissues, the role of auxiliary proteins modulating the import of reserve vesicles to the active zone, and thus, scaling repetitive exocytosis remains less explored. Secretagogin is a Ca2+-sensor protein with SNAP-25 being its only known interacting partner. SNAP-25 anchors readily releasable vesicles within the active zone, thus being instrumental for 1st phase release. However, genetic deletion of secretagogin impedes 2nd phase release instead, calling for the existence of alternative protein-protein interactions. Here, we screened the secretagogin interactome in the brain and pancreas, and found syntaxin-4 grossly overrepresented. Ca2+-loaded secretagogin interacted with syntaxin-4 at nanomolar affinity and 1:1 stoichiometry. Crystal structures of the protein complexes revealed a hydrophobic groove in secretagogin for the binding of syntaxin-4. This groove was also used to bind SNAP-25. In mixtures of equimolar recombinant proteins, SNAP-25 was sequestered by secretagogin in competition with syntaxin-4. Kd differences suggested that secretagogin could shape unidirectional vesicle movement by sequential interactions, a hypothesis supported by in vitro biological data. This mechanism could facilitate the movement of transport vesicles toward release sites, particularly in the endocrine pancreas where secretagogin, SNAP-25, and syntaxin-4 coexist in both α- and β-cells. Thus, secretagogin could modulate the pace and fidelity of vesicular hormone release by differential protein interactions.
Collapse
Affiliation(s)
- Edit Szodorai
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Zsofia Hevesi
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Ludwig Wagner
- Department of Internal Medicine III, Medical University of Vienna, ViennaA-1090, Austria
| | - Tomas G. M. Hökfelt
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
| | - Tibor Harkany
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
- Department of Molecular Neurosciences, Center for Brain Research, Medical University of Vienna, ViennaA-1090, Austria
| | - Robert Schnell
- Division of Molecular and Cellular Neuroendocrinology, Department of Neuroscience, Biomedicum 7D, Karolinska Institutet, SolnaSE-17165, Sweden
| |
Collapse
|
7
|
Rizwan MZ, Kamstra K, Pretz D, Shepherd PR, Tups A, Grattan DR. Conditional Deletion of β-Catenin in the Mediobasal Hypothalamus Impairs Adaptive Energy Expenditure in Response to High-Fat Diet and Exacerbates Diet-Induced Obesity. J Neurosci 2024; 44:e1666232024. [PMID: 38395612 PMCID: PMC10993030 DOI: 10.1523/jneurosci.1666-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
β-Catenin is a bifunctional molecule that is an effector of the wingless-related integration site (Wnt) signaling to control gene expression and contributes to the regulation of cytoskeleton and neurotransmitter vesicle trafficking. In its former role, β-catenin binds transcription factor 7-like 2 (TCF7L2), which shows strong genetic associations with the pathogenesis of obesity and type-2 diabetes. Here, we sought to determine whether β-catenin plays a role in the neuroendocrine regulation of body weight and glucose homeostasis. Bilateral injections of adeno-associated virus type-2 (AAV2)-mCherry-Cre were placed into the arcuate nucleus of adult male and female β-catenin flox mice, to specifically delete β-catenin expression in the mediobasal hypothalamus (MBH-β-cat KO). Metabolic parameters were then monitored under conditions of low-fat (LFD) and high-fat diet (HFD). On LFD, MBH-β-cat KO mice showed minimal metabolic disturbances, but on HFD, despite having only a small difference in weekly caloric intake, the MBH-β-cat KO mice were significantly heavier than the control mice in both sexes (p < 0.05). This deficit seemed to be due to a failure to show an adaptive increase in energy expenditure seen in controls, which served to offset the increased calories by HFD. Both male and female MBH-β-cat KO mice were highly glucose intolerant when on HFD and displayed a significant reduction in both leptin and insulin sensitivity compared with controls. This study highlights a critical role for β-catenin in the hypothalamic circuits regulating body weight and glucose homeostasis and reveals potential mechanisms by which genetic variation in this pathway could impact on development of metabolic disease.
Collapse
Affiliation(s)
- Mohammed Z Rizwan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| | - Kaj Kamstra
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Dominik Pretz
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - Peter R Shepherd
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
- Faculty of Medical and Health Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Alexander Tups
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
- Centre for Neuroendocrinology and Department of Physiology, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, University of Otago School of Biomedical Sciences, Dunedin 9016, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
8
|
Amos C, Kiessling V, Kreutzberger AJB, Schenk NA, Mohan R, Nyenhuis S, Doyle CA, Wang HY, Levental K, Levental I, Anantharam A, Tamm LK. Membrane lipids couple synaptotagmin to SNARE-mediated granule fusion in insulin-secreting cells. Mol Biol Cell 2024; 35:ar12. [PMID: 38117594 PMCID: PMC10916878 DOI: 10.1091/mbc.e23-06-0225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/22/2023] Open
Abstract
Insulin secretion depends on the Ca2+-regulated fusion of granules with the plasma membrane. A recent model of Ca2+-triggered exocytosis in secretory cells proposes that lipids in the plasma membrane couple the calcium sensor Syt1 to the membrane fusion machinery (Kiessling et al., 2018). Specifically, Ca2+-mediated binding of Syt1's C2 domains to the cell membrane shifts the membrane-anchored SNARE syntaxin-1a to a more fusogenic conformation, straightening its juxtamembrane linker. To test this model in live cells and extend it to insulin secretion, we enriched INS1 cells with a panel of lipids with different acyl chain compositions. Fluorescence lifetime measurements demonstrate that cells with more disordered membranes show an increase in fusion efficiency, and vice versa. Experiments with granules purified from INS1 cells and recombinant SNARE proteins reconstituted in supported membranes confirmed that lipid acyl chain composition determines SNARE conformation and that lipid disordering correlates with increased fusion. Addition of Syt1's C2AB domains significantly decreased lipid order in target membranes and increased SNARE-mediated fusion probability. Strikingly, Syt's action on both fusion and lipid order could be partially bypassed by artificially increasing unsaturated phosphatidylserines in the target membrane. Thus, plasma membrane lipids actively participate in coupling Ca2+/synaptotagmin-sensing to the SNARE fusion machinery in cells.
Collapse
Affiliation(s)
- Chase Amos
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Volker Kiessling
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Alex J. B. Kreutzberger
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Noah A. Schenk
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Ramkumar Mohan
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Sarah Nyenhuis
- Department of Chemistry, University of Virginia, Charlottesville, VA, 22904
| | - Catherine A. Doyle
- Department of Pharmacology, University of Virginia Health System, Charlottesville, VA 22908
| | - Hong-Yin Wang
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Kandice Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| | - Arun Anantharam
- Department of Neurosciences, University of Toledo, Toledo, OH 43614
| | - Lukas K. Tamm
- Department of Molecular Physiology and Biological Physics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908
| |
Collapse
|
9
|
Kanai A, Nishida Y, Iwamoto T, Yokota M, Aoyama S, Ueki K, Ito M, Uzawa H, Iida H, Koike M, Watada H. Genome-wide screening for regulators of degradation of insulin secretory granules with a fluorescent reporter. Biochem Biophys Res Commun 2023; 676:132-140. [PMID: 37516030 DOI: 10.1016/j.bbrc.2023.07.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023]
Abstract
Insulin is essential in controlling blood glucose levels, and its synthesis and secretion have been well investigated. In contrast, how insulin secretory granules (ISGs) are degraded in pancreatic beta cells remains largely unknown. To clarify the mechanism, we constructed a fluorescent reporter detecting ISG degradation, where EGFP and mCherry are tandemly conjugated to a cytoplasmic region of ZnT8, an ISG membrane-localized protein. Depletion of serum and amino acid stimulated lysosomal ISG degradation detected with the reporter. Next, with MIN6 cells expressing Cas9 and the reporter, we investigated the involvement of conventional Atg5/7-dependent autophagy to show that it is dispensable for the ISG degradation process. Finally, we performed genome-wide screening by enriching the cells lacking the ISG degradation and showed that pathways regulating autophagy are not identified. These results suggest that alternative degradation in lysosomes, instead of conventional autophagy, may be involved in ISG degradation.
Collapse
Affiliation(s)
- Akiko Kanai
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| | - Yuya Nishida
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan.
| | - Tatsuya Iwamoto
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| | - Mutsumi Yokota
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shuhei Aoyama
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| | - Kyosei Ueki
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| | - Minami Ito
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| | - Hirotsugu Uzawa
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| | - Hitoshi Iida
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| | - Masato Koike
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hirotaka Watada
- Department of Endocrinology & Metabolism, Juntendo University Graduate School of Medicine, Japan
| |
Collapse
|
10
|
Ceddia RP, Zurawski Z, Thompson Gray A, Adegboye F, McDonald-Boyer A, Shi F, Liu D, Maldonado J, Feng J, Li Y, Alford S, Ayala JE, McGuinness OP, Collins S, Hamm HE. Gβγ-SNAP25 exocytotic brake removal enhances insulin action, promotes adipocyte browning, and protects against diet-induced obesity. J Clin Invest 2023; 133:e160617. [PMID: 37561580 PMCID: PMC10541194 DOI: 10.1172/jci160617] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/08/2023] [Indexed: 08/12/2023] Open
Abstract
Negative regulation of exocytosis from secretory cells is accomplished through inhibitory signals from Gi/o GPCRs by Gβγ subunit inhibition of 2 mechanisms: decreased calcium entry and direct interaction of Gβγ with soluble N-ethylmaleimide-sensitive factor attachment protein (SNAP) receptor (SNARE) plasma membrane fusion machinery. Previously, we disabled the second mechanism with a SNAP25 truncation (SNAP25Δ3) that decreased Gβγ affinity for the SNARE complex, leaving exocytotic fusion and modulation of calcium entry intact and removing GPCR-Gβγ inhibition of SNARE-mediated exocytosis. Here, we report substantial metabolic benefit in mice carrying this mutation. Snap25Δ3/Δ3 mice exhibited enhanced insulin sensitivity and beiging of white fat. Metabolic protection was amplified in Snap25Δ3/Δ3 mice challenged with a high-fat diet. Glucose homeostasis, whole-body insulin action, and insulin-mediated glucose uptake into white adipose tissue were improved along with resistance to diet-induced obesity. Metabolic protection in Snap25Δ3/Δ3 mice occurred without compromising the physiological response to fasting or cold. All metabolic phenotypes were reversed at thermoneutrality, suggesting that basal autonomic activity was required. Direct electrode stimulation of sympathetic neuron exocytosis from Snap25Δ3/Δ3 inguinal adipose depots resulted in enhanced and prolonged norepinephrine release. Thus, the Gβγ-SNARE interaction represents a cellular mechanism that deserves further exploration as an additional avenue for combating metabolic disease.
Collapse
Affiliation(s)
- Ryan P. Ceddia
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Zack Zurawski
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Feyisayo Adegboye
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Fubiao Shi
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Dianxin Liu
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jose Maldonado
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Jiesi Feng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
| | - Simon Alford
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Julio E. Ayala
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Owen P. McGuinness
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Sheila Collins
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Heidi E. Hamm
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Rahman MM, Pathak A, Schueler KL, Alsharif H, Michl A, Alexander J, Kim JA, Bhatnagar S. Genetic ablation of synaptotagmin-9 alters tomosyn-1 function to increase insulin secretion from pancreatic β-cells improving glucose clearance. FASEB J 2023; 37:e23075. [PMID: 37432648 PMCID: PMC10348599 DOI: 10.1096/fj.202300291rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/12/2023]
Abstract
Stimulus-coupled insulin secretion from the pancreatic islet β-cells involves the fusion of insulin granules to the plasma membrane (PM) via SNARE complex formation-a cellular process key for maintaining whole-body glucose homeostasis. Less is known about the role of endogenous inhibitors of SNARE complexes in insulin secretion. We show that an insulin granule protein synaptotagmin-9 (Syt9) deletion in mice increased glucose clearance and plasma insulin levels without affecting insulin action compared to the control mice. Upon glucose stimulation, increased biphasic and static insulin secretion were observed from ex vivo islets due to Syt9 loss. Syt9 colocalizes and binds with tomosyn-1 and the PM syntaxin-1A (Stx1A); Stx1A is required for forming SNARE complexes. Syt9 knockdown reduced tomosyn-1 protein abundance via proteasomal degradation and binding of tomosyn-1 to Stx1A. Furthermore, Stx1A-SNARE complex formation was increased, implicating Syt9-tomosyn-1-Stx1A complex is inhibitory in insulin secretion. Rescuing tomosyn-1 blocked the Syt9-knockdown-mediated increases in insulin secretion. This shows that the inhibitory effects of Syt9 on insulin secretion are mediated by tomosyn-1. We report a molecular mechanism by which β-cells modulate their secretory capacity rendering insulin granules nonfusogenic by forming the Syt9-tomosyn-1-Stx1A complex. Altogether, Syt9 loss in β-cells decreases tomosyn-1 protein abundance, increasing the formation of Stx1A-SNARE complexes, insulin secretion, and glucose clearance. These outcomes differ from the previously published work that identified Syt9 has either a positive or no effect of Syt9 on insulin secretion. Future work using β-cell-specific deletion of Syt9 mice is key for establishing the role of Syt9 in insulin secretion.
Collapse
Affiliation(s)
- Md Mostafizur Rahman
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Asmita Pathak
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | | | - Haifa Alsharif
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Ava Michl
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Justin Alexander
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Jeong-A Kim
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| | - Sushant Bhatnagar
- Heersink School of Medicine, Division of Endocrinology, Diabetes, & Metabolism, Comprehensive Diabetes Center, University of Alabama, Birmingham, AL, 35294
| |
Collapse
|
12
|
Hsu YY, Chen SJ, Bernal-Chanchavac J, Sharma B, Moghimianavval H, Stephanopoulos N, Liu AP. Calcium-triggered DNA-mediated membrane fusion in synthetic cells. Chem Commun (Camb) 2023; 59:8806-8809. [PMID: 37365952 PMCID: PMC10527479 DOI: 10.1039/d3cc02204h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
In cells, membrane fusion is mediated by SNARE proteins, whose activities are calcium-dependent. While several non-native membrane fusion mechanisms have been demonstrated, few can respond to external stimuli. Here, we develop a calcium-triggered DNA-mediated membrane fusion strategy where fusion is regulated using surface-bound PEG chains that are cleavable by the calcium-activated protease calpain-1.
Collapse
Affiliation(s)
- Yen-Yu Hsu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | - Samuel J Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
| | | | - Bineet Sharma
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | - Allen P Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
13
|
Hsu YY, Chen SJ, Bernal-Chanchavac J, Sharma B, Moghimianavval H, Stephanopoulos N, Liu AP. Calcium-triggered DNA-mediated membrane fusion in synthetic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539684. [PMID: 37205334 PMCID: PMC10187331 DOI: 10.1101/2023.05.06.539684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In cells, membrane fusion is mediated by SNARE proteins, whose activities are calcium-dependent. While several non-native membrane fusion mechanisms have been demonstrated, few can respond to external stimuli. Here, we develop a calcium-triggered DNA-mediated membrane fusion strategy where fusion is regulated using surface-bound PEG chains that are cleavable by the calcium-activated protease calpain-1.
Collapse
Affiliation(s)
- Yen-Yu Hsu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Samuel J. Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Bineet Sharma
- Department of Chemistry and Chemical Biology, Rutgers University, New Brunswick, New Jersey, USA
| | | | | | - Allen P. Liu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
14
|
Wei C, Zhang Z, Fu Q, He Y, Yang T, Sun M. The reversible effects of free fatty acids on sulfonylurea-stimulated insulin secretion are related to the expression and dynamin-mediated endocytosis of KATP channels in pancreatic β cells. Endocr Connect 2023; 12:e220221. [PMID: 36398885 PMCID: PMC9782416 DOI: 10.1530/ec-22-0221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/19/2022]
Abstract
Objective Lipotoxicity-induced pancreatic β cell-dysfunction results in decreased insulin secretion in response to multiple stimulus. In this study, we investigated the reversible effects of palmitate (PA) or oleate (OA) on insulin secretion and the relationship with pancreatic β-cell ATP-sensitive potassium (KATP) channels. Methods MIN6 cells were treated with PA and OA for 48 h and then washed out for 24 h to determine the changes in expression and endocytosis of the KATP channels and glucose-stimulated insulin secretion (GSIS) and sulfonylurea-stimulated insulin secretion (SU-SIS). Results MIN6 cells exposed to PA or OA showed both impaired GSIS and SU-SIS; the former was not restorable, while the latter was reversible with washout of PA or OA. Decreased expressions of both total and surface Kir6.2 and SUR1 and endocytosis of KATP channels were observed, which were also recoverable after washout. When MIN6 cells exposed to free fatty acids (FFAs) were cotreated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) or dynasore, we found that endocytosis of KATP channels did not change significantly by AICAR but was almost completely blocked by dynasore. Meanwhile, the inhibition of endocytosis of KATP channels after washout could be activated by PIP2. The recovery of SU-SIS after washout was significantly weakened by PIP2, but the decrease of SU-SIS induced by FFAs was not alleviated by dynasore. Conclusions FFAs can cause reversible impairment of SU-SIS on pancreatic β cells. The reversibility of the effects is partial because of the changes of expression and endocytosis of Kir6.2 and SUR1 which was mediated by dynamin.
Collapse
Affiliation(s)
- Chenmin Wei
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Endocrinology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zichen Zhang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Fu
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yunqiang He
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Yang
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Min Sun
- Department of Endocrinology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
15
|
Yang J, Jin H, Liu Y, Guo Y, Zhang Y. A dynamic template complex mediates Munc18-chaperoned SNARE assembly. Proc Natl Acad Sci U S A 2022; 119:e2215124119. [PMID: 36454760 PMCID: PMC9894263 DOI: 10.1073/pnas.2215124119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022] Open
Abstract
Munc18 chaperones assembly of three membrane-anchored soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) into a four-helix bundle to mediate membrane fusion between vesicles and plasma membranes, leading to neurotransmitter or insulin release, glucose transporter (GLUT4) translocation, or other exocytotic processes. Yet, the molecular mechanism underlying chaperoned SNARE assembly is not well understood. Recent evidence suggests that Munc18-1 and Munc18-3 simultaneously bind their cognate SNAREs to form ternary template complexes - Munc18-1:Syntaxin-1:VAMP2 for synaptic vesicle fusion and Munc18-3:Syntaxin-4:VAMP2 for GLUT4 translocation and insulin release, which facilitate the binding of SNAP-25 or SNAP-23 to conclude SNARE assembly. Here, we further investigate the structure, dynamics, and function of the template complexes using optical tweezers. Our results suggest that the synaptic template complex transitions to an activated state with a rate of 0.054 s-1 for efficient SNAP-25 binding. The transition depends upon the linker region of syntaxin-1 upstream of its helical bundle-forming SNARE motif. In addition, the template complex is stabilized by a poorly characterized disordered loop region in Munc18-1. While the synaptic template complex efficiently binds both SNAP-25 and SNAP-23, the GLUT4 template complex strongly favors SNAP-23 over SNAP-25, despite the similar stabilities of their assembled SNARE bundles. Together, our data demonstrate that a highly dynamic template complex mediates efficient and specific SNARE assembly.
Collapse
Affiliation(s)
- Jie Yang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT06511
| | - Huaizhou Jin
- Department of Cell Biology, Yale School of Medicine, New Haven, CT06511
| | - Yihao Liu
- Department of Cell Biology, Yale School of Medicine, New Haven, CT06511
| | - Yaya Guo
- Department of Cell Biology, Yale School of Medicine, New Haven, CT06511
| | - Yongli Zhang
- Department of Cell Biology, Yale School of Medicine, New Haven, CT06511
- Integrated Graduate Program in Physical and Engineering Biology, New Haven, CT06511
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06511
| |
Collapse
|
16
|
Kang F, Xie L, Qin T, Miao Y, Kang Y, Takahashi T, Liang T, Xie H, Gaisano HY. Plasma membrane flipping of Syntaxin-2 regulates its inhibitory action on insulin granule exocytosis. Nat Commun 2022; 13:6512. [PMID: 36316316 PMCID: PMC9622911 DOI: 10.1038/s41467-022-33986-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 10/05/2022] [Indexed: 11/07/2022] Open
Abstract
Enhancing pancreatic β-cell secretion is a primary therapeutic target for type-2 diabetes (T2D). Syntaxin-2 (Stx2) has just been identified to be an inhibitory SNARE for insulin granule exocytosis, holding potential as a treatment for T2D, yet its molecular underpinnings remain unclear. We show that excessive Stx2 recruitment to raft-like granule docking sites at higher binding affinity than pro-fusion syntaxin-1A effectively competes for and inhibits fusogenic SNARE machineries. Depletion of Stx2 in human β-cells improves insulin secretion by enhancing trans-SNARE complex assembly and cis-SNARE disassembly. Using a genetically-encoded reporter, glucose stimulation is shown to induce Stx2 flipping across the plasma membrane, which relieves its suppression of cytoplasmic fusogenic SNARE complexes to promote insulin secretion. Targeting the flipping efficiency of Stx2 profoundly modulates secretion, which could restore the impaired insulin secretion in diabetes. Here, we show that Stx2 acts to assist this precise tuning of insulin secretion in β-cells, including in diabetes.
Collapse
Affiliation(s)
- Fei Kang
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada ,grid.231844.80000 0004 0474 0428Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4 Canada
| | - Li Xie
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Tairan Qin
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Yifan Miao
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Youhou Kang
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Toshimasa Takahashi
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Tao Liang
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada ,grid.231844.80000 0004 0474 0428Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4 Canada
| | - Huanli Xie
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada
| | - Herbert Y. Gaisano
- grid.17063.330000 0001 2157 2938Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8 Canada ,grid.231844.80000 0004 0474 0428Toronto General Hospital Research Institute, University Health Network, 200 Elizabeth Street, Toronto, ON M5G 2C4 Canada
| |
Collapse
|
17
|
Brubaker PL. The Molecular Determinants of Glucagon-like Peptide Secretion by the Intestinal L cell. Endocrinology 2022; 163:6717959. [PMID: 36156130 DOI: 10.1210/endocr/bqac159] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Indexed: 11/19/2022]
Abstract
The intestinal L cell secretes a diversity of biologically active hormones, most notably the glucagon-like peptides, GLP-1 and GLP-2. The highly successful introduction of GLP-1-based drugs into the clinic for the treatment of patients with type 2 diabetes and obesity, and of a GLP-2 analog for patients with short bowel syndrome, has led to the suggestion that stimulation of the endogenous secretion of these peptides may serve as a novel therapeutic approach in these conditions. Situated in the intestinal epithelium, the L cell demonstrates complex relationships with not only circulating, paracrine, and neural regulators, but also ingested nutrients and other factors in the lumen, most notably the microbiota. The integrated input from these numerous secretagogues results in a variety of temporal patterns in L cell secretion, ranging from minutes to 24 hours. This review combines the findings of traditional, physiological studies with those using newer molecular approaches to describe what is known and what remains to be elucidated after 5 decades of research on the intestinal L cell and its secreted peptides, GLP-1 and GLP-2.
Collapse
Affiliation(s)
- Patricia L Brubaker
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Department of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
18
|
Cui L, Li H, Xi Y, Hu Q, Liu H, Fan J, Xiang Y, Zhang X, Shui W, Lai Y. Vesicle trafficking and vesicle fusion: mechanisms, biological functions, and their implications for potential disease therapy. MOLECULAR BIOMEDICINE 2022; 3:29. [PMID: 36129576 PMCID: PMC9492833 DOI: 10.1186/s43556-022-00090-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/12/2022] [Indexed: 11/10/2022] Open
Abstract
Intracellular vesicle trafficking is the fundamental process to maintain the homeostasis of membrane-enclosed organelles in eukaryotic cells. These organelles transport cargo from the donor membrane to the target membrane through the cargo containing vesicles. Vesicle trafficking pathway includes vesicle formation from the donor membrane, vesicle transport, and vesicle fusion with the target membrane. Coat protein mediated vesicle formation is a delicate membrane budding process for cargo molecules selection and package into vesicle carriers. Vesicle transport is a dynamic and specific process for the cargo containing vesicles translocation from the donor membrane to the target membrane. This process requires a group of conserved proteins such as Rab GTPases, motor adaptors, and motor proteins to ensure vesicle transport along cytoskeletal track. Soluble N-ethyl-maleimide-sensitive factor (NSF) attachment protein receptors (SNARE)-mediated vesicle fusion is the final process for vesicle unloading the cargo molecules at the target membrane. To ensure vesicle fusion occurring at a defined position and time pattern in eukaryotic cell, multiple fusogenic proteins, such as synaptotagmin (Syt), complexin (Cpx), Munc13, Munc18 and other tethering factors, cooperate together to precisely regulate the process of vesicle fusion. Dysfunctions of the fusogenic proteins in SNARE-mediated vesicle fusion are closely related to many diseases. Recent studies have suggested that stimulated membrane fusion can be manipulated pharmacologically via disruption the interface between the SNARE complex and Ca2+ sensor protein. Here, we summarize recent insights into the molecular mechanisms of vesicle trafficking, and implications for the development of new therapeutics based on the manipulation of vesicle fusion.
Collapse
|
19
|
Hong HJ, Joung KH, Kim YK, Choi MJ, Kang SG, Kim JT, Kang YE, Chang JY, Moon JH, Jun S, Ro HJ, Lee Y, Kim H, Park JH, Kang BE, Jo Y, Choi H, Ryu D, Lee CH, Kim H, Park KS, Kim HJ, Shong M. Mitoribosome insufficiency in β cells is associated with type 2 diabetes-like islet failure. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:932-945. [PMID: 35804190 PMCID: PMC9355985 DOI: 10.1038/s12276-022-00797-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/22/2022] [Accepted: 03/14/2022] [Indexed: 12/04/2022]
Abstract
Genetic variations in mitoribosomal subunits and mitochondrial transcription factors are related to type 2 diabetes. However, the role of islet mitoribosomes in the development of type 2 diabetes has not been determined. We investigated the effects of the mitoribosomal gene on β-cell function and glucose homeostasis. Mitoribosomal gene expression was analyzed in datasets from the NCBI GEO website (GSE25724, GSE76894, and GSE76895) and the European Nucleotide Archive (ERP017126), which contain the transcriptomes of type 2 diabetic and nondiabetic organ donors. We found deregulation of most mitoribosomal genes in islets from individuals with type 2 diabetes, including partial downregulation of CRIF1. The phenotypes of haploinsufficiency in a single mitoribosomal gene were examined using β-cell-specific Crif1 (Mrpl59) heterozygous-deficient mice. Crif1beta+/− mice had normal glucose tolerance, but their islets showed a loss of first-phase glucose-stimulated insulin secretion. They also showed increased β-cell mass associated with higher expression of Reg family genes. However, Crif1beta+/− mice showed earlier islet failure in response to high-fat feeding, which was exacerbated by aging. Haploinsufficiency of a single mitoribosomal gene predisposes rodents to glucose intolerance, which resembles the early stages of type 2 diabetes in humans. Disruptions in the mitochondrial protein synthesis machinery give rise to metabolic disturbances that lay the foundation for type 2 diabetes. As physiological glucose levels rise, the energy-generating machinery of the mitochondria responds with increased activity, which stimulates insulin secretion. Many proteins responsible for mitochondrial metabolism are produced by ribosomes within this cellular organelle. Researchers led by Hyun Jin Kim and Minho Shong at Chungnam National University, Daejon, South Korea, have determined that mutations affecting a mitochondrial ribosomal protein called CRIF1 can lead to impaired insulin release. Mice with reduced CRIF1 were initially healthy, but as they aged, exhibited signs of impaired pancreatic function similar to those seen in patients with early-stage diabetes. This process was accelerated by consumption of a high-fat diet, and the researchers propose that this mechanism may be directly relevant to human disease.
Collapse
Affiliation(s)
- Hyun Jung Hong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Kyong Hye Joung
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Yong Kyung Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Min Jeong Choi
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Seul Gi Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Jung Tae Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Yea Eun Kang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Joon Young Chang
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea.,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Joon Ho Moon
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Sangmi Jun
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, 28119, Korea.,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Hyun-Joo Ro
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, 28119, Korea.,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Yujeong Lee
- Center for Research Equipment, Korea Basic Science Institute, Cheongju, 28119, Korea.,Convergent Research Center for Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, 34114, Korea
| | - Hyeongseok Kim
- Department of Biochemistry, Chungnam National University School of Medicine, Daejeon, 35015, Korea
| | - Jae-Hyung Park
- Department of Physiology, Keimyung University School of Medicine, Daegu, 704-200, Korea
| | - Baeki E Kang
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Yunju Jo
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Heejung Choi
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Dongryeol Ryu
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea.,Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, 16419, Korea.,Samsung Biomedical Research Institute, Samsung Medical Center, Seoul, 06351, Korea
| | - Chul-Ho Lee
- Animal Model Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Korea
| | - Hail Kim
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Korea
| | - Kyu-Sang Park
- Department of Physiology, Yonsei University Wonju College of Medicine, Wonju, 26426, Korea
| | - Hyun Jin Kim
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Korea.
| | - Minho Shong
- Research Center for Endocrine and Metabolic Diseases, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Korea. .,Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, 35015, Korea.
| |
Collapse
|
20
|
Dissanayake WC, Shepherd PR. β-cells retain a pool of insulin-containing secretory vesicles regulated by adherens junctions and the cadherin binding protein p120 catenin. J Biol Chem 2022; 298:102240. [PMID: 35809641 PMCID: PMC9358467 DOI: 10.1016/j.jbc.2022.102240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 11/03/2022] Open
Abstract
The β-cells of the islets of Langerhans are the sole producers of insulin in the human body. In response to rising glucose levels, insulin-containing vesicles inside β-cells fuse with the plasma membrane and release their cargo. However, the mechanisms regulating this process are only partly understood. Previous evidence indicated reductions in α-catenin elevate insulin release, while reductions in β-catenin decrease insulin release. α- and β-catenin contribute to cellular regulation in a range of ways but one is as members of the adherens junction complex and these contribute to the development of cell polarity in b-cells. Therefore, we investigated the effects of adherens junctions on insulin release. We show in INS-1E β-cells knockdown of either E- or N-cadherin had only small effects on insulin secretion, but simultaneous knockout of both cadherins resulted in a significant increase in basal insulin release to the same level as glucose-stimulated release. This double knockdown also significantly attenuated levels of p120 catenin, a cadherin binding partner involved in regulating cadherin turnover. Conversely, reducing p120 catenin levels with siRNA destabilized both E- and N-cadherin, and this was also associated with an increase in levels of insulin secreted from INS-1E cells. Furthermore, there were also changes in these cells consistent with higher insulin release, namely reductions in levels of F-actin and increased intracellular free Ca2+ levels in response to KCl-induced membrane depolarization. Taken together, these data provide evidence that adherens junctions play important roles in retaining a pool of insulin secretory vesicles within the cell and establish a role for p120 catenin in regulating this process.
Collapse
Affiliation(s)
- Waruni C Dissanayake
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Peter R Shepherd
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
21
|
Gong S, Huo S, Luo Y, Li Y, Ma Y, Huang X, Hu M, Liu W, Zhang R, Cai X, Zhou L, Chen L, Ren Q, Zhang S, Zhu Y, Zhang X, Chen J, Wu J, Zhou X, Lin X, Han X, Ji L. A variation in SORBS1 is associated with type 2 diabetes and high-density lipoprotein cholesterol in Chinese population. Diabetes Metab Res Rev 2022; 38:e3524. [PMID: 35107206 DOI: 10.1002/dmrr.3524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 12/05/2021] [Accepted: 12/25/2021] [Indexed: 11/09/2022]
Abstract
AIM Sorbin and SH3-domain-containing-1 (SORBS1) play important roles in insulin signalling and cytoskeleton regulation. Variants of the SORBS1 gene have been inconsistently reported to be associated with type 2 diabetes or diabetic kidney disease (DKD). METHODS Two independent case-control studies based on two randomized sampling cohorts (cohort 1, n = 3345; cohort 2, n = 2282) were used to confirm the association between rs2281939 of SORBS1 and impaired glucose regulation (IGR). An additional hospital-based cohort (cohort 3, n = 2135) and cohort 1 were used to investigate the association between rs2281939 and DKD. The phenotype of rare variants of SORBS1 was explored in 453 patients with early onset type 2 diabetes (diagnosed before 40 years of age, EOD). RESULTS The G allele was associated with type 2 diabetes (additive model: OR = 1.25, 95% CI [1.03-1.52], p = 0.022) in cohort 1, and IGR in cohort 2 (additive model: OR = 1.22, 95% CI [1.05-1.43], p = 0.01). We found that the G allele was also associated with HDL-c levels in women in both cohort 1 (p = 0.03) and 2 (p = 0.029) in the dominant model. The rare variant carriers also had lower HDL-c and LDL-c levels than non-carriers in patients with EOD. No association between rs2281939 or rare variants and DKD was observed. CONCLUSIONS The variants in the SORBS1 gene were associated with IGR and HDL-c levels but not with DKD in the Chinese Han population.
Collapse
Affiliation(s)
- Siqian Gong
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Shaofeng Huo
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
| | - Yingying Luo
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yufeng Li
- Beijing Pinggu Hospital, Beijing, China
| | - Yumin Ma
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiuting Huang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Mengdie Hu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Wei Liu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Rui Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiaoling Cai
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Lingli Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Ling Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Qian Ren
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Simin Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Yu Zhu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xiuying Zhang
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Jing Chen
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Jing Wu
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xianghai Zhou
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Xu Lin
- Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Hangzhou, China
- Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Xueyao Han
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| | - Linong Ji
- Department of Endocrinology and Metabolism, Peking University People's Hospital, Peking University Diabetes Center, Beijing, China
| |
Collapse
|
22
|
Rodrigues-dos-Santos K, Roy G, Binns DD, Grzemska MG, Barella LF, Armoo F, McCoy MK, Huynh AV, Yang JZ, Posner BA, Cobb MH, Kalwat MA. Small Molecule-mediated Insulin Hypersecretion Induces Transient ER Stress Response and Loss of Beta Cell Function. Endocrinology 2022; 163:6596276. [PMID: 35641126 PMCID: PMC9225822 DOI: 10.1210/endocr/bqac081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Indexed: 11/19/2022]
Abstract
Pancreatic islet beta cells require a fine-tuned endoplasmic reticulum (ER) stress response for normal function; abnormal ER stress contributes to diabetes pathogenesis. Here, we identified a small molecule, SW016789, with time-dependent effects on beta cell ER stress and function. Acute treatment with SW016789 potentiated nutrient-induced calcium influx and insulin secretion, while chronic exposure to SW016789 transiently induced ER stress and shut down secretory function in a reversible manner. Distinct from the effects of thapsigargin, SW016789 did not affect beta cell viability or apoptosis, potentially due to a rapid induction of adaptive genes, weak signaling through the eIF2α kinase PERK, and lack of oxidative stress gene Txnip induction. We determined that SW016789 acted upstream of voltage-dependent calcium channels (VDCCs) and potentiated nutrient- but not KCl-stimulated calcium influx. Measurements of metabolomics, oxygen consumption rate, and G protein-coupled receptor signaling did not explain the potentiating effects of SW016789. In chemical cotreatment experiments, we discovered synergy between SW016789 and activators of protein kinase C and VDCCs, suggesting involvement of these pathways in the mechanism of action. Finally, chronically elevated calcium influx was required for the inhibitory impact of SW016789, as blockade of VDCCs protected human islets and MIN6 beta cells from hypersecretion-induced dysfunction. We conclude that beta cells undergoing this type of pharmacological hypersecretion have the capacity to suppress their function to mitigate ER stress and avoid apoptosis. These results have the potential to uncover beta cell ER stress mitigation factors and add support to beta cell rest strategies to preserve function.
Collapse
Affiliation(s)
| | | | | | | | - Luiz F Barella
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Fiona Armoo
- Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, Indianapolis, IN, USA
| | - Melissa K McCoy
- Departments of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Andy V Huynh
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan Z Yang
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Bruce A Posner
- Departments of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Melanie H Cobb
- Departments of Pharmacology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Michael A Kalwat
- Correspondence: Michael A. Kalwat, PhD, Lilly Diabetes Center of Excellence, Indiana Biosciences Research Institute, 1210 Waterway Blvd Ste, 2000 Indianapolis, IN 46202, USA. or
| |
Collapse
|
23
|
Stožer A, Šterk M, Paradiž Leitgeb E, Markovič R, Skelin Klemen M, Ellis CE, Križančić Bombek L, Dolenšek J, MacDonald PE, Gosak M. From Isles of Königsberg to Islets of Langerhans: Examining the Function of the Endocrine Pancreas Through Network Science. Front Endocrinol (Lausanne) 2022; 13:922640. [PMID: 35784543 PMCID: PMC9240343 DOI: 10.3389/fendo.2022.922640] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 12/12/2022] Open
Abstract
Islets of Langerhans are multicellular microorgans located in the pancreas that play a central role in whole-body energy homeostasis. Through secretion of insulin and other hormones they regulate postprandial storage and interprandial usage of energy-rich nutrients. In these clusters of hormone-secreting endocrine cells, intricate cell-cell communication is essential for proper function. Electrical coupling between the insulin-secreting beta cells through gap junctions composed of connexin36 is particularly important, as it provides the required, most important, basis for coordinated responses of the beta cell population. The increasing evidence that gap-junctional communication and its modulation are vital to well-regulated secretion of insulin has stimulated immense interest in how subpopulations of heterogeneous beta cells are functionally arranged throughout the islets and how they mediate intercellular signals. In the last decade, several novel techniques have been proposed to assess cooperation between cells in islets, including the prosperous combination of multicellular imaging and network science. In the present contribution, we review recent advances related to the application of complex network approaches to uncover the functional connectivity patterns among cells within the islets. We first provide an accessible introduction to the basic principles of network theory, enumerating the measures characterizing the intercellular interactions and quantifying the functional integration and segregation of a multicellular system. Then we describe methodological approaches to construct functional beta cell networks, point out possible pitfalls, and specify the functional implications of beta cell network examinations. We continue by highlighting the recent findings obtained through advanced multicellular imaging techniques supported by network-based analyses, giving special emphasis to the current developments in both mouse and human islets, as well as outlining challenges offered by the multilayer network formalism in exploring the collective activity of islet cell populations. Finally, we emphasize that the combination of these imaging techniques and network-based analyses does not only represent an innovative concept that can be used to describe and interpret the physiology of islets, but also provides fertile ground for delineating normal from pathological function and for quantifying the changes in islet communication networks associated with the development of diabetes mellitus.
Collapse
Affiliation(s)
- Andraž Stožer
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Marko Šterk
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Eva Paradiž Leitgeb
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Rene Markovič
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
- Institute of Mathematics and Physics, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia
| | - Maša Skelin Klemen
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Cara E. Ellis
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Jurij Dolenšek
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| | - Patrick E. MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada
| | - Marko Gosak
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
- Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
24
|
Stem Cell-Derived Islets for Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23095099. [PMID: 35563490 PMCID: PMC9105352 DOI: 10.3390/ijms23095099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/23/2022] [Accepted: 04/28/2022] [Indexed: 02/04/2023] Open
Abstract
Since the discovery of insulin a century ago, insulin injection has been a primary treatment for both type 1 (T1D) and type 2 diabetes (T2D). T2D is a complicated disea se that is triggered by the dysfunction of insulin-producing β cells and insulin resistance in peripheral tissues. Insulin injection partially compensates for the role of endogenous insulin which promotes glucose uptake, lipid synthesis and organ growth. However, lacking the continuous, rapid, and accurate glucose regulation by endogenous functional β cells, the current insulin injection therapy is unable to treat the root causes of the disease. Thus, new technologies such as human pluripotent stem cell (hPSC)-derived islets are needed for both identifying the key molecular and genetic causes of T2D and for achieving a long-term treatment. This perspective review will provide insight into the efficacy of hPSC-derived human islets for treating and understanding T2D. We discuss the evidence that β cells should be the primary target for T2D treatment, the use of stem cells for the modeling of T2D and the potential use of hPSC-derived islet transplantation for treating T2D.
Collapse
|
25
|
Ono Y, Doi N, Shindo M, Pánico P, Salazar AM. Cryptic splicing events result in unexpected protein products from calpain-10 (CAPN10) cDNA. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119188. [PMID: 34906616 DOI: 10.1016/j.bbamcr.2021.119188] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/13/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Calpain-10 (CAPN10) belongs to the calpain superfamily. Genetic polymorphisms of the CAPN10 gene are associated with susceptibility to develop type 2 diabetes mellitus. Although the role of CAPN10 in the pathophysiology of diabetes has been extensively investigated, its biochemical properties are largely unknown. In this report, we made the surprising discovery that CAPN10 cDNA transcripts are subject to cryptic splicing and unexpected protein products were expressed. The same set of splicing products was reproducibly detected in four types of cultured cells including the primary culture of mouse myoblast. At least, one of the products was identical to a natural splicing variant. Sequence analysis of the splicing potential of CAPN10 cDNA, together with mutagenesis studies, resulted in the identification of a powerful splicing acceptor site at the junction of the sequences encoded by exons 9 and 10. We successfully extended the analysis to create expression construct resistant to splicing for both human and mouse CAPN10. The construct allowed us to analyze two major CAPN10 isoforms and reveal their difference in substrate proteolysis and potential cell functions. These results demonstrate that proteins produced from cDNA do not necessarily reflect the original nucleotide sequence. We provide insight into the property of recombinantly expressed CAPN10 proteins in cultured cells circumventing unexpected protein products.
Collapse
Affiliation(s)
- Yasuko Ono
- Calpain Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science (TMiMS), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 1568506, Japan.
| | - Naoko Doi
- Calpain Project, Department of Basic Medical Sciences, Tokyo Metropolitan Institute of Medical Science (TMiMS), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 1568506, Japan
| | - Mayumi Shindo
- Advanced Technical Support Department, Center for Basic Technology Research, Tokyo Metropolitan Institute of Medical Science (TMiMS), 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 1568506, Japan
| | - Pablo Pánico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico; Department of Cognitive Neurosciences, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Ana María Salazar
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
26
|
Tong X, Liu S, Stein R, Imai Y. Lipid Droplets' Role in the Regulation of β-Cell Function and β-Cell Demise in Type 2 Diabetes. Endocrinology 2022; 163:6516108. [PMID: 35086144 PMCID: PMC8826878 DOI: 10.1210/endocr/bqac007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 01/29/2023]
Abstract
During development of type 2 diabetes (T2D), excessive nutritional load is thought to expose pancreatic islets to toxic effects of lipids and reduce β-cell function and mass. However, lipids also play a positive role in cellular metabolism and function. Thus, proper trafficking of lipids is critical for β cells to maximize the beneficial effects of these molecules while preventing their toxic effects. Lipid droplets (LDs) are organelles that play an important role in the storage and trafficking of lipids. In this review, we summarize the discovery of LDs in pancreatic β cells, LD lifecycle, and the effect of LD catabolism on β-cell insulin secretion. We discuss factors affecting LD formation such as age, cell type, species, and nutrient availability. We then outline published studies targeting critical LD regulators, primarily in rat and human β-cell models, to understand the molecular effect of LD formation and degradation on β-cell function and health. Furthermore, based on the abnormal LD accumulation observed in human T2D islets, we discuss the possible role of LDs during the development of β-cell failure in T2D. Current knowledge indicates that proper formation and clearance of LDs are critical to normal insulin secretion, endoplasmic reticulum homeostasis, and mitochondrial integrity in β cells. However, it remains unclear whether LDs positively or negatively affect human β-cell demise in T2D. Thus, we discuss possible research directions to address the knowledge gap regarding the role of LDs in β-cell failure.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Siming Liu
- Department of Internal Medicine Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
| | - Roland Stein
- Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Yumi Imai
- Department of Internal Medicine Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa 52242, USA
- Iowa City Veterans Affairs Medical Center, Iowa City, Iowa 52246, USA
- Correspondence: Yumi Imai, MD, Department of Internal Medicine Carver College of Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, 200 Hawkins Dr, PBDB Rm 3318, Iowa City, IA 52242, USA.
| |
Collapse
|
27
|
Kang F, Gaisano HY. Imaging Insulin Granule Dynamics in Human Pancreatic β-Cells Using Total Internal Reflection Fluorescence (TIRF) Microscopy. Methods Mol Biol 2022; 2473:79-88. [PMID: 35819760 DOI: 10.1007/978-1-0716-2209-4_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Due to the ultra-thin optical sectioning capability of exclusively illuminating space at the interface where total internal reflection occurs, the TIRF microscope has been indispensable for monitoring biological processes adjacent to the plasma membrane with excellent signal-to-noise ratio. Insulin-containing granules fuse with the plasma membrane to release contents within hundreds of milliseconds, which involves well-orchestrated assembly of SNARE complex and associated proteins. A video-rate multiple-color TIRF microscope offers the unique opportunity to visualize single secretory granule docking and fusion dynamics and can also map its regulators with high spatiotemporal resolution. Here, we describe the basic principles and practical implementation of a fast dual-color TIRF microscope, detailing a how-to guide on imaging and analysis of insulin granule dynamics in human β-cells.
Collapse
Affiliation(s)
- Fei Kang
- Department of Medicine, Temerty Faculty of Medicine of the University of Toronto and the Toronto General Hospital Research Institute, Toronto, ON, Canada.
| | - Herbert Y Gaisano
- Department of Medicine, Temerty Faculty of Medicine of the University of Toronto and the Toronto General Hospital Research Institute, Toronto, ON, Canada.
| |
Collapse
|
28
|
Liu Y, He R, Zhu M, Yu H. In Vitro Reconstitution Studies of SNAREs and Their Regulators Mediating GLUT4 Vesicle Fusion. Methods Mol Biol 2022; 2473:141-156. [PMID: 35819764 DOI: 10.1007/978-1-0716-2209-4_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The GLUT4 vesicle fusion is mediated by soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and a variety of regulatory proteins. For example, synip and tomosyn negatively regulate GLUT4 SNARE-mediated membrane fusion. Here we describe in vitro reconstituted assays to determine the molecular mechanisms of SNAREs, synip, and tomosyn. These methods can also be extended to the studies of other types of membrane fusion events.
Collapse
Affiliation(s)
- Yinghui Liu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Ruyue He
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Min Zhu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Haijia Yu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing, China.
| |
Collapse
|
29
|
Corkey BE, Deeney JT, Merrins MJ. What Regulates Basal Insulin Secretion and Causes Hyperinsulinemia? Diabetes 2021; 70:2174-2182. [PMID: 34593535 PMCID: PMC8576498 DOI: 10.2337/dbi21-0009] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/28/2021] [Indexed: 12/12/2022]
Abstract
We hypothesize that basal hyperinsulinemia is synergistically mediated by an interplay between increased oxidative stress and excess lipid in the form of reactive oxygen species (ROS) and long-chain acyl-CoA esters (LC-CoA). In addition, ROS production may increase in response to inflammatory cytokines and certain exogenous environmental toxins that mislead β-cells into perceiving nutrient excess when none exists. Thus, basal hyperinsulinemia is envisioned as an adaptation to sustained real or perceived nutrient excess that only manifests as a disease when the excess demand can no longer be met by an overworked β-cell. In this article we will present a testable hypothetical mechanism to explain the role of lipids and ROS in basal hyperinsulinemia and how they differ from glucose-stimulated insulin secretion (GSIS). The model centers on redox regulation, via ROS, and S-acylation-mediated trafficking via LC-CoA. These pathways are well established in neural systems but not β-cells. During GSIS, these signals rise and fall in an oscillatory pattern, together with the other well-established signals derived from glucose metabolism; however, their precise roles have not been defined. We propose that failure to either increase or decrease ROS or LC-CoA appropriately will disturb β-cell function.
Collapse
Affiliation(s)
- Barbara E Corkey
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Jude T Deeney
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Matthew J Merrins
- Department of Biomolecular Chemistry and Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI
| |
Collapse
|
30
|
Fan F, Wu Y, Hara M, Rizk A, Ji C, Nerad D, Tamarina N, Lou X. Dynamin deficiency causes insulin secretion failure and hyperglycemia. Proc Natl Acad Sci U S A 2021; 118:e2021764118. [PMID: 34362840 PMCID: PMC8364113 DOI: 10.1073/pnas.2021764118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pancreatic β cells operate with a high rate of membrane recycling for insulin secretion, yet endocytosis in these cells is not fully understood. We investigate this process in mature mouse β cells by genetically deleting dynamin GTPase, the membrane fission machinery essential for clathrin-mediated endocytosis. Unexpectedly, the mice lacking all three dynamin genes (DNM1, DNM2, DNM3) in their β cells are viable, and their β cells still contain numerous insulin granules. Endocytosis in these β cells is severely impaired, resulting in abnormal endocytic intermediates on the plasma membrane. Although insulin granules are abundant, their release upon glucose stimulation is blunted in both the first and second phases, leading to hyperglycemia and glucose intolerance in mice. Dynamin triple deletion impairs insulin granule exocytosis and decreases intracellular Ca2+ responses and granule docking. The docking defect is correlated with reduced expression of Munc13-1 and RIM1 and reorganization of cortical F-actin in β cells. Collectively, these findings uncover the role of dynamin in dense-core vesicle endocytosis and secretory capacity. Insulin secretion deficiency in the absence of dynamin-mediated endocytosis highlights the risk of impaired membrane trafficking in endocrine failure and diabetes pathogenesis.
Collapse
Affiliation(s)
- Fan Fan
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226
| | - Yumei Wu
- HHMI, Yale University School of Medicine, New Haven, CT 06510
- Departments of Neuroscience and Cell Biology, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Manami Hara
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Adam Rizk
- Section of Endocrinology, Diabetes and Metabolism, Department of Medicine, University of Chicago, Chicago, IL 60637
| | - Chen Ji
- Synapses and Circuits section, National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892
| | - Dan Nerad
- Emergency Medicine, Carl R. Darnall Army Medical Center, Fort Hood, TX 76544
| | - Natalia Tamarina
- Department of Medicine, The Kovler Diabetes Center, University of Chicago, Chicago, IL 60637
| | - Xuelin Lou
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI 53226;
| |
Collapse
|
31
|
Germanos M, Gao A, Taper M, Yau B, Kebede MA. Inside the Insulin Secretory Granule. Metabolites 2021; 11:metabo11080515. [PMID: 34436456 PMCID: PMC8401130 DOI: 10.3390/metabo11080515] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022] Open
Abstract
The pancreatic β-cell is purpose-built for the production and secretion of insulin, the only hormone that can remove glucose from the bloodstream. Insulin is kept inside miniature membrane-bound storage compartments known as secretory granules (SGs), and these specialized organelles can readily fuse with the plasma membrane upon cellular stimulation to release insulin. Insulin is synthesized in the endoplasmic reticulum (ER) as a biologically inactive precursor, proinsulin, along with several other proteins that will also become members of the insulin SG. Their coordinated synthesis enables synchronized transit through the ER and Golgi apparatus for congregation at the trans-Golgi network, the initiating site of SG biogenesis. Here, proinsulin and its constituents enter the SG where conditions are optimized for proinsulin processing into insulin and subsequent insulin storage. A healthy β-cell is continually generating SGs to supply insulin in vast excess to what is secreted. Conversely, in type 2 diabetes (T2D), the inability of failing β-cells to secrete may be due to the limited biosynthesis of new insulin. Factors that drive the formation and maturation of SGs and thus the production of insulin are therefore critical for systemic glucose control. Here, we detail the formative hours of the insulin SG from the luminal perspective. We do this by mapping the journey of individual members of the SG as they contribute to its genesis.
Collapse
|
32
|
Karunakaran U, Elumalai S, Moon JS, Won KC. CD36 Signal Transduction in Metabolic Diseases: Novel Insights and Therapeutic Targeting. Cells 2021; 10:cells10071833. [PMID: 34360006 PMCID: PMC8305429 DOI: 10.3390/cells10071833] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/14/2021] [Accepted: 07/17/2021] [Indexed: 12/24/2022] Open
Abstract
The cluster of differentiation 36 (CD36) is a scavenger receptor present on various types of cells and has multiple biological functions that may be important in inflammation and in the pathogenesis of metabolic diseases, including diabetes. Here, we consider recent insights into how the CD36 response becomes deregulated under metabolic conditions, as well as the therapeutic benefits of CD36 inhibition, which may provide clues for developing strategies aimed at the treatment or prevention of diabetes associated with metabolic diseases. To facilitate this process further, it is important to pinpoint regulatory mechanisms that are relevant under physiological and pathological conditions. In particular, understanding the mechanisms involved in dictating specific CD36 downstream cellular outcomes will aid in the discovery of potent compounds that target specific CD36 downstream signaling cascades.
Collapse
Affiliation(s)
- Udayakumar Karunakaran
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
| | - Suma Elumalai
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
| | - Jun-Sung Moon
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
- Yeungnam University College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.M.); +82-53-620-3846 (K.-C.W.)
| | - Kyu-Chang Won
- Innovative Center for Aging Research, Yeungnam University Medical Center, Daegu 42415, Korea; (U.K.); (S.E.)
- Yeungnam University College of Medicine, Daegu 42415, Korea
- Correspondence: (J.-S.M.); (K.-C.W.); Tel.: +82-53-620-3825 (J.-S.M.); +82-53-620-3846 (K.-C.W.)
| |
Collapse
|
33
|
Ghasemi A, Afzali H, Jeddi S. Effect of oral nitrite administration on gene expression of SNARE proteins involved in insulin secretion from pancreatic islets of male type 2 diabetic rats. Biomed J 2021; 45:387-395. [PMID: 34326021 PMCID: PMC9250122 DOI: 10.1016/j.bj.2021.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 02/06/2023] Open
Abstract
Background Nitrite stimulates insulin secretion from pancreatic β-cells; however, the underlying mechanisms have not been completely addressed. The aim of this study is to determine effect of nitrite on gene expression of SNARE proteins involved in insulin secretion from isolated pancreatic islets in Type 2 diabetic Wistar rats. Methods Three groups of rats were studied (n = 10/group): Control, diabetes, and diabetes + nitrite, which treated with sodium nitrite (50 mg/L) for 8 weeks. Type 2 diabetes was induced using a low-dose of streptozotocin (25 mg/kg) combined with high-fat diet. At the end of the study, pancreatic islets were isolated and mRNA expressions of interested genes were measured; in addition, protein expression of proinsulin and C-peptide in pancreatic tissue was assessed using immunofluorescence staining. Results Compared with controls, in the isolated pancreatic islets of Type 2 diabetic rats, mRNA expression of glucokinase (59%), syntaxin1A (49%), SNAP25 (70%), Munc18b (48%), insulin1 (56%), and insulin2 (52%) as well as protein expression of proinsulin and C-peptide were lower. In diabetic rats, nitrite administration significantly increased gene expression of glucokinase, synaptotagmin III, syntaxin1A, SNAP25, Munc18b, and insulin genes as well as increased protein expression of proinsulin and C-peptide. Conclusion Stimulatory effect of nitrite on insulin secretion in Type 2 diabetic rats is at least in part due to increased gene expression of molecules involved in glucose sensing (glucokinase), calcium sensing (synaptotagmin III), and exocytosis of insulin vesicles (syntaxin1A, SNAP25, and Munc18b) as well as increased expression of insulin genes.
Collapse
Affiliation(s)
- Asghar Ghasemi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Afzali
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Jeddi
- Endocrine Physiology Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
34
|
Chatterjee Bhowmick D, Ahn M, Oh E, Veluthakal R, Thurmond DC. Conventional and Unconventional Mechanisms by which Exocytosis Proteins Oversee β-cell Function and Protection. Int J Mol Sci 2021; 22:1833. [PMID: 33673206 PMCID: PMC7918544 DOI: 10.3390/ijms22041833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/02/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is one of the prominent causes of morbidity and mortality in the United States and beyond, reaching global pandemic proportions. One hallmark of T2D is dysfunctional glucose-stimulated insulin secretion from the pancreatic β-cell. Insulin is secreted via the recruitment of insulin secretory granules to the plasma membrane, where the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) and SNARE regulators work together to dock the secretory granules and release insulin into the circulation. SNARE proteins and their regulators include the Syntaxins, SNAPs, Sec1/Munc18, VAMPs, and double C2-domain proteins. Recent studies using genomics, proteomics, and biochemical approaches have linked deficiencies of exocytosis proteins with the onset and progression of T2D. Promising results are also emerging wherein restoration or enhancement of certain exocytosis proteins to β-cells improves whole-body glucose homeostasis, enhances β-cell function, and surprisingly, protection of β-cell mass. Intriguingly, overexpression and knockout studies have revealed novel functions of certain exocytosis proteins, like Syntaxin 4, suggesting that exocytosis proteins can impact a variety of pathways, including inflammatory signaling and aging. In this review, we present the conventional and unconventional functions of β-cell exocytosis proteins in normal physiology and T2D and describe how these insights might improve clinical care for T2D.
Collapse
Affiliation(s)
| | | | | | | | - Debbie C. Thurmond
- Department of Molecular and Cellular Endocrinology, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA; (D.C.B.); (M.A.); (E.O.); (R.V.)
| |
Collapse
|
35
|
Bogan JS. Granular detail of β cell structures for insulin secretion. J Cell Biol 2021; 220:e202012082. [PMID: 33427875 PMCID: PMC7802365 DOI: 10.1083/jcb.202012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pancreatic β cells secrete insulin in response to increased glucose concentrations. Müller et al. (2021. J. Cell Biol. https://doi.org/10.1083/jcb.202010039) use 3D FIB-SEM to study the architecture of these cells and to elucidate how glucose stimulation remodels microtubules to control insulin secretory granule exocytosis.
Collapse
Affiliation(s)
- Jonathan S. Bogan
- Section of Endocrinology and Metabolism, Department of Internal Medicine; and Department of Cell Biology, Yale School of Medicine, New Haven, CT
| |
Collapse
|
36
|
Impaired insulin exocytosis in chronic hepatitis C infection: contributory role of p38δ MAPK-protein kinase D-golgi complex axis. Clin Sci (Lond) 2020; 134:1449-1456. [PMID: 32556178 DOI: 10.1042/cs20200686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 05/31/2020] [Accepted: 06/03/2020] [Indexed: 11/17/2022]
Abstract
Hepatitis C virus (HCV) infection and chronic hepatitis C (CHC) are associated with a measurable risk of insulin resistance (IR)/impaired glucose tolerance (IGT)/diabetes mellitus (DM). While loss of hepatic endocrine function contributes to liver cirrhosis in diabetic patients, onset and progression of IR/IGT to diabetes and exacerbation of incident hyperglycemia are ostensibly linked with chronic HCV infection. In this regard, the study by Chen J et al. appearing in Clinical Science (2020) (134(5) https://doi.org/10.1042/CS20190900) attempts to understand the mechanisms underlying the savaging effects of chronic HCV infection on insulin-producing pancreatic β-cells and hence diabetic onset. The study investigated the role of mitogen-activated protein kinase (MAPK) p38δ-protein kinase D (PKD)-golgi complex axis in impacting insulin exocytosis. It was inferred that an insulin secretory defect of pancreatic β-cells, owing to disrupted insulin exocytosis, to an extent explains β-cell dysfunction in HCV-infected or CHC milieu. HCV infection negatively regulates first-phase and second-phase insulin secretion by impinging on PKD-dependent insulin secretory granule fission at trans-golgi network and insulin secretory vesicle membrane fusion events. This commentary highlights the study in question, that deciphered the contribution of p38δ MAPK-PKD-golgi complex axis to β-cell dysfunction in CHC milieu. This pivotal axis proffers a formidable therapeutic opportunity for alleviation of double burden of glucose abnormalities/DM and CHC.
Collapse
|
37
|
Roshankhah S, Shabanizadeh A, Abdolmaleki A, Gholami MR, Salahshoor MR. Evaluation of biomarkers in liver following Solanum melongena green calyx administration in diabetic rats. J Diabetes Metab Disord 2020; 19:1115-1127. [PMID: 33520829 DOI: 10.1007/s40200-020-00613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/10/2020] [Indexed: 11/24/2022]
Abstract
Background Solanum melongena green calyx (SMGC) has antioxidant properties. Diabetes mellitus (DM) increases oxidative stress and causes cellular damages in liver. This study attempts to show the protective effects of SMGC against morphometric, inflammatory, oxidative, and apoptotic changes in liver following DM induction. Methods For DM induction, the streptozotocin (60 mg/kg) was injected intraperitoneally. After the preparation of the SMGC extract, phytochemical content was analyzed. Sixty-four rats were categorized into 8 groups (n = 8); control, diabetic, SMGC, and diabetic + SMGC. SMGC administration was applied orally with doses of 100, 300, 500 mg/kg for 4 weeks. The assays of nitrite oxide, lipid peroxidation (LP), and Ferric Reducing Ability of Plasma (FRAP) were conducted for sample analysis. P53, Bcl2, and Bax genes expression, inflammatory cytokines, enzymes, and morphological features were measured. Apoptotic cell index, body weight, and levels of glucose and insulin were also analyzed. A one-way ANOVA test was used for statistical analysis. Result According to the phytochemical analysis, the SMGC is rich in Tannins and Saponins. Antioxidant values, p53 and Bax genes expression, inflammatory cytokines, enzymes, body weight, serum glucose, and morphometrical features were increased significantly (except insulin and FRAP levels and Bcl2 gene expression which were decreased) in diabetic group compared to the control group (P < 0.05). Also, evaluated parameters were reduced significantly (except insulin and FRAP levels and Bcl2 gene expression which were increased) in SMGC and diabetic + SMGC groups in comparison with the diabetic group (P < 0.05). Conclusion These findings revealed that the SMGC attenuates blood glucose levels in diabetic animals and also eliminates destructive effects of DM on liver through antioxidant features.
Collapse
Affiliation(s)
- Shiva Roshankhah
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahmad Shabanizadeh
- Department of Anatomical Sciences, School of Medicine, Immunology of Infectious Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Amir Abdolmaleki
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Gholami
- Department of Anatomical Sciences, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Salahshoor
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
38
|
Artificial Pancreas Control Strategies Used for Type 1 Diabetes Control and Treatment: A Comprehensive Analysis. APPLIED SYSTEM INNOVATION 2020. [DOI: 10.3390/asi3030031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This paper presents a comprehensive survey about the fundamental components of the artificial pancreas (AP) system including insulin administration and delivery, glucose measurement (GM), and control strategies/algorithms used for type 1 diabetes mellitus (T1DM) treatment and control. Our main focus is on the T1DM that emerges due to pancreas’s failure to produce sufficient insulin due to the loss of beta cells (β-cells). We discuss various insulin administration and delivery methods including physiological methods, open-loop, and closed-loop schemes. Furthermore, we report several factors such as hyperglycemia, hypoglycemia, and many other physical factors that need to be considered while infusing insulin in human body via AP systems. We discuss three prominent control algorithms including proportional-integral- derivative (PID), fuzzy logic, and model predictive, which have been clinically evaluated and have all shown promising results. In addition, linear and non-linear insulin infusion control schemes have been formally discussed. To the best of our knowledge, this is the first work which systematically covers recent developments in the AP components with a solid foundation for future studies in the T1DM field.
Collapse
|
39
|
Armiyaw L, Sarcone C, Fosam A, Muniyappa R. Increased β-Cell Responsivity Independent of Insulin Sensitivity in Healthy African American Adults. J Clin Endocrinol Metab 2020; 105:5834384. [PMID: 32382759 PMCID: PMC7266075 DOI: 10.1210/clinem/dgaa234] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/30/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Primary insulin hypersecretion predicts type 2 diabetes (T2DM) independent of insulin resistance. Enhanced β-cell glucose responsivity contributes to insulin hypersecretion. African Americans (AAs) are at a higher risk for T2DM than non-Hispanic Whites (NHWs). Whether AAs manifest primary insulin hypersecretion is an important topic that has not been examined systematically. OBJECTIVE To examine if nondiabetic AA adults have a higher β-cell glucose responsivity compared with NHWs. METHODS Healthy nondiabetic AA (n = 18) and NHW (n=18) subjects were prospectively recruited. Indices of β-cell function, acute C-peptide secretion (X0); basal (Φ B), first-phase (Φ 1), second-phase (Φ 2), and total β-cell responsivity to glucose (Φ TOT), were derived from modeling of insulin, C-peptide, and glucose concentrations during an intravenous glucose tolerance test. Insulin sensitivity was assessed by the hyperinsulinemic-euglycemic glucose clamp technique. RESULTS Glucose disposal rate (GDR) during clamp was similar in AAs and NHWs (GDR: [AA] 12.6 ± 3.2 vs [NHW] 12.6 ± 4.2 mg/kg fat free mass +17.7/min, P = .49). Basal insulin secretion rates were similar between the groups. AA had significantly higher X0 (4423 ± 593 vs 1807 ± 176 pmol/L, P = .007), Φ 1 [377.5 ± 59.0 vs 194.5 ± 26.6 (109) P = 0.03], and Φ TOT [76.7 ± 18.3 vs 29.6 ± 4.7 (109/min), P = 0.03], with no significant ethnic differences in Φ B and Φ 2. CONCLUSIONS Independent of insulin sensitivity, AAs showed significantly higher first-phase and total β-cell responsivity than NHWs. We propose that this difference reflects increased β-cell responsivity specifically to first-phase readily releasable insulin secretion. Future studies are warranted to identify mechanisms leading to primary β-cell hypersensitivity in AAs.
Collapse
Affiliation(s)
- Latif Armiyaw
- Clinical Endocrine Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Camila Sarcone
- Clinical Endocrine Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Andin Fosam
- Clinical Endocrine Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Ranganath Muniyappa
- Clinical Endocrine Section, Diabetes, Endocrinology, and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
- Correspondence and Reprint Requests: Ranganath Muniyappa, MD, PhD, Clinical Endocrine Section, Diabetes, Endocrinology and Obesity Branch, National Institutes of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive MSC 1613, Building 10, CRC, Rm 6-3952, Bethesda, MD 20892-1613. E-mail:
| |
Collapse
|
40
|
Gaisano HY, Jonas JC, Gloyn AL. Editorial Overview: "Islet Biology in Type 2 Diabetes". J Mol Biol 2020; 432:1307-1309. [PMID: 32005524 DOI: 10.1016/j.jmb.2019.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Herbert Y Gaisano
- Departments of Medicine and Physiology, University of Toronto and The Toronto General Hospital Research Institute, Toronto, Ontario, Canada.
| | - Jean-Christophe Jonas
- Université catholique de Louvain (UCLouvain), Institute of Experimental and Clinical Research, Pole of Endocrinology, Diabetes and Nutrition, Brussels, Belgium.
| | - Anna L Gloyn
- Oxford Centre for Endocrinology and Metabolism, Radcliffe Department of Medicine and Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, UK NIHR Oxford Biomedical Research Centre, Churchill Hospital, Oxford, UK.
| |
Collapse
|