1
|
Choi J, Zheng Q, Abdelaziz MEMK, Dysli T, Bautista‐Salinas D, Leber A, Jiang S, Zhang J, Demircali AA, Zhao J, Liu Y, Linton NWF, Sorin F, Jia X, Yeatman EM, Yang G, Temelkuran B. Thermally Drawn Shape and Stiffness Programmable Fibers for Medical Devices. Adv Healthc Mater 2025; 14:e2403235. [PMID: 39737668 PMCID: PMC12004436 DOI: 10.1002/adhm.202403235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/18/2024] [Indexed: 01/01/2025]
Abstract
Despite the significant advantages of Shape Memory Polymers (SMPs), material processing and production challenges have limited their applications. Recent advances in fiber manufacturing offer a novel approach to processing polymers, broadening the functions of fibers beyond optical applications. In this study, a thermal drawing technique for SMPs to fabricate Shape Memory Polymer Fibers (SMPFs) tailored for medical applications, featuring programmable stiffness and shape control is developed. Rheological and differential scanning calorimetry analyses are conducted to assess SMP's compatibility with the proposed thermal drawing process and applications, leading to the production of multilumen, multimaterial SMPFs activated at body temperature. Different properties of SMPFs are investigated in three medical devices: stiffness-adjustable catheters, softening neural interface, and shape-programmable cochlear implants. Comprehensive characterization of these devices demonstrates the potential of thermally drawn SMPs to be employed in a wide range of applications demanding programmable mechanical properties.
Collapse
Affiliation(s)
- Jiwoo Choi
- Department of Metabolism, Digestion, and Reproduction, Faculty of MedicineImperial College LondonLondonSW7 2AZUK
- The Hamlyn Center, Institution of Global Health InnovationImperial College LondonLondonSW7 2AZUK
| | - Qindong Zheng
- Department of Bioengineering, Faculty of EngineeringImperial College LondonLondonSW7 2AZUK
| | - Mohamed E. M. K. Abdelaziz
- The Hamlyn Center, Institution of Global Health InnovationImperial College LondonLondonSW7 2AZUK
- National Heart and Lung Institute, Faculty of MedicineImperial College LondonLondonSW3 6LYUK
| | - Thomas Dysli
- The Hamlyn Center, Institution of Global Health InnovationImperial College LondonLondonSW7 2AZUK
| | - Daniel Bautista‐Salinas
- The Hamlyn Center, Institution of Global Health InnovationImperial College LondonLondonSW7 2AZUK
| | - Andreas Leber
- Institute of MaterialsÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Shan Jiang
- Bradley Department of Electrical and Computer EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgVA24060USA
| | - Jianan Zhang
- The Hamlyn Center, Institution of Global Health InnovationImperial College LondonLondonSW7 2AZUK
- Bradley Department of Electrical and Computer EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgVA24060USA
| | - Ali Anil Demircali
- Department of Metabolism, Digestion, and Reproduction, Faculty of MedicineImperial College LondonLondonSW7 2AZUK
| | - Jinshi Zhao
- Department of Metabolism, Digestion, and Reproduction, Faculty of MedicineImperial College LondonLondonSW7 2AZUK
| | - Yue Liu
- Bradley Department of Electrical and Computer EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgVA24060USA
| | - Nick W. F. Linton
- Department of Bioengineering, Faculty of EngineeringImperial College LondonLondonSW7 2AZUK
- Imperial College Healthcare NHS TrustLondonW12 0HSUK
| | - Fabien Sorin
- Institute of MaterialsÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Xiaoting Jia
- Bradley Department of Electrical and Computer EngineeringVirginia Polytechnic Institute and State UniversityBlacksburgVA24060USA
| | - Eric M. Yeatman
- Department of Electrical and Electronic EngineeringImperial College LondonLondonSW7 2AZUK
| | - Guang‐Zhong Yang
- Institute of Medical RobotsShanghai Jiao Tong UniversityShanghai200240China
| | - Burak Temelkuran
- Department of Metabolism, Digestion, and Reproduction, Faculty of MedicineImperial College LondonLondonSW7 2AZUK
- The Hamlyn Center, Institution of Global Health InnovationImperial College LondonLondonSW7 2AZUK
- The Rosalind Franklin InstituteDidcotOX11 0QSUK
| |
Collapse
|
2
|
Kordbacheh H, Katbab AA, Aghvami-Panah M, Haghighipour N. Piezoelectric scaffold based on polycaprolactone/thermoplastic polyurethane/barium titanate/cellulose nanocrystal for bone tissue engineering. Int J Biol Macromol 2025; 288:138681. [PMID: 39672423 DOI: 10.1016/j.ijbiomac.2024.138681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
This study presents the development of a novel piezoelectric scaffold for bone tissue engineering composed of poly(ε-caprolactone) (PCL), thermoplastic polyurethane (TPU), barium titanate (BT), and cellulose nanocrystals (CNC). PCL and TPU are considered advantageous materials because of their ease of processing, versatility in design, and ability to degrade over time; however, their inherent immiscibility poses challenges to achieving optimal porous structures. In this study, porous scaffolds were produced using gas foaming and salt leaching techniques, resulting in highly porous interconnected scaffolds exhibiting considerable elasticity that is suitable for dynamic cell culture while avoiding the use of toxic solvents. Given the piezoelectric nature of bone tissue, incorporating electric biosignals into scaffolds is essential to enhance bone regeneration. Therefore, BT was incorporated as a piezoelectric material. CNC, derived from cotton, assisted in BT distribution and acted as a reinforcing agent, imparting mechanoelectrical signaling properties to the scaffolds. The optimized scaffolds PCL/TPU (75/25) featuring 100 μm pores were integrated with varying BT and CNC ratios and were subjected to multiple analyses. The results showed a measurable electrical output of 1.2 mV and enhanced cell adhesion, viability, and proliferation under dynamic culture conditions, underscoring their potential for bone tissue regeneration.
Collapse
Affiliation(s)
- Hamta Kordbacheh
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran
| | - Ali Asghar Katbab
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran.
| | - Mohammad Aghvami-Panah
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, Iran
| | | |
Collapse
|
3
|
Ramasamy C, Tan JC, Low HY. Nanoimprinting of Crosslinked Polyurethane / Polycaprolactone Blends: Scratch Recovery of Surface Topographies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2406479. [PMID: 39449213 DOI: 10.1002/smll.202406479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/18/2024] [Indexed: 10/26/2024]
Abstract
Scratch recovery of micro-nano-patterned polymer surfaces extends the service life of products that require tunable surface properties and contributes to more sustainable development. Scratch recovery has been widely studied in bulk and 4D-printed polymers via intrinsic self-healing mechanisms. Existing studies on self-healing of micro/nano-scale polymeric surfaces are limited to the recovery of controlled tensile or compressive strain. Scratch recovery requires material transport to close the gap created by a scratch. Here, for the first time, scratch recovery of thermally nanoimprinted polymer surfaces in a heterogeneous polymer is reported. A blend of Polyurethane (TPU) and poly(caprolactone) (PCL) with selectively crosslinked TPU imparts shape-memory properties, and the uncrosslinked PCL retains chain mobility for molecular diffusion during scratch recovery. Scratch recovery of nanoimprinted micro-pillars has been achieved spontaneously and completely by heat and without any pressure input. The healing temperature is determined to be the melting point of PCL at 60 °C. Rapid recovery is also achieved at 60 s with complete closure of scratch width of 5 µm and topography recovery of the nanoimprinted micro-pillars.
Collapse
Affiliation(s)
- Chitrakala Ramasamy
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Jeck Chuang Tan
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Hong Yee Low
- Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| |
Collapse
|
4
|
Suo F, Bai X, Liu Y, Xu M, Gu T, Cao L, Lv X, Zhang X, Yao Y. Development of lignin-based 3D-printable light responsive shape memory materials: Design of optically controlled devices. Int J Biol Macromol 2024; 277:132943. [PMID: 38852723 DOI: 10.1016/j.ijbiomac.2024.132943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/08/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
This study employs simple approaches involving melt blending and Fused Deposition Modeling (FDM) 3D printing to fabricate a light-responsive shape memory composite. And, this composite material is used for the design of optically controlled devices that mimics the blooming of flowers in the natural environment. The composite material utilizes poly(ε-caprolactone) (PCL) and thermoplastic polyurethane (TPU) as the matrix, with lignin (L) serving as a functional filler. The analysis indicates that, due to the excellent photothermal conversion efficiency of lignin, under constant illumination the shape memory materials heat up to 50 °C within 40 s, the shape recovery rate exceeds 95.06 %. Lignin ameliorated the rheological deficiencies of TPU, with the composite material viscosity decreasing from 103 to 101 at an angular frequency of 100 rad/s, enhancing its compatibility with FDM processes. This research offers greater economic efficiency compared to conventional light-responsive materials and a simpler production method.
Collapse
Affiliation(s)
- Fang Suo
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xin Bai
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Yongzhuang Liu
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Min Xu
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Tongfei Gu
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Lei Cao
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyang Lv
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China
| | - Xianquan Zhang
- Key Laboratory of Bio-Based Material Science and Technology (Ministry of Education), Material Science and Engineering College, Northeast Forestry University, Harbin 150040, China.
| | - Yongtao Yao
- Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin 150080, China.
| |
Collapse
|
5
|
Lahondes Q, Miyashita S. Remotely actuated programmable self-folding origami strings using magnetic induction heating. Front Robot AI 2024; 11:1443379. [PMID: 39282248 PMCID: PMC11392685 DOI: 10.3389/frobt.2024.1443379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Transforming planar structures into volumetric objects typically requires manual folding processes, akin to origami. However, manual intervention at sub-centimeter scales is impractical. Instead, folding is achieved using volume-changing smart materials that respond to physical or chemical stimuli, be it with direct contact such as hydration, pH, or remotely e.g., light or magnetism. The complexity of small-scale structures often restricts the variety of smart materials used and the number of folding sequences. In this study, we propose a method to sequentially self-fold millimeter scale origami using magnetic induction heating at 150 kHz and 3.2 mT. Additionally, we introduce a method for designing self-folding overhand knots and predicting the folding sequence using the magneto-thermal model we developed. This methodology is demonstrated to sequentially self-fold by optimizing the surface, placement, and geometry of metal workpieces, and is validated through the self-folding of various structures, including a 380m m 2 croissant, a 321 mm2 box, a 447 mm2 bio-mimetic Mimosa pudica leaf, and an overhand knot covering 524 mm2. Our work shows significant potential for miniature self-folding origami robots owing to the novel sequential folding approach and the ability to achieve remote and tetherless self-folding within constrained environments.
Collapse
Affiliation(s)
- Quentin Lahondes
- Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Shuhei Miyashita
- Automatic Control and Systems Engineering, The University of Sheffield, Sheffield, United Kingdom
- Insigneo Institute for In Silico Medicine, Sheffield, United Kingdom
| |
Collapse
|
6
|
Yuan L, Xiao L, Zhang J, Xiao Y, Yu L, Yang KK, Wang YZ. Engineering Biodegradable Polyurethanes with Precisely Controlled Hierarchical Structures to Access Shape Memory Effect and Enhanced Bioactivities. Biomacromolecules 2024; 25:3795-3806. [PMID: 38781116 DOI: 10.1021/acs.biomac.4c00404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Biodegradable polymers with shape memory effects (SMEs) offer promising solutions for short-term medical interventions, facilitating minimally invasive procedures and subsequent degradation without requiring secondary surgeries. However, achieving a good balance among desirable SMEs, mechanical performance, degradation rate, and bioactivities remains a significant challenge. To address this issue, we established a strategy to develop a versatile biodegradable polyurethane (PPDO-PLC) with tunable hierarchical structures via precise chain segment control. Initial copolymerization of l-lactide and ε-caprolactone sets a tunable Tg close to body temperature, followed by block copolymerization with poly(p-dioxanone) to form a hard domain. This yields a uniform microphase-separation morphology, ensuring robust SME and facilitating the development of roughly porous surface structures in alkaline environments. Cell experiments indicate that these rough surfaces significantly enhance cellular activities, such as adhesion, proliferation, and osteogenic differentiation. Our approach provides a methodology for balancing biodegradability, SMEs, three-dimensional (3D) printability, and bioactivity in materials through hierarchical structure regulation.
Collapse
Affiliation(s)
- Ling Yuan
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Li Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Jie Zhang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Yi Xiao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Leixiao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610064, China
| | - Ke-Ke Yang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), College of Chemistry, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
7
|
Hossain MS, Ebrahimi H, Ghosh R. Anisotropic plates with architected tendon network. J Mech Behav Biomed Mater 2024; 153:106505. [PMID: 38507996 DOI: 10.1016/j.jmbbm.2024.106505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
We synthesize geometrically tailorable anisotropic plates by combining button shaped fish-scale like features on soft substrates, then lacing them with high-stiffness strings. This creates a new type of biomimetic architectured structure with multiple broken symmetries. First, the tendons and substrate together break the symmetry of the bending response between the concave and convex curvature. Next, the weave pattern of the tendons further breaks symmetry along the two directors of plates. The anisotropy is clearly evident in 3-point bending experiments. Motivated by these experiments and the need for design, we formulate an analytical energy-based model to quantify the anisotropic elasticity. The derived architecture-property relationships can be used to design architected tendon plates with desirable properties.
Collapse
Affiliation(s)
- Md Shahjahan Hossain
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States of America
| | - Hossein Ebrahimi
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States of America
| | - Ranajay Ghosh
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, FL, United States of America.
| |
Collapse
|
8
|
Anju, Masař M, Machovský M, Urbánek M, Šuly P, Hanulíková B, Vilčáková J, Kuřitka I, Yadav RS. Optimization of CoFe 2O 4 nanoparticles and graphite fillers to endow thermoplastic polyurethane nanocomposites with superior electromagnetic interference shielding performance. NANOSCALE ADVANCES 2024; 6:2149-2165. [PMID: 38633039 PMCID: PMC11019480 DOI: 10.1039/d3na01053h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/05/2024] [Indexed: 04/19/2024]
Abstract
The rapid growth, integration, and miniaturization of electronics have raised significant concerns about how to handle issues with electromagnetic interference (EMI), which has increased demand for the creation of EMI shielding materials. In order to effectively shield against electromagnetic interference (EMI), this study developed a variety of thermoplastic polyurethane (TPU)-based nanocomposites in conjunction with CoFe2O4 nanoparticles and graphite. The filler percentage and nanocomposite thickness were tuned and optimized. The designed GF15-TPU nanocomposite, which has a 5 mm thickness, 15 weight percent cobalt ferrite nanoparticles, and 35 weight percent graphite, showed the highest total EMI shielding effectiveness value of 41.5 dB in the 8.2-12.4 GHz frequency range, or 99.993% shielding efficiency, out of all the prepared polymer nanocomposites. According to experimental findings, the nanocomposite's dipole polarization, interfacial polarization, conduction loss, eddy current loss, natural resonance, exchange resonance, multiple scattering, and high attenuation significantly contribute to improving its electromagnetic interference shielding properties. The created TPU-based nanocomposites containing graphite and CoFe2O4 nanoparticles have the potential to be used in communication systems, defense, spacecraft, and aircraft as EMI shielding materials.
Collapse
Affiliation(s)
- Anju
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| | - Milan Masař
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| | - Michal Machovský
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| | - Michal Urbánek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| | - Pavol Šuly
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| | - Barbora Hanulíková
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| | - Jarmila Vilčáková
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| | - Ivo Kuřitka
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
- Department of Chemistry, Faculty of Technology, Tomas Bata University in Zlín Vavrečkova 5669 760 01 Zlín Czech Republic
| | - Raghvendra Singh Yadav
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín Trida Tomase Bati 5678 760 01 Zlín Czech Republic
| |
Collapse
|
9
|
Abtahi S, Chen X, Shahabi S, Nasiri N. Resorbable Membranes for Guided Bone Regeneration: Critical Features, Potentials, and Limitations. ACS MATERIALS AU 2023; 3:394-417. [PMID: 38089090 PMCID: PMC10510521 DOI: 10.1021/acsmaterialsau.3c00013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 03/22/2024]
Abstract
Lack of horizontal and vertical bone at the site of an implant can lead to significant clinical problems that need to be addressed before implant treatment can take place. Guided bone regeneration (GBR) is a commonly used surgical procedure that employs a barrier membrane to encourage the growth of new bone tissue in areas where bone has been lost due to injury or disease. It is a promising approach to achieve desired repair in bone tissue and is widely accepted and used in approximately 40% of patients with bone defects. In this Review, we provide a comprehensive examination of recent advances in resorbable membranes for GBR including natural materials such as chitosan, collagen, silk fibroin, along with synthetic materials such as polyglycolic acid (PGA), polycaprolactone (PCL), polyethylene glycol (PEG), and their copolymers. In addition, the properties of these materials including foreign body reaction, mechanical stability, antibacterial property, and growth factor delivery performance will be compared and discussed. Finally, future directions for resorbable membrane development and potential clinical applications will be highlighted.
Collapse
Affiliation(s)
- Sara Abtahi
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Xiaohu Chen
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| | - Sima Shahabi
- Department
of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Noushin Nasiri
- NanoTech
Laboratory, School of Engineering, Faculty of Science and Engineering, Macquarie University, Sydney 2109, Australia
| |
Collapse
|
10
|
Agyapong JN, Van Durme B, Van Vlierberghe S, Henderson JH. Surface Functionalization of 4D Printed Substrates Using Polymeric and Metallic Wrinkles. Polymers (Basel) 2023; 15:polym15092117. [PMID: 37177262 PMCID: PMC10181229 DOI: 10.3390/polym15092117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Wrinkle topographies have been studied as simple, versatile, and in some cases biomimetic surface functionalization strategies. To fabricate surface wrinkles, one material phenomenon employed is the mechanical-instability-driven wrinkling of thin films, which occurs when a deforming substrate produces sufficient compressive strain to buckle a surface thin film. Although thin-film wrinkling has been studied on shape-changing functional materials, including shape-memory polymers (SMPs), work to date has been primarily limited to simple geometries, such as flat, uniaxially-contracting substrates. Thus, there is a need for a strategy that would allow deformation of complex substrates or 3D parts to generate wrinkles on surfaces throughout that complex substrate or part. Here, 4D printing of SMPs is combined with polymeric and metallic thin films to develop and study an approach for fiber-level topographic functionalization suitable for use in printing of arbitrarily complex shape-changing substrates or parts. The effect of nozzle temperature, substrate architecture, and film thickness on wrinkles has been characterized, as well as wrinkle topography on nuclear alignment using scanning electron microscopy, atomic force microscopy, and fluorescent imaging. As nozzle temperature increased, wrinkle wavelength increased while strain trapping and nuclear alignment decreased. Moreover, with increasing film thickness, the wavelength increased as well.
Collapse
Affiliation(s)
- Johnson N Agyapong
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| | - Bo Van Durme
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, 9000 Ghent, Belgium
| | - James H Henderson
- The Bioinspired Institute, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
11
|
Sachan R, Warkar SG, Purwar R. An overview on synthesis, properties and applications of polycaprolactone copolymers, blends & composites. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2022.2113890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Radha Sachan
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Sudhir G. Warkar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| | - Roli Purwar
- Discipline of Polymer Science and Chemical Technology, Department of Applied Chemistry, Delhi Technological University, Delhi, India
| |
Collapse
|
12
|
Wu F, Hu J, Yang S, Li G, Chen H, Fang H. High‐efficiency shape memory copolymers of
polycaprolactone
/
thermoplastic polyurethane
fabricated via in situ ring‐opening polymerization. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Affiliation(s)
- Fangjuan Wu
- College of Materials Science and Engineering Fujian University of Technology Fuzhou China
- Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou China
| | - Jiahuan Hu
- College of Materials Science and Engineering Fujian University of Technology Fuzhou China
| | - Shangda Yang
- College of Materials Science and Engineering Fujian University of Technology Fuzhou China
| | - Guifeng Li
- College of Materials Science and Engineering Fujian University of Technology Fuzhou China
| | - Haoxiang Chen
- College of Materials Science and Engineering Fujian University of Technology Fuzhou China
| | - Hui Fang
- College of Materials Science and Engineering Fujian University of Technology Fuzhou China
- Key Laboratory of Polymer Materials and Products of Universities in Fujian Fujian University of Technology Fuzhou China
- Fujian Provincial Key Laboratory of Advanced Materials Processing and Application Fujian University of Technology Fuzhou China
| |
Collapse
|
13
|
A novel multi-triggered reversible shape memory thermoplastic polyurethane (TPU)/polycaprolactone (PCL) blend. JOURNAL OF POLYMER RESEARCH 2023. [DOI: 10.1007/s10965-022-03420-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Bonardd S, Nandi M, Hernández García JI, Maiti B, Abramov A, Díaz Díaz D. Self-Healing Polymeric Soft Actuators. Chem Rev 2023; 123:736-810. [PMID: 36542491 PMCID: PMC9881012 DOI: 10.1021/acs.chemrev.2c00418] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 12/24/2022]
Abstract
Natural evolution has provided multicellular organisms with sophisticated functionalities and repair mechanisms for surviving and preserve their functions after an injury and/or infection. In this context, biological systems have inspired material scientists over decades to design and fabricate both self-healing polymeric materials and soft actuators with remarkable performance. The latter are capable of modifying their shape in response to environmental changes, such as temperature, pH, light, electrical/magnetic field, chemical additives, etc. In this review, we focus on the fusion of both types of materials, affording new systems with the potential to revolutionize almost every aspect of our modern life, from healthcare to environmental remediation and energy. The integration of stimuli-triggered self-healing properties into polymeric soft actuators endow environmental friendliness, cost-saving, enhanced safety, and lifespan of functional materials. We discuss the details of the most remarkable examples of self-healing soft actuators that display a macroscopic movement under specific stimuli. The discussion includes key experimental data, potential limitations, and mechanistic insights. Finally, we include a general table providing at first glance information about the nature of the external stimuli, conditions for self-healing and actuation, key information about the driving forces behind both phenomena, and the most important features of the achieved movement.
Collapse
Affiliation(s)
- Sebastian Bonardd
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Mridula Nandi
- Department
of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - José Ignacio Hernández García
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
| | - Binoy Maiti
- School
of Chemistry & Biochemistry, Georgia
Institute of Technology, 901 Atlantic Drive NW, Atlanta, Georgia 30332, United
States
| | - Alex Abramov
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| | - David Díaz Díaz
- Departamento
de Química Orgánica, Universidad
de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Instituto
Universitario de Bio-Orgánica Antonio González, Universidad de La Laguna, Avenida Astrofísico Francisco Sánchez, La Laguna 38206, Tenerife Spain
- Institute
of Organic Chemistry, University of Regensburg, Universitätstrasse 31, Regensburg 93053, Germany
| |
Collapse
|
15
|
Rahmatabadi D, Aberoumand M, Soltanmohammadi K, Soleyman E, Ghasemi I, Baniassadi M, Abrinia K, Zolfagharian A, Bodaghi M, Baghani M. A New Strategy for Achieving Shape Memory Effects in 4D Printed Two-Layer Composite Structures. Polymers (Basel) 2022; 14:polym14245446. [PMID: 36559813 PMCID: PMC9787995 DOI: 10.3390/polym14245446] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
In this study, a new strategy and design for achieving a shape memory effect (SME) and 4D printed two-layer composite structures is unveiled, thanks to fused deposition modeling (FDM) biomaterial printing of commercial filaments, which do not have an SME. We used ABS and PCL as two well-known thermoplastics, and TPU as elastomer filaments that were printed in a two-layer structure. The thermoplastic layer plays the role of constraint for the elastomeric layer. A rubber-to-glass transition of the thermoplastic layer acts as a switching phenomenon that provides the capability of stabilizing the temporary shape, as well as storing the deformation stress for the subsequent recovery of the permanent shape by phase changing the thermoplastic layer in the opposite direction. The results show that ABS-TPU had fixity and recovery ratios above 90%. The PCL-TPU composite structure also demonstrated complete recovery, but its fixity was 77.42%. The difference in the SME of the two composite structures is related to the transition for each thermoplastic and programming temperature. Additionally, in the early cycles, the shape-memory performance decreased, and in the fourth and fifth cycles, it almost stabilized. The scanning electron microscopy (SEM) photographs illustrated superior interfacial bonding and part integrity in the case of multi-material 3D printing.
Collapse
Affiliation(s)
- Davood Rahmatabadi
- School of Mechanical Engineering, University of Tehran, Tehran 14174, Iran
| | | | | | - Elyas Soleyman
- School of Mechanical Engineering, University of Tehran, Tehran 14174, Iran
| | - Ismaeil Ghasemi
- Faculty of Processing, Iran Polymer and Petrochemical Institute, Tehran 14975, Iran
| | - Majid Baniassadi
- School of Mechanical Engineering, University of Tehran, Tehran 14174, Iran
| | - Karen Abrinia
- School of Mechanical Engineering, University of Tehran, Tehran 14174, Iran
| | - Ali Zolfagharian
- School of Engineering, Deakin University, Geelong 3216, Australia
| | - Mahdi Bodaghi
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, UK
- Correspondence: (M.B.); (M.B.)
| | - Mostafa Baghani
- School of Mechanical Engineering, University of Tehran, Tehran 14174, Iran
- Correspondence: (M.B.); (M.B.)
| |
Collapse
|
16
|
Prajapati S, Gogoi R, Tyagi VK, Talwar M, Kumar M, Chaudhari C. Effect of gamma irradiation on shape memory, thermal and mechanical properties of polycaprolactone. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2022.110671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
A facile route to improve compatibilization of low density polyethylene/poly (ε-caprolactone) blends. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Chen JB, Lin SY, Ahmad N, Kuo CFJ. Design of Acrylate-Terminated Polyurethane for Nylon Seamless Bonding Fabric Part I: Design of the End-Capping Thermoplastic Polyurethane Adhesive with Acrylate Copolymer. Polymers (Basel) 2022; 14:polym14194079. [PMID: 36236027 PMCID: PMC9571859 DOI: 10.3390/polym14194079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
This series of studies aims to design acrylate-terminated polyurethanes for use in nylon seamless bonded fabrics. The first part used N,N-dimethylacrylamide (DMAA) and methyl methacrylate (MMA) to replace the chain extender in polyurethane synthesis as end-capping agent to synthesize thermoplastic polyurethane (TPU) adhesive. The molecular weight of the TPU is controlled to further influence the mechanical and processing properties of the polyurethane. Here, polytetramethylene ether glycol (PTMG) and 4,4-methylene diphenyl diisocyanate (MDI) were polymerized, and then a blocking agent was added thereto. The results show that the characteristic peaks of benzene ring and carbamate of TPU adhesive are at 1596 cm−1 and 1413 cm−1, respectively, while the characteristic peaks of DMAA are at 1644 cm−1 and 1642 cm−1 in the FT-IR spectrum. There is an absorption peak –N=C=O– which is not shown near 2268 cm−1, which proves that the structure of TPU contains the molecular structure of capping agent, PTMG and MDI. When the DMAA concentration in the capping agent was increased from 3.0 wt% to 10 wt%, the –C=O (H-bond) area percentage of hydrogen bonds formed at 1711 cm−1 increased from 41.7% to 57.6%, while the –NH (H bond) produced at 3330 cm−1 increased from 70% to 81%. These phenomena suggest that increasing the concentration of DMAA capping agent can effectively promote the formation of complex supramolecular network structures by hydrogen bonding in TPU. The content and concentration of the capping agent affects the molecular weight of the TPU. Chain growth is terminated when molecular weight growth can be effectively controlled and reduced. It was observed in thermal analysis that with increasing DMAA concentration in the molecular structure, the concentration of capping agent in TPU, hydrogen bonding force between hard segments, melting point (Tmh) and melting enthalpy (ΔH) all increased the capping agent. The pyrolysis temperature of TPU is increased by 10–20 °C.
Collapse
|
19
|
Hong S, Yoon J, Cha J, Ahn J, Mandakhbayar N, Park JH, Im J, Jin G, Kim M, Knowles JC, Lee H, Lee J, Kim H. Hyperelastic, shape-memorable, and ultra-cell-adhesive degradable polycaprolactone-polyurethane copolymer for tissue regeneration. Bioeng Transl Med 2022; 7:e10332. [PMID: 36176615 PMCID: PMC9472029 DOI: 10.1002/btm2.10332] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/04/2022] [Accepted: 04/13/2022] [Indexed: 12/05/2022] Open
Abstract
Novel polycaprolactone-based polyurethane (PCL-PU) copolymers with hyperelasticity, shape-memory, and ultra-cell-adhesion properties are reported as clinically applicable tissue-regenerative biomaterials. New isosorbide derivatives (propoxylated or ethoxylated ones) were developed to improve mechanical properties by enhanced reactivity in copolymer synthesis compared to the original isosorbide. Optimized PCL-PU with propoxylated isosorbide exhibited notable mechanical performance (50 MPa tensile strength and 1150% elongation with hyperelasticity under cyclic load). The shape-memory effect was also revealed in different forms (film, thread, and 3D scaffold) with 40%-80% recovery in tension or compression mode after plastic deformation. The ultra-cell-adhesive property was proven in various cell types which were reasoned to involve the heat shock protein-mediated integrin (α5 and αV) activation, as analyzed by RNA sequencing and inhibition tests. After the tissue regenerative potential (muscle and bone) was confirmed by the myogenic and osteogenic responses in vitro, biodegradability, compatible in vivo tissue response, and healing capacity were investigated with in vivo shape-memorable behavior. The currently exploited PCL-PU, with its multifunctional (hyperelastic, shape-memorable, ultra-cell-adhesive, and degradable) nature and biocompatibility, is considered a potential tissue-regenerative biomaterial, especially for minimally invasive surgery that requires small incisions to approach large defects with excellent regeneration capacity.
Collapse
|
20
|
3D printing thermo-responsive shape memory polymer composite based on PCL/TPU blends. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03095-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
21
|
Cui Y, Pan H, Zhang J, Cao L, Zong C. Influence of polydimethylsiloxane on the microstructure and properties of polyester thermoplastic polyurethane. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03079-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Development of semi-crystalline polyurethane with self-healing and body temperature-responsive shape memory properties. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Anju, Yadav RS, Pötschke P, Pionteck J, Krause B, Kuřitka I, Vilčáková J, Škoda D, Urbánek P, Machovský M, Masař M, Urbánek M. Cu xCo 1-xFe 2O 4 (x = 0.33, 0.67, 1) Spinel Ferrite Nanoparticles Based Thermoplastic Polyurethane Nanocomposites with Reduced Graphene Oxide for Highly Efficient Electromagnetic Interference Shielding. Int J Mol Sci 2022; 23:2610. [PMID: 35269754 PMCID: PMC8910661 DOI: 10.3390/ijms23052610] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 02/06/2023] Open
Abstract
CuxCo1-xFe2O4 (x = 0.33, 0.67, 1)-reduced graphene oxide (rGO)-thermoplastic polyurethane (TPU) nanocomposites exhibiting highly efficient electromagnetic interference (EMI) shielding were prepared by a melt-mixing approach using a microcompounder. Spinel ferrite Cu0.33Co0.67Fe2O4 (CuCoF1), Cu0.67Co0.33Fe2O4 (CuCoF2) and CuFe2O4 (CuF3) nanoparticles were synthesized using the sonochemical method. The CuCoF1 and CuCoF2 exhibited typical ferromagnetic features, whereas CuF3 displayed superparamagnetic characteristics. The maximum value of EMI total shielding effectiveness (SET) was noticed to be 42.9 dB, 46.2 dB, and 58.8 dB for CuCoF1-rGO-TPU, CuCoF2-rGO-TPU, and CuF3-rGO-TPU nanocomposites, respectively, at a thickness of 1 mm. The highly efficient EMI shielding performance was attributed to the good impedance matching, conductive, dielectric, and magnetic loss. The demonstrated nanocomposites are promising candidates for a lightweight, flexible, and highly efficient EMI shielding material.
Collapse
Affiliation(s)
- Anju
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic; (A.); (I.K.); (J.V.); (D.Š.); (P.U.); (M.M.); (M.M.); m (M.U.)
| | - Raghvendra Singh Yadav
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic; (A.); (I.K.); (J.V.); (D.Š.); (P.U.); (M.M.); (M.M.); m (M.U.)
| | - Petra Pötschke
- Leibniz Institute of Polymer Research Dresden (IPF Dresden), 01069 Dresden, Germany; (P.P.); (J.P.); (B.K.)
| | - Jürgen Pionteck
- Leibniz Institute of Polymer Research Dresden (IPF Dresden), 01069 Dresden, Germany; (P.P.); (J.P.); (B.K.)
| | - Beate Krause
- Leibniz Institute of Polymer Research Dresden (IPF Dresden), 01069 Dresden, Germany; (P.P.); (J.P.); (B.K.)
| | - Ivo Kuřitka
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic; (A.); (I.K.); (J.V.); (D.Š.); (P.U.); (M.M.); (M.M.); m (M.U.)
| | - Jarmila Vilčáková
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic; (A.); (I.K.); (J.V.); (D.Š.); (P.U.); (M.M.); (M.M.); m (M.U.)
| | - David Škoda
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic; (A.); (I.K.); (J.V.); (D.Š.); (P.U.); (M.M.); (M.M.); m (M.U.)
| | - Pavel Urbánek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic; (A.); (I.K.); (J.V.); (D.Š.); (P.U.); (M.M.); (M.M.); m (M.U.)
| | - Michal Machovský
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic; (A.); (I.K.); (J.V.); (D.Š.); (P.U.); (M.M.); (M.M.); m (M.U.)
| | - Milan Masař
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic; (A.); (I.K.); (J.V.); (D.Š.); (P.U.); (M.M.); (M.M.); m (M.U.)
| | - Michal Urbánek
- Centre of Polymer Systems, University Institute, Tomas Bata University in Zlín, Trida Tomase Bati 5678, 760 01 Zlín, Czech Republic; (A.); (I.K.); (J.V.); (D.Š.); (P.U.); (M.M.); (M.M.); m (M.U.)
| |
Collapse
|
24
|
Parın FN, Parın U. Spirulina Biomass‐Loaded Thermoplastic Polyurethane/Polycaprolacton (TPU/PCL) Nanofibrous Mats: Fabrication, Characterization, and Antibacterial Activity as Potential Wound Healing. ChemistrySelect 2022. [DOI: 10.1002/slct.202104148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Fatma Nur Parın
- Polymer Materials Engineering Department Faculty of Engineering and Natural Sciences Bursa Technical University Sinan Campus Yıldırım Bursa 16310 Turkey
| | - Uğur Parın
- Microbiology Department Faculty of Veterinary Science Aydın Adnan Menderes University Işıklı Campus Efeler Aydın 09010 Turkey
| |
Collapse
|
25
|
Amiryaghoubi N, Noroozi Pesyan N, Fathi M, Omidi Y. The design of polycaprolactone-polyurethane/chitosan composite for bone tissue engineering. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
26
|
Li Z, Chen Z, Gao Y, Xing Y, Zhou Y, Luo Y, Xu W, Chen Z, Gao X, Gupta K, Anbalakan K, Chen L, Liu C, Kong J, Leo HL, Hu C, Yu H, Guo Q. Shape memory micro-anchors with magnetic guidance for precision micro-vascular deployment. Biomaterials 2022; 283:121426. [DOI: 10.1016/j.biomaterials.2022.121426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 12/28/2022]
|
27
|
Wu JK, Zheng KW, Nie XC, Ge HR, Wang QY, Xu JT. Promoters for Improved Adhesion Strength between Addition-Cured Liquid Silicone Rubber and Low-Melting-Point Thermoplastic Polyurethanes. MATERIALS 2022; 15:ma15030991. [PMID: 35160935 PMCID: PMC8838879 DOI: 10.3390/ma15030991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/11/2022]
Abstract
A polydimethylsiloxane armed with epoxy, alkoxy and acrylate groups was synthesized from silanol terminated-PDMS and epoxy and acrylate groups functionalized silane coupling agents, and utilized as the adhesion promoter (AP) to prepare addition-cured liquid silicone rubber that exhibited self-adhesion ability (SA-LSR) with biocompatible thermoplastic polyurethanes (TPU) sheets. The structural characteristics of AP were characterized by Fourier transform infrared (FTIR) spectroscopy, which demonstrated the strong adhesion to polyester-based TPU sheets due to a sufficient amount of acrylate groups, epoxy groups and silanol groups obtained by the hydrolysis of alkoxy groups. In detail, the peel-off strength of SA-LSR and TPU joints reached up to 7.63 N mm−1 after the optimization of adhesion promoter including type and content, and curing condition including time and temperature. The cohesive failure was achieved during the sample breakage process. Moreover, the SA-LSR showed a good storage stability under proper storage conditions. This design strategy provided the feasibility to combine the advantages of addition-cured liquid silicone rubber and plastics with low melting points, promoting the potential application range of those silicone-based materials.
Collapse
Affiliation(s)
- Jia-Kai Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China; (J.-K.W.); (K.-W.Z.); (J.-T.X.)
- Research and Development Center, Zhejiang Sucon Silicone Co., Ltd., Shaoxing 312088, China; (X.-C.N.); (H.-R.G.)
| | - Kai-Wen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China; (J.-K.W.); (K.-W.Z.); (J.-T.X.)
| | - Xing-Cheng Nie
- Research and Development Center, Zhejiang Sucon Silicone Co., Ltd., Shaoxing 312088, China; (X.-C.N.); (H.-R.G.)
| | - Huang-Rong Ge
- Research and Development Center, Zhejiang Sucon Silicone Co., Ltd., Shaoxing 312088, China; (X.-C.N.); (H.-R.G.)
| | - Qiong-Yan Wang
- Research and Development Center, Zhejiang Sucon Silicone Co., Ltd., Shaoxing 312088, China; (X.-C.N.); (H.-R.G.)
- Correspondence:
| | - Jun-Ting Xu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science & Engineering, Zhejiang University, Hangzhou 310027, China; (J.-K.W.); (K.-W.Z.); (J.-T.X.)
| |
Collapse
|
28
|
Pisani S, Genta I, Modena T, Dorati R, Benazzo M, Conti B. Shape-Memory Polymers Hallmarks and Their Biomedical Applications in the Form of Nanofibers. Int J Mol Sci 2022; 23:1290. [PMID: 35163218 PMCID: PMC8835830 DOI: 10.3390/ijms23031290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 01/20/2022] [Accepted: 01/20/2022] [Indexed: 12/28/2022] Open
Abstract
Shape-Memory Polymers (SMPs) are considered a kind of smart material able to modify size, shape, stiffness and strain in response to different external (heat, electric and magnetic field, water or light) stimuli including the physiologic ones such as pH, body temperature and ions concentration. The ability of SMPs is to memorize their original shape before triggered exposure and after deformation, in the absence of the stimulus, and to recover their original shape without any help. SMPs nanofibers (SMPNs) have been increasingly investigated for biomedical applications due to nanofiber's favorable properties such as high surface area per volume unit, high porosity, small diameter, low density, desirable fiber orientation and nanoarchitecture mimicking native Extra Cellular Matrix (ECM). This review focuses on the main properties of SMPs, their classification and shape-memory effects. Moreover, advantages in the use of SMPNs and different biomedical application fields are reported and discussed.
Collapse
Affiliation(s)
- Silvia Pisani
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy or (S.P.); (M.B.)
| | - Ida Genta
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| | - Tiziana Modena
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| | - Rossella Dorati
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| | - Marco Benazzo
- Otorhinolaryngology Unit, Department of Surgical Sciences, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy or (S.P.); (M.B.)
| | - Bice Conti
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (I.G.); (T.M.); (R.D.)
| |
Collapse
|
29
|
Mat Saad N, Mohd Salleh N, Abdullah TK, Ahmad Zubir S. Influence of prepolymer reaction time in the fabrication of palm kernel oil polyol based shape memory polyurethane. J Appl Polym Sci 2021. [DOI: 10.1002/app.52109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Norshahli Mat Saad
- School of Materials and Mineral Resources Engineering Engineering Campus, Universiti Sains Malaysia Penang Malaysia
| | - Norliyana Mohd Salleh
- Centre for Herbal Standardization, Universiti Sains Malaysia Sains@USM 11900 Bayan Lepas Malaysia
| | - Tuti Katrina Abdullah
- School of Materials and Mineral Resources Engineering Engineering Campus, Universiti Sains Malaysia Penang Malaysia
| | - Syazana Ahmad Zubir
- School of Materials and Mineral Resources Engineering Engineering Campus, Universiti Sains Malaysia Penang Malaysia
| |
Collapse
|
30
|
Han LF, Geng X, Ye L, Zhang AY, Feng ZG. Constructing solvent-free inclusion complexes from β-cyclodextrin- and adamantane-terminated polycaprolactones and their mechanical and shape memory properties. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Kandi R, Pandey PM. Statistical modelling and optimization of print quality and mechanical properties of customized tubular scaffolds fabricated using solvent-based extrusion 3D printing process. Proc Inst Mech Eng H 2021; 235:1421-1438. [PMID: 34269125 DOI: 10.1177/09544119211032012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Tissue-engineered tubular scaffolds offer huge potential to heal or replace the diseased organ parts like blood vessels, trachea, oesophagus and ureter. However, manufacturing these scaffolds in various scales and shapes is always challenging and requires progressive technology. Developing a flexible and accurate manufacturing method is a major developmental direction in the field of tubular scaffold fabrication. In this context, the present work presents a novel solvent-based extrusion 3D printing which allows extruding over a rotating mandrel to fabricate tubular scaffolds of polycaprolactone (PCL) and polyurethane (PU). Experimental runs were planned as per the central composite design (CCD) to evaluate the effects of input parameters like infill density, layer thickness, print speed and percentage of PU on the output responses like printing quality and mechanical characteristics. The printing quality was quantified by measuring average surface roughness of the printed scaffolds and mechanical properties were evaluated by measuring radial compressive load, and percentage of elongation. The experimental investigations revealed that printing quality was improved at higher infill densities and was deteriorated at higher print speeds and layer thicknesses. Similarly, the radial compressive load was improved with the increase in infill density and was decreased with an increase in layer thickness, print speed and percentage of PU. The percentage of elongation was found to improve at higher infill densities and percentages of PU and was reduced with an increase in layer thickness and print speed. Additionally, a multi-objective optimization using Genetic Algorithm was used to evaluate the optimum conditions to minimize surface roughness and maximizing radial compression load and percentage of elongation. Finally, a case study was performed by comparing the mechanical properties of tubular organs and scaffolds from the existing reports and results of the present work.
Collapse
Affiliation(s)
- Rudranarayan Kandi
- Department of Mechanical Engineering, Indian Institute of Technology, New Delhi, Delhi, India
| | - Pulak Mohan Pandey
- Department of Mechanical Engineering, Indian Institute of Technology, New Delhi, Delhi, India
| |
Collapse
|
32
|
Lee J, Kang SK. Principles for Controlling the Shape Recovery and Degradation Behavior of Biodegradable Shape-Memory Polymers in Biomedical Applications. MICROMACHINES 2021; 12:757. [PMID: 34199036 PMCID: PMC8305960 DOI: 10.3390/mi12070757] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/24/2021] [Indexed: 11/16/2022]
Abstract
Polymers with the shape memory effect possess tremendous potential for application in diverse fields, including aerospace, textiles, robotics, and biomedicine, because of their mechanical properties (softness and flexibility) and chemical tunability. Biodegradable shape memory polymers (BSMPs) have unique benefits of long-term biocompatibility and formation of zero-waste byproducts as the final degradable products are resorbed or absorbed via metabolism or enzyme digestion processes. In addition to their application toward the prevention of biofilm formation or internal tissue damage caused by permanent implant materials and the subsequent need for secondary surgery, which causes secondary infections and complications, BSMPs have been highlighted for minimally invasive medical applications. The properties of BSMPs, including high tunability, thermomechanical properties, shape memory performance, and degradation rate, can be achieved by controlling the combination and content of the comonomer and crystallinity. In addition, the biodegradable chemistry and kinetics of BSMPs, which can be controlled by combining several biodegradable polymers with different hydrolysis chemistry products, such as anhydrides, esters, and carbonates, strongly affect the hydrolytic activity and erosion property. A wide range of applications including self-expending stents, wound closure, drug release systems, and tissue repair, suggests that the BSMPs can be applied as actuators on the basis of their shape recovery and degradation ability.
Collapse
Affiliation(s)
- Junsang Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
| | - Seung-Kyun Kang
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Korea;
- Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Korea
- Institute of Engineering Research, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
33
|
Affiliation(s)
- Subrata Mondal
- Department of Mechanical Engineering, National Institute of Technical Teachers’ Training and Research (NITTTR) Kolkata, Kolkata, India
| |
Collapse
|
34
|
Shape Memory Biomaterials and Their Clinical Applications. Biomed Mater 2021. [DOI: 10.1007/978-3-030-49206-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
35
|
Thermoresponsive Shape Memory Fibers for Compression Garments. Polymers (Basel) 2020; 12:polym12122989. [PMID: 33333755 PMCID: PMC7765188 DOI: 10.3390/polym12122989] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/04/2020] [Accepted: 12/11/2020] [Indexed: 11/17/2022] Open
Abstract
Their highly deformable properties make shape memory polymers (SMP) a promising component for the development of new compression garments. The shape memory effect (SME) can be observed when two polymers are combined. In here, polycaprolactone (PCL) and thermoplastic polyurethane (TPU) were melt spun in different arrangement types (blend, core-sheath, and island-in-sea), whereas the best SME was observed for the blend type. In order to trigger the SME, this yarn was stimulated at a temperature of 50 °C. It showed a strain fixation of 62%, a strain recovery of 99%, and a recovery stress of 2.7 MPa.
Collapse
|
36
|
France LA, Fancey KS. Viscoelastically active sutures - A stitch in time? MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 121:111695. [PMID: 33579505 DOI: 10.1016/j.msec.2020.111695] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/26/2020] [Accepted: 10/30/2020] [Indexed: 01/17/2023]
Abstract
We present results to show that a commercially available polypropylene suture filament (Ethicon Prolene), following annealing and tensile creep can, after creep load removal, release viscoelastically stored energy over a period of several weeks. Specifically, over 0.1-1000 h, the suture undergoes a time-dependent contraction of ~4% and, following a short recovery time (~3 min) to a fixed strain, produces a progressively increasing recovery force of ~0.1-1 N. We suggest that this time-dependent energy release may facilitate wound healing by the action of viscoelastically induced mechanotransduction (VIM). Moreover, our recent (published) findings have led to evidence of reduced hydrophobicity from viscoelastically recovering polymeric filaments and speculation that this may emanate from the long-term release of electric charges. Thus, we propose that the latter may enhance the VIM mechanism. In this paper, we report on the direct detection of these charges and the first findings from an investigation involving the presence of cell cultures on Prolene samples that are (i) viscoelastically recovering, (ii) annealed only and (iii) in as-received condition. From (i), the results demonstrate a significant increase in cell motility, with migration towards the suture, compared to (ii) and (iii). This suggests greater stimulation of the wound healing process, an effect which is expected to continue for the duration of the viscoelastic recovery period.
Collapse
Affiliation(s)
| | - Kevin S Fancey
- Department of Engineering, University of Hull, HU6 7RX, UK
| |
Collapse
|
37
|
Tekay E. Thermo‐responsive shape memory behavior of poly(styrene‐b‐isoprene‐b‐styrene)/ethylene‐1‐octene copolymer thermoplastic elastomer blends. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.5139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Emre Tekay
- Department of Polymer Materials Engineering Yalova University Yalova Turkey
| |
Collapse
|
38
|
Bhattacharya S, Hailstone R, Lewis CL. Thermoplastic Blend Exhibiting Shape Memory-Assisted Self-Healing Functionality. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46733-46742. [PMID: 32931237 DOI: 10.1021/acsami.0c13645] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, we report on a polymer blend consisting of a soft thermoplastic polyurethane (TPU) elastomer and a low melting temperature thermoplastic healing agent (polycaprolactone, PCL). In this study, polymer blends containing up to 60 wt % PCL were prepared and the resulting mechanical, thermal, shape memory, and self-healing properties were studied. These immiscible polymers exhibit two well-separated transitions attributable to the melting of PCL and TPU hard segments. This viscoelastic behavior engendered shape memory capability at moderate processing temperatures (∼90 °C) and melt processability at elevated temperatures (>160 °C). The reversible plasticity shape memory (RPSM) effect was also characterized: when subjected to 125% strain at room temperature and subsequently heated to 90 °C, the samples nearly fully recovered to their original length. Moreover, upon heating to above PCL's melting temperature, the flow of PCL into an undeformed crack was shown to fill the crack void, thus promoting self-repair. Through the action of mild heating (90 °C/30 min), fracture surfaces are brought into intimate contact through the action of the RPSM effect and subsequently healed through the redistribution of molten PCL. The shape memory-assisted self-healing efficiency was evaluated by comparing the tensile force restoration after healing of a highly deformed, notched sample to its behavior prior to notching. It was observed that blends containing up to 30 wt % PCL showed nearly complete restoration of properties. In contrast, pure TPU showed only about 5% healing efficiency because of the absence of the PCL healing agent. Blends containing 50 and 60 wt % PCL likewise did not exhibit appreciable restoration of properties, and this was attributed to their propensity to neck during crack opening and poor mechanical properties at elevated temperatures. Blends may serve as a self-healing replacement for pure TPU in existing applications (e.g., automotive and sporting goods) or as a self-healing shape memory polymer in advanced products in soft robotic, biomedical, and microelectronic applications.
Collapse
Affiliation(s)
- Swapnil Bhattacharya
- Department of Mechanical Engineering, Rochester Institute of Technology, RochesterNew York 14623-5603, United States
| | - Richard Hailstone
- Center for Imaging Science, Rochester Institute of Technology, Rochester, New York 14623-5603, United States
| | - Christopher L Lewis
- Manufacturing and Mechanical Engineering Technology, Rochester Institute of Technology, Rochester, New York 14623-5603, United States
| |
Collapse
|
39
|
Theus AS, Ning L, Hwang B, Gil C, Chen S, Wombwell A, Mehta R, Serpooshan V. Bioprintability: Physiomechanical and Biological Requirements of Materials for 3D Bioprinting Processes. Polymers (Basel) 2020; 12:E2262. [PMID: 33019639 PMCID: PMC7599870 DOI: 10.3390/polym12102262] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/27/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional (3D) bioprinting is an additive manufacturing process that utilizes various biomaterials that either contain or interact with living cells and biological systems with the goal of fabricating functional tissue or organ mimics, which will be referred to as bioinks. These bioinks are typically hydrogel-based hybrid systems with many specific features and requirements. The characterizing and fine tuning of bioink properties before, during, and after printing are therefore essential in developing reproducible and stable bioprinted constructs. To date, myriad computational methods, mechanical testing, and rheological evaluations have been used to predict, measure, and optimize bioinks properties and their printability, but none are properly standardized. There is a lack of robust universal guidelines in the field for the evaluation and quantification of bioprintability. In this review, we introduced the concept of bioprintability and discussed the significant roles of various physiomechanical and biological processes in bioprinting fidelity. Furthermore, different quantitative and qualitative methodologies used to assess bioprintability will be reviewed, with a focus on the processes related to pre, during, and post printing. Establishing fully characterized, functional bioink solutions would be a big step towards the effective clinical applications of bioprinted products.
Collapse
Affiliation(s)
- Andrea S. Theus
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Liqun Ning
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Boeun Hwang
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Carmen Gil
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Shuai Chen
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Allison Wombwell
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
| | - Riya Mehta
- Department of Biology, Emory University, Atlanta, GA 30322, USA;
| | - Vahid Serpooshan
- Department of Biomedical Engineering, Emory University School of Medicine and Georgia Institute of Technology, Atlanta, GA 30322, USA; (A.S.T.); (L.N.); (B.H.); (C.G.); (S.C.); (A.W.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
40
|
Sun L, Gao X, Wu D, Guo Q. Advances in Physiologically Relevant Actuation of Shape Memory Polymers for Biomedical Applications. POLYM REV 2020. [DOI: 10.1080/15583724.2020.1825487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Luyao Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xu Gao
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Decheng Wu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Qiongyu Guo
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
41
|
Bi H, Jia X, Ye G, Ren Z, Yang H, Guo R, Xu M, Cai L, Huang Z. Three-Dimensional-Printed Shape Memory Biomass Composites for Thermal-Responsive Devices. 3D PRINTING AND ADDITIVE MANUFACTURING 2020; 7:170-180. [PMID: 36654926 PMCID: PMC9586233 DOI: 10.1089/3dp.2020.0003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, unique three-dimensional (3D)-printed shape memory biomass composites were prepared by the melt blending and extrusion of polyurethane, polycaprolactone (PCL), and wood flour (WF) with adjustable contents. The addition content of PCL was used to adjust the shape memory transition temperature and improve the shape fixing rate of composites. The crystallization, thermal, mechanical, and shape memory properties of different composites were investigated. The results of X-ray diffraction and differential scanning calorimetry tests showed that the crystallization peak and melting temperature of different composites were not obviously changed. As the PCL content increased, the tensile strength of the composites decreased first and then increased, and the elongation at break gradually decreased. Thermal response shape memory test results showed that, when the PCL content was 30 wt.%, the composites had high shape recovery rate and fixed rate (both ∼100%). In addition, carbon black (CB) was added as a photothermal conversion material to the composite with a preferred ratio to achieve the photothermal response shape memory performance. With the addition of CB, the thermal conductivity of composites was improved. Under the same conditions, the thicker the 3D-printed specimens, the longer the specimen shape recovery time; the greater the light intensity, the shorter the specimen shape recovery time. Compared with the composite without CB, the flower model printed with the composites containing CB had a better photothermal response shape memory performance.
Collapse
Affiliation(s)
- Hongjie Bi
- Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education of China, College of Material Science and Engineering, Northeast Forestry University, Harbin, China
| | - Xin Jia
- Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education of China, College of Material Science and Engineering, Northeast Forestry University, Harbin, China
| | - Gaoyuan Ye
- Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education of China, College of Material Science and Engineering, Northeast Forestry University, Harbin, China
| | - Zechun Ren
- Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education of China, College of Material Science and Engineering, Northeast Forestry University, Harbin, China
| | - Haiying Yang
- Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education of China, College of Material Science and Engineering, Northeast Forestry University, Harbin, China
| | - Rui Guo
- Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education of China, College of Material Science and Engineering, Northeast Forestry University, Harbin, China
| | - Min Xu
- Key Laboratory of Bio-based Material Science and Technology of the Ministry of Education of China, College of Material Science and Engineering, Northeast Forestry University, Harbin, China
| | - Liping Cai
- College of Engineering, University of North Texas, Denton, Texas, USA
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhenhua Huang
- College of Engineering, University of North Texas, Denton, Texas, USA
| |
Collapse
|
42
|
Bi H, Ye G, Yang H, Sun H, Ren Z, Guo R, Xu M, Cai L, Huang Z. Near infrared-induced shape memory polymer composites with dopamine-modified multiwall carbon nanotubes via 3D-printing. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109920] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
43
|
Improved compatibilization and shape memory properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ethylene-co-vinyl acetate) blends by incorporation of modified reduced graphene oxide. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122625] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Sarabiyan Nejad S, Babaie A, Bagheri M, Rezaei M, Abbasi F, Shomali A. Effects of graphene quantum dot (
GQD
) on photoluminescence, mechanical, thermal and shape memory properties of thermoplastic polyurethane nanocomposites. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Sanaz Sarabiyan Nejad
- Chemistry Department, Science FacultyAzarbaijan Shahid Madani University Tabriz Iran
| | - Amin Babaie
- Institute of Polymeric Materials, Polymer Engineering FacultySahand University of Technology Tabriz Iran
| | - Massoumeh Bagheri
- Chemistry Department, Science FacultyAzarbaijan Shahid Madani University Tabriz Iran
| | - Mostafa Rezaei
- Institute of Polymeric Materials, Polymer Engineering FacultySahand University of Technology Tabriz Iran
| | - Farhang Abbasi
- Institute of Polymeric Materials, Polymer Engineering FacultySahand University of Technology Tabriz Iran
| | - Ashkan Shomali
- Chemistry Department, Science FacultyAzarbaijan Shahid Madani University Tabriz Iran
| |
Collapse
|
45
|
Pfau MR, McKinzey KG, Roth AA, Grunlan MA. PCL-Based Shape Memory Polymer Semi-IPNs: The Role of Miscibility in Tuning the Degradation Rate. Biomacromolecules 2020; 21:2493-2501. [DOI: 10.1021/acs.biomac.0c00454] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Michaela R. Pfau
- Department of Biomedical Engineering, Texas A&M University, College Station Texas 77843, United States
| | - Kelly G. McKinzey
- Department of Biomedical Engineering, Texas A&M University, College Station Texas 77843, United States
| | - Abigail A. Roth
- Department of Biomedical Engineering, Texas A&M University, College Station Texas 77843, United States
| | - Melissa A. Grunlan
- Department of Biomedical Engineering, Texas A&M University, College Station Texas 77843, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station Texas 77843, United States
- Department of Chemistry, Texas A&M University, College Station Texas 77843, United States
| |
Collapse
|
46
|
Facile Fabrication of Lightweight Shape Memory Thermoplastic Polyurethane/Polylactide Foams by Supercritical Carbon Dioxide Foaming. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00404] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
47
|
Guo Y, Yan L, Zeng Z, Chen L, Ma M, Luo R, Bian J, Lin H, Chen D. TPU/PLA nanocomposites with improved mechanical and shape memory properties fabricated via phase morphology control and incorporation of multi‐walled carbon nanotubes nanofillers. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25365] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Yi Guo
- College of Materials Science and EngineeringXihua University Chengdu Sichuan China
| | - Lei Yan
- College of Materials Science and EngineeringXihua University Chengdu Sichuan China
| | - Zhu Zeng
- College of Materials Science and EngineeringXihua University Chengdu Sichuan China
| | - Lin Chen
- College of Materials Science and EngineeringXihua University Chengdu Sichuan China
| | - Mingxue Ma
- College of Materials Science and EngineeringXihua University Chengdu Sichuan China
| | - Rui Luo
- College of Materials Science and EngineeringXihua University Chengdu Sichuan China
| | - Jun Bian
- College of Materials Science and EngineeringXihua University Chengdu Sichuan China
| | - Hailan Lin
- College of Materials Science and EngineeringXihua University Chengdu Sichuan China
| | - Daiqiang Chen
- School of Polymer Science and EngineeringSichuan University Chengdu Sichuan China
| |
Collapse
|
48
|
Pattamaprom C, Wu CH, Chen PH, Huang YL, Ranganathan P, Rwei SP, Chuan FS. Solvent-Free One-Shot Synthesis of Thermoplastic Polyurethane Based on Bio-Poly(1,3-propylene succinate) Glycol with Temperature-Sensitive Shape Memory Behavior. ACS OMEGA 2020; 5:4058-4066. [PMID: 32149233 PMCID: PMC7057693 DOI: 10.1021/acsomega.9b03663] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/20/2020] [Indexed: 06/01/2023]
Abstract
In this work, a new family of fully biobased thermoplastic polyurethanes (TPUs) with thermo-induced shape memory is developed. First, a series of TPUs were successfully synthesized by the one-shot solvent-free bulk polymerization of bio-poly(1,3-propylene succinate) glycol (PPS) with various molecular weights (M n = 1000, 2000, 3000, and 4000), 1,4-butanediol (BDO), and 4,4'-methylene diphenyl diisocyanate (MDI). These polyurethanes (PUs) are denoted as PPS-x-TPUs (x = 1000, 2000, 3000, and 4000), where x represents the M n of PPS in the polymers. To determine the effect of the molecular weight of the soft segment of PU, all PPS-TPUs were formed with the same hard segment content (32.5 wt %). The soft segment with high molecular weight in PPS-4000-TPU caused a high degree of soft segment entanglement and formed many secondary bonds. PPS-4000-TPU exhibited better mechanical (tensile strength: 64.13 MPa and hardness: 90A) and thermomechanical properties (maximum loading: 2.95 MPa and maximum strain: 144%) than PPS-1000-TPU. At an appropriate shape memory programming temperature, all synthesized PPS-x-TPUs exhibited excellent shape memory behaviors with a fixed shape rate of >99% and a shape recovery rate of >86% in the first round and 95% in the following rounds. Therefore, these bio-TPUs with shape memory have potential for use in smart fabrics.
Collapse
Affiliation(s)
- Cattaleeya Pattamaprom
- Department
of Chemical Engineering, Faculty Engineering, Thammasat University, Bangkok 10200, Thailand
| | - Chien-Hui Wu
- Institute
of Organic and Polymeric Materials, National
Taipei University of Technology, Taipei 10608, Taiwan, ROC
- Research
and Development Center for Smart Technology, Taipei 10608, Taiwan, ROC
| | - Po-Han Chen
- Institute
of Organic and Polymeric Materials, National
Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Yu-Lin Huang
- Institute
of Organic and Polymeric Materials, National
Taipei University of Technology, Taipei 10608, Taiwan, ROC
| | - Palraj Ranganathan
- Institute
of Organic and Polymeric Materials, National
Taipei University of Technology, Taipei 10608, Taiwan, ROC
- Research
and Development Center for Smart Technology, Taipei 10608, Taiwan, ROC
| | - Syang-Peng Rwei
- Institute
of Organic and Polymeric Materials, National
Taipei University of Technology, Taipei 10608, Taiwan, ROC
- Research
and Development Center for Smart Technology, Taipei 10608, Taiwan, ROC
| | - Fu-Sheng Chuan
- Research
and Development Center for Smart Technology, Taipei 10608, Taiwan, ROC
- Department
of Fashion and Design, Lee Ming Institute
of Technology, New Taipei City 243, Taiwan, ROC
| |
Collapse
|
49
|
Iregui Á, Otaegi I, Arandia I, Martin MD, Müller AJ, Irusta L, González A. Fully Reversible Spherulitic Morphology in Cationically Photopolymerized DGEBA/PCL Shape-Memory Blends. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02474] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Álvaro Iregui
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
| | - Itziar Otaegi
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
| | - Idoia Arandia
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
| | - M. Dolores Martin
- Macrobehaviour-Mesostructure-Nanotechnology SGIker Service, Polytechnic School, University of the Basque Country UPV-EHU, Plaza Europa 1, 20018 Donostia/San Sebastian, Spain
| | - Alejandro J. Müller
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Lourdes Irusta
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
| | - Alba González
- POLYMAT, Department of Polymer Science and Technology, University of the Basque Country UPV-EHU, P.O. Box 1072, 20080 Donostia/San Sebastian, Spain
| |
Collapse
|
50
|
Hou Z, Xu J, Teng J, Jia Q, Wang X. Facile preparation of medical segmented poly(ester-urethane) containing uniformly sized hard segments and phosphorylcholine groups for improved hemocompatibility. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110571. [PMID: 32228944 DOI: 10.1016/j.msec.2019.110571] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/29/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022]
Abstract
In order to improve the hemocompatibility of durable medical-grade polyurethane, a novel series of segmented poly(ester-urethane)s containing uniformly sized hard segments and phosphorylcholine (PC) groups on the side chains (SPU-PCs) was prepared by a facile method. The 2-methacryloyloxyethyl phosphorylcholine (MPC) was first reacted with α-thioglycerol by Michael addition to give a diol compound (MPC-diol), then the SPU-PCs with various PC content were prepared by a one-step chain extension of the mixture of MPC-diol and poly(ε-caprolactone) diol (PCL-diol) with aliphatic diurethane diisocyanates (HBH). The chemical structures of MPC-diol and SPU-PCs were confirmed by 1H NMR and FT-IR, and the influences of PC content on the physicochemical properties of the SPU-PC films were studied. The introduction of PC groups enhanced the degree of micro-phase separation and improved the hydrolytic degradation of the films. Due to the denser hydrogen bonds formed in the uniformly sized hard segments, the films exhibited favorable tensile properties and a slow hydrolytic degradation rate. The results of water contact angle and XPS analysis indicated that the PC groups on the flexible side chains were concentrated on the surface after contact with water. The surface hemocompatibility of the films was evaluated by testing the protein adsorption and platelet adhesion, and the results revealed that the films surfaces could dramatically suppress the protein adsorption and platelet adhesion. The PC-containing polyurethane films possessed outstanding tensile properties, low degradation rate and good surface hemocompatibility, implying their great potential for use as long-term implant or blood-contacting devices.
Collapse
Affiliation(s)
- Zhaosheng Hou
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China.
| | - Jun Xu
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China
| | - Jinwei Teng
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China
| | - Qi Jia
- Jinan Thermal Power Co. Ltd., Jinan 250001, PR China
| | - Xuejie Wang
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, PR China
| |
Collapse
|