1
|
Molway MJ, Bales-Shaffer L, Ranta K, Ball J, Sparling E, Prince M, Cocking D, Basler D, Murphy M, Kidd BE, Gafar AT, Porter J, Albin K, Rosen MS, Chekmenev EY, Michael Snow W, Barlow MJ, Goodson BM. Dramatic improvement in the "Bulk" hyperpolarization of 131Xe via spin exchange optical pumping probed using in situ low-field NMR. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 354:107521. [PMID: 37487304 DOI: 10.1016/j.jmr.2023.107521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/26/2023]
Abstract
We report on hyperpolarization of quadrupolar (I=3/2) 131Xe via spin-exchange optical pumping. Observations of the 131Xe polarization dynamics via in situ low-field NMR show that the estimated alkali-metal/131Xe spin-exchange rates can be large enough to compete with 131Xe spin relaxation. 131Xe polarization up to 7.6±1.5% was achieved in ∼8.5×1020 spins-a ∼100-fold improvement in the total spin angular momentum-potentially enabling various applications, including: measurement of spin-dependent neutron-131Xe s-wave scattering; sensitive searches for time-reversal violation in neutron-131Xe interactions beyond the Standard Model; and surface-sensitive pulmonary MRI.
Collapse
Affiliation(s)
- Michael J Molway
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Liana Bales-Shaffer
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Kaili Ranta
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - James Ball
- School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Eleanor Sparling
- School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Mia Prince
- School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Daniel Cocking
- School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Dustin Basler
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Megan Murphy
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Bryce E Kidd
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Abdulbasit Tobi Gafar
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Justin Porter
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Kierstyn Albin
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA
| | - Matthew S Rosen
- A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston 02129, MA, USA; Department of Physics, Harvard University, Cambridge 02138, MA, USA
| | - Eduard Y Chekmenev
- Department of Chemistry, Integrative Biosciences (Ibio), Karmanos Cancer Institute (KCI), Wayne State University, Detroit 48202, MI, USA; Russian Academy of Sciences, Leninskiy Prospekt 14, 119991 Moscow, Russia
| | - W Michael Snow
- Department of Physics, Indiana University, Bloomington, IN, USA
| | - Michael J Barlow
- School of Medicine, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Boyd M Goodson
- School of Chemical and Biomolecular Sciences, Southern Illinois University, Carbondale 62901, IL, USA.
| |
Collapse
|
2
|
Eills J, Budker D, Cavagnero S, Chekmenev EY, Elliott SJ, Jannin S, Lesage A, Matysik J, Meersmann T, Prisner T, Reimer JA, Yang H, Koptyug IV. Spin Hyperpolarization in Modern Magnetic Resonance. Chem Rev 2023; 123:1417-1551. [PMID: 36701528 PMCID: PMC9951229 DOI: 10.1021/acs.chemrev.2c00534] [Citation(s) in RCA: 110] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 01/27/2023]
Abstract
Magnetic resonance techniques are successfully utilized in a broad range of scientific disciplines and in various practical applications, with medical magnetic resonance imaging being the most widely known example. Currently, both fundamental and applied magnetic resonance are enjoying a major boost owing to the rapidly developing field of spin hyperpolarization. Hyperpolarization techniques are able to enhance signal intensities in magnetic resonance by several orders of magnitude, and thus to largely overcome its major disadvantage of relatively low sensitivity. This provides new impetus for existing applications of magnetic resonance and opens the gates to exciting new possibilities. In this review, we provide a unified picture of the many methods and techniques that fall under the umbrella term "hyperpolarization" but are currently seldom perceived as integral parts of the same field. Specifically, before delving into the individual techniques, we provide a detailed analysis of the underlying principles of spin hyperpolarization. We attempt to uncover and classify the origins of hyperpolarization, to establish its sources and the specific mechanisms that enable the flow of polarization from a source to the target spins. We then give a more detailed analysis of individual hyperpolarization techniques: the mechanisms by which they work, fundamental and technical requirements, characteristic applications, unresolved issues, and possible future directions. We are seeing a continuous growth of activity in the field of spin hyperpolarization, and we expect the field to flourish as new and improved hyperpolarization techniques are implemented. Some key areas for development are in prolonging polarization lifetimes, making hyperpolarization techniques more generally applicable to chemical/biological systems, reducing the technical and equipment requirements, and creating more efficient excitation and detection schemes. We hope this review will facilitate the sharing of knowledge between subfields within the broad topic of hyperpolarization, to help overcome existing challenges in magnetic resonance and enable novel applications.
Collapse
Affiliation(s)
- James Eills
- Institute
for Bioengineering of Catalonia, Barcelona
Institute of Science and Technology, 08028Barcelona, Spain
| | - Dmitry Budker
- Johannes
Gutenberg-Universität Mainz, 55128Mainz, Germany
- Helmholtz-Institut,
GSI Helmholtzzentrum für Schwerionenforschung, 55128Mainz, Germany
- Department
of Physics, UC Berkeley, Berkeley, California94720, United States
| | - Silvia Cavagnero
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Eduard Y. Chekmenev
- Department
of Chemistry, Integrative Biosciences (IBio), Karmanos Cancer Institute
(KCI), Wayne State University, Detroit, Michigan48202, United States
- Russian
Academy of Sciences, Moscow119991, Russia
| | - Stuart J. Elliott
- Molecular
Sciences Research Hub, Imperial College
London, LondonW12 0BZ, United Kingdom
| | - Sami Jannin
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Anne Lesage
- Centre
de RMN à Hauts Champs de Lyon, Université
de Lyon, CNRS, ENS Lyon, Université Lyon 1, 69100Villeurbanne, France
| | - Jörg Matysik
- Institut
für Analytische Chemie, Universität
Leipzig, Linnéstr. 3, 04103Leipzig, Germany
| | - Thomas Meersmann
- Sir
Peter Mansfield Imaging Centre, University Park, School of Medicine, University of Nottingham, NottinghamNG7 2RD, United Kingdom
| | - Thomas Prisner
- Institute
of Physical and Theoretical Chemistry and Center of Biomolecular Magnetic
Resonance, Goethe University Frankfurt, , 60438Frankfurt
am Main, Germany
| | - Jeffrey A. Reimer
- Department
of Chemical and Biomolecular Engineering, UC Berkeley, and Materials Science Division, Lawrence Berkeley National
Laboratory, Berkeley, California94720, United States
| | - Hanming Yang
- Department
of Chemistry, University of Wisconsin, Madison, Madison, Wisconsin53706, United States
| | - Igor V. Koptyug
- International Tomography Center, Siberian
Branch of the Russian Academy
of Sciences, 630090Novosibirsk, Russia
| |
Collapse
|
3
|
Wang Z, Yuan B, Zhao H, Chen M, Zhan X, Luo H. Optically pumped NMR oscillator based on 131Xe nuclear spins. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2021; 326:106959. [PMID: 33711752 DOI: 10.1016/j.jmr.2021.106959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
A 131Xe nuclear magnetic resonance (NMR) oscillator can be used in the measurement of rotation rates, CPT and Lorentz violation tests, etc. To improve the measurement precision of devices based on a 131Xe NMR oscillator, its characteristics need to be fully understood. Under the conditions where the Zeeman interaction is much larger than the quadrupolar interaction, the characteristics of the 131Xe NMR oscillator involving the magnetic resonance, free induction decay, and closed-loop oscillation are investigated both experimentally and theoretically. The main findings are as follows. The 131Xe NMR oscillator consists of six oscillators, three of which can be directly observed by a magnetometer. When the polarization of the 131Xe spin ensemble can be described by a spin temperature, the ensemble exhibits both spin orientation and spin alignment. The spin alignment breaks the symmetry of the three main oscillators. The free induction decay signal of 131Xe depends on parameters such as the spin alignment and the driving magnetic field, which make the measurement of the relaxation time difficult. In the closed-loop mode under self-excitation, the 131Xe NMR oscillator may oscillate with more than one frequency at certain feedback gain and phase. If the quadrupole splitting is much smaller than the spin relaxation rate, then the 131Xe oscillator can be described by the Bloch equations, and the 131Xe oscillator will have a large amplitude. The oscillation frequency of the closed-loop oscillator depends on the quadrupole splitting, polarization, and various relaxation times, which should be considered in designing a high-precision NMR sensor. The results are significant for optimizing and improving the performance of the 131Xe NMR oscillator as a sensor for precision measurement.
Collapse
Affiliation(s)
- Zhiguo Wang
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha 410073, China.
| | - Baolun Yuan
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Hongchang Zhao
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Miao Chen
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Xiang Zhan
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
| | - Hui Luo
- College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China; Interdisciplinary Center of Quantum Information, National University of Defense Technology, Changsha 410073, China.
| |
Collapse
|
4
|
Skinner JG, Ranta K, Whiting N, Coffey AM, Nikolaou P, Rosen MS, Chekmenev EY, Morris PG, Barlow MJ, Goodson BM. High Xe density, high photon flux, stopped-flow spin-exchange optical pumping: Simulations versus experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2020; 312:106686. [PMID: 32006793 PMCID: PMC7436892 DOI: 10.1016/j.jmr.2020.106686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 01/07/2020] [Indexed: 05/13/2023]
Abstract
Spin-exchange optical pumping (SEOP) can enhance the NMR sensitivity of noble gases by up to five orders of magnitude at Tesla-strength magnetic fields. SEOP-generated hyperpolarised (HP) 129Xe is a promising contrast agent for lung imaging but an ongoing barrier to widespread clinical usage has been economical production of sufficient quantities with high 129Xe polarisation. Here, the 'standard model' of SEOP, which was previously used in the optimisation of continuous-flow 129Xe polarisers, is modified for validation against two Xe-rich stopped-flow SEOP datasets. We use this model to examine ways to increase HP Xe production efficiency in stopped-flow 129Xe polarisers and provide further insight into the underlying physics of Xe-rich stopped-flow SEOP at high laser fluxes.
Collapse
Affiliation(s)
- Jason G Skinner
- Division of Respiratory Medicine, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Kaili Ranta
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA
| | - Nicholas Whiting
- Department of Physics & Astronomy and Department of Molecular & Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Aaron M Coffey
- Vanderbilt University Institute of Imaging Science (VUIIS), Department of Radiology and Radiological Sciences, Vanderbilt-Ingram Cancer Center (VICC), Department of Biomedical Engineering, Department of Physics and Astronomy, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Matthew S Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, 149 13th Street, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02115, USA; Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Eduard Y Chekmenev
- Russian Academy of Sciences, Leninskiy Prospekt 14, 119991 Moscow, Russia; Department of Chemistry, Integrative Biosciences (Ibio), Wayne State University, Karmanos Cancer Institute (KCI), Detroit, MI, 48202, United States
| | - Peter G Morris
- Sir Peter Mansfield Imaging Centre, School of Physics & Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Michael J Barlow
- Division of Respiratory Medicine, School of Medicine, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Boyd M Goodson
- Department of Chemistry and Biochemistry, Southern Illinois University Carbondale, Carbondale, IL, 62901, USA.
| |
Collapse
|
5
|
Svyatova A, Kononenko ES, Kovtunov KV, Lebedev D, Gerasimov EY, Bukhtiyarov AV, Prosvirin IP, Bukhtiyarov VI, Müller CR, Fedorov A, Koptyug IV. Spatially resolved NMR spectroscopy of heterogeneous gas phase hydrogenation of 1,3-butadiene with parahydrogen. Catal Sci Technol 2020. [DOI: 10.1039/c9cy02100k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Glass tube reactors with Pd, Pt, Rh or Ir nanoparticles dispersed on a thin layer of TiO2, CeO2, SiO2 or Al2O3 provided mechanistic insight into the hydrogenation of 1,3-butadiene using parahydrogen.
Collapse
Affiliation(s)
- Alexandra Svyatova
- International Tomography Center
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Elizaveta S. Kononenko
- International Tomography Center
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Kirill V. Kovtunov
- International Tomography Center
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| | - Dmitry Lebedev
- Department of Chemistry and Applied Biosciences
- ETH Zürich
- Zürich
- Switzerland
| | - Evgeniy Yu. Gerasimov
- Novosibirsk State University
- Novosibirsk 630090
- Russia
- Boreskov Institute of Catalysis SB RAS
- Novosibirsk 630090
| | - Andrey V. Bukhtiyarov
- Novosibirsk State University
- Novosibirsk 630090
- Russia
- Boreskov Institute of Catalysis SB RAS
- Novosibirsk 630090
| | - Igor P. Prosvirin
- Novosibirsk State University
- Novosibirsk 630090
- Russia
- Boreskov Institute of Catalysis SB RAS
- Novosibirsk 630090
| | | | | | - Alexey Fedorov
- Department of Mechanical and Process Engineering
- ETH Zürich
- Zürich
- Switzerland
| | - Igor V. Koptyug
- International Tomography Center
- Novosibirsk 630090
- Russia
- Novosibirsk State University
- Novosibirsk 630090
| |
Collapse
|
6
|
Skinner JG, Menichetti L, Flori A, Dost A, Schmidt AB, Plaumann M, Gallagher FA, Hövener JB. Metabolic and Molecular Imaging with Hyperpolarised Tracers. Mol Imaging Biol 2018; 20:902-918. [PMID: 30120644 DOI: 10.1007/s11307-018-1265-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since reaching the clinic, magnetic resonance imaging (MRI) has become an irreplaceable radiological tool because of the macroscopic information it provides across almost all organs and soft tissues within the human body, all without the need for ionising radiation. The sensitivity of MR, however, is too low to take full advantage of the rich chemical information contained in the MR signal. Hyperpolarisation techniques have recently emerged as methods to overcome the sensitivity limitations by enhancing the MR signal by many orders of magnitude compared to the thermal equilibrium, enabling a new class of metabolic and molecular X-nuclei based MR tracers capable of reporting on metabolic processes at the cellular level. These hyperpolarised (HP) tracers have the potential to elucidate the complex metabolic processes of many organs and pathologies, with studies so far focusing on the fields of oncology and cardiology. This review presents an overview of hyperpolarisation techniques that appear most promising for clinical use today, such as dissolution dynamic nuclear polarisation (d-DNP), parahydrogen-induced hyperpolarisation (PHIP), Brute force hyperpolarisation and spin-exchange optical pumping (SEOP), before discussing methods for tracer detection, emerging metabolic tracers and applications and progress in preclinical and clinical application.
Collapse
Affiliation(s)
- Jason Graham Skinner
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Luca Menichetti
- Institute of Clinical Physiology, National Research Council (CNR), Pisa, Italy
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
| | - Alessandra Flori
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Anna Dost
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Benjamin Schmidt
- Department of Radiology, Medical Physics, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Section Biomedical Imaging and MOIN CC, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | - Markus Plaumann
- Institute of Biometrics and Medical Informatics, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | | | - Jan-Bernd Hövener
- Section Biomedical Imaging and MOIN CC, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany.
| |
Collapse
|
7
|
Leroy C, Bryce DL. Recent advances in solid-state nuclear magnetic resonance spectroscopy of exotic nuclei. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:160-199. [PMID: 30527135 DOI: 10.1016/j.pnmrs.2018.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 07/18/2018] [Accepted: 08/10/2018] [Indexed: 06/09/2023]
Abstract
We present a review of recent advances in solid-state nuclear magnetic resonance (SSNMR) studies of exotic nuclei. Exotic nuclei may be spin-1/2 or quadrupolar, and typically have low gyromagnetic ratios, low natural abundances, large quadrupole moments (when I > 1/2), or some combination of these properties, generally resulting in low receptivities and/or prohibitively broad line widths. Some nuclides are little studied for other reasons, also rendering them somewhat exotic. We first discuss some of the recent progress in pulse sequences and hardware development which continues to enable researchers to study new kinds of materials as well as previously unfeasible nuclei. This is followed by a survey of applications to a wide range of exotic nuclei (including e.g., 9Be, 25Mg, 33S, 39K, 43Ca, 47/49Ti, 53Cr, 59Co, 61Ni, 67Zn, 73Ge, 75As, 87Sr, 115In, 119Sn, 121/123Sb, 135/137Ba, 185/187Re, 209Bi), most of them quadrupolar. The scope of the review is the past ten years, i.e., 2007-2017.
Collapse
Affiliation(s)
- César Leroy
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada
| | - David L Bryce
- Department of Chemistry and Biomolecular Sciences & Centre for Catalysis Research and Innovation, University of Ottawa, 10 Marie Curie Private, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
8
|
Kern AL, Vogel-Claussen J. Hyperpolarized gas MRI in pulmonology. Br J Radiol 2018; 91:20170647. [PMID: 29271239 PMCID: PMC5965996 DOI: 10.1259/bjr.20170647] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/12/2017] [Accepted: 12/08/2017] [Indexed: 01/20/2023] Open
Abstract
Lung diseases have a high prevalence amongst the world population and their early diagnosis has been pointed out to be key for successful treatment. However, there is still a lack of non-invasive examination methods with sensitivity to early, local deterioration of lung function. Proton-based lung MRI is particularly challenging due to short T2* times and low proton density within the lung tissue. Hyperpolarized gas MRI is aan emerging technology providing a richness of methodologies which overcome the aforementioned problems. Unlike proton-based MRI, lung MRI of hyperpolarized gases may rely on imaging of spins in the lung's gas spaces or inside the lung tissue and thereby add substantial value and diagnostic potential to lung MRI. This review article gives an introduction to the MR physics of hyperpolarized media and presents the current state of hyperpolarized gas MRI of 3Headvasd and 129Xe in pulmonology. Key applications, ranging from static and dynamic ventilation imaging as well as oxygen-pressure mapping to 129Xe dissolved-phase imaging and spectroscopy are presented. Hyperpolarized gas MRI is compared to alternative examination methods based on MRI and future directions of hyperpolarized gas MRI are discussed.
Collapse
|
9
|
Imai H, Yoshimura H, Kimura A, Fujiwara H. Continuous flow production of concentrated hyperpolarized xenon gas from a dilute xenon gas mixture by buffer gas condensation. Sci Rep 2017; 7:7352. [PMID: 28779105 PMCID: PMC5544720 DOI: 10.1038/s41598-017-07695-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 07/03/2017] [Indexed: 11/22/2022] Open
Abstract
We present a new method for the continuous flow production of concentrated hyperpolarized xenon-129 (HP 129Xe) gas from a dilute xenon (Xe) gas mixture with high nuclear spin polarization. A low vapor pressure (i.e., high boiling-point) gas was introduced as an alternative to molecular nitrogen (N2), which is the conventional quenching gas for generating HP 129Xe via Rb-Xe spin-exchange optical-pumping (SEOP). In contrast to the generally used method of extraction by freezing Xe after the SEOP process, the quenching gas separated as a liquid at moderately low temperature so that Xe was maintained in its gaseous state, allowing the continuous delivery of highly polarized concentrated Xe gas. We selected isobutene as the candidate quenching gas and our method was demonstrated experimentally while comparing its performance with N2. Isobutene could be liquefied and removed from the Xe gas mixture using a cold trap, and the concentrated HP 129Xe gas exhibited a significantly enhanced nuclear magnetic resonance (NMR) signal. Although the system requires further optimization depending on the intended purpose, our approach presented here could provide a simple means for performing NMR or magnetic resonance imaging (MRI) measurements continuously using HP 129Xe with improved sensitivity.
Collapse
Affiliation(s)
- Hirohiko Imai
- Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan. .,Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan.
| | | | - Atsuomi Kimura
- Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| | - Hideaki Fujiwara
- Graduate School of Medicine, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
10
|
Barskiy DA, Coffey AM, Nikolaou P, Mikhaylov DM, Goodson BM, Branca RT, Lu GJ, Shapiro MG, Telkki VV, Zhivonitko VV, Koptyug IV, Salnikov OG, Kovtunov KV, Bukhtiyarov VI, Rosen MS, Barlow MJ, Safavi S, Hall IP, Schröder L, Chekmenev EY. NMR Hyperpolarization Techniques of Gases. Chemistry 2017; 23:725-751. [PMID: 27711999 PMCID: PMC5462469 DOI: 10.1002/chem.201603884] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Indexed: 01/09/2023]
Abstract
Nuclear spin polarization can be significantly increased through the process of hyperpolarization, leading to an increase in the sensitivity of nuclear magnetic resonance (NMR) experiments by 4-8 orders of magnitude. Hyperpolarized gases, unlike liquids and solids, can often be readily separated and purified from the compounds used to mediate the hyperpolarization processes. These pure hyperpolarized gases enabled many novel MRI applications including the visualization of void spaces, imaging of lung function, and remote detection. Additionally, hyperpolarized gases can be dissolved in liquids and can be used as sensitive molecular probes and reporters. This Minireview covers the fundamentals of the preparation of hyperpolarized gases and focuses on selected applications of interest to biomedicine and materials science.
Collapse
Affiliation(s)
- Danila A Barskiy
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Aaron M Coffey
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | - Panayiotis Nikolaou
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
| | | | - Boyd M Goodson
- Southern Illinois University, Department of Chemistry and Biochemistry, Materials Technology Center, Carbondale, IL, 62901, USA
| | - Rosa T Branca
- Department of Physics and Astronomy, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - George J Lu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Mikhail G Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | | | - Vladimir V Zhivonitko
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Igor V Koptyug
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Oleg G Salnikov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Kirill V Kovtunov
- International Tomography Center SB RAS, 630090, Novosibirsk, Russia
- Novosibirsk State University, Pirogova St. 2, 630090, Novosibirsk, Russia
| | - Valerii I Bukhtiyarov
- Boreskov Institute of Catalysis SB RAS, 5 Acad. Lavrentiev Pr., 630090, Novosibirsk, Russia
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA, 02129, USA
| | - Michael J Barlow
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Shahideh Safavi
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Ian P Hall
- Respiratory Medicine Department, Queen's Medical Centre, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | - Leif Schröder
- Molecular Imaging, Department of Structural Biology, Leibniz-Institut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Eduard Y Chekmenev
- Department of Radiology, Department of Biomedical Engineering, Department of Physics, Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University, Nashville, TN, 37232, USA
- Russian Academy of Sciences, 119991, Moscow, Russia
| |
Collapse
|
11
|
Lilburn DML, Lesbats C, Six JS, Dubuis E, Yew-Booth L, Shaw DE, Belvisi MG, Birrell MA, Pavlovskaya GE, Meersmann T. Hyperpolarized 83Kr magnetic resonance imaging of alveolar degradation in a rat model of emphysema. J R Soc Interface 2016; 12:rsif.2015.0192. [PMID: 25994296 PMCID: PMC4587540 DOI: 10.1098/rsif.2015.0192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Hyperpolarized 83Kr surface quadrupolar relaxation (SQUARE) generates MRI contrast that was previously shown to correlate with surface-to-volume ratios in porous model surface systems. The underlying physics of SQUARE contrast is conceptually different from any other current MRI methodology as the method uses the nuclear electric properties of the spin I = 9/2 isotope 83Kr. To explore the usage of this non-radioactive isotope for pulmonary pathophysiology, MRI SQUARE contrast was acquired in excised rat lungs obtained from an elastase-induced model of emphysema. A significant 83Kr T1 relaxation time increase in the SQUARE contrast was found in the elastase-treated lungs compared with the baseline data from control lungs. The SQUARE contrast suggests a reduction in pulmonary surface-to-volume ratio in the emphysema model that was validated by histology. The finding supports usage of 83Kr SQUARE as a new biomarker for surface-to-volume ratio changes in emphysema.
Collapse
Affiliation(s)
- David M L Lilburn
- Sir Peter Mansfield Imaging Centre, Division for Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Clémentine Lesbats
- Sir Peter Mansfield Imaging Centre, Division for Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Joseph S Six
- Sir Peter Mansfield Imaging Centre, Division for Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Eric Dubuis
- Respiratory Pharmacology, Pharmacology and Toxicology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Liang Yew-Booth
- Respiratory Pharmacology, Pharmacology and Toxicology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Dominick E Shaw
- City Hospital Nottingham, Nottingham Respiratory Research Unit, Nottingham NG5 1PB, UK
| | - Maria G Belvisi
- Respiratory Pharmacology, Pharmacology and Toxicology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Mark A Birrell
- Respiratory Pharmacology, Pharmacology and Toxicology, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Galina E Pavlovskaya
- Sir Peter Mansfield Imaging Centre, Division for Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | - Thomas Meersmann
- Sir Peter Mansfield Imaging Centre, Division for Respiratory Medicine, School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| |
Collapse
|
12
|
Molecular hydrogen and catalytic combustion in the production of hyperpolarized 83Kr and 129Xe MRI contrast agents. Proc Natl Acad Sci U S A 2016; 113:3164-8. [PMID: 26961001 DOI: 10.1073/pnas.1600379113] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Hyperpolarized (hp) (83)Kr is a promising MRI contrast agent for the diagnosis of pulmonary diseases affecting the surface of the respiratory zone. However, the distinct physical properties of (83)Kr that enable unique MRI contrast also complicate the production of hp (83)Kr. This work presents a previously unexplored approach in the generation of hp (83)Kr that can likewise be used for the production of hp (129)Xe. Molecular nitrogen, typically used as buffer gas in spin-exchange optical pumping (SEOP), was replaced by molecular hydrogen without penalty for the achievable hyperpolarization. In this particular study, the highest obtained nuclear spin polarizations were P =29% for(83)Kr and P= 63% for (129)Xe. The results were reproduced over many SEOP cycles despite the laser-induced on-resonance formation of rubidium hydride (RbH). Following SEOP, the H2 was reactively removed via catalytic combustion without measurable losses in hyperpolarized spin state of either (83)Kr or (129)Xe. Highly spin-polarized (83)Kr can now be purified for the first time, to our knowledge, to provide high signal intensity for the advancement of in vivo hp (83)Kr MRI. More generally, a chemical reaction appears as a viable alternative to the cryogenic separation process, the primary purification method of hp(129)Xe for the past 2 1/2 decades. The inherent simplicity of the combustion process will facilitate hp (129)Xe production and should allow for on-demand continuous flow of purified and highly spin-polarized (129)Xe.
Collapse
|
13
|
Nikolaou P, Coffey AM, Barlow MJ, Rosen MS, Goodson BM, Chekmenev EY. Temperature-ramped (129)Xe spin-exchange optical pumping. Anal Chem 2014; 86:8206-12. [PMID: 25008290 PMCID: PMC4139178 DOI: 10.1021/ac501537w] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 06/26/2014] [Indexed: 12/12/2022]
Abstract
We describe temperature-ramped spin-exchange optical pumping (TR-SEOP) in an automated high-throughput batch-mode (129)Xe hyperpolarizer utilizing three key temperature regimes: (i) "hot"-where the (129)Xe hyperpolarization rate is maximal, (ii) "warm"-where the (129)Xe hyperpolarization approaches unity, and (iii) "cool"-where hyperpolarized (129)Xe gas is transferred into a Tedlar bag with low Rb content (<5 ng per ∼1 L dose) suitable for human imaging applications. Unlike with the conventional approach of batch-mode SEOP, here all three temperature regimes may be operated under continuous high-power (170 W) laser irradiation, and hyperpolarized (129)Xe gas is delivered without the need for a cryocollection step. The variable-temperature approach increased the SEOP rate by more than 2-fold compared to the constant-temperature polarization rate (e.g., giving effective values for the exponential buildup constant γSEOP of 62.5 ± 3.7 × 10(-3) min(-1) vs 29.9 ± 1.2 × 10(-3) min(-1)) while achieving nearly the same maximum %PXe value (88.0 ± 0.8% vs 90.1% ± 0.8%, for a 500 Torr (67 kPa) Xe cell loading-corresponding to nuclear magnetic resonance/magnetic resonance imaging (NMR/MRI) enhancements of ∼3.1 × 10(5) and ∼2.32 × 10(8) at the relevant fields for clinical imaging and HP (129)Xe production of 3 T and 4 mT, respectively); moreover, the intercycle "dead" time was also significantly decreased. The higher-throughput TR-SEOP approach can be implemented without sacrificing the level of (129)Xe hyperpolarization or the experimental stability for automation-making this approach beneficial for improving the overall (129)Xe production rate in clinical settings.
Collapse
Affiliation(s)
- Panayiotis Nikolaou
- Department
of Radiology, Vanderbilt University Institute of Imaging
Science, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Aaron M. Coffey
- Department
of Radiology, Vanderbilt University Institute of Imaging
Science, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biomedical
Engineering, Department of Biochemistry, and Vanderbilt-Ingram
Cancer Center, Vanderbilt University, Nashville, Tennessee 37205, United States
| | - Michael J. Barlow
- Sir Peter Mansfield
Magnetic Resonance Centre, University of Nottingham, Nottingham, NG7 2RD, United Kingdom
| | - Matthew S. Rosen
- Athinoula A. Martinos
Center for Biomedical Imaging, Massachusetts General
Hospital, Boston, Massachusetts 02129, United States
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Boyd M. Goodson
- Department
of Chemistry and Biochemistry, Southern
Illinois University, Carbondale, Illinois 62901, United States
| | - Eduard Y. Chekmenev
- Department
of Radiology, Vanderbilt University Institute of Imaging
Science, Vanderbilt University, Nashville, Tennessee 37232, United States
- Department of Biomedical
Engineering, Department of Biochemistry, and Vanderbilt-Ingram
Cancer Center, Vanderbilt University, Nashville, Tennessee 37205, United States
| |
Collapse
|
14
|
Nikolaou P, Coffey AM, Walkup LL, Gust BM, Whiting N, Newton H, Muradyan I, Dabaghyan M, Ranta K, Moroz GD, Rosen MS, Patz S, Barlow MJ, Chekmenev EY, Goodson BM. XeNA: an automated 'open-source' (129)Xe hyperpolarizer for clinical use. Magn Reson Imaging 2014; 32:541-50. [PMID: 24631715 DOI: 10.1016/j.mri.2014.02.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/30/2014] [Accepted: 02/02/2014] [Indexed: 11/28/2022]
Abstract
Here we provide a full report on the construction, components, and capabilities of our consortium's "open-source" large-scale (~1L/h) (129)Xe hyperpolarizer for clinical, pre-clinical, and materials NMR/MRI (Nikolaou et al., Proc. Natl. Acad. Sci. USA, 110, 14150 (2013)). The 'hyperpolarizer' is automated and built mostly of off-the-shelf components; moreover, it is designed to be cost-effective and installed in both research laboratories and clinical settings with materials costing less than $125,000. The device runs in the xenon-rich regime (up to 1800Torr Xe in 0.5L) in either stopped-flow or single-batch mode-making cryo-collection of the hyperpolarized gas unnecessary for many applications. In-cell (129)Xe nuclear spin polarization values of ~30%-90% have been measured for Xe loadings of ~300-1600Torr. Typical (129)Xe polarization build-up and T1 relaxation time constants were ~8.5min and ~1.9h respectively under our spin-exchange optical pumping conditions; such ratios, combined with near-unity Rb electron spin polarizations enabled by the high resonant laser power (up to ~200W), permit such high PXe values to be achieved despite the high in-cell Xe densities. Importantly, most of the polarization is maintained during efficient HP gas transfer to other containers, and ultra-long (129)Xe relaxation times (up to nearly 6h) were observed in Tedlar bags following transport to a clinical 3T scanner for MR spectroscopy and imaging as a prelude to in vivo experiments. The device has received FDA IND approval for a clinical study of chronic obstructive pulmonary disease subjects. The primary focus of this paper is on the technical/engineering development of the polarizer, with the explicit goals of facilitating the adaptation of design features and operative modes into other laboratories, and of spurring the further advancement of HP-gas MR applications in biomedicine.
Collapse
Affiliation(s)
- Panayiotis Nikolaou
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN, 37232, United States; Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL.
| | - Aaron M Coffey
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN, 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, United States
| | - Laura L Walkup
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL
| | - Brogan M Gust
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL
| | - Nicholas Whiting
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, NG7 2RD, Nottingham, UK
| | - Hayley Newton
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, NG7 2RD, Nottingham, UK
| | - Iga Muradyan
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA
| | - Mikayel Dabaghyan
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA
| | - Kaili Ranta
- Department of Physics, Southern Illinois University, Carbondale, IL
| | - Gregory D Moroz
- Graduate School Central Research Shop, Southern Illinois University, Carbondale, IL
| | - Matthew S Rosen
- MGH/A.A. Martinos Center for Biomedical Imaging, Boston, MA; Department of Physics, Harvard University, Cambridge, MA
| | - Samuel Patz
- Department of Radiology, Brigham & Women's Hospital and Harvard Medical School, Boston, MA
| | - Michael J Barlow
- Sir Peter Mansfield Magnetic Resonance Centre, University of Nottingham, NG7 2RD, Nottingham, UK
| | - Eduard Y Chekmenev
- Department of Radiology, Vanderbilt University Institute of Imaging Science (VUIIS), Nashville, TN, 37232, United States; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, 37235, United States; Department of Biochemistry, Vanderbilt University, Nashville, TN, 37205, United States
| | - Boyd M Goodson
- Department of Chemistry & Biochemistry, Southern Illinois University, Carbondale, IL.
| |
Collapse
|
15
|
Bonhomme C, Gervais C, Laurencin D. Recent NMR developments applied to organic-inorganic materials. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 77:1-48. [PMID: 24411829 DOI: 10.1016/j.pnmrs.2013.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 10/17/2013] [Indexed: 06/03/2023]
Abstract
In this contribution, the latest developments in solid state NMR are presented in the field of organic-inorganic (O/I) materials (or hybrid materials). Such materials involve mineral and organic (including polymeric and biological) components, and can exhibit complex O/I interfaces. Hybrids are currently a major topic of research in nanoscience, and solid state NMR is obviously a pertinent spectroscopic tool of investigation. Its versatility allows the detailed description of the structure and texture of such complex materials. The article is divided in two main parts: in the first one, recent NMR methodological/instrumental developments are presented in connection with hybrid materials. In the second part, an exhaustive overview of the major classes of O/I materials and their NMR characterization is presented.
Collapse
Affiliation(s)
- Christian Bonhomme
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574, Université Pierre et Marie Curie, Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
| | - Christel Gervais
- Laboratoire de Chimie de la Matière Condensée de Paris, UMR CNRS 7574, Université Pierre et Marie Curie, Paris 06, Collège de France, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France
| | - Danielle Laurencin
- Institut Charles Gerhardt de Montpellier, UMR5253, CNRS UM2 UM1 ENSCM, CC1701, Place Eugène Bataillon, 34095 Montpellier Cedex 05, France
| |
Collapse
|
16
|
Fu LJ, Vaara J. Nuclear quadrupole moment-induced Cotton-Mouton effect in molecules. J Chem Phys 2014; 140:024103. [PMID: 24437861 DOI: 10.1063/1.4855315] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Li-juan Fu
- NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014 Oulu, Finland
| | - Juha Vaara
- NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014 Oulu, Finland
| |
Collapse
|
17
|
Fu LJ, Rizzo A, Vaara J. Communication: Nuclear quadrupole moment-induced Cotton-Mouton effect in noble gas atoms. J Chem Phys 2013; 139:181102. [PMID: 24320246 DOI: 10.1063/1.4830094] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Li-juan Fu
- NMR Research Group, Department of Physics, University of Oulu, P.O. Box 3000, FIN-90014 Oulu, Finland
| | | | | |
Collapse
|
18
|
Near-unity nuclear polarization with an open-source 129Xe hyperpolarizer for NMR and MRI. Proc Natl Acad Sci U S A 2013; 110:14150-5. [PMID: 23946420 DOI: 10.1073/pnas.1306586110] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The exquisite NMR spectral sensitivity and negligible reactivity of hyperpolarized xenon-129 (HP(129)Xe) make it attractive for a number of magnetic resonance applications; moreover, HP(129)Xe embodies an alternative to rare and nonrenewable (3)He. However, the ability to reliably and inexpensively produce large quantities of HP(129)Xe with sufficiently high (129)Xe nuclear spin polarization (P(Xe)) remains a significant challenge--particularly at high Xe densities. We present results from our "open-source" large-scale (∼1 L/h) (129)Xe polarizer for clinical, preclinical, and materials NMR and MRI research. Automated and composed mostly of off-the-shelf components, this "hyperpolarizer" is designed to be readily implementable in other laboratories. The device runs with high resonant photon flux (up to 200 W at the Rb D1 line) in the xenon-rich regime (up to 1,800 torr Xe in 500 cc) in either single-batch or stopped-flow mode, negating in part the usual requirement of Xe cryocollection. Excellent agreement is observed among four independent methods used to measure spin polarization. In-cell P(Xe) values of ∼90%, ∼57%, ∼50%, and ∼30% have been measured for Xe loadings of ∼300, ∼500, ∼760, and ∼1,570 torr, respectively. P(Xe) values of ∼41% and ∼28% (with ∼760 and ∼1,545 torr Xe loadings) have been measured after transfer to Tedlar bags and transport to a clinical 3 T scanner for MR imaging, including demonstration of lung MRI with a healthy human subject. Long "in-bag" (129)Xe polarization decay times have been measured (T1 ∼38 min and ∼5.9 h at ∼1.5 mT and 3 T, respectively)--more than sufficient for a variety of applications.
Collapse
|
19
|
Standara S, Kulhánek P, Marek R, Straka M. 129Xe NMR chemical shift in Xe@C60calculated at experimental conditions: Essential role of the relativity, dynamics, and explicit solvent. J Comput Chem 2013; 34:1890-8. [DOI: 10.1002/jcc.23334] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 04/17/2013] [Accepted: 04/19/2013] [Indexed: 11/11/2022]
|
20
|
Lilburn DM, Pavlovskaya GE, Meersmann T. Perspectives of hyperpolarized noble gas MRI beyond 3He. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 229:173-86. [PMID: 23290627 PMCID: PMC3611600 DOI: 10.1016/j.jmr.2012.11.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/12/2012] [Accepted: 11/15/2012] [Indexed: 05/29/2023]
Abstract
Nuclear Magnetic Resonance (NMR) studies with hyperpolarized (hp) noble gases are at an exciting interface between physics, chemistry, materials science and biomedical sciences. This paper intends to provide a brief overview and outlook of magnetic resonance imaging (MRI) with hp noble gases other than hp (3)He. A particular focus are the many intriguing experiments with (129)Xe, some of which have already matured to useful MRI protocols, while others display high potential for future MRI applications. Quite naturally for MRI applications the major usage so far has been for biomedical research but perspectives for engineering and materials science studies are also provided. In addition, the prospects for surface sensitive contrast with hp (83)Kr MRI is discussed.
Collapse
Affiliation(s)
| | | | - Thomas Meersmann
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham NG7 2RD, United Kingdom
| |
Collapse
|
21
|
Six JS, Hughes-Riley T, Stupic KF, Pavlovskaya GE, Meersmann T. Pathway to cryogen free production of hyperpolarized Krypton-83 and Xenon-129. PLoS One 2012; 7:e49927. [PMID: 23209620 PMCID: PMC3507956 DOI: 10.1371/journal.pone.0049927] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 10/16/2012] [Indexed: 11/24/2022] Open
Abstract
Hyperpolarized (hp) 129Xe and hp 83Kr for magnetic resonance imaging (MRI) are typically obtained through spin-exchange optical pumping (SEOP) in gas mixtures with dilute concentrations of the respective noble gas. The usage of dilute noble gases mixtures requires cryogenic gas separation after SEOP, a step that makes clinical and preclinical applications of hp 129Xe MRI cumbersome. For hp 83Kr MRI, cryogenic concentration is not practical due to depolarization that is caused by quadrupolar relaxation in the condensed phase. In this work, the concept of stopped flow SEOP with concentrated noble gas mixtures at low pressures was explored using a laser with 23.3 W of output power and 0.25 nm linewidth. For 129Xe SEOP without cryogenic separation, the highest obtained MR signal intensity from the hp xenon-nitrogen gas mixture was equivalent to that arising from 15.5±1.9% spin polarized 129Xe in pure xenon gas. The production rate of the hp gas mixture, measured at 298 K, was 1.8 cm3/min. For hp 83Kr, the equivalent of 4.4±0.5% spin polarization in pure krypton at a production rate of 2 cm3/min was produced. The general dependency of spin polarization upon gas pressure obtained in stopped flow SEOP is reported for various noble gas concentrations. Aspects of SEOP specific to the two noble gas isotopes are discussed and compared with current theoretical opinions. A non-linear pressure broadening of the Rb D1 transition was observed and taken into account for the qualitative description of the SEOP process.
Collapse
Affiliation(s)
- Joseph S. Six
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, United Kingdom
| | - Theodore Hughes-Riley
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, United Kingdom
| | - Karl F. Stupic
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, United Kingdom
| | - Galina E. Pavlovskaya
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, United Kingdom
| | - Thomas Meersmann
- University of Nottingham, School of Clinical Sciences, Sir Peter Mansfield Magnetic Resonance Centre, Nottingham, United Kingdom
- * E-mail:
| |
Collapse
|
22
|
Stupic KF, Elkins ND, Pavlovskaya GE, Repine JE, Meersmann T. Effects of pulmonary inhalation on hyperpolarized krypton-83 magnetic resonance T1 relaxation. Phys Med Biol 2011; 56:3731-48. [PMID: 21628780 DOI: 10.1088/0031-9155/56/13/001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The (83)Kr magnetic resonance (MR) relaxation time T(1) of krypton gas in contact with model surfaces was previously found to be highly sensitive to surface composition, surface-to-volume ratio, and surface temperature. The work presented here explored aspects of pulmonary (83)Kr T(1) relaxation measurements in excised lungs from healthy rats using hyperpolarized (hp) (83)Kr with approximately 4.4% spin polarization. MR spectroscopy without spatial resolution was applied to the ex vivo lungs that actively inhale hp (83)Kr through a custom designed ventilation system. Various inhalation schemes were devised to study the influence of anatomical dead space upon the measured (83)Kr T(1) relaxation times. The longitudinal (83)Kr relaxation times in the distal airways and the respiratory zones were independent of the lung inhalation volume, with T(1) = 1.3 s and T(1) = 1.0 s, depending only on the applied inhalation scheme. The obtained data were highly reproducible between different specimens. Further, the (83)Kr T(1) relaxation times in excised lungs were unaffected by the presence of up to 40% oxygen in the hp gas mixture. The results support the possible importance of (83)Kr as a biomarker for evaluating lung function.
Collapse
Affiliation(s)
- K F Stupic
- Sir Peter Mansfield Magnetic Resonance Centre, School of Clinical Sciences, University of Nottingham, Nottingham, NG7 2RD, UK
| | | | | | | | | |
Collapse
|