1
|
Wahab A, Suhail M, Eggers T, Shehzad K, Akakuru OU, Ahmad Z, Sun Z, Iqbal MZ, Kong X. Innovative perspectives on metal free contrast agents for MRI: Enhancing imaging efficacy, and AI-driven future diagnostics. Acta Biomater 2025; 193:83-106. [PMID: 39793747 DOI: 10.1016/j.actbio.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025]
Abstract
The U.S. Food and Drug Administration (FDA) has issued a boxed warning and mandated additional safety measures for all gadolinium-based contrast agents (GBCAs) used in clinical magnetic resonance imaging (MRI) due to their prolonged retention in the body and associated adverse health effects. This review explores recent advancements in CAs for MRI, highlighting four innovative probes: ORCAs, CEST CAs, 19F CAs, and HP 13C MRI. ORCAs offer a metal-free alternative that enhances imaging through nitroxides. CEST MRI facilitates the direct detection of specific molecules via proton exchange, aiding in disease diagnosis and metabolic assessment. 19F MRI CAs identify subtle biological changes, enabling earlier detection and tailored treatment approaches. HP 13C MRI improves visualization of metabolic processes, demonstrating potential in cancer diagnosis and monitoring. Finally, this review concludes by addressing the challenges facing the field and outlining future research directions, with a particular focus on leveraging artificial intelligence to enhance diagnostic capabilities and optimize both the performance and safety profiles of these innovative CAs. STATEMENT OF SIGNIFICANCE: The review addresses the urgent need for safer MRI contrast agents in light of FDA warnings about GBCAs. It highlights the key factors influencing the stability and functionality of metal-free CAs and recent advancements in designing ORCAs, CEST CAs, 19F CAs, and HP 13C probes and functionalization that enhance MRI contrast. It also explores the potential of these agents for multimodal imaging and targeted diagnostics while outlining future research directions and the integration of artificial intelligence to optimize their clinical application and safety. This contribution is pivotal for driving innovation in MRI technology and improving patient outcomes in disease detection and monitoring.
Collapse
Affiliation(s)
- Abdul Wahab
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Muhammad Suhail
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Tatiana Eggers
- Department of Physics, University of South Florida, Tampa, FL 33620, USA
| | - Khurram Shehzad
- Institute of Physics, Silesian University of Technology, Konarskiego 22B, Gliwice 44-100, Poland
| | - Ozioma Udochukwu Akakuru
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Alberta, Canada
| | - Zahoor Ahmad
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Zhichao Sun
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, PR China.
| |
Collapse
|
2
|
Razanahoera A, Sonnefeld A, Bodenhausen G, Sheberstov K. Paramagnetic relaxivity of delocalized long-lived states of protons in chains of CH 2 groups. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2023; 4:47-56. [PMID: 37904798 PMCID: PMC10583270 DOI: 10.5194/mr-4-47-2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 11/01/2023]
Abstract
Long-lived states (LLSs) have lifetimes T LLS that can be much longer than longitudinal relaxation times T 1 . In molecules containing several geminal pairs of protons in neighboring CH2 groups, it has been shown that delocalized LLSs can be excited by converting magnetization into imbalances between the populations of singlet and triplet states of each pair. Since the empirical yield of the conversion and reconversion of observable magnetization into LLSs and back is on the order of 10 % if one uses spin-lock induced crossing (SLIC), it would be desirable to boost the sensitivity by dissolution dynamic nuclear polarization (d-DNP). To enhance the magnetization of nuclear spins by d-DNP, the analytes must be mixed with radicals such as 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPOL). After dissolution, these radicals lead to an undesirable paramagnetic relaxation enhancement (PRE) which shortens not only the longitudinal relaxation times T 1 but also the lifetimes T LLS of LLSs. It is shown in this work that PRE by TEMPOL is less deleterious for LLSs than for longitudinal magnetization for four different molecules: 2,2-dimethyl-2-silapentane-5-sulfonate (DSS), homotaurine, taurine, and acetylcholine. The relaxivities r LLS (i.e., the slopes of the relaxation rate constants R LLS as a function of the radical concentration) are 3 to 5 times smaller than the relaxivities r 1 of longitudinal magnetization. Partial delocalization of the LLSs across neighboring CH2 groups may decrease this advantage, but in practice, this effect was observed to be small, for example, when comparing taurine containing two CH2 groups and homotaurine with three CH2 groups. Regardless of whether the LLSs are delocalized or not, it is shown that PRE should not be a major problem for experiments combining d-DNP and LLSs, provided the concentration of paramagnetic species after dissolution does not exceed 1 mM, a condition that is readily fulfilled in typical d-DNP experiments. In bullet d-DNP experiments however, it may be necessary to decrease the concentration of TEMPOL or to add ascorbate for chemical reduction.
Collapse
Affiliation(s)
- Aiky Razanahoera
- Department of Chemistry, École Normale Supérieure, PSL University,
75005 Paris, France
| | - Anna Sonnefeld
- Department of Chemistry, École Normale Supérieure, PSL University,
75005 Paris, France
| | - Geoffrey Bodenhausen
- Department of Chemistry, École Normale Supérieure, PSL University,
75005 Paris, France
| | - Kirill Sheberstov
- Department of Chemistry, École Normale Supérieure, PSL University,
75005 Paris, France
| |
Collapse
|
3
|
Picazo-Frutos R, Stern Q, Blanchard JW, Cala O, Ceillier M, Cousin SF, Eills J, Elliott SJ, Jannin S, Budker D. Zero- to Ultralow-Field Nuclear Magnetic Resonance Enhanced with Dissolution Dynamic Nuclear Polarization. Anal Chem 2023; 95:720-729. [PMID: 36563171 DOI: 10.1021/acs.analchem.2c02649] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Zero- to ultralow-field nuclear magnetic resonance is a modality of magnetic resonance experiment which does not require strong superconducting magnets. Contrary to conventional high-field nuclear magnetic resonance, it has the advantage of allowing high-resolution detection of nuclear magnetism through metal as well as within heterogeneous media. To achieve high sensitivity, it is common to couple zero-field nuclear magnetic resonance with hyperpolarization techniques. To date, the most common technique is parahydrogen-induced polarization, which is only compatible with a small number of compounds. In this article, we establish dissolution dynamic nuclear polarization as a versatile method to enhance signals in zero-field nuclear magnetic resonance experiments on sample mixtures of [13C]sodium formate, [1-13C]glycine, and [2-13C]sodium acetate, and our technique is immediately extendable to a broad range of molecules with >1 s relaxation times. We find signal enhancements of up to 11,000 compared with thermal prepolarization in a 2 T permanent magnet. To increase the signal in future experiments, we investigate the relaxation effects of the TEMPOL radicals used for the hyperpolarization process at zero- and ultralow-fields.
Collapse
Affiliation(s)
- Román Picazo-Frutos
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany.,Johannes Gutenberg-Universität Mainz, Mainz55128, Germany
| | - Quentin Stern
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | - John W Blanchard
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany
| | - Olivier Cala
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | - Morgan Ceillier
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | | | - James Eills
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany.,Johannes Gutenberg-Universität Mainz, Mainz55128, Germany.,Institute for Bioengineering of Catalonia, Baldiri Reixac 10-12, Barcelona08028, Spain
| | - Stuart J Elliott
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France.,Molecular Sciences Research Hub, Imperial College London, LondonW12 0BZ, U.K
| | - Sami Jannin
- Univ Lyon, CNRS, ENS Lyon, UCBL, Université de Lyon, CRMN UMR 5280, 69100Villeurbanne, France
| | - Dmitry Budker
- Helmholtz-Institut Mainz, GSI Helmholtzzentrum für Schwerionenforschung, Mainz55128, Germany.,Johannes Gutenberg-Universität Mainz, Mainz55128, Germany
| |
Collapse
|
4
|
Negroni M, Turhan E, Kress T, Ceillier M, Jannin S, Kurzbach D. Frémy's Salt as a Low-Persistence Hyperpolarization Agent: Efficient Dynamic Nuclear Polarization Plus Rapid Radical Scavenging. J Am Chem Soc 2022; 144:20680-20686. [PMID: 36322908 PMCID: PMC9673139 DOI: 10.1021/jacs.2c07960] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/17/2022]
Abstract
Nuclear magnetic resonance (NMR) spectroscopy is a key technique for molecular structure determination in solution. However, due to its low sensitivity, many efforts have been made to improve signal strengths and reduce the required substrate amounts. In this regard, dissolution dynamic nuclear polarization (DDNP) is a versatile approach as signal enhancements of over 10 000-fold are achievable. Samples are signal-enhanced ex situ by transferring electronic polarization from radicals to nuclear spins before dissolving and shuttling the boosted sample to an NMR spectrometer for detection. However, the applicability of DDNP suffers from one major drawback, namely, paramagnetic relaxation enhancements (PREs) that critically reduce relaxation times due to the codissolved radicals. PREs are the primary source of polarization losses canceling the signal improvements obtained by DNP. We solve this problem by using potassium nitrosodisulfonate (Frémy's salt) as polarization agent (PA), which provides high nuclear spin polarization and allows for rapid scavenging under mild reducing conditions. We demonstrate the potential of Frémy's salt, (i) showing that both 1H and 13C polarization of ∼30% can be achieved and (ii) describing a hybrid sample shuttling system (HySSS) that can be used with any DDNP/NMR combination to remove the PA before NMR detection. This gadget mixes the hyperpolarized solution with a radical scavenger and injects it into an NMR tube, providing, within a few seconds, quantitatively radical-free, highly polarized solutions. The cost efficiency and broad availability of Frémy's salt might facilitate the use of DDNP in many fields of research.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Ertan Turhan
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Straße 38, 1090 Vienna, Austria
| | - Thomas Kress
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge, CB2 1EW, U.K.
| | - Morgan Ceillier
- Centre
de Résonance Magnétique Nucléaire à Très
Hauts Champs (UMR 5082) Université de Lyon/CNRS/Université
Claude Bernard Lyon 1/ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Sami Jannin
- Centre
de Résonance Magnétique Nucléaire à Très
Hauts Champs (UMR 5082) Université de Lyon/CNRS/Université
Claude Bernard Lyon 1/ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Dennis Kurzbach
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger Straße 38, 1090 Vienna, Austria
| |
Collapse
|
5
|
Cheung E, Xia Y, Caporini MA, Gilmore JL. Tools shaping drug discovery and development. BIOPHYSICS REVIEWS 2022; 3:031301. [PMID: 38505278 PMCID: PMC10903431 DOI: 10.1063/5.0087583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/21/2022] [Indexed: 03/21/2024]
Abstract
Spectroscopic, scattering, and imaging methods play an important role in advancing the study of pharmaceutical and biopharmaceutical therapies. The tools more familiar to scientists within industry and beyond, such as nuclear magnetic resonance and fluorescence spectroscopy, serve two functions: as simple high-throughput techniques for identification and purity analysis, and as potential tools for measuring dynamics and structures of complex biological systems, from proteins and nucleic acids to membranes and nanoparticle delivery systems. With the expansion of commercial small-angle x-ray scattering instruments into the laboratory setting and the accessibility of industrial researchers to small-angle neutron scattering facilities, scattering methods are now used more frequently in the industrial research setting, and probe-less time-resolved small-angle scattering experiments are now able to be conducted to truly probe the mechanism of reactions and the location of individual components in complex model or biological systems. The availability of atomic force microscopes in the past several decades enables measurements that are, in some ways, complementary to the spectroscopic techniques, and wholly orthogonal in others, such as those related to nanomechanics. As therapies have advanced from small molecules to protein biologics and now messenger RNA vaccines, the depth of biophysical knowledge must continue to serve in drug discovery and development to ensure quality of the drug, and the characterization toolbox must be opened up to adapt traditional spectroscopic methods and adopt new techniques for unraveling the complexities of the new modalities. The overview of the biophysical methods in this review is meant to showcase the uses of multiple techniques for different modalities and present recent applications for tackling particularly challenging situations in drug development that can be solved with the aid of fluorescence spectroscopy, nuclear magnetic resonance spectroscopy, atomic force microscopy, and small-angle scattering.
Collapse
Affiliation(s)
- Eugene Cheung
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Yan Xia
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Marc A. Caporini
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| | - Jamie L. Gilmore
- Moderna, 200 Technology Square, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
Negroni M, Guarin D, Che K, Epasto LM, Turhan E, Selimović A, Kozak F, Cousin S, Abergel D, Bodenhausen G, Kurzbach D. Inversion of Hyperpolarized 13C NMR Signals through Cross-Correlated Cross-Relaxation in Dissolution DNP Experiments. J Phys Chem B 2022; 126:4599-4610. [PMID: 35675502 PMCID: PMC9234958 DOI: 10.1021/acs.jpcb.2c03375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/25/2022] [Indexed: 11/29/2022]
Abstract
Dissolution dynamic nuclear polarization (DDNP) is a versatile tool to boost signal amplitudes in solution-state nuclear magnetic resonance (NMR) spectroscopy. For DDNP, nuclei are spin-hyperpolarized "ex situ" in a dedicated DNP device and then transferred to an NMR spectrometer for detection. Dramatic signal enhancements can be achieved, enabling shorter acquisition times, real-time monitoring of fast reactions, and reduced sample concentrations. Here, we show how the sample transfer in DDNP experiments can affect NMR spectra through cross-correlated cross-relaxation (CCR), especially in the case of low-field passages. Such processes can selectively invert signals of 13C spins in proton-carrying moieties. For their investigations, we use schemes for simultaneous or "parallel" detection of hyperpolarized 1H and 13C nuclei. We find that 1H → 13C CCR can invert signals of 13C spins if the proton polarization is close to 100%. We deduce that low-field passage in a DDNP experiment, a common occurrence due to the introduction of so-called "ultra-shielded" magnets, accelerates these effects due to field-dependent paramagnetic relaxation enhancements that can influence CCR. The reported effects are demonstrated for various molecules, laboratory layouts, and DDNP systems. As coupled 13C-1H spin systems are ubiquitous, we expect similar effects to be observed in various DDNP experiments. This might be exploited for selective spectroscopic labeling of hydrocarbons.
Collapse
Affiliation(s)
- Mattia Negroni
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - David Guarin
- Athinoula
A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts 02129, United States
- Polarize
ApS, 1808 Frederiksberg, Denmark
| | - Kateryna Che
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Ludovica M. Epasto
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Ertan Turhan
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Albina Selimović
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Fanny Kozak
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| | - Samuel Cousin
- Institut
de Chimie Radicalaire—UMR 7273, Saint-Jérôme
Campus, Av. Esc. Normandie Niemen, Aix-Marseille Université/CNRS, 13397 Marseille
Cedex 20, France
| | - Daniel Abergel
- Laboratoire
des Biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University, Sorbonne Université,
CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Geoffrey Bodenhausen
- Laboratoire
des Biomolécules, LBM, Département de chimie, École
Normale Supérieure, PSL University, Sorbonne Université,
CNRS, 24 rue Lhomond, 75005 Paris, France
| | - Dennis Kurzbach
- Faculty
of Chemistry, Institute of Biological Chemistry, University Vienna, Währinger
Str. 38, 1090 Vienna, Austria
| |
Collapse
|
7
|
Hilty C, Kurzbach D, Frydman L. Hyperpolarized water as universal sensitivity booster in biomolecular NMR. Nat Protoc 2022; 17:1621-1657. [PMID: 35546640 DOI: 10.1038/s41596-022-00693-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
NMR spectroscopy is the only method to access the structural dynamics of biomolecules at high (atomistic) resolution in their native solution state. However, this method's low sensitivity has two important consequences: (i) typically experiments have to be performed at high concentrations that increase sensitivity but are not physiological, and (ii) signals have to be accumulated over long periods, complicating the determination of interaction kinetics on the order of seconds and impeding studies of unstable systems. Both limitations are of equal, fundamental relevance: non-native conditions are of limited pharmacological relevance, and the function of proteins, enzymes and nucleic acids often relies on their interaction kinetics. To overcome these limitations, we have developed applications that involve 'hyperpolarized water' to boost signal intensities in NMR of proteins and nucleic acids. The technique includes four stages: (i) preparation of the biomolecule in partially deuterated buffers, (ii) preparation of 'hyperpolarized' water featuring enhanced 1H NMR signals via cryogenic dynamic nuclear polarization, (iii) sudden melting of the cryogenic pellet and dissolution of the protein or nucleic acid in the hyperpolarized water (enabling spontaneous exchanges of protons between water and target) and (iv) recording signal-amplified NMR spectra targeting either labile 1H or neighboring 15N/13C nuclei in the biomolecule. Water in the ensuing experiments is used as a universal 'hyperpolarization' agent, rendering the approach versatile and applicable to any biomolecule possessing labile hydrogens. Thus, questions can be addressed, ranging from protein and RNA folding problems to resolving structure-function relationships of intrinsically disordered proteins to investigating membrane interactions.
Collapse
Affiliation(s)
- Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX, USA.
| | - Dennis Kurzbach
- Faculty of Chemistry, Institute for Biological Chemistry, University of Vienna, Vienna, Austria.
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
8
|
Fiedorowicz M, Wieteska M, Rylewicz K, Kossowski B, Piątkowska-Janko E, Czarnecka AM, Toczylowska B, Bogorodzki P. Hyperpolarized 13C tracers: Technical advancements and perspectives for clinical applications. Biocybern Biomed Eng 2021. [DOI: 10.1016/j.bbe.2021.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Elliott SJ, Stern Q, Ceillier M, El Daraï T, Cousin SF, Cala O, Jannin S. Practical dissolution dynamic nuclear polarization. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2021; 126-127:59-100. [PMID: 34852925 DOI: 10.1016/j.pnmrs.2021.04.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 06/13/2023]
Abstract
This review article intends to provide insightful advice for dissolution-dynamic nuclear polarization in the form of a practical handbook. The goal is to aid research groups to effectively perform such experiments in their own laboratories. Previous review articles on this subject have covered a large number of useful topics including instrumentation, experimentation, theory, etc. The topics to be addressed here will include tips for sample preparation and for checking sample health; a checklist to correctly diagnose system faults and perform general maintenance; the necessary mechanical requirements regarding sample dissolution; and aids for accurate, fast and reliable polarization quantification. Herein, the challenges and limitations of each stage of a typical dissolution-dynamic nuclear polarization experiment are presented, with the focus being on how to quickly and simply overcome some of the limitations often encountered in the laboratory.
Collapse
Affiliation(s)
- Stuart J Elliott
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Quentin Stern
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Morgan Ceillier
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Théo El Daraï
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Samuel F Cousin
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Olivier Cala
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France
| | - Sami Jannin
- Centre de Résonance Magnétique Nucléaire à Très Hauts Champs - UMR 5082 Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, 5 Rue de la Doua, 69100 Villeurbanne, France.
| |
Collapse
|
10
|
Blazey T, Reed GD, Garbow JR, von Morze C. Metabolite-Specific Echo-Planar Imaging of Hyperpolarized [1- 13C]Pyruvate at 4.7 T. Tomography 2021; 7:466-476. [PMID: 34564302 PMCID: PMC8482109 DOI: 10.3390/tomography7030040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/14/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Although hyperpolarization (HP) greatly increases the sensitivity of 13C MR, the usefulness of HP in vivo is limited by the short lifetime of HP agents. To address this limitation, we developed an echo-planar (EPI) sequence with spectral-spatial radiofrequency (SSRF) pulses for fast and efficient metabolite-specific imaging of HP [1-13C]pyruvate and [1-13C]lactate at 4.7 T. The spatial and spectral selectivity of each SSRF pulse was verified using simulations and phantom testing. EPI and CSI imaging of the rat abdomen were compared in the same rat after injecting HP [1-13C]pyruvate. A procedure was also developed to automatically set the SSRF excitation pulse frequencies based on real-time scanner feedback. The most significant results of this study are the demonstration that a greater spatial and temporal resolution is attainable by metabolite-specific EPI as compared with CSI, and the enhanced lifetime of the HP signal in EPI, which is attributable to the independent flip angle control between metabolites. Real-time center frequency adjustment was also highly effective for minimizing off-resonance effects. To the best of our knowledge, this is the first demonstration of metabolite-specific HP 13C EPI at 4.7 T. In conclusion, metabolite-specific EPI using SSRF pulses is an effective way to image HP [1-13C]pyruvate and [1-13C]lactate at 4.7 T.
Collapse
Affiliation(s)
- Tyler Blazey
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA; (T.B.); (J.R.G.)
| | | | - Joel R Garbow
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA; (T.B.); (J.R.G.)
| | - Cornelius von Morze
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO 63110, USA; (T.B.); (J.R.G.)
- Correspondence:
| |
Collapse
|
11
|
Akakuru OU, Iqbal MZ, Saeed M, Liu C, Paunesku T, Woloschak G, Hosmane NS, Wu A. The Transition from Metal-Based to Metal-Free Contrast Agents for T1 Magnetic Resonance Imaging Enhancement. Bioconjug Chem 2019; 30:2264-2286. [PMID: 31380621 DOI: 10.1021/acs.bioconjchem.9b00499] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetic resonance imaging (MRI) has received significant attention as the noninvasive diagnostic technique for complex diseases. Image-guided therapeutic strategy for diseases such as cancer has also been at the front line of biomedical research, thanks to the innovative MRI, enhanced by the prior delivery of contrast agents (CAs) into patients' bodies through injection. These CAs have contributed a great deal to the clinical utility of MRI but have been based on metal-containing compounds such as gadolinium, manganese, and iron oxide. Some of these CAs have led to cytotoxicities such as the incurable Nephrogenic Systemic Fibrosis (NSF), resulting in their removal from the market. On the other hand, CAs based on organic nitroxide radicals, by virtue of their structural composition, are metal free and without the aforementioned drawbacks. They also have improved biocompatibility, ease of functionalization, and long blood circulation times, and have been proven to offer tissue contrast enhancement with longitudinal relaxivities comparable with those for the metal-containing CAs. Thus, this Review highlights the recent progress in metal-based CAs and their shortcomings. In addition, the remarkable goals achieved by the organic nitroxide radical CAs in the enhancement of MR images have also been discussed extensively. The focal point of this Review is to emphasize or demonstrate the crucial need for transition into the use of organic nitroxide radicals-metal-free CAs-as against the metal-containing CAs, with the aim of achieving safer application of MRI for early disease diagnosis and image-guided therapy.
Collapse
Affiliation(s)
- Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - M Zubair Iqbal
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,Department of Materials Engineering, College of Materials and Textiles , Zhejiang Sci-Tech University , No. 2 Road of Xiasha , Hangzhou 310018 , P.R. China
| | - Madiha Saeed
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Chuang Liu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China.,University of Chinese Academy of Sciences , No. 19(A) Yuquan Road , Shijingshan District, Beijing 100049 , P.R. China
| | - Tatjana Paunesku
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Gayle Woloschak
- Department of Radiation Oncology , Northwestern University , Chicago , Illinois 60611 , United States
| | - Narayan S Hosmane
- Department of Chemistry and Biochemistry , Northern Illinois University , DeKalb , Illinois 60115 , United States
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering, CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province , Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , Ningbo 315201 , P.R. China
| |
Collapse
|
12
|
Jannin S, Dumez JN, Giraudeau P, Kurzbach D. Application and methodology of dissolution dynamic nuclear polarization in physical, chemical and biological contexts. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:41-50. [PMID: 31203098 PMCID: PMC6616036 DOI: 10.1016/j.jmr.2019.06.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 05/06/2023]
Abstract
Dissolution dynamic nuclear polarization (d-DNP) is a versatile method to enhance nuclear magnetic resonance (NMR) spectroscopy. It boosts signal intensities by four to five orders of magnitude thereby providing the potential to improve and enable a plethora of applications ranging from the real-time monitoring of chemical or biological processes to metabolomics and in-cell investigations. This perspectives article highlights possible avenues for developments and applications of d-DNP in biochemical and physicochemical studies. It outlines how chemists, biologists and physicists with various fields of interest can transform and employ d-DNP as a powerful characterization method for their research.
Collapse
Affiliation(s)
- Sami Jannin
- Université de Lyon, CNRS, Université Claude Bernard Lyon 1, ENS de Lyon, Centre de RMN à Très Hauts Champs (CRMN), FRE 2034, 69100 Villeurbanne, France
| | | | - Patrick Giraudeau
- Université de Nantes, CNRS, CEISAM (UMR 6230), 44000 Nantes, France; Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France
| | - Dennis Kurzbach
- University of Vienna, Faculty of Chemistry, Institute of Biological Chemistry, Währinger Str. 38, 1090 Vienna, Austria.
| |
Collapse
|
13
|
In-Cell NMR: Analysis of Protein-Small Molecule Interactions, Metabolic Processes, and Protein Phosphorylation. Int J Mol Sci 2019; 20:ijms20020378. [PMID: 30658393 PMCID: PMC6359726 DOI: 10.3390/ijms20020378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/11/2019] [Accepted: 01/13/2019] [Indexed: 01/31/2023] Open
Abstract
Nuclear magnetic resonance (NMR) spectroscopy enables the non-invasive observation of biochemical processes, in living cells, at comparably high spectral and temporal resolution. Preferably, means of increasing the detection limit of this powerful analytical method need to be applied when observing cellular processes under physiological conditions, due to the low sensitivity inherent to the technique. In this review, a brief introduction to in-cell NMR, protein–small molecule interactions, posttranslational phosphorylation, and hyperpolarization NMR methods, used for the study of metabolites in cellulo, are presented. Recent examples of method development in all three fields are conceptually highlighted, and an outlook into future perspectives of this emerging area of NMR research is given.
Collapse
|
14
|
Morozova OB, Yurkovskaya AV, Vieth HM, Sosnovsky DV, Ivanov KL. Light-induced spin hyperpolarisation in condensed phase. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1363923] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Olga B. Morozova
- Laboratory of Magnetic and Spin Phenomena, International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Laboratory of Magnetic Resonance in Chemistry, Biology and Medicine, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Alexandra V. Yurkovskaya
- Laboratory of Magnetic and Spin Phenomena, International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Laboratory of Magnetic Resonance in Chemistry, Biology and Medicine, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Hans-Martin Vieth
- Laboratory of Magnetic and Spin Phenomena, International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Department of Physics, Free University of Berlin, Berlin, 14195, Germany
| | - Denis V. Sosnovsky
- Laboratory of Magnetic and Spin Phenomena, International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Laboratory of Magnetic Resonance in Chemistry, Biology and Medicine, Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Konstantin L. Ivanov
- Laboratory of Magnetic and Spin Phenomena, International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Laboratory of Magnetic Resonance in Chemistry, Biology and Medicine, Novosibirsk State University, Novosibirsk, 630090, Russia
| |
Collapse
|
15
|
Silverio DL, van Kalkeren HA, Ong TC, Baudin M, Yulikov M, Veyre L, Berruyer P, Chaudhari S, Gajan D, Baudouin D, Cavaillès M, Vuichoud B, Bornet A, Jeschke G, Bodenhausen G, Lesage A, Emsley L, Jannin S, Thieuleux C, Copéret C. Tailored Polarizing Hybrid Solids with Nitroxide Radicals Localized in Mesostructured Silica Walls. Helv Chim Acta 2017. [DOI: 10.1002/hlca.201700101] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Daniel L. Silverio
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 1-5 CH-8093 Zürich
| | - Henri A. van Kalkeren
- Université de Lyon; Institut de Chimie de Lyon; LC2P2; UMR 5265 CNRS-CPE-Lyon-UCBL; CPE Lyon; 43 Bvd du 11 Novembre 1918 FR-69100 Villeurbanne
| | - Ta-Chung Ong
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 1-5 CH-8093 Zürich
| | - Mathieu Baudin
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); CH-1015 Lausanne
- Laboratoire des Biomolécules (LBM); Département de Chimie, Ecole Normale Supérieure; UPMC Université Paris 06; CNRS; PSL Research University; 24 rue Lhomond FR-75005 Paris
- Laboratoire des Biomolécules (LBM); Sorbonne Universités; UPMC Université Paris 06; Ecole Normale Supérieure; CNRS; FR-75005 Paris
| | - Maxim Yulikov
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 1-5 CH-8093 Zürich
| | - Laurent Veyre
- Université de Lyon; Institut de Chimie de Lyon; LC2P2; UMR 5265 CNRS-CPE-Lyon-UCBL; CPE Lyon; 43 Bvd du 11 Novembre 1918 FR-69100 Villeurbanne
| | - Pierrick Berruyer
- Institut des Sciences Analytiques; CRMN CNRS-ENS Lyon-UCBL; Université de Lyon; FR-69100 Villeurbanne
| | - Sachin Chaudhari
- Institut des Sciences Analytiques; CRMN CNRS-ENS Lyon-UCBL; Université de Lyon; FR-69100 Villeurbanne
| | - David Gajan
- Institut des Sciences Analytiques; CRMN CNRS-ENS Lyon-UCBL; Université de Lyon; FR-69100 Villeurbanne
| | - David Baudouin
- Université de Lyon; Institut de Chimie de Lyon; LC2P2; UMR 5265 CNRS-CPE-Lyon-UCBL; CPE Lyon; 43 Bvd du 11 Novembre 1918 FR-69100 Villeurbanne
| | - Matthieu Cavaillès
- Université de Lyon; Institut de Chimie de Lyon; LC2P2; UMR 5265 CNRS-CPE-Lyon-UCBL; CPE Lyon; 43 Bvd du 11 Novembre 1918 FR-69100 Villeurbanne
| | - Basile Vuichoud
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); CH-1015 Lausanne
| | - Aurélien Bornet
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); CH-1015 Lausanne
| | - Gunnar Jeschke
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 1-5 CH-8093 Zürich
| | - Geoffrey Bodenhausen
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); CH-1015 Lausanne
- Laboratoire des Biomolécules (LBM); Département de Chimie, Ecole Normale Supérieure; UPMC Université Paris 06; CNRS; PSL Research University; 24 rue Lhomond FR-75005 Paris
- Laboratoire des Biomolécules (LBM); Sorbonne Universités; UPMC Université Paris 06; Ecole Normale Supérieure; CNRS; FR-75005 Paris
| | - Anne Lesage
- Institut des Sciences Analytiques; CRMN CNRS-ENS Lyon-UCBL; Université de Lyon; FR-69100 Villeurbanne
| | - Lyndon Emsley
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); CH-1015 Lausanne
| | - Sami Jannin
- Institut des Sciences et Ingénierie Chimiques; Ecole Polytechnique Fédérale de Lausanne (EPFL); CH-1015 Lausanne
- Institut des Sciences Analytiques; CRMN CNRS-ENS Lyon-UCBL; Université de Lyon; FR-69100 Villeurbanne
| | - Chloé Thieuleux
- Université de Lyon; Institut de Chimie de Lyon; LC2P2; UMR 5265 CNRS-CPE-Lyon-UCBL; CPE Lyon; 43 Bvd du 11 Novembre 1918 FR-69100 Villeurbanne
| | - Christophe Copéret
- Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir-Prelog-Weg 1-5 CH-8093 Zürich
| |
Collapse
|
16
|
Tee SS, DiGialleonardo V, Eskandari R, Jeong S, Granlund KL, Miloushev V, Poot AJ, Truong S, Alvarez JA, Aldeborgh HN, Keshari KR. Sampling Hyperpolarized Molecules Utilizing a 1 Tesla Permanent Magnetic Field. Sci Rep 2016; 6:32846. [PMID: 27597137 PMCID: PMC5011774 DOI: 10.1038/srep32846] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/09/2016] [Indexed: 02/06/2023] Open
Abstract
Hyperpolarized magnetic resonance spectroscopy (HP MRS) using dynamic nuclear polarization (DNP) is a technique that has greatly enhanced the sensitivity of detecting 13C nuclei. However, the HP MRS polarization decays in the liquid state according to the spin-lattice relaxation time (T1) of the nucleus. Sampling of the signal also destroys polarization, resulting in a limited temporal ability to observe biologically interesting reactions. In this study, we demonstrate that sampling hyperpolarized signals using a permanent magnet at 1 Tesla (1T) is a simple and cost-effective method to increase T1s without sacrificing signal-to-noise. Biologically-relevant information may be obtained with a permanent magnet using enzyme solutions and in whole cells. Of significance, our findings indicate that changes in pyruvate metabolism can also be quantified in a xenograft model at this field strength.
Collapse
Affiliation(s)
- Sui Seng Tee
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Valentina DiGialleonardo
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roozbeh Eskandari
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sangmoo Jeong
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kristin L Granlund
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vesselin Miloushev
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alex J Poot
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | | | - Hannah N Aldeborgh
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kayvan R Keshari
- Department of Radiology and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Weill Cornell Medical College, NY 10065, USA
| |
Collapse
|
17
|
Zhu Y, Chen CH, Wilson Z, Savukov I, Hilty C. Milli-tesla NMR and spectrophotometry of liquids hyperpolarized by dissolution dynamic nuclear polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 270:71-76. [PMID: 27423094 DOI: 10.1016/j.jmr.2016.06.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 06/18/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Hyperpolarization methods offer a unique means of improving low signal strength obtained in low-field NMR. Here, simultaneous measurements of NMR at a field of 0.7mT and laser optical absorption from samples hyperpolarized by dissolution dynamic nuclear polarization (D-DNP) are reported. The NMR measurement field closely corresponds to a typical field encountered during sample injection in a D-DNP experiment. The optical spectroscopy allows determination of the concentration of the free radical required for DNP. Correlation of radical concentration to NMR measurement of spin polarization and spin-lattice relaxation time allows determination of relaxivity and can be used for optimization of the D-DNP process. Further, the observation of the nuclear Overhauser effect originating from hyperpolarized spins is demonstrated. Signals from (1)H and (19)F in a mixture of trifluoroethanol and water are detected in a single spectrum, while different atoms of the same type are distinguished by J-coupling patterns. The resulting signal changes of individual peaks are indicative of molecular contact, suggesting a new application area of hyperpolarized low-field NMR for the determination of intermolecular interactions.
Collapse
Affiliation(s)
- Yue Zhu
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA
| | - Chia-Hsiu Chen
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA
| | - Zechariah Wilson
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA
| | - Igor Savukov
- New Mexico Consortium, 100 Entrada Drive, Los Alamos, NM 87544, USA
| | - Christian Hilty
- Chemistry Department, Texas A&M University, 3255 TAMU, College Station, TX 77843, USA.
| |
Collapse
|
18
|
Baudouin D, van Kalkeren HA, Bornet A, Vuichoud B, Veyre L, Cavaillès M, Schwarzwälder M, Liao WC, Gajan D, Bodenhausen G, Emsley L, Lesage A, Jannin S, Copéret C, Thieuleux C. Cubic three-dimensional hybrid silica solids for nuclear hyperpolarization. Chem Sci 2016; 7:6846-6850. [PMID: 28451127 PMCID: PMC5356032 DOI: 10.1039/c6sc02055k] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/15/2016] [Indexed: 11/21/2022] Open
Abstract
Porous network architecture of hybrid silicas containing TEMPO radicals along their pores is key for increased hyperpolarization performances.
Hyperpolarization of metabolites by dissolution dynamic nuclear polarization (D-DNP) for MRI applications often requires fast and efficient removal of the radicals (polarizing agents). Ordered mesoporous SBA-15 silica materials containing homogeneously dispersed radicals, referred to as HYperPolarizing SOlids (HYPSOs), enable high polarization – P(1H) = 50% at 1.2 K – and straightforward separation of the polarizing HYPSO material from the hyperpolarized solution by filtration. However, the one-dimensional tubular pores of SBA-15 type materials are not ideal for nuclear spin diffusion, which may limit efficient polarization. Here, we develop a generation of hyperpolarizing solids based on a SBA-16 structure with a network of pores interconnected in three dimensions, which allows a significant increase of polarization, i.e. P(1H) = 63% at 1.2 K. This result illustrates how one can improve materials by combining a control of the incorporation of radicals with a better design of the porous network structures.
Collapse
Affiliation(s)
- D Baudouin
- Université de Lyon , Institut de Chimie de Lyon , LC2P2 , UMR 5265 CNRS-CPE Lyon-UCBL , CPE Lyon , 43 Bvd du 11 Novembre 1918 , 69100 Villeurbanne , France . ;
| | - H A van Kalkeren
- Université de Lyon , Institut de Chimie de Lyon , LC2P2 , UMR 5265 CNRS-CPE Lyon-UCBL , CPE Lyon , 43 Bvd du 11 Novembre 1918 , 69100 Villeurbanne , France . ;
| | - A Bornet
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - B Vuichoud
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - L Veyre
- Université de Lyon , Institut de Chimie de Lyon , LC2P2 , UMR 5265 CNRS-CPE Lyon-UCBL , CPE Lyon , 43 Bvd du 11 Novembre 1918 , 69100 Villeurbanne , France . ;
| | - M Cavaillès
- Université de Lyon , Institut de Chimie de Lyon , LC2P2 , UMR 5265 CNRS-CPE Lyon-UCBL , CPE Lyon , 43 Bvd du 11 Novembre 1918 , 69100 Villeurbanne , France . ;
| | - M Schwarzwälder
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland .
| | - W-C Liao
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland .
| | - D Gajan
- Université de Lyon , Institut des Sciences Analytiques , UMR 5280 , CNRS , Université Lyon 1 , ENS Lyon 5 rue de la Doua , F-69100 Villeurbanne , France
| | - G Bodenhausen
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland.,Département de Chimie , Ecole Normale Supérieure, 24 Rue Lhomond , 75231 Paris Cedex 05 , France.,Université Pierre-et-Marie Curie , Paris , France.,UMR 7203 , CNRS/UPMC/ENS , Paris , France
| | - L Emsley
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - A Lesage
- Université de Lyon , Institut des Sciences Analytiques , UMR 5280 , CNRS , Université Lyon 1 , ENS Lyon 5 rue de la Doua , F-69100 Villeurbanne , France
| | - S Jannin
- Institut des Sciences et Ingénierie Chimiques , Ecole Polytechnique Fédérale de Lausanne (EPFL) , CH-1015 Lausanne , Switzerland
| | - C Copéret
- ETH Zürich , Department of Chemistry and Applied Biosciences , Vladimir-Prelog-Weg 1-5/10 , 8093 Zürich , Switzerland .
| | - C Thieuleux
- Université de Lyon , Institut de Chimie de Lyon , LC2P2 , UMR 5265 CNRS-CPE Lyon-UCBL , CPE Lyon , 43 Bvd du 11 Novembre 1918 , 69100 Villeurbanne , France . ;
| |
Collapse
|
19
|
Steele RM, Korb JP, Ferrante G, Bubici S. New applications and perspectives of fast field cycling NMR relaxometry. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:502-9. [PMID: 25855084 DOI: 10.1002/mrc.4220] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 12/17/2014] [Accepted: 01/19/2015] [Indexed: 05/08/2023]
Abstract
The field cycling NMR relaxometry method (also known as fast field cycling (FFC) when instruments employing fast electrical switching of the magnetic field are used) allows determination of the spin-lattice relaxation time (T1 ) continuously over five decades of Larmor frequency. The method can be exploited to observe the T1 frequency dependence of protons, as well as any other NMR-sensitive nuclei, such as (2) H, (13) C, (31) P, and (19) F in a wide range of substances and materials. The information obtained is directly correlated with the physical/chemical properties of the compound and can be represented as a 'nuclear magnetic resonance dispersion' curve. We present some recent academic and industrial applications showing the relevance of exploiting FFC NMR relaxometry in complex materials to study the molecular dynamics or, simply, for fingerprinting or quality control purposes. The basic nuclear magnetic resonance dispersion features are outlined in representative examples of magnetic resonance imaging (MRI) contrast agents, porous media, proteins, and food stuffs. We will focus on the new directions and perspectives for the FFC technique. For instance, the introduction of the latest Wide Bore FFC NMR relaxometers allows probing, for the first time, of the dynamics of confined surface water contained in the macro-pores of carbonate rock cores. We also evidence the use of the latest field cycling technology with a new cryogen-free variable-field electromagnet, which enhances the range of available frequencies in the 2D T1 -T2 correlation spectrum for separating oil and water in crude oil. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Jean-Pierre Korb
- Physique de la Matière Condensée, Ecole Polytechnique-CNRS, 91128, Palaiseau, France
| | | | | |
Collapse
|
20
|
Jähnig F, Kwiatkowski G, Ernst M. Conceptual and instrumental progress in dissolution DNP. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 264:22-29. [PMID: 26920827 DOI: 10.1016/j.jmr.2015.12.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 12/16/2015] [Accepted: 12/16/2015] [Indexed: 05/15/2023]
Abstract
We discuss conceptual and instrumental progress in dissolution DNP since its introduction in 2003. In our view there are three critical steps in the dissolution DNP process: (i) The achievable polarization level in a sample. (ii) The time required to build up the polarization. (iii) The transfer of the sample to the measurement system with minimum loss of polarization. In this review we describe in detail these steps and the different methodological and instrumental implementations, which have been proposed to optimize them.
Collapse
Affiliation(s)
- Fabian Jähnig
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland
| | - Grzegorz Kwiatkowski
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland; Institute for Biomedical Engineering, University and ETH Zürich, Gloriastrasse 35, 8092 Zürich, Switzerland
| | - Matthias Ernst
- Physical Chemistry, ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland.
| |
Collapse
|
21
|
Kiryutin AS, Pravdivtsev AN, Ivanov KL, Grishin YA, Vieth HM, Yurkovskaya AV. A fast field-cycling device for high-resolution NMR: Design and application to spin relaxation and hyperpolarization experiments. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 263:79-91. [PMID: 26773525 DOI: 10.1016/j.jmr.2015.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 11/03/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
A device for performing fast magnetic field-cycling NMR experiments is described. A key feature of this setup is that it combines fast switching of the external magnetic field and high-resolution NMR detection. The field-cycling method is based on precise mechanical positioning of the NMR probe with the mounted sample in the inhomogeneous fringe field of the spectrometer magnet. The device enables field variation over several decades (from 100μT up to 7T) within less than 0.3s; progress in NMR probe design provides NMR linewidths of about 10(-3)ppm. The experimental method is very versatile and enables site-specific studies of spin relaxation (NMRD, LLSs) and spin hyperpolarization (DNP, CIDNP, and SABRE) at variable magnetic field and at variable temperature. Experimental examples of such studies are demonstrated; advantages of the experimental method are described and existing challenges in the field are outlined.
Collapse
Affiliation(s)
- Alexey S Kiryutin
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia.
| | - Andrey N Pravdivtsev
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Konstantin L Ivanov
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| | - Yuri A Grishin
- Institute of Chemical Kinetics and Combustion, Siberian Branch of the Russian Academy of Science, Institutskaya 3, Novosibirsk 630090, Russia
| | - Hans-Martin Vieth
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany.
| | - Alexandra V Yurkovskaya
- International Tomography Center, Siberian Branch of the Russian Academy of Science, Institutskaya 3a, Novosibirsk 630090, Russia; Novosibirsk State University, Pirogova 2, Novosibirsk 630090, Russia
| |
Collapse
|
22
|
Sharma M, Janssen G, Leggett J, Kentgens APM, van Bentum PJM. Rapid-melt Dynamic Nuclear Polarization. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015. [PMID: 26225439 DOI: 10.1016/j.jmr.2015.06.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
In recent years, Dynamic Nuclear Polarization (DNP) has re-emerged as a means to ameliorate the inherent problem of low sensitivity in nuclear magnetic resonance (NMR). Here, we present a novel approach to DNP enhanced liquid-state NMR based on rapid melting of a solid hyperpolarized sample followed by 'in situ' NMR detection. This method is applicable to small (10nl to 1μl) sized samples in a microfluidic setup. The method combines generic DNP enhancement in the solid state with the high sensitivity of stripline (1)H NMR detection in the liquid state. Fast cycling facilitates options for signal averaging or 2D structural analysis. Preliminary tests show solid-state (1)H enhancement factors of up to 500 for H2O/D2O/d6-glycerol samples doped with TEMPOL radicals. Fast paramagnetic relaxation with nitroxide radicals, In nonpolar solvents such as toluene, we find proton enhancement factors up to 400 with negligible relaxation losses in the liquid state, using commercially available BDPA radicals. A total recycling delay (including sample freezing, DNP polarization and melting) of about 5s can be used. The present setup allows for a fast determination of the hyper-polarization as function of the microwave frequency and power. Even at the relatively low field of 3.4T, the method of rapid melting DNP can facilitate the detection of small quantities of molecules in the picomole regime.
Collapse
Affiliation(s)
- M Sharma
- Institute for Molecules and Materials, Solid State NMR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - G Janssen
- Institute for Molecules and Materials, Solid State NMR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - J Leggett
- Institute for Molecules and Materials, Solid State NMR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - A P M Kentgens
- Institute for Molecules and Materials, Solid State NMR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - P J M van Bentum
- Institute for Molecules and Materials, Solid State NMR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
23
|
Lee Y, Zacharias NM, Piwnica-Worms D, Bhattacharya PK. Chemical reaction-induced multi-molecular polarization (CRIMP). Chem Commun (Camb) 2015; 50:13030-3. [PMID: 25224323 DOI: 10.1039/c4cc06199c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Here we present a novel hyperpolarization method, Chemical Reaction-Induced Multi-molecular Polarization (CRIMP), which could be applied to the study of several in vivo processes simultaneously including glycolysis, TCA cycle, fatty acid synthesis and pH mapping. Through the use of non-enzymatic decarboxylation, we generate four hyperpolarized imaging agents from hyperpolarized 1,2-(13)C pyruvic acid.
Collapse
Affiliation(s)
- Y Lee
- Hanyang University, Department of Applied Chemistry, Ansan, 426-791, Korea
| | | | | | | |
Collapse
|
24
|
Chen HY, Kim Y, Nath P, Hilty C. An ultra-low cost NMR device with arbitrary pulse programming. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 255:100-5. [PMID: 25918864 DOI: 10.1016/j.jmr.2015.02.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 02/14/2015] [Accepted: 02/16/2015] [Indexed: 05/13/2023]
Abstract
Ultra-low cost, general purpose electronics boards featuring microprocessors or field programmable gate arrays (FPGA) are reaching capabilities sufficient for direct implementation of NMR spectrometers. We demonstrate a spectrometer based on such a board, implemented with a minimal need for the addition of custom electronics and external components. This feature allows such a spectrometer to be readily implemented using typical knowledge present in an NMR laboratory. With FPGA technology, digital tasks are performed with precise timing, without the limitation of predetermined hardware function. In this case, the FPGA is used for programming of arbitrarily timed pulse sequence events, and to digitally generate required frequencies. Data acquired from a 0.53T permanent magnet serves as a demonstration of the flexibility of pulse programming for diverse experiments. Pulse sequences applied include a spin-lattice relaxation measurement using a pulse train with small-flip angle pulses, and a Carr-Purcell-Meiboom-Gill experiment with phase cycle. Mixing of NMR signals with a digitally generated, 4-step phase-cycled reference frequency is further implemented to achieve sequential quadrature detection. The flexibility in hardware implementation permits tailoring this type of spectrometer for applications such as relaxometry, polarimetry, diffusometry or NMR based magnetometry.
Collapse
Affiliation(s)
- Hsueh-Ying Chen
- Chemistry Department, Texas A&M University, College Station, TX 77845-3255, USA
| | - Yaewon Kim
- Chemistry Department, Texas A&M University, College Station, TX 77845-3255, USA
| | - Pulak Nath
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Christian Hilty
- Chemistry Department, Texas A&M University, College Station, TX 77845-3255, USA.
| |
Collapse
|
25
|
Flori A, Liserani M, Bowen S, Ardenkjaer-Larsen JH, Menichetti L. Dissolution dynamic nuclear polarization of non-self-glassing agents: spectroscopy and relaxation of hyperpolarized [1-13C]acetate. J Phys Chem A 2015; 119:1885-93. [PMID: 25686013 DOI: 10.1021/jp511972g] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intrinsic physicochemical properties of the sample formulation are the key factors for efficient hyperpolarization through dissolution dynamic nuclear polarization (dissolution-DNP). We provide a comprehensive characterization of the DNP process for Na-[1-(13)C]acetate selected as a model for non-self-glassing agents: the solid-state polarization dynamics of different formulations and the effect of the paramagnetic agent (trityl radical) on the pattern of polarization and the relaxation profile were extensively analyzed. We quantified the effects of the glassing agent and Gd(3+)-chelate on DNP performance. The results reported here describe the constraints of the acetate formulation useful for future studies in this field with non-self-glassing enriched molecules.
Collapse
Affiliation(s)
- Alessandra Flori
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, I-56124, Italy
| | | | | | | | | |
Collapse
|
26
|
Milani J, Vuichoud B, Bornet A, Miéville P, Mottier R, Jannin S, Bodenhausen G. A magnetic tunnel to shelter hyperpolarized fluids. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2015; 86:024101. [PMID: 25725861 DOI: 10.1063/1.4908196] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To shield solutions carrying hyperpolarized nuclear magnetization from rapid relaxation during transfer through low fields, the transfer duct can be threaded through an array of permanent magnets. The advantages are illustrated for solutions containing hyperpolarized (1)H and (13)C nuclei in a variety of molecules.
Collapse
Affiliation(s)
- Jonas Milani
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland
| | - Basile Vuichoud
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland
| | - Aurélien Bornet
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland
| | - Pascal Miéville
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland
| | - Roger Mottier
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland
| | - Sami Jannin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland
| | - Geoffrey Bodenhausen
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland
| |
Collapse
|
27
|
|
28
|
Pravdivtsev AN, Yurkovskaya AV, Zimmermann H, Vieth HM, Ivanov KL. Magnetic field dependent long-lived spin states in amino acids and dipeptides. Phys Chem Chem Phys 2014; 16:7584-94. [PMID: 24634918 DOI: 10.1039/c3cp55197k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Magnetic field dependence of long-lived spin states (LLSs) of the β-CH2 protons of aromatic amino acids was studied. LLSs are spin states, which are immune to dipolar relaxation, thus having lifetimes far exceeding the longitudinal relaxation times; the simplest example of an LLS is given by the singlet state of two coupled spins. LLSs were created by means of the photo-chemically induced dynamic nuclear polarization technique. The systems studied were amino acids, histidine and tyrosine, with different isotopomers. For labeled amino acids with the α-CH and aromatic protons substituted by deuterium at low fields the LLS lifetime, TLLS, for the β-CH2 protons was more than 40 times longer than the T1-relaxation time. Upon increasing the number of protons the ratio TLLS/T1 was reduced; however, even in the fully protonated amino acids it was about 10; that is, the long-lived mode was still preserved in the system. In addition, the effect of paramagnetic impurities on spin relaxation was studied; field dependencies of T1 and TLLS were measured. LLSs were also formed in tyrosine-containing dyads; a TLLS/T1 ratio of ∼7 was found, usable for extending the spin polarization lifetime in such systems.
Collapse
Affiliation(s)
- Andrey N Pravdivtsev
- International Tomography Center SB RAS, Institutskaya 3a, Novosibirsk, 630090, Russia.
| | | | | | | | | |
Collapse
|
29
|
Flori A, Liserani M, Frijia F, Giovannetti G, Lionetti V, Casieri V, Positano V, Aquaro GD, Recchia FA, Santarelli MF, Landini L, Ardenkjaer-Larsen JH, Menichetti L. Real-time cardiac metabolism assessed with hyperpolarized [1-(13) C]acetate in a large-animal model. CONTRAST MEDIA & MOLECULAR IMAGING 2014; 10:194-202. [PMID: 25201079 DOI: 10.1002/cmmi.1618] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 07/04/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022]
Abstract
Dissolution-dynamic nuclear polarization (dissolution-DNP) for magnetic resonance (MR) spectroscopic imaging has recently emerged as a novel technique for noninvasive studies of the metabolic fate of biomolecules in vivo. Since acetate is the most abundant extra- and intracellular short-chain fatty acid, we focused on [1-(13) C]acetate as a promising candidate for a chemical probe to study the myocardial metabolism of a beating heart. The dissolution-DNP procedure of Na[1-(13) C]acetate for in vivo cardiac applications with a 3 T MR scanner was optimized in pigs during bolus injection of doses of up to 3 mmol. The Na[1-(13) C]acetate formulation was characterized by a liquid-state polarization of 14.2% and a T1Eff in vivo of 17.6 ± 1.7 s. In vivo Na[1-(13) C]acetate kinetics displayed a bimodal shape: [1-(13) C]acetyl carnitine (AcC) was detected in a slice covering the cardiac volume, and the signal of (13) C-acetate and (13) C-AcC was modeled using the total area under the curve (AUC) for kinetic analysis. A good correlation was found between the ratio AUC(AcC)/AUC(acetate) and the apparent kinetic constant of metabolic conversion, from [1-(13) C]acetate to [1-(13) C]AcC (kAcC ), divided by the AcC longitudinal relaxation rate (r1 ). Our study proved the feasibility and the limitations of administration of large doses of hyperpolarized [1-(13) C]acetate to study the myocardial conversion of [1-(13) C]acetate in [1-(13) C]acetyl-carnitine generated by acetyltransferase in healthy pigs.
Collapse
Affiliation(s)
- Alessandra Flori
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Giulio Giovannetti
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy.,Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| | | | | | | | | | - Fabio A Recchia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Physiology, Temple University School of Medicine, Philadelphia, PA, USA
| | - Maria Filomena Santarelli
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy.,Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| | - Luigi Landini
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy.,Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Jan Henrik Ardenkjaer-Larsen
- GE Healthcare, Broendby, Denmark.,Department of Electrical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Luca Menichetti
- Fondazione CNR/Regione Toscana G. Monasterio, Pisa, Italy.,Institute of Clinical Physiology, National Council of Research, Pisa, Italy
| |
Collapse
|
30
|
Lee JH, Okuno Y, Cavagnero S. Sensitivity enhancement in solution NMR: emerging ideas and new frontiers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 241:18-31. [PMID: 24656077 PMCID: PMC3967054 DOI: 10.1016/j.jmr.2014.01.005] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 01/14/2014] [Accepted: 01/17/2014] [Indexed: 05/05/2023]
Abstract
Modern NMR spectroscopy has reached an unprecedented level of sophistication in the determination of biomolecular structure and dynamics at atomic resolution in liquids. However, the sensitivity of this technique is still too low to solve a variety of cutting-edge biological problems in solution, especially those that involve viscous samples, very large biomolecules or aggregation-prone systems that need to be kept at low concentration. Despite the challenges, a variety of efforts have been carried out over the years to increase sensitivity of NMR spectroscopy in liquids. This review discusses basic concepts, recent developments and future opportunities in this exciting area of research.
Collapse
Affiliation(s)
- Jung Ho Lee
- Department of Chemistry and Biophysics Program, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA
| | - Yusuke Okuno
- Department of Chemistry and Biophysics Program, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA
| | - Silvia Cavagnero
- Department of Chemistry and Biophysics Program, University of Wisconsin-Madison, 1101 University Avenue, Madison, WI 53706-1322, USA.
| |
Collapse
|
31
|
Pravdivtsev AN, Yurkovskaya AV, Vieth HM, Ivanov KL. Coherent transfer of nuclear spin polarization in field-cycling NMR experiments. J Chem Phys 2013; 139:244201. [DOI: 10.1063/1.4848699] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Keshari KR, Wilson DM. Chemistry and biochemistry of 13C hyperpolarized magnetic resonance using dynamic nuclear polarization. Chem Soc Rev 2013; 43:1627-59. [PMID: 24363044 DOI: 10.1039/c3cs60124b] [Citation(s) in RCA: 272] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The study of transient chemical phenomena by conventional NMR has proved elusive, particularly for non-(1)H nuclei. For (13)C, hyperpolarization using the dynamic nuclear polarization (DNP) technique has emerged as a powerful means to improve SNR. The recent development of rapid dissolution DNP methods has facilitated previously impossible in vitro and in vivo study of small molecules. This review presents the basics of the DNP technique, identification of appropriate DNP substrates, and approaches to increase hyperpolarized signal lifetimes. Also addressed are the biochemical events to which DNP-NMR has been applied, with descriptions of several probes that have met with in vivo success.
Collapse
Affiliation(s)
- Kayvan R Keshari
- Department of Radiology, Memorial Sloan-Kettering Cancer Center (MSKCC), New York, NY 10065, USA
| | | |
Collapse
|
33
|
Marco-Rius I, Tayler MCD, Kettunen MI, Larkin TJ, Timm KN, Serrao EM, Rodrigues TB, Pileio G, Ardenkjaer-Larsen JH, Levitt MH, Brindle KM. Hyperpolarized singlet lifetimes of pyruvate in human blood and in the mouse. NMR IN BIOMEDICINE 2013; 26:1696-704. [PMID: 23946252 PMCID: PMC4238807 DOI: 10.1002/nbm.3005] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 06/27/2013] [Accepted: 06/28/2013] [Indexed: 05/12/2023]
Abstract
Hyperpolarized NMR is a promising technique for non-invasive imaging of tissue metabolism in vivo. However, the pathways that can be studied are limited by the fast T1 decay of the nuclear spin order. In metabolites containing pairs of coupled nuclear spins-1/2, the spin order may be maintained by exploiting the non-magnetic singlet (spin-0) state of the pair. This may allow preservation of the hyperpolarization in vivo during transport to tissues of interest, such as tumors, or to detect slower metabolic reactions. We show here that in human blood and in a mouse in vivo at millitesla fields the (13)C singlet lifetime of [1,2-(13)C2]pyruvate was significantly longer than the (13)C T1, although it was shorter than the T1 at field strengths of several tesla. We also examine the singlet-derived NMR spectrum observed for hyperpolarized [1,2-(13)C2]lactate, originating from the metabolism of [1,2-(13)C2]pyruvate.
Collapse
Affiliation(s)
- Irene Marco-Rius
- Department of Biochemistry, University of Cambridge, UK, and Cancer Research UK Cambridge Research InstituteCambridge, UK
| | | | - Mikko I Kettunen
- Department of Biochemistry, University of Cambridge, UK, and Cancer Research UK Cambridge Research InstituteCambridge, UK
| | - Timothy J Larkin
- Department of Biochemistry, University of Cambridge, UK, and Cancer Research UK Cambridge Research InstituteCambridge, UK
| | - Kerstin N Timm
- Department of Biochemistry, University of Cambridge, UK, and Cancer Research UK Cambridge Research InstituteCambridge, UK
| | - Eva M Serrao
- Department of Biochemistry, University of Cambridge, UK, and Cancer Research UK Cambridge Research InstituteCambridge, UK
| | - Tiago B Rodrigues
- Department of Biochemistry, University of Cambridge, UK, and Cancer Research UK Cambridge Research InstituteCambridge, UK
| | | | | | | | - Kevin M Brindle
- Department of Biochemistry, University of Cambridge, UK, and Cancer Research UK Cambridge Research InstituteCambridge, UK
| |
Collapse
|
34
|
Chiavazza E, Kubala E, Gringeri CV, Düwel S, Durst M, Schulte RF, Menzel MI. Earth's magnetic field enabled scalar coupling relaxation of 13C nuclei bound to fast-relaxing quadrupolar 14N in amide groups. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 227:35-8. [PMID: 23262330 DOI: 10.1016/j.jmr.2012.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/14/2012] [Accepted: 11/15/2012] [Indexed: 05/15/2023]
Abstract
Scalar coupling relaxation, which is usually only associated with closely resonant nuclei (e.g., (79)Br-(13)C), can be a very effective relaxation mechanism. While working on hyperpolarized [5-(13)C]glutamine, fast liquid-state polarization decay during transfer to the MRI scanner was observed. This behavior could hypothetically be explained by substantial T(1) shortening due to a scalar coupling contribution (type II) to the relaxation caused by the fast-relaxing quadrupolar (14)N adjacent to the (13)C nucleus in the amide group. This contribution is only effective in low magnetic fields (i.e., less than 800 μT) and prevents the use of molecules bearing the (13)C-amide group as hyperpolarized MRS/MRI probes. In the present work, this hypothesis is explored both theoretically and experimentally. The results show that high hyperpolarization levels can be retained using either a (15)N-labeled amide or by applying a magnetic field during transfer of the sample from the polarizer to the MRI scanner.
Collapse
|
35
|
Bornet A, Melzi R, Perez Linde AJ, Hautle P, van den Brandt B, Jannin S, Bodenhausen G. Boosting Dissolution Dynamic Nuclear Polarization by Cross Polarization. J Phys Chem Lett 2013; 4:111-114. [PMID: 26291221 DOI: 10.1021/jz301781t] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The efficiency of dissolution dynamic nuclear polarization can be boosted by Hartmann-Hahn cross polarization at temperatures near 1.2 K. This enables high throughput of hyperpolarized solutions with substantial gains in buildup times and polarization levels. During dissolution and transport, the (13)C nuclear spin polarization P((13)C) merely decreases from 45 to 40%.
Collapse
Affiliation(s)
- Aurélien Bornet
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland
| | - Roberto Melzi
- ‡Bruker Italia S.r.l., Viale V. Lancetti 43, 20158 Milano, Italy
| | - Angel J Perez Linde
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland
| | | | | | - Sami Jannin
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland
| | - Geoffrey Bodenhausen
- †Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Batochime, CH-1015 Lausanne, Switzerland
- ⊥Département de Chimie, Ecole Normale Supérieure, 24 Rue Lhomond, 75231 Paris Cedex 05, France
- #Université Pierre-et-Marie Curie, Paris, France
- ∇UMR 7203, CNRS/UPMC/ENS, Paris, France
| |
Collapse
|
36
|
Chattergoon N, Martínez-Santiesteban F, Handler WB, Ardenkjaer-Larsen JH, Scholl TJ. Field dependence ofT1for hyperpolarized [1-13C]pyruvate. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 8:57-62. [DOI: 10.1002/cmmi.1494] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- N. Chattergoon
- Imaging Research Laboratory, Robarts Research Institute; Western University; 100 Perth Dr. London ON Canada N6A 5K8
| | - F. Martínez-Santiesteban
- Imaging Research Laboratory, Robarts Research Institute; Western University; 100 Perth Dr. London ON Canada N6A 5K8
- Department of Medical Biophysics; Western University; London ON Canada N6A 5C1
| | - W. B. Handler
- Department of Physics and Astronomy; Western University; London ON Canada N6A 3K7
| | - J. H. Ardenkjaer-Larsen
- GE Healthcare; Copenhagen Denmark
- Department of Electrical Engineering; Technical University of Denmark; Lyngby Denmark
| | - T. J. Scholl
- Imaging Research Laboratory, Robarts Research Institute; Western University; 100 Perth Dr. London ON Canada N6A 5K8
- Department of Medical Biophysics; Western University; London ON Canada N6A 5C1
| |
Collapse
|
37
|
Mayer D, Yen YF, Josan S, Park JM, Pfefferbaum A, Hurd RE, Spielman DM. Application of hyperpolarized [1-¹³C]lactate for the in vivo investigation of cardiac metabolism. NMR IN BIOMEDICINE 2012; 25:1119-24. [PMID: 22278751 PMCID: PMC3357452 DOI: 10.1002/nbm.2778] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/09/2011] [Accepted: 12/16/2011] [Indexed: 05/08/2023]
Abstract
In addition to cancer imaging, (13) C-MRS of hyperpolarized pyruvate has also demonstrated utility for the investigation of cardiac metabolism and ischemic heart disease. Although no adverse effects have yet been reported for doses commonly used in vivo, high substrate concentrations have lead to supraphysiological pyruvate levels that can affect the underlying metabolism and should be considered when interpreting results. With lactate serving as an important energy source for the heart and physiological lactate levels one to two orders of magnitude higher than for pyruvate, hyperpolarized lactate could potentially be used as an alternative to pyruvate for probing cardiac metabolism. In this study, hyperpolarized [1-(13) C]lactate was used to acquire time-resolved spectra from the healthy rat heart in vivo and to measure dichloroacetate (DCA)-modulated changes in flux through pyruvate dehydrogenase (PDH). Both primary oxidation of lactate to pyruvate and subsequent conversion of pyruvate to alanine and bicarbonate could reliably be detected. Since DCA stimulates the activity of PDH through inhibition of PDH kinase, a more than 2.5-fold increase in bicarbonate-to-substrate ratio was found after administration of DCA, similar to the effect when using [1-(13) C]pyruvate as the substrate.
Collapse
Affiliation(s)
- Dirk Mayer
- SRI International, Neuroscience Program, 333 Ravenswood Ave, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Park JM, Josan S, Jang T, Merchant M, Yen YF, Hurd RE, Recht L, Spielman DM, Mayer D. Metabolite kinetics in C6 rat glioma model using magnetic resonance spectroscopic imaging of hyperpolarized [1-(13)C]pyruvate. Magn Reson Med 2012; 68:1886-93. [PMID: 22334279 DOI: 10.1002/mrm.24181] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/25/2011] [Accepted: 01/03/2012] [Indexed: 12/25/2022]
Abstract
In addition to an increased lactate-to-pyruvate ratio, altered metabolism of a malignant glioma can be further characterized by its kinetics. Spatially resolved dynamic data of pyruvate and lactate from C6-implanted female Sprague-Dawley rat brain were acquired using a spiral chemical shift imaging sequence after a bolus injection of a hyperpolarized [1-(13)C]pyruvate. Apparent rate constants for the conversion of pyruvate to lactate in three different regions (glioma, normal appearing brain, and vasculature) were estimated based on a two-site exchange model. The apparent conversion rate constant was 0.018 ± 0.004 s(-1) (mean ± standard deviation, n = 6) for glioma, 0.009 ± 0.003 s(-1) for normal brain, and 0.005 ± 0.001 s(-1) for vasculature, whereas the lactate-to-pyruvate ratio, the metabolic marker used to date to identify tumor regions, was 0.36 ± 0.07 (mean ± SD), 0.24 ± 0.07, and 0.12 ± 0.02 for glioma, normal brain, and vasculature, respectively. The data suggest that the apparent conversion rate better differentiate glioma from normal brain (P = 0.001, n = 6) than the lactate-to-pyruvate ratio (P = 0.02).
Collapse
Affiliation(s)
- Jae Mo Park
- Department of Electrical Engineering, Stanford University, Stanford, California, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Bornet A, Jannin S, Konter JA(T, Hautle P, van den Brandt B, Bodenhausen G. Ultra High-Resolution NMR: Sustained Induction Decays of Long-Lived Coherences. J Am Chem Soc 2011; 133:15644-9. [DOI: 10.1021/ja2052792] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aurélien Bornet
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, EPFL, Batochime, 1015 Lausanne, Switzerland
| | - Sami Jannin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, EPFL, Batochime, 1015 Lausanne, Switzerland
| | | | | | | | - Geoffrey Bodenhausen
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne, EPFL, Batochime, 1015 Lausanne, Switzerland
- Département de Chimie, Ecole Normale Supérieure, 24 Rue Lhomond, 75231, Paris Cedex 05, France
- Université Pierre-et-Marie Curie, Paris, France
- CNRS, UMR 7203, Paris, France
| |
Collapse
|
40
|
Lumata L, Ratnakar SJ, Jindal A, Merritt M, Comment A, Malloy C, Sherry AD, Kovacs Z. BDPA: an efficient polarizing agent for fast dissolution dynamic nuclear polarization NMR spectroscopy. Chemistry 2011; 17:10825-7. [PMID: 21919088 DOI: 10.1002/chem.201102037] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Indexed: 11/06/2022]
Affiliation(s)
- Lloyd Lumata
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390-8568, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Bornet A, Jannin S, Bodenhausen G. Three-field NMR to preserve hyperpolarized proton magnetization as long-lived states in moderate magnetic fields. Chem Phys Lett 2011. [DOI: 10.1016/j.cplett.2011.07.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|