1
|
Liu X, Sanchez SW, Gong Y, Riddle R, Jiang Z, Trevor S, Contag CH, Saha D, Li W. An insect-based bioelectronic sensing system combining flexible dual-sided microelectrode array and insect olfactory circuitry for human lung cancer detection. Biosens Bioelectron 2025; 281:117356. [PMID: 40215892 DOI: 10.1016/j.bios.2025.117356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 03/05/2025] [Accepted: 03/07/2025] [Indexed: 05/04/2025]
Abstract
Early detection of lung cancer significantly enhances treatment outcomes, yet current screening methods are limited by accessibility, sensitivity, and cost. This study introduces a bioelectronic sensing platform that integrates the highly sensitive locust olfactory system with a flexible dual-sided microelectrode array (MEA), for robust, noninvasive, and label-free detection of volatile lung cancer biomarkers. Using an innovative folding-annealing fabrication technique and PEDOT:PSS surface functionalization, we developed flexible, dual-sided MEAs with high electrode densities of 463, 687, and 766 channels/mm2 across prototypes, maintaining low impedance (within 4 × 104 Ω). These MEAs demonstrated mechanical flexibility and stability, enabling direct insertion into locust brain tissue without mechanical reinforcement and facilitating precise recording of neural activity in the antennal lobe triggered by lung cancer-related volatile organic compounds (VOCs) from low concentration (1 ppm). Advanced dimensionality reduction techniques applied to the electrophysiological recordings identified distinct neural response patterns to each VOC biomarker and the complex "scent" emitted from various cell lines. Using high-dimensional population neuronal response analysis with a leave-one-trial-out approach, the platform achieved a 100 % classification success rate for unknown VOCs. Additionally, varying concentrations (ppm-ppb) of individual VOC biomarkers were detected and classified with an accuracy of 86 %. The system was further tested for its ability to detect and classify human lung cancer cell lines based on the unique "scent" of cultured cells, including two non-small cell lung cancer (NSCLC) and two small cell lung cancer (SCLC) types. Quantitative assessments demonstrated that the platform achieved a classification accuracy of 85 % across these cell lines. These results substantiate the platform's potential for enhancing clinical diagnostics through the accurate identification of lung cancer stages and cell types. By integrating biological sensory systems with advanced bioelectronics, this study introduces a novel and efficient approach to lung cancer biomarker detection. It provides a non-invasive, brain-based cancer screening method, offering an accessible and innovative solution for early lung cancer diagnosis.
Collapse
Affiliation(s)
- Xiang Liu
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, USA; Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA
| | - Simon W Sanchez
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA
| | - Yan Gong
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Roksana Riddle
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA; Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Zebin Jiang
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Stevens Trevor
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
| | - Christopher H Contag
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; Department of Microbiology, Genetics & Immunology, Michigan State University, East Lansing, MI, USA
| | - Debajit Saha
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, USA; Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Wen Li
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, USA; Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, USA; Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA; Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
2
|
Li L, Menendez-Lustri DM, Hartzler A, Pogharian A, Zaorski B, Chen A, Palen J, Traylor B, Quill E, Pawlowski CL, Bruckman MA, Gupta AS, Capadona JR, Shoffstall AJ. Systemically administered platelet-inspired nanoparticles to reduce inflammation surrounding intracortical microelectrodes. Biomaterials 2025; 317:123082. [PMID: 39787896 DOI: 10.1016/j.biomaterials.2025.123082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/12/2025]
Abstract
Intracortical microelectrodes (IMEs) are essential for neural signal acquisition in neuroscience and brain-machine interface (BMI) systems, aiding patients with neurological disorders, paralysis, and amputations. However, IMEs often fail to maintain robust signal quality over time, partly due to neuroinflammation caused by vascular damage during insertion. Platelet-inspired nanoparticles (PIN), which possess injury-targeting functions, mimic the adhesion and aggregation of active platelets through conjugated collagen-binding peptides (CBP), von Willebrand Factor-binding peptides (VBP), and fibrinogen-mimetic peptides (FMP). Systemically administered PINs can potentially enhance hemostasis and promote the resealing of IME insertion-induced leaky blood-brain barrier (BBB), thereby attenuating the influx of blood-derived proteins into the brain parenchyma that trigger neuroinflammation. This study explores the potential of PINs to mitigate neuroinflammation at implant sites. Male Sprague Dawley rats underwent craniotomies and IME implantations, followed by a single dose of Cy5 labeled PINs (2 mg/kg). Rats were sacrificed at intervals from 0 to 4 days post-implantation (DPI) for biodistribution analysis using an in vivo live imaging system (IVIS) and immunohistochemistry (IHC) to assess neuroinflammation, BBB permeability, and active platelet distribution. Another cohort of rats received weekly PINs, trehalose buffer (TH, diluent control), or control nanoparticles (CP, PEG-coated liposomes) for 4 weeks, with similar endpoint analyses. Results indicated that PIN concentrations were significantly elevated near IME interfaces acutely (0-4 DPI) and after 4 weeks of repeated dosing. At 3 DPI, peak intensities of active platelets (CD62P), activated microglia/macrophages (CD68), and PINs were observed. Immunoglobulin G (IgG) was upregulated during the first 24 h near implant sites but declined thereafter. At 4 weeks, the PINs group exhibited higher intensities of active platelets and PINs, and reduced CD68 and IgG levels compared to controls. PINs effectively targeted the IME-tissue interface, alongside endogenous activated platelets, resulting in reduced neuroinflammatory and BBB-leakage markers compared to the diluent-only-infused control group. Repeated dosing of PINs presents a promising approach for enhancing the quality of neural recordings in future studies.
Collapse
Affiliation(s)
- Longshun Li
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Dhariyat M Menendez-Lustri
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Aniya Hartzler
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Anna Pogharian
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Brett Zaorski
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Alex Chen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jaquelynn Palen
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | | | - Emma Quill
- Haima Therapeutics LLC, Cleveland, OH, United States
| | | | | | - Anirban Sen Gupta
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States
| | - Andrew J Shoffstall
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, United States; Advanced Platform Technology Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, United States.
| |
Collapse
|
3
|
Bjånes DA, Kellis S, Nickl R, Baker B, Aflalo T, Bashford L, Chivukula S, Fifer MS, Osborn LE, Christie B, Wester BA, Celnik PA, Kramer D, Pejsa K, Crone NE, Anderson WS, Pouratian N, Lee B, Liu CY, Tenore FV, Rieth L, Andersen RA. Quantifying physical degradation alongside recording and stimulation performance of 980 intracortical microelectrodes chronically implanted in three humans for 956-2130 days. Acta Biomater 2025; 198:188-206. [PMID: 40037510 DOI: 10.1016/j.actbio.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/06/2025]
Abstract
The clinical success of brain computer interfaces (BCI) depends on overcoming both biological and material challenges to ensure a long-term stable connection for neural recording and stimulation. This study systematically quantified damage that microelectrodes sustained during chronical implantation in three people with tetraplegia for 956-2130 days. Using scanning electron microscopy (SEM), we imaged 980 microelectrodes from eleven Neuroport arrays tipped with platinum (Pt, n = 8) and sputtered iridium oxide film (SIROF, n = 3). Arrays were implanted/explanted from posterior parietal, motor and somatosensory cortices across three clinical sites (Caltech/UCLA, Caltech/USC, APL/Johns Hopkins). From the electron micrographs, we quantified and correlated physical damage with functional outcomes measured in vivo, prior to explant (recording quality, noise, impedance and stimulation ability). Despite greater physical degradation, SIROF electrodes were twice as likely to record neural activity than Pt (measured by SNR). For SIROF, 1 kHz impedance significantly correlated with all physical damage metrics, recording metrics, and stimulation performance, suggesting a reliable measurement of in vivo degradation. We observed a new degradation type, primarily on stimulated electrodes ("pockmarked" vs "cracked") electrodes; however, no significant degradation due to stimulation or amount of charge delivered. We hypothesize erosion of the silicon shank accelerates damage to the electrode / tissue interface, following damage to the tip metal. These findings link quantitative measurements to the microelectrodes' physical condition and their capacity to record/stimulate. These data could lead to improved manufacturing processes or novel electrode designs to improve long-term performance of BCIs, making them vitally important as multi-year clinical trials of BCIs are becoming more common. STATEMENT OF SIGNIFICANCE: Long-term performance stability of the electrode-tissue interface is essential for clinical viability of brain computer interface (BCI) devices; currently, materials degradation is a critical component for performance loss. Across three human participants, ten micro-electrode arrays (plus one control) were implanted for 956-2130 days. Using scanning electron microscopy (SEM), we analyzed degradation of 980 electrodes, comparing two types of commonly implanted electrode tip metals: Platinum (Pt) and Sputtered Iridium Oxide Film (SIROF). We correlated observed degradation with in vivo electrode performance: recording (signal-to-noise ratio, noise, impedance) and stimulation (evoked somatosensory percepts). We hypothesize penetration of the electrode tip by biotic processes leads to erosion of the supporting silicon core, which then accelerates further tip metal damage. These data could lead to improved manufacturing processes or novel electrode designs towards the goal of a stable BCI electrical interface, spanning a multi-decade participant lifetime.
Collapse
Affiliation(s)
- David A Bjånes
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, CA, USA.
| | - Spencer Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Robert Nickl
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Brian Baker
- Electrical and Computer Engineering Univ. of Utah, Salt Lake City, UT, USA
| | - Tyson Aflalo
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Luke Bashford
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Srinivas Chivukula
- Department of Neurosurgery, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA 90027, USA
| | - Matthew S Fifer
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Luke E Osborn
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Breanne Christie
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Brock A Wester
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | | | - Daniel Kramer
- Department of Neurological Surgery, University of Colorado Hospital, CO, 80045, USA
| | - Kelsie Pejsa
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287 USA
| | - William S Anderson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Nadar Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; USC Neurorestoration Center, Department of Neurological Surgery, Keck School of Medicine of USC, Los Angeles, CA 90033, USA; Rancho Los Amigos National Rehabilitation Center, Downey, CA, USA
| | - Francesco V Tenore
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, 20723, USA
| | - Loren Rieth
- Mechanical, Materials, and Aerospace Engineering, West Virginia University, Morgantown, WV, USA
| | - Richard A Andersen
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA; Tianqiao and Chrissy Chen Institute for Neuroscience, CA, USA
| |
Collapse
|
4
|
Franklin ME, Grant JL, Lee G, Ciara AA, Bennett C, Mattis S, Gallardo N, Corrales N, Cui XT, Capadona JR, Streit WJ, Olivier JH, Keane RW, Dietrich WD, Vaccari JPDR, Prasad A. Effects of iron accumulation and its chelation on oxidative stress in intracortical implants. Acta Biomater 2025:S1742-7061(25)00349-6. [PMID: 40355018 DOI: 10.1016/j.actbio.2025.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 04/29/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
Long-term reliability of microelectrodes implanted in the cortex is hindered due to the foreign body response that occurs at the electrode-tissue interface. Following implantation, there is disruption of the blood-brain-barrier and vasculature, resulting in activation of immune cells and release of erythrocytes. As a result of hemolysis, erythrocytes degrade to heme and then to free iron. Excess free iron can participate in the Fenton Reaction, producing reactive oxygen species (ROS). Iron-mediated ROS production can contribute to oxidation of lipids, proteins, and DNA, facilitating a hostile environment of oxidative stress leading to oxidative cellular damage, cytotoxicity, and cell death. The objective of this study was to show the iron accumulation and the downstream effects of oxidative stress at the injury site. A 16-channel microelectrode array (MEA) was implanted in the rat somatosensory cortex. Our results indicated significant elevation of NOX complex subunits across timepoints, suggesting sustained oxidative stress. In a separate group of animals, we administered an iron chelator, deferoxamine mesylate (DFX), to evaluate the effects of chelation on iron accumulation, oxidative stress and damage, and neuronal survival. Results indicate that animals with iron chelation showed reduced ferric iron and markers of oxidative stress and damage corresponding with increased expression of neuronal cell bodies and electrophysiological functional performance. In summary, the study reveals the role of iron in mediating oxidative stress and the effects of modulating iron levels using iron chelation at the electrode-tissue interface. STATEMENT OF SIGNIFICANCE: Iron accumulation has been observed in central nervous system injuries and in neurodegenerative diseases such as Alzheimer's and Parkinson's disease. While the role of iron is studied in various neurodegenerative diseases and traumatic brain injury, iron accumulation and its effect on oxidative stress is not known for intracortical implants where there is a persistent injury due to the presence of a foreign device in the brain tissue. The study seeks to understand the effects of iron accumulation on oxidative stress and damage at the electrode-tissue interface in intracortical implants by using iron chelation as a method of modulating iron levels at the interface.
Collapse
Affiliation(s)
- Melissa E Franklin
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Jordan L Grant
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Grant Lee
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | | | - Cassie Bennett
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Serene Mattis
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Nicolas Gallardo
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Natalie Corrales
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Wolfgang J Streit
- Department of Neuroscience, University of Florida, Gainesville, FL, USA
| | | | - Robert W Keane
- Department of Cellular Physiology and Molecular Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - W Dalton Dietrich
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan Pablo de Rivero Vaccari
- Department of Cellular Physiology and Molecular Biophysics, University of Miami Miller School of Medicine, Miami, FL, USA; Center for Cognitive Neuroscience and Aging University of Miami Miller School of Medicine, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Abhishek Prasad
- Department of Biomedical Engineering, University of Miami, Miami, FL, USA; The Miami Project to Cure Paralysis, University of Miami, Miami, FL, USA; Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
5
|
Zhang S, Song Y, Lv S, Jing L, Wang M, Liu Y, Xu W, Jiao P, Zhang S, Wang M, Liu J, Wu Y, Cai X. Electrode Arrays for Detecting and Modulating Deep Brain Neural Information in Primates: A Review. CYBORG AND BIONIC SYSTEMS 2025; 6:0249. [PMID: 40321898 PMCID: PMC12046227 DOI: 10.34133/cbsystems.0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/22/2025] [Accepted: 03/10/2025] [Indexed: 05/08/2025] Open
Abstract
Primates possess a more developed central nervous system and a higher level of intelligence than rodents. Detecting and modulating deep brain activity in primates enhances our understanding of neural mechanisms, facilitates the study of major brain diseases, enables brain-computer interactions, and supports advancements in artificial intelligence. Traditional imaging methods such as magnetic resonance imaging, positron emission computed tomography, and scalp electroencephalogram are limited in spatial resolution. They cannot accurately capture deep brain signals from individual neurons. With the progress of microelectromechanical systems and other micromachining technologies, single-neuron level detection and stimulation technology in rodents based on microelectrodes has made important progress. However, compared with rodents, human and nonhuman primates have larger brain volume that needs deeper implantation depth, and the test object has higher safety and device preparation requirements. Therefore, high-resolution devices suitable for long-term detection in the brains of primates are urgently needed. This paper reviewed electrode array devices used for electrophysiological and electrochemical detections in primates' deep brains. The research progress of neural recording and stimulation technologies was introduced from the perspective of electrode type and device structures, and their potential value in neuroscience research and clinical disease treatments was discussed. Finally, it is speculated that future electrodes will have a lot of room for development in terms of flexibility, high resolution, deep brain, and high throughput. The improvements in electrode forms and preparation process will expand our understanding of deep brain neural activities, and bring new opportunities and challenges for the further development of neuroscience.
Collapse
Affiliation(s)
- Siyu Zhang
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiya Lv
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyi Jing
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingchuan Wang
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Liu
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peiyao Jiao
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Suyi Zhang
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mixia Wang
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juntao Liu
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yirong Wu
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology,
Aerospace Information Research Institute. Chinese Academy of Sciences, Beijing 100190, China
- School of Electronic, Electrical and Communication Engineering,
University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Wang L, Zhang C, Hao Z, Yao S, Bai L, Oliveira JM, Wang P, Zhang K, Zhang C, He J, Reis RL, Li D. Bioaugmented design and functional evaluation of low damage implantable array electrodes. Bioact Mater 2025; 47:18-31. [PMID: 39872211 PMCID: PMC11762938 DOI: 10.1016/j.bioactmat.2024.12.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/16/2024] [Accepted: 12/31/2024] [Indexed: 01/30/2025] Open
Abstract
Implantable neural electrodes are key components of brain-computer interfaces (BCI), but the mismatch in mechanical and biological properties between electrode materials and brain tissue can lead to foreign body reactions and glial scarring, and subsequently compromise the long-term stability of electrical signal transmission. In this study, we proposed a new concept for the design and bioaugmentation of implantable electrodes (bio-array electrodes) featuring a heterogeneous gradient structure. Different composite polyaniline-gelatin-alginate based conductive hydrogel formulations were developed for electrode surface coating. In addition, the design, materials, and performance of the developed electrode was optimized through a combination of numerical simulations and physio-chemical characterizations. The long-term biological performance of the bio-array electrodes were investigated in vivo using a C57 mouse model. It was found that compared to metal array electrodes, the surface charge of the bio-array electrodes increased by 1.74 times, and the impedance at 1 kHz decreased by 63.17 %, with a doubling of the average capacitance. Long-term animal experiments showed that the bio-array electrodes could consistently record 2.5 times more signals than those of the metal array electrodes, and the signal-to-noise ratio based on action potentials was 2.1 times higher. The study investigated the mechanisms of suppressing the scarring effect by the bioaugmented design, revealing reduces brain damage as a result of the interface biocompatibility between the bio-array electrodes and brain tissue, and confirmed the long-term in vivo stability of the bio-array electrodes.
Collapse
Affiliation(s)
- Ling Wang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, China
| | - Chenrui Zhang
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, China
| | - Zhiyan Hao
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, China
- Department of Intelligent Manufacture, Yantai Vocational College, 264670, China
| | - Siqi Yao
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, China
| | - Luge Bai
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, China
| | - Joaquim Miguel Oliveira
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pan Wang
- Department of Anatomy, Histology and Embryology and K.K. Leung Brain Research Centre, The Fourth Military 9 Medical University, 710032, Xi'an, China
| | - Kun Zhang
- Department of Pharmacology, School of Pharmacy, Fourth Military Medical University, Xi'an, 710032, China
| | - Chen Zhang
- Tianjin Medical Devices Quality Supervision and Testing Center, Tianjin, 300384, China
| | - Jiankang He
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, China
| | - Rui L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Zona Industrial da Gandra, Barco, 4805-017, Guimarães, Portugal
- ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Dichen Li
- State Key Laboratory for Manufacturing System Engineering, School of Mechanical Engineering, Xi'an Jiaotong University, China
- State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, China
| |
Collapse
|
7
|
Pawlak WA, Howard N. Neuromorphic algorithms for brain implants: a review. Front Neurosci 2025; 19:1570104. [PMID: 40292025 PMCID: PMC12021827 DOI: 10.3389/fnins.2025.1570104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Neuromorphic computing technologies are about to change modern computing, yet most work thus far has emphasized hardware development. This review focuses on the latest progress in algorithmic advances specifically for potential use in brain implants. We discuss current algorithms and emerging neurocomputational models that, when implemented on neuromorphic hardware, could match or surpass traditional methods in efficiency. Our aim is to inspire the creation and deployment of models that not only enhance computational performance for implants but also serve broader fields like medical diagnostics and robotics inspiring next generations of neural implants.
Collapse
|
8
|
Won C, Cho S, Jang KI, Park JU, Cho JH, Lee T. Emerging fiber-based neural interfaces with conductive composites. MATERIALS HORIZONS 2025. [PMID: 40197656 DOI: 10.1039/d4mh01854k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Neural interfaces that enable bidirectional communication between neural systems and external devices are crucial for treating neurological disorders and advancing brain-machine interfaces. Key requirements for these neural interfaces are the ability to modulate electrophysiological activity without causing tissue damage in the nerve system and long-term usability. Recent advances in biomedical neural electrodes aim to reduce mechanical mismatch between devices and surrounding tissues/organs while maintaining their electrical conductivity. Among these, fiber electrodes stand out as essential candidates for future neural interfaces owing to their remarkable flexibility, controllable scalability, and facile integration with systems. Herein, we introduce fiber-based devices with conductive composites, along with their fabrication technologies, and integration strategies for future neural interfaces. Compared to conventional neural electrodes, fiber electrodes readily combine with conductive materials such as metal nanoparticles, carbon-based nanomaterials, and conductive polymers. Their fabrication technologies enable high electrical performance without sacrificing mechanical properties. In addition, the neural modulation techniques of fiber electrodes; electrical, optical, and chemical, and their applications in central and peripheral nervous systems are carefully discussed. Finally, current limitations and potential advancements in fiber-based neural interfaces are highlighted for future innovations.
Collapse
Affiliation(s)
- Chihyeong Won
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Sungjoon Cho
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Kyung-In Jang
- Department of Robotics and Mechatronics Engineering, Daegu Gyeonbuk Institute of Science and Technology, Daegu, 42988, Republic of Korea
- ENSIDE Corporation, Daegu, 42988, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jeong Ho Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Taeyoon Lee
- School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
9
|
Tor A, Clarke SE, Bray IE, Nuyujukian P. Material Damage to Multielectrode Arrays after Electrolytic Lesioning is in the Noise. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645429. [PMID: 40196469 PMCID: PMC11974832 DOI: 10.1101/2025.03.26.645429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
1The quality of stable long-term recordings from chronically implanted electrode arrays is essential for experimental neuroscience and brain-computer interfaces. This work uses scanning electron microscopy (SEM) to image and analyze eight 96-channel Utah arrays previously implanted in motor cortical regions of four subjects (subject H = 2242 days implanted, F = 1875, U = 2680, C = 594), providing important contributions to a growing body of long-term implant research leveraging this imaging technology. Four of these arrays have been used in electrolytic lesioning experiments (H = 10 lesions, F = 1, U = 4, C = 1), a novel electrolytic perturbation technique using small direct currents. In addition to surveying physical damage, such as biological debris and material deterioration, this work also analyzes whether electrolytic lesioning created damage beyond what is typical for these arrays. Each electrode was scored in six damage categories, identified from the literature: abnormal debris, metal coating cracks, silicon tip breakage, parylene C delamination, parylene C cracks, and shank fracture. This analysis confirms previous results that observed damage on explanted arrays is more severe on the outer-edge electrodes versus inner electrodes. These findings also indicate that are no statistically significant differences between the damage observed on normal electrodes versus electrodes used for electrolytic lesioning. This work provides evidence that electrolytic lesioning does not significantly affect the quality of chronically implanted electrode arrays and can be a useful tool in understanding perturbations to neural systems. Finally, this work also includes the largest collection of single-electrode SEM images for previously implanted multielectrode Utah arrays, spanning eleven different intact arrays and one broken array. As the clinical relevance of chronically implanted electrodes with single-neuron resolution continues to grow, these images may be used to provide the foundation for a larger public database and inform further electrode design and analyses.
Collapse
|
10
|
Dalrymple AN, Jones ST, Fallon JB, Shepherd RK, Weber DJ. Overcoming failure: improving acceptance and success of implanted neural interfaces. Bioelectron Med 2025; 11:6. [PMID: 40083033 PMCID: PMC11907899 DOI: 10.1186/s42234-025-00168-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025] Open
Abstract
Implanted neural interfaces are electronic devices that stimulate or record from neurons with the purpose of improving the quality of life of people who suffer from neural injury or disease. Devices have been designed to interact with neurons throughout the body to treat a growing variety of conditions. The development and use of implanted neural interfaces is increasing steadily and has shown great success, with implants lasting for years to decades and improving the health and quality of life of many patient populations. Despite these successes, implanted neural interfaces face a multitude of challenges to remain effective for the lifetime of their users. The devices are comprised of several electronic and mechanical components that each may be susceptible to failure. Furthermore, implanted neural interfaces, like any foreign body, will evoke an immune response. The immune response will differ for implants in the central nervous system and peripheral nervous system, as well as over time, ultimately resulting in encapsulation of the device. This review describes the challenges faced by developers of neural interface systems, particularly devices already in use in humans. The mechanical and technological failure modes of each component of an implant system is described. The acute and chronic reactions to devices in the peripheral and central nervous system and how they affect system performance are depicted. Further, physical challenges such as micro and macro movements are reviewed. The clinical implications of device failures are summarized and a guide for determining the severity of complication was developed and provided. Common methods to diagnose and examine mechanical, technological, and biological failure modes at various stages of development and testing are outlined, with an emphasis on chronic in vivo characterization of implant systems. Finally, this review concludes with an overview of some of the innovative solutions developed to reduce or resolve the challenges faced by implanted neural interface systems.
Collapse
Affiliation(s)
- Ashley N Dalrymple
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
- Department of Physical Medicine and Rehabilitation, University of Utah, Salt Lake City, UT, USA.
- NERVES Lab, University of Utah, Salt Lake City, UT, USA.
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Sonny T Jones
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
- NERVES Lab, University of Utah, Salt Lake City, UT, USA
| | - James B Fallon
- Bionics Institute, St. Vincent's Hospital, Melbourne, VIC, Australia
- Medical Bionics Department, University of Melbourne, Melbourne, VIC, Australia
| | - Robert K Shepherd
- Bionics Institute, St. Vincent's Hospital, Melbourne, VIC, Australia
| | - Douglas J Weber
- Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- NeuroMechatronics Lab, Carnegie Mellon University, Pittsburgh, PA, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
11
|
Jung T, Zeng N, Fabbri JD, Eichler G, Li Z, Zabeh E, Das A, Willeke K, Wingel KE, Dubey A, Huq R, Sharma M, Hu Y, Ramakrishnan G, Tien K, Mantovani P, Parihar A, Yin H, Oswalt D, Misdorp A, Uguz I, Shinn T, Rodriguez GJ, Nealley C, Sanborn S, Gonzales I, Roukes M, Knecht J, Yoshor D, Canoll P, Spinazzi E, Carloni LP, Pesaran B, Patel S, Jacobs J, Youngerman B, Cotton RJ, Tolias A, Shepard KL. Stable, chronic in-vivo recordings from a fully wireless subdural-contained 65,536-electrode brain-computer interface device. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.17.594333. [PMID: 38798494 PMCID: PMC11118429 DOI: 10.1101/2024.05.17.594333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Minimally invasive, high-bandwidth brain-computer-interface (BCI) devices can revolutionize human applications. With orders-of-magnitude improvements in volumetric efficiency over other BCI technologies, we developed a 50-μm-thick, mechanically flexible micro-electrocorticography (μECoG) BCI, integrating a 256×256 array of electrodes, signal processing, data telemetry, and wireless powering on a single complementary metal-oxide-semiconductor (CMOS) substrate containing 65,536 recording channels, from which we can simultaneously record a selectable subset of up to 1024 channels at a given time. Fully implanted below the dura, our chip is wirelessly powered, communicating bi-directionally with an external relay station outside the body. We demonstrated chronic, reliable recordings for up to two weeks in pigs and up to two months in behaving non-human primates from somatosensory, motor, and visual cortices, decoding brain signals at high spatiotemporal resolution.
Collapse
Affiliation(s)
- Taesung Jung
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Nanyu Zeng
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Jason D. Fabbri
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Guy Eichler
- Department of Computer Science, Columbia University; New York, NY 10027, USA
| | - Zhe Li
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
| | - Erfan Zabeh
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
| | - Anup Das
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
| | - Konstantin Willeke
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
- Institute of Computer Science and Campus Institute Data Science, University of Göttingen; Germany
| | - Katie E. Wingel
- Center for Neural Science, New York University; New York, NY 10003, USA
- Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA
| | - Agrita Dubey
- Center for Neural Science, New York University; New York, NY 10003, USA
- Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA
| | - Rizwan Huq
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Mohit Sharma
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Yaoxing Hu
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Girish Ramakrishnan
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Kevin Tien
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Paolo Mantovani
- Department of Computer Science, Columbia University; New York, NY 10027, USA
| | - Abhinav Parihar
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Heyu Yin
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Denise Oswalt
- Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA
- Department of Neuroscience, University of Pennsylvania; Philadelphia, PA 19118, USA
- Department of Bioengineering, University of Pennsylvania; Philadelphia, PA 19118, USA
| | - Alexander Misdorp
- Department of Computer Science, Columbia University; New York, NY 10027, USA
| | - Ilke Uguz
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
| | - Tori Shinn
- Department of Bioengineering, University of Pennsylvania; Philadelphia, PA 19118, USA
| | - Gabrielle J. Rodriguez
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
| | - Cate Nealley
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
| | - Sophia Sanborn
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
| | - Ian Gonzales
- Department of Neurological Surgery, Columbia University; New York, NY 10032, USA
| | - Michael Roukes
- Departments of Physics, Applied Physics, and Bioengineering, Caltech; Pasadena, CA 91125, USA
| | - Jeffrey Knecht
- Lincoln Laboratory, Massachusetts Institute of Technology; Lexington, MA 02421, USA
| | - Daniel Yoshor
- Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University; New York, NY 10032, USA
| | - Eleonora Spinazzi
- Department of Neurological Surgery, Columbia University; New York, NY 10032, USA
| | - Luca P. Carloni
- Department of Computer Science, Columbia University; New York, NY 10027, USA
| | - Bijan Pesaran
- Center for Neural Science, New York University; New York, NY 10003, USA
- Department of Neurosurgery, University of Pennsylvania; Philadelphia PA 19118, USA
- Department of Neuroscience, University of Pennsylvania; Philadelphia, PA 19118, USA
- Department of Bioengineering, University of Pennsylvania; Philadelphia, PA 19118, USA
| | - Saumil Patel
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
- Department of Neurological Surgery, Columbia University; New York, NY 10032, USA
| | - Brett Youngerman
- Department of Neurological Surgery, Columbia University; New York, NY 10032, USA
| | - R. James Cotton
- Shirley Ryan Ability Labs; Chicago, IL, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University; Chicago, IL, USA
| | - Andreas Tolias
- Department of Ophthalmology, Byers Eye Institute, Stanford University; Stanford, CA 94305, USA
- Stanford Bio-X, Stanford University, Stanford University; Stanford, CA 94304, USA
- Wu Tsai Neurosciences Institute, Stanford University; Stanford, CA 94304, USA
- Center for Neuroscience and Artificial Intelligence, Department of Neuroscience, Baylor College of Medicine; Houston, TX 77030, USA
- Department of Electrical Engineering, Stanford University; Stanford, CA 94304, USA
| | - Kenneth L. Shepard
- Department of Electrical Engineering, Columbia University; New York, NY 10027, USA
- Department of Biomedical Engineering, Columbia University; New York, NY 10027, USA
- Department of Neurological Surgery, Columbia University; New York, NY 10032, USA
| |
Collapse
|
12
|
Konrad P, Gelman KR, Lawrence J, Bhatia S, Jacqueline D, Sharma R, Ho E, Byun YW, Mermel CH, Rapoport BI. First-in-human experience performing high-resolution cortical mapping using a novel microelectrode array containing 1024 electrodes. J Neural Eng 2025; 22:026009. [PMID: 39870041 DOI: 10.1088/1741-2552/adaeed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 01/27/2025] [Indexed: 01/29/2025]
Abstract
Objective.Localization of function within the brain and central nervous system is an essential aspect of clinical neuroscience. Classical descriptions of functional neuroanatomy provide a foundation for understanding the functional significance of identifiable anatomic structures. However, individuals exhibit substantial variation, particularly in the presence of disorders that alter tissue structure or impact function. Furthermore, functional regions do not always correspond to identifiable structural features. Understanding function at the level of individual patients-and diagnosing and treating such patients-often requires techniques capable of correlating neural activity with cognition, behavior, and experience in anatomically precise ways.Approach. Recent advances in brain-computer interface technology have given rise to a new generation of electrophysiologic tools for scalable, nondestructive functional mapping with spatial precision in the range of tens to hundreds of micrometers, and temporal resolutions in the range of tens to hundreds of microseconds. Here we describe our initial intraoperative experience with novel, thin-film arrays containing 1024 surface microelectrodes for electrocorticographic mapping in a first-in-human study.Main results. Eight patients undergoing standard electrophysiologic cortical mapping during resection of eloquent-region brain tumors consented to brief sessions of concurrent mapping (micro-electrocorticography) using the novel arrays. Four patients underwent motor mapping using somatosensory evoked potentials (SSEPs) while under general anesthesia, and four underwent awake language mapping, using both standard paradigms and the novel microelectrode array. SSEP phase reversal was identified in the region predicted by conventional mapping, but at higher resolution (0.4 mm) and as a contour rather than as a point. In Broca's area (confirmed by direct cortical stimulation), speech planning was apparent in the micro-electrocorticogram as high-amplitude beta-band activity immediately prior to the articulatory event.Significance. These findings support the feasibility and potential clinical utility of incorporating micro-electrocorticography into the intraoperative workflow for systematic cortical mapping of functional brain regions.
Collapse
Affiliation(s)
- Peter Konrad
- Department of Neurosurgery, West Virginia University, Morgantown, WV, United States of America
| | - Kate R Gelman
- Department of Neurosurgery, West Virginia University, Morgantown, WV, United States of America
| | - Jesse Lawrence
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, United States of America
| | - Sanjay Bhatia
- Department of Neurosurgery, West Virginia University, Morgantown, WV, United States of America
| | - Dister Jacqueline
- Precision Neuroscience Corporation, New York, NY, United States of America
| | - Radhey Sharma
- Department of Neurosurgery, West Virginia University, Morgantown, WV, United States of America
| | - Elton Ho
- Precision Neuroscience Corporation, New York, NY, United States of America
| | - Yoon Woo Byun
- Precision Neuroscience Corporation, New York, NY, United States of America
| | - Craig H Mermel
- Precision Neuroscience Corporation, New York, NY, United States of America
| | | |
Collapse
|
13
|
Sieng CKT, Yi CJ, Yasui T, Yamashita K, Sanda R, Sakamoto K, Kondo Y, Suzuki K, Idogawa S, Seikoba Y, Numano R, Koida K, Kawano T. Magnetic assembly of microwires on a flexible substrate for minimally invasive electrophysiological recording. Biosens Bioelectron 2025; 271:116927. [PMID: 39642530 DOI: 10.1016/j.bios.2024.116927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024]
Abstract
Understanding the neural system in the brain requires the detection of signals from the tissue. Microscale electrodes enable high spatiotemporal neural recording, whereas traditional microelectrodes cause material and geometry mismatches between the electrode and the tissue, leading to injury and signal loss during recording. In this study, we propose a fabrication technique that uses magnetic force to facilitate assembly of vertical microscale wire-electrodes on a flexible substrate. Two-channel 15-μm-diameter and 400-μm-length nickel-microwire electrodes on a 5-μm-thick flexible parylene film are designed and fabricated. Impedance characteristics of these electrodes are <500 kΩ at 1 kHz, with output/input signal amplitude ratios of over 90%. In vivo neural recording in mice demonstrates that both local field potentials and action potentials are detected through each wire electrode, confirming the minimal invasiveness during the electrode penetration and through immunohistochemical tissue analysis.
Collapse
Affiliation(s)
- Claire King Teck Sieng
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Chan Jun Yi
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Taiki Yasui
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Koji Yamashita
- Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Rioki Sanda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Kensei Sakamoto
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Yuki Kondo
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Ko Suzuki
- TechnoPro, Inc., TechnoPro R&D, Company, Roppongi Hills Mori Tower 35F, 6-10-1 Roppongi, Minato-ku, Tokyo, 106-6135, Japan
| | - Shinnosuke Idogawa
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; National Institute of Technology, Kushiro College, Otanoshike-Nishi 2-32-1, Kushiro-Shi, Hokkaido, 084-0916, Japan
| | - Yu Seikoba
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Rika Numano
- Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Kowa Koida
- Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan
| | - Takeshi Kawano
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan; Institute for Research on Next-generation Semiconductor and Sensing Science (IRES2), Toyohashi University of Technology, 1-1 Hibarigaoka Tempaku-cho, Toyohashi, 441-8580, Japan.
| |
Collapse
|
14
|
Kim E, Jeong E, Hong YM, Jeong I, Kim J, Kwon YW, Park YG, Lee J, Choi S, Kim JY, Lee JH, Cho SW, Park JU. Magnetically reshapable 3D multi-electrode arrays of liquid metals for electrophysiological analysis of brain organoids. Nat Commun 2025; 16:2011. [PMID: 40016200 PMCID: PMC11868496 DOI: 10.1038/s41467-024-55752-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 12/23/2024] [Indexed: 03/01/2025] Open
Abstract
To comprehend the volumetric neural connectivity of a brain organoid, it is crucial to monitor the spatiotemporal electrophysiological signals within the organoid, known as intra-organoid signals. However, previous methods risked damaging the three-dimensional (3D) cytoarchitecture of organoids, either through sectioning or inserting rigid needle-like electrodes. Also, the limited numbers of electrodes in fixed positions with non-adjustable electrode shapes were insufficient for examining the complex neural activity throughout the organoid. Herein, we present a magnetically reshapable 3D multi-electrode array (MEA) using direct printing of liquid metals for electrophysiological analysis of brain organoids. The adaptable distribution and the softness of these printed electrodes facilitate the spatiotemporal recording of intra-organoid signals. Furthermore, the unique capability to reshape these soft electrodes within the organoid using magnetic fields allows a single electrode in the MEA to record from multiple points, effectively increasing the recording site density without the need for additional electrodes.
Collapse
Affiliation(s)
- Enji Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul, 03722, Republic of Korea
| | - Eunseon Jeong
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yeon-Mi Hong
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul, 03722, Republic of Korea
| | - Inhea Jeong
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul, 03722, Republic of Korea
| | - Junghoon Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul, 03722, Republic of Korea
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yong Won Kwon
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul, 03722, Republic of Korea
| | - Young-Geun Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul, 03722, Republic of Korea
| | - Jiin Lee
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Suah Choi
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea
| | - Ju-Young Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul, 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Yonsei, Republic of Korea
| | - Jae-Hyun Lee
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul, 03722, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Yonsei, Republic of Korea.
| | - Seung-Woo Cho
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul, 03722, Republic of Korea.
- Department of Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Yonsei, Republic of Korea.
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
- Center for Nanomedicine, Institute for Basic Science (IBS), Yonsei University, Seoul, 03722, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Yonsei, Republic of Korea.
- Department of Neurosurgery, Yonsei University College of Medicine, Yonsei, Republic of Korea.
- Yonsei-KIST Convergence Research Institute, Seoul, 03722, Republic of Korea.
| |
Collapse
|
15
|
Boufidis D, Garg R, Angelopoulos E, Cullen DK, Vitale F. Bio-inspired electronics: Soft, biohybrid, and "living" neural interfaces. Nat Commun 2025; 16:1861. [PMID: 39984447 PMCID: PMC11845577 DOI: 10.1038/s41467-025-57016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/04/2025] [Indexed: 02/23/2025] Open
Abstract
Neural interface technologies are increasingly evolving towards bio-inspired approaches to enhance integration and long-term functionality. Recent strategies merge soft materials with tissue engineering to realize biologically-active and/or cell-containing living layers at the tissue-device interface that enable seamless biointegration and novel cell-mediated therapeutic opportunities. This review maps the field of bio-inspired electronics and discusses key recent developments in tissue-like and regenerative bioelectronics, from soft biomaterials and surface-functionalized bioactive coatings to cell-containing 'biohybrid' and 'all-living' interfaces. We define and contextualize key terminology in this emerging field and highlight how biological and living components can bridge the gap to clinical translation.
Collapse
Affiliation(s)
- Dimitris Boufidis
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Raghav Garg
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Eugenia Angelopoulos
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - D Kacy Cullen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Flavia Vitale
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania, USA.
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
16
|
Ye H, Chen Y, Chen J, Hendee J. Restore axonal conductance in a locally demyelinated axon with electromagnetic stimulation. J Neural Eng 2025; 22:016042. [PMID: 39904055 PMCID: PMC11827109 DOI: 10.1088/1741-2552/adb213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 01/27/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Objective. Axonal demyelination leads to failure of axonal conduction. Current research on demyelination focuses on the promotion of remyelination. Electromagnetic stimulation is widely used to promote neural activity. We hypothesized that electromagnetic stimulation of the demyelinated area, by providing excitation to the nodes of Ranvier, could rescue locally demyelinated axons from conductance failure.Approach. We built a multi-compartment NEURON model of a myelinated axon under electromagnetic stimulation. We simulated the action potential (AP) propagation and observed conductance failure when local demyelination occurred. Conductance failure was due to current leakage and a lack of activation of the nodes in the demyelinated region. To investigate the effects of electromagnetic stimulation on locally demyelinated axons, we positioned a miniature coil next to the affected area to activate nodes in the demyelinated region.Main results. Subthreshold microcoil stimulation caused depolarization of node membranes. This depolarization, in combination with membrane depolarization induced by the invading AP, resulted in sufficient activation of nodes in the demyelinated region and restoration of axonal conductance. Efficacy of restoration was dependent on the amplitude and frequency of the stimuli, and the location of the microcoil relative to the targeted nodes. The restored axonal conductance was due to the enhanced Na+current and reduced K+current in the nodes, rather than a reduction in leakage current in the demyelinated region. Finally, we found that microcoil stimulation had no effect on axonal conductance in healthy, myelinated axons.Significance. Activation of nodes in the demyelinated region using electromagnetic stimulation provides an alternative treatment strategy to restore axonal function under local demyelination conditions. Results provide insights to the development of microcoil technology for the treatment of focal segmental demyelination cases, such as neuropraxia, spinal cord injury, and auditory nerve demyelination.
Collapse
Affiliation(s)
- Hui Ye
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Yanan Chen
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Ji Chen
- Department of Electrical and Computer Engineering, University of Houston, Houston, TX, United States of America
| | - Jenna Hendee
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| |
Collapse
|
17
|
Shoffstall A, Li L, Hartzler A, Menendez-Lustri D, Zhang J, Chen A, Lam D, Traylor B, Quill E, Hoeferlin G, Pawlowski C, Bruckman M, Gupta SA, Capadona J. Dexamethasone-loaded platelet-inspired nanoparticles improve intracortical microelectrode recording performance. RESEARCH SQUARE 2025:rs.3.rs-6018202. [PMID: 39989959 PMCID: PMC11844648 DOI: 10.21203/rs.3.rs-6018202/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Long-term robust intracortical microelectrode (IME) neural recording quality is negatively affected by the neuroinflammatory response following microelectrode insertion. This adversely impacts brain-machine interface (BMI) performance for patients with neurological disorders or amputations. Recent studies suggest that the leakage of blood-brain barrier (BBB) and microhemorrhage caused by the IME insertions lead to the increased neuroinflammation and reduced neural recording performance. Additionally, a sustained presence of activated platelets and coagulation factors is found near the insertion site. Thus, we hypothesized that the systemic administration of dexamethasone sodium phosphate-loaded platelet-inspired nanoparticle (SPPINDEX) can improve the neural recording performance of intracortical microelectrodes (IMEs) by promoting hemostasis, facilitating blood-brain barrier (BBB) healing, and achieving implant-targeted drug delivery. Leveraging the hemostatic and coagulation factor-binding properties of the platelet-inspired nanoparticle (PIN) drug delivery platform, SPPINDEX treatment can initially attenuate the invasion of neuroinflammatory triggers into the brain parenchyma caused by insertion-induced microhemorrhages or a compromised BBB. Furthermore, targeted delivery of the anti-inflammatory drug dexamethasone sodium phosphate (DEXSP) to the implant site via these nanoparticles can attenuate ongoing neuroinflammation, enhancing overall therapeutic efficacy. Weekly treatment with SPPINDEX for 8 weeks significantly improved the recording capabilities of IMEs compared to platelet-inspired nanoparticles alone (PIN), free dexamethasone sodium phosphate (Free DEXSP), and a diluent control trehalose buffer (TH), as assessed through extracellular single-unit recordings. Immunohistochemical analyses of neuron density, activated microglia/macrophage density, astrocyte density, and BBB permeability suggest that the improved neural recording performance may be attributed to reduced neuron degeneration, activated microglia and astrocytes at the implant interface caused by the decreased infiltration of blood-derived proteins that trigger neuroinflammation and the therapeutic effects from DEXSP. Overall, SPPINDEX treatment promotes an anti-inflammatory environment that improves neuronal density and enhances recording performance.
Collapse
|
18
|
Siwakoti U, Jones SA, Kumbhare D, Cui XT, Castagnola E. Recent Progress in Flexible Microelectrode Arrays for Combined Electrophysiological and Electrochemical Sensing. BIOSENSORS 2025; 15:100. [PMID: 39997002 PMCID: PMC11853293 DOI: 10.3390/bios15020100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/26/2025]
Abstract
Understanding brain function requires advanced neural probes to monitor electrical and chemical signaling across multiple timescales and brain regions. Microelectrode arrays (MEAs) are widely used to record neurophysiological activity across various depths and brain regions, providing single-unit resolution for extended periods. Recent advancements in flexible MEAs, built on micrometer-thick polymer substrates, have improved integration with brain tissue by mimicking the brain's soft nature, reducing mechanical trauma and inflammation. These flexible, subcellular-scale MEAs can record stable neural signals for months, making them ideal for long-term studies. In addition to electrical recording, MEAs have been functionalized for electrochemical neurotransmitter detection. Electroactive neurotransmitters, such as dopamine, serotonin, and adenosine, can be directly measured via electrochemical methods, particularly on carbon-based surfaces. For non-electroactive neurotransmitters like acetylcholine, glutamate, and γ-aminobutyric acid, alternative strategies, such as enzyme immobilization and aptamer-based recognition, are employed to generate electrochemical signals. This review highlights recent developments in flexible MEA fabrication and functionalization to achieve both electrochemical and electrophysiological recordings, minimizing sensor fowling and brain damage when implanted long-term. It covers multi-time scale neurotransmitter detection, development of conducting polymer and nanomaterial composite coatings to enhance sensitivity, incorporation of enzyme and aptamer-based recognition methods, and the integration of carbon electrodes on flexible MEAs. Finally, it summarizes strategies to acquire electrochemical and electrophysiological measurements from the same device.
Collapse
Affiliation(s)
- Umisha Siwakoti
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (U.S.); (S.A.J.)
| | - Steven A. Jones
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (U.S.); (S.A.J.)
| | - Deepak Kumbhare
- Department of Neurosurgery, Louisiana State University Health Sciences, Shreveport, LA 71103, USA;
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburg, Pittsburgh, PA 15260, USA;
- Center for Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA 15213, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, USA
| | - Elisa Castagnola
- Department of Biomedical Engineering, Louisiana Tech University, Ruston, LA 71272, USA; (U.S.); (S.A.J.)
- Department of Bioengineering, University of Pittsburg, Pittsburgh, PA 15260, USA;
- Institute for Micromanufacturing, Louisiana Tech University, Ruston, LA 71272, USA
| |
Collapse
|
19
|
Wang Z, Yan Y, Chen W, Tan Z, Yan Q, Chen Q, Ding X, Shen J, Gao M, Yang Y, Yu L, Lin F, Fu Y, Jin X, Yu X. Preparation and characterization of neural stem cell-loaded conductive hydrogel cochlear implant electrode coatings. BIOMATERIALS ADVANCES 2025; 167:214109. [PMID: 39561577 DOI: 10.1016/j.bioadv.2024.214109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024]
Abstract
Sensorineural deafness is a hearing impairment resulting from damage to the auditory nerve or inner ear hair cells. Currently, cochlear implants (CIs) are widely used as hearing aids for sensorineural deafness patients. A fundamental limitation of cochlear implants (CIs) is that spiral ganglion neurons (SGNs) cannot be replenished. This greatly restricts the rehabilitation of sensorineural deafness. Additionally, the insertion of CIs can cause secondary cochlear damage, worsening the condition of the patients' cochlear. Therefore, a new type of neural stem cells (NSCs) loaded graphene oxide-polyaniline/GelMA (GO-PAni/GelMA) conductive hydrogel electrode for cochlear implant was fabricated via in-situ radical polymerization and cyclic UV curing technique. On the one hand, the hydrogel electrode, as a direct contact layer, helps to avoid the physical hurt for cochlear. On the other hand, NSCs were supplemented via the hydrogel carrier and neuronal differentiation was induced by electrical stimulation, which was validated by the experimental results of immunofluorescence, Phalloidin Staining and RT-qPCR. Furthermore, based on RNA sequencing and transcriptome analysis, we hypothesized that the neuronal differentiation of NSCs was adjusted by the calcium signaling pathway and GABAergic synapse. Overall, our cell loading conductive hydrogel electrode may be an effective solution to sensorineural deafness. The revelation of the mechanism of neuronal differentiation promoted by electrical stimulation provides a basis for further sensorineural deafness treatment using conductive hydrogel CI electrode.
Collapse
Affiliation(s)
- Zhiyi Wang
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Yu Yan
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Wenxin Chen
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Zhiping Tan
- Zhejiang Nurotron Biotechnology Co., Ltd, Hangzhou 311121, Zhejiang Province, China
| | - Qingfeng Yan
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Qingqing Chen
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Xue Ding
- College of Life Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Jiahua Shen
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Min Gao
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Yang Yang
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Lulu Yu
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Fuzhi Lin
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China
| | - Yong Fu
- The Children's Hospital of Zhejiang University School of Medicine, Hangzhou 310052, Zhejiang Province, China.
| | - Xiaoqiang Jin
- Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang, Hangzhou 310003, Zhejiang Province, China.
| | - Xiaohua Yu
- Second Affiliated Hospital Zhejiang University School of Medicine, Orthopedics Research Institute of Zhejiang University, Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang, Hangzhou 310003, Zhejiang Province, China.
| |
Collapse
|
20
|
Payonk JP, Bathel H, Arbeiter N, Kober M, Fauser M, Storch A, van Rienen U, Zimmermann J. Improving computational models of deep brain stimulation through experimental calibration. J Neurosci Methods 2025; 414:110320. [PMID: 39549963 DOI: 10.1016/j.jneumeth.2024.110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/18/2024]
Abstract
BACKGROUND Deep brain stimulation has become a well-established clinical tool to treat movement disorders. Nevertheless, the knowledge of processes initiated by the stimulation remains limited. To address this knowledge gap, computational models are developed to gain deeper insight. However, their predictive power remains constrained by model uncertainties and a lack of validation and calibration. NEW METHOD Exemplified with rodent microelectrodes, we present a workflow for validating electrode model geometry using microscopy and impedance spectroscopy in vitro before implantation. We address uncertainties in the tissue distribution and dielectric properties and outline a concept for calibrating the computational model based on in vivo impedance spectroscopy measurements. RESULTS The standard deviation of the volume of tissue activated across the 18 characterized electrodes was approximately 32.93%, underscoring the importance of electrode characterization. Thus, the workflow significantly enhances the model predictions' credibility of neural activation exemplified in a rodent model. COMPARISON WITH EXISTING METHODS Computational models are frequently employed without validation or calibration, relying instead on manufacturers' specifications. Our approach provides an accessible method to obtain a validated and calibrated electrode geometry, which significantly enhances the reliability of the computational model that relies on this electrode. CONCLUSION By reducing the uncertainties of the model, the accuracy in predicting neural activation is increased. The entire workflow is realized in open-source software, making it adaptable for other use cases, such as deep brain stimulation in humans. Additionally, the framework allows for the integration of further experiments, enabling live updates and refinements to computational models.
Collapse
Affiliation(s)
- Jan Philipp Payonk
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock, 18051, Germany.
| | - Henning Bathel
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock, 18051, Germany
| | - Nils Arbeiter
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock, 18051, Germany
| | - Maria Kober
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Mareike Fauser
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Gehlsheimer Straße 20, Rostock, 18147, Germany; German Centre for Neurodegenerative Diseases (DZNE) Rostock-Greifswald, Gehlsheimer Straße 20, Rostock, 18147, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock, 18051, Germany; Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, Rostock, 18051, Germany; Department of Ageing of Individuals and Society, University of Rostock, Albert-Einstein-Straße 21, Rostock, 18051, Germany.
| | - Julius Zimmermann
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock, 18051, Germany
| |
Collapse
|
21
|
Meijs S, Andreis FR, Janjua TAM, Graven-Nielsen T, Jensen W. High-frequency electrical stimulation increases cortical excitability and mechanical sensitivity in a chronic large animal model. Pain 2025; 166:e18-e26. [PMID: 39133034 DOI: 10.1097/j.pain.0000000000003354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/12/2024] [Indexed: 08/13/2024]
Abstract
ABSTRACT Translational models of the sensitized pain system are needed to progress the understanding of involved mechanisms. In this study, long-term potentiation was used to develop a mechanism-based large-animal pain model. Event-related potentials to electrical stimulation of the ulnar nerve were recorded by intracranial recordings in pigs, 3 weeks before, immediately before and after, and 3 weeks after peripheral high-frequency stimulation (HFS) applied to the ulnar nerve in the right forelimb (7 pigs) or in control animals (5 pigs). Event-related potential recordings and peripheral HFS were done during anesthesia. Two weeks before and after the HFS, behavioral responses reflecting mechanical and thermal sensitivity were collected using brush, noxious limb-mounted pressure algometer, and noxious laser stimuli. The HFS intervention limb was progressively sensitized to noxious mechanical stimulation in week 1 and 2 compared with baseline ( P = 0.045) and the control group ( P < 0.034) but not significantly to laser or brush stimulation. The first negative (N1) peak of the event-related potential was increased 30 minutes after HFS compared with before ( P < 0.05). The N1 peak was also larger compared with control pigs 20 to 40 minutes after HFS ( P < 0.031) but not significantly increased 3 weeks after. The relative increase in N1 30 minutes after HFS and the degree of mechanical hyperalgesia 2 weeks post-HFS was correlated ( P < 0.033). These results show for the first time that the pig HFS model resembles the human HFS model closely where the profile of sensitization is comparable. Interestingly, the degree of sensitization was associated with the cortical signs of hyperexcitability at HFS induction.
Collapse
Affiliation(s)
- Suzan Meijs
- Department of Health Science and Technology, Center for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| | | | | | | | | |
Collapse
|
22
|
Hamilton AE, Waskiewicz N, Quinones GB, Capadona JR, Bentley M, Palermo EF, Gilbert RJ. Poly(curcumin- co-poly(ethylene glycol)) films provide neuroprotection following reactive oxygen species insult in vitro. J Neural Eng 2025; 22:10.1088/1741-2552/ada8df. [PMID: 39793199 PMCID: PMC11921994 DOI: 10.1088/1741-2552/ada8df] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/10/2025] [Indexed: 01/13/2025]
Abstract
Objective.Curcumin is an antioxidant and anti-inflammatory molecule that may provide neuroprotection following central nervous system injury. However, curcumin is hydrophobic, limiting its ability to be loaded and then released from biomaterials for neural applications. We previously developed polymers containing curcumin, and these polymers may be applied to neuronal devices or to neural injury to promote neuroprotection. Thus, our objective was to evaluate two curcumin polymers as potential neuroprotective materials for neural applications.Approach.For each curcumin polymer, we created three polymer solutions by varying the weight percentage of curcumin polymer in solvent. These solutions were subsequently coated onto glass coverslips, and the thickness of the polymer was assessed using profilometry. Polymer degradation and dissolution was assessed using brightfield microscopy, scanning electron microscopy, and gel permeation chromatography. The ability of the polymers to protect cortical neurons from free radical insult was assessed using anin vitrocortical culture model.Main results.The P50 curcumin polymer (containing greater poly(ethylene glycol) content than the P75 polymer), eroded readily in solution, with erosion dependent on the weight percentage of polymer in solvent. Unlike the P50 polymer, the P75 polymer did not undergo erosion. Since the P50 polymer underwent erosion, we expected that the P50 polymer would more readily protect cortical neurons from free radical insult. Unexpectedly, even though P75 films did not erode, P75 polymers protected neurons from free radical insult, suggesting that erosion is not necessary for these polymers to enable neuroprotection.Significance.This study is significant as it provides a framework to evaluate polymers for future neural applications. Additionally, we observed that some curcumin polymers do not require dissolution to enable neuroprotection. Future work will assess the ability of these materials to enable neuroprotection withinin vivomodels of neural injury.
Collapse
Affiliation(s)
- Adelle E. Hamilton
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, USA
| | - Nikita Waskiewicz
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, USA
| | - Geraldine B. Quinones
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, USA
| | - Jeffrey R. Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
- Louis Stokes Cleveland Department of Veterans Affairs, Cleveland, USA
| | - Marvin Bentley
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, USA
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, USA
| | - Edmund F. Palermo
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, USA
- Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, USA
| | - Ryan J. Gilbert
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, USA
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, USA
- Albany Stratton Veterans Affairs, Albany, USA
| |
Collapse
|
23
|
Kra JA, Markosian C, Tang FHF, de León AB, Chundury A, Agarwalla PK, Staquicini DI, Pasqualini R, Arap W. Brain-derived textiloma post glioblastoma resection and application of oxidized regenerated cellulose: A pilot, bedside-to-bench, translational study. Brain Pathol 2025:e13331. [PMID: 39838550 DOI: 10.1111/bpa.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Oxidized regenerated cellulose (ORC; marketed as Surgicel® and Tabotamp®) is routinely used as an intraoperative hemostatic agent. Rarely, residual ORC has been associated with a foreign body reaction generating cystic or granulomatous lesions (i.e., textilomas) at the surgical site. Here, we report a bedside-to-bench, translational report of an intracranial mass after neurosurgical resection of glioblastoma with ORC application. As part of patient care, we performed magnetic resonance imaging and histopathological analysis of the mass. We then performed in vitro studies to evaluate the effect of ORC on cytokine production and viability of BV-2 murine microglial cells by using quantitative PCR along with live cell microscopy and crystal violet staining, respectively. Magnetic resonance imaging demonstrated a recurrent mass pressing on the adjacent right ventricle, which was removed in a second surgery for diagnostic and therapeutic purposes. Unexpectedly, histopathological examination of the resected mass revealed abundant ORC arising from the site with inflammation, microglial activation, and collagenization. Mechanistically, we show an ORC-induced modest increase in inflammatory cytokines with a subsequent decrease in microglial cell viability. These findings suggest that ORC may mediate microglial immune response and viability, and serve to raise awareness and guide interpretation of post-treatment surveillance imaging findings in the instance of foreign body reaction.
Collapse
Affiliation(s)
- Joshua A Kra
- Rutgers Cancer Institute, Newark, New Jersey, USA
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Christopher Markosian
- Rutgers Cancer Institute, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Fenny H F Tang
- Rutgers Cancer Institute, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Ada Baisre de León
- Department of Pathology, Immunology, and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Anupama Chundury
- Rutgers Cancer Institute, New Brunswick, New Jersey, USA
- Department of Radiation Oncology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Pankaj K Agarwalla
- Rutgers Cancer Institute, Newark, New Jersey, USA
- Department of Neurological Surgery, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Daniela I Staquicini
- Rutgers Cancer Institute, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Renata Pasqualini
- Rutgers Cancer Institute, Newark, New Jersey, USA
- Division of Cancer Biology, Department of Radiation Oncology, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Wadih Arap
- Rutgers Cancer Institute, Newark, New Jersey, USA
- Division of Hematology/Oncology, Department of Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
24
|
Sun Y, Chen X, Liu B, Liang L, Wang Y, Gao S, Gao X. Signal acquisition of brain-computer interfaces: A medical-engineering crossover perspective review. FUNDAMENTAL RESEARCH 2025; 5:3-16. [PMID: 40166113 PMCID: PMC11955058 DOI: 10.1016/j.fmre.2024.04.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/01/2024] [Accepted: 04/07/2024] [Indexed: 04/02/2025] Open
Abstract
Brain-computer interface (BCI) technology represents a burgeoning interdisciplinary domain that facilitates direct communication between individuals and external devices. The efficacy of BCI systems is largely contingent upon the progress in signal acquisition methodologies. This paper endeavors to provide an exhaustive synopsis of signal acquisition technologies within the realm of BCI by scrutinizing research publications from the last ten years. Our review synthesizes insights from both clinical and engineering viewpoints, delineating a comprehensive two-dimensional framework for understanding signal acquisition in BCIs. We delineate nine discrete categories of technologies, furnishing exemplars for each and delineating the salient challenges pertinent to these modalities. This review furnishes researchers and practitioners with a broad-spectrum comprehension of the signal acquisition landscape in BCI, and deliberates on the paramount issues presently confronting the field. Prospective enhancements in BCI signal acquisition should focus on harmonizing a multitude of disciplinary perspectives. Achieving equilibrium between signal fidelity, invasiveness, biocompatibility, and other pivotal considerations is imperative. By doing so, we can propel BCI technology forward, bolstering its effectiveness, safety, and dependability, thereby contributing to an auspicious future for human-technology integration.
Collapse
Affiliation(s)
- Yike Sun
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Bingchuan Liu
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Liyan Liang
- Center for Intellectual Property and Innovation Development, China Academy of Information and Communications Technology, Beijing 100161, China
| | - Yijun Wang
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Shangkai Gao
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaorong Gao
- Department of Biomedical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
25
|
Wang S, Jiang M, Bao T, Wu Z, Zhang X, Wang S, Wen W. Efficient Electrochemical Coupling of Aptamer to Nanoelectrode for In Situ Detection of ATP in Single Cells. Anal Chem 2024; 96:20152-20160. [PMID: 39661718 DOI: 10.1021/acs.analchem.4c03572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Nanoelectrodes, renowned for their small size, rapid mass transport, fast response, and high spatiotemporal resolution, have been recognized as a powerful tool in biosensing, especially for single-cell analysis. However, the nanoelectrode itself has no selectivity and cannot respond to nonelectroactive substances, limiting its wide application to some extent. Herein, we propose a simple and efficient electrochemical conjugation strategy to develop an electrochemical aptamer-coupled (E-AC) sensor for detecting adenosine triphosphate (ATP) in single living cells. Through simple electrochemical conjugation, ferrocene-labeled aptamers could be stably and efficiently coupled onto the surface of carbon fiber electrodes within 5 min. The small size (ca. 400 nm) and biocompatibility of the functionalized nanoelectrodes enabled the E-AC sensors to noninvasively and continuously monitor ATP content in single HeLa cells over 20 min, as well as the cellular ATP fluctuations under glucose starvation. Furthermore, the E-AC sensors exhibit superior specificity, sensitivity, and universality in the application of analysis of ATP in single living Hela cells and MCF-7 cells. They were also versatile for sensing other nonelectroactive targets through modification of the corresponding electroactive marker-labeled aptamers, showing great potential in cell-related physiological processes and drug screening.
Collapse
Affiliation(s)
- Shiyu Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Min Jiang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Ting Bao
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Zhen Wu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Xiuhua Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Shengfu Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| | - Wei Wen
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, People's Republic of China
| |
Collapse
|
26
|
Druschel LN, Kasthuri NM, Song SS, Wang JJ, Hess-Dunning A, Chan ER, Capadona JR. Cell-specific spatial profiling of targeted protein expression to characterize the impact of intracortical microelectrode implantation on neuronal health. J Mater Chem B 2024; 12:12307-12319. [PMID: 39479901 PMCID: PMC11525954 DOI: 10.1039/d4tb01628a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/19/2024] [Indexed: 11/02/2024]
Abstract
Intracortical microelectrode arrays (MEAs) can record neuronal activity and advance brain-computer interface (BCI) devices. Implantation of the invasive MEA kills local neurons, which has been documented using immunohistochemistry (IHC). Neuronal nuclear protein (NeuN), a protein that lines the nuclei of exclusively neuronal cells, has been used as a marker for neuronal health and survival for decades in neuroscience and neural engineering. NeuN staining is often used to describe the neuronal response to intracortical microelectrode array (MEA) implantation. However, IHC is semiquantitative, relying on intensity readings rather than directly counting expressed proteins. To supplement previous IHC studies, we evaluated the expression of proteins representing different aspects of neuronal structure or function: microtubule-associated protein 2 (MAP2), neurofilament light (NfL), synaptophysin (SYP), myelin basic protein (MBP), and oligodendrocyte transcription factor 2 (OLIG2) following a neural injury caused by intracortical MEA implantation. Together, these five proteins evaluate the cytoskeletal structure, neurotransmitter release, and myelination of neurons. To fully evaluate neuronal health in NeuN-positive (NeuN+) regions, we only quantified protein expression in NeuN+ regions, making this the first-ever cell-specific spatial profiling evaluation of targeted proteins by multiplex immunochemistry following MEA implantation. We performed our protein quantification along with NeuN IHC to compare the results of the two techniques directly. We found that NeuN immunohistochemical analysis does not show the same trends as MAP2, NfL, SYP, MBP, and OLIG2 expression. Further, we found that all five quantified proteins show a decreased expression pattern that aligns more with historic intracortical MEA recording performance.
Collapse
Affiliation(s)
- Lindsey N Druschel
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Niveda M Kasthuri
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Sydney S Song
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Jaime J Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - Allison Hess-Dunning
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| | - E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jeffrey R Capadona
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH 44106, USA.
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH 44106, USA
| |
Collapse
|
27
|
Villa J, Cury J, Kessler L, Tan X, Richter CP. Enhancing biocompatibility of the brain-machine interface: A review. Bioact Mater 2024; 42:531-549. [PMID: 39308547 PMCID: PMC11416625 DOI: 10.1016/j.bioactmat.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/25/2024] Open
Abstract
In vivo implantation of microelectrodes opens the door to studying neural circuits and restoring damaged neural pathways through direct electrical stimulation and recording. Although some neuroprostheses have achieved clinical success, electrode material properties, inflammatory response, and glial scar formation at the electrode-tissue interfaces affect performance and sustainability. Those challenges can be addressed by improving some of the materials' mechanical, physical, chemical, and electrical properties. This paper reviews materials and designs of current microelectrodes and discusses perspectives to advance neuroprosthetics performance.
Collapse
Affiliation(s)
- Jordan Villa
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Joaquin Cury
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Lexie Kessler
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
| | - Xiaodong Tan
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
| | - Claus-Peter Richter
- Northwestern University-Feinberg School of Medicine, Department of Otolaryngology, USA
- The Hugh Knowles Center, Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Communication Sciences and Disorders, Northwestern University, USA
- Department of Biomedical Engineering, Northwestern University, USA
| |
Collapse
|
28
|
Dong L, Luan MY, Qi YN, Tian CX, Zheng Y. Calcium homeostasis restoration in pyramidal neurons through micrometer-scale wireless electrical stimulation in spinal cord injured mice. Biochem Biophys Res Commun 2024; 735:150487. [PMID: 39096885 DOI: 10.1016/j.bbrc.2024.150487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/19/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Spinal Cord Injury (SCI) is a significant neurological disorder that can result in severe motor and cognitive impairments. Neuronal regeneration and functional recovery are critical aspects of SCI treatment, with calcium signaling being a crucial indicator of neuronal excitability. In this study, we utilized a murine model to investigate the effects of targeted wireless electrical stimulation (ES) on neuronal activity following SCI. After establishing a complete SCI model in normal mice, flexible electrodes were implanted, and targeted wireless ES was administered to the injury site. We employed fiber-optic photometric in vivo calcium imaging to monitor calcium signals in pyramidal neurons within the CA3 region of the hippocampus and the M1 region of the primary motor cortex. The experimental results demonstrated a significant reduction in calcium signals in CA3 and M1 pyramidal neurons following SCI (reduced by 76 % and 59 %, in peak respectively). However, the application of targeted wireless ES led to a marked increase in calcium signals in these neurons (increased by 118 % and 69 %, in peak respectively), indicating a recovery of calcium activity. These observations suggest that wireless ES has a positive modulatory effect on the excitability of pyramidal neurons post-SCI. Understanding these mechanisms is crucial for developing therapeutic strategies aimed at enhancing neuronal recovery and functional restoration following spinal cord injuries.
Collapse
Affiliation(s)
- Lei Dong
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Meng-Ying Luan
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Ye-Nan Qi
- School of Life Sciences, Tiangong University, Tianjin, 300387, China
| | - Chun-Xiao Tian
- School of Biomedical Engineering, Tianjin Medical University, Tianjin, 300203, China.
| | - Yu Zheng
- School of Life Sciences, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
29
|
Schmidt R, Welzel B, Merten A, Naundorf H, Löscher W. Temporal development of seizure threshold and spontaneous seizures after neonatal asphyxia and the effect of prophylactic treatment with midazolam in rats. Exp Neurol 2024; 383:115042. [PMID: 39505250 DOI: 10.1016/j.expneurol.2024.115042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Birth asphyxia (BA) and subsequent hypoxic-ischemic encephalopathy (HIE) is one of the most serious birth complications affecting full-term infants and can result in severe disabilities including mental retardation, cerebral palsy, and epilepsy. Animal models of BA and HIE are important to characterize the functional and behavioral correlates of injury, explore cellular and molecular mechanisms, and assess the potential of novel therapeutic strategies. Here we used a non-invasive, physiologically validated rat model of BA and acute neonatal seizures that mimics many features of BA and HIE in human infants to study (i) the temporal development of epilepsy with spontaneous recurrent seizures (SRS) in the weeks and months after the initial brain injury, (ii) alterations in seizure threshold and hippocampal EEG that may precede the onset of SRS, and (iii) the effect of prophylactic treatment with midazolam. For this purpose, a total of 89 rat pups underwent asphyxia or sham asphyxia at postnatal day 11 and were examined over 8-10.5 months. In vehicle-treated animals, the incidence of electroclinical SRS progressively increased from 0 % at 2.5 months to 50 % at 6.5 months, 75 % at 8.5 months, and > 80 % at 10.5 months after asphyxia. Unexpectedly, post-asphyxial rats did not differ from sham-exposed rats in seizure threshold or interictal epileptiform discharges in the EEG. Treatment with midazolam (1 mg/kg i.p.) after asphyxia, which suppressed acute symptomatic neonatal seizures in about 60 % of the rat pups, significantly reduced the incidence of SRS regardless of its effect on neonatal seizures. This antiepileptogenic effect of midazolam adds to the recently reported prophylactic effects of this drug on BA-induced neuroinflammation, brain damage, behavioral alterations, and cognitive impairment in the rat asphyxia model of HIE.
Collapse
Affiliation(s)
- Ricardo Schmidt
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany
| | - Björn Welzel
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Annika Merten
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Hannah Naundorf
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany
| | - Wolfgang Löscher
- Department of Pharmacology, Toxicology, and Pharmacy, University of Veterinary Medicine Hannover, Germany; Center for Systems Neuroscience Hannover, Germany; Translational Neuropharmacology Lab, NIFE, Department of Experimental Otology of the ENT Clinics, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
30
|
Li W, Li Y, Song Z, Wang YX, Hu W. PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem Soc Rev 2024; 53:10575-10603. [PMID: 39254255 DOI: 10.1039/d4cs00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The rapid development of wearable and implantable electronics has enabled the real-time transmission of electrophysiological signals in situ, thus allowing the precise monitoring and regulation of biological functions. Devices based on organic materials tend to have low moduli and intrinsic stretchability, making them ideal choices for the construction of seamless bioelectronic interfaces. In this case, as an organic ionic-electronic conductor, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has low impedance to offer a high signal-to-noise ratio for monitoring bioelectrical signals, which has become one of the most promising conductive polymers. However, the initial conductivity and stretchability of pristine PEDOT:PSS are insufficient to meet the application requirements, and there is a trade-off between their improvement. In addition, PEDOT:PSS has poor stability in aqueous environments due to the hygroscopicity of the PSS chains, which severely limits its long-term applications in water-rich bioelectronic interfaces. Considering the growing demands of multi-function integration, the high-resolution fabrication of electronic devices is urgent. It is a great challenge to maintain both electrical and mechanical performance after miniaturization, particularly at feature sizes below 100 μm. In this review, we focus on the combined improvement in the conductivity and stretchability of PEDOT:PSS, as well as the corresponding mechanisms in detail. Also, we summarize the effective strategies to improve the stability of PEDOT:PSS in aqueous environments, which plays a vital role in long-term applications. Finally, we introduce the reliable micropatterning technologies and PEDOT:PSS-based stretchable optoelectronic devices applied at bio-interfaces.
Collapse
Affiliation(s)
- Weizhen Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yiming Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Ziyu Song
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yi-Xuan Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
31
|
Christensen MB, Cui XT, Rieth L, Warren DJ. Editorial: Biocompatibility of implanted devices, modulation, and repair in the nervous system. Front Neurosci 2024; 18:1505912. [PMID: 39529699 PMCID: PMC11551927 DOI: 10.3389/fnins.2024.1505912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024] Open
Affiliation(s)
- Michael B. Christensen
- Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
- Department of Otolaryngology—Head and Neck Surgery, University of Utah School of Medicine, Salt Lake City, UT, United States
| | - Xinyan T. Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Loren Rieth
- Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States
- Feinstein Institute for Medical Research, Manhasset, NY, United States
| | - David J. Warren
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
32
|
Mendez K, Whyte W, Freedman BR, Fan Y, Varela CE, Singh M, Cintron-Cruz JC, Rothenbücher SE, Li J, Mooney DJ, Roche ET. Mechanoresponsive Drug Release from a Flexible, Tissue-Adherent, Hybrid Hydrogel Actuator. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2303301. [PMID: 37310046 DOI: 10.1002/adma.202303301] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/22/2023] [Indexed: 06/14/2023]
Abstract
Soft robotic technologies for therapeutic biomedical applications require conformal and atraumatic tissue coupling that is amenable to dynamic loading for effective drug delivery or tissue stimulation. This intimate and sustained contact offers vast therapeutic opportunities for localized drug release. Herein, a new class of hybrid hydrogel actuator (HHA) that facilitates enhanced drug delivery is introduced. The multi-material soft actuator can elicit a tunable mechanoresponsive release of charged drug from its alginate/acrylamide hydrogel layer with temporal control. Dosing control parameters include actuation magnitude, frequency, and duration. The actuator can safely adhere to tissue via a flexible, drug-permeable adhesive bond that can withstand dynamic device actuation. Conformal adhesion of the hybrid hydrogel actuator to tissue leads to improved mechanoresponsive spatial delivery of the drug. Future integration of this hybrid hydrogel actuator with other soft robotic assistive technologies can enable a synergistic, multi-pronged treatment approach for the treatment of disease.
Collapse
Affiliation(s)
- Keegan Mendez
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
| | - William Whyte
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Benjamin R Freedman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 01238, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
- Department of Orthopaedic Surgery, Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA
| | - Yiling Fan
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Claudia E Varela
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Manisha Singh
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Juan C Cintron-Cruz
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 01238, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Sandra E Rothenbücher
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
| | - Jianyu Li
- Department of Mechanical Engineering, McGill University, Montreal, QC, H3A 0C3, Canada
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 01238, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Ellen T Roche
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 01239, USA
- Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA, 02139, USA
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
33
|
Oldroyd P, Hadwe SE, Barone DG, Malliaras GG. Thin-film implants for bioelectronic medicine. MRS BULLETIN 2024; 49:1045-1058. [PMID: 39397879 PMCID: PMC11469980 DOI: 10.1557/s43577-024-00786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 10/15/2024]
Abstract
This article is based on the MRS Mid-Career Researcher Award "for outstanding contributions to the fundamentals and development of organic electronic materials and their application in biology and medicine" presentation given by George G. Malliaras, University of Cambridge, at the 2023 MRS Spring Meeting in San Francisco, Calif.Bioelectronic medicine offers a revolutionary approach to treating disease by stimulating the body with electricity. While current devices show safety and efficacy, limitations, including bulkiness, invasiveness, and scalability, hinder their wider application. Thin-film implants promise to overcome these limitations. Made using microfabrication technologies, these implants conform better to neural tissues, reduce tissue damage and foreign body response, and provide high-density, multimodal interfaces with the body. This article explores how thin-film implants using organic materials and novel designs may contribute to disease management, intraoperative monitoring, and brain mapping applications. Additionally, the technical challenges to be addressed for this technology to succeed are discussed. Graphical abstract
Collapse
Affiliation(s)
- Poppy Oldroyd
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Salim El Hadwe
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Damiano G. Barone
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - George G. Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Bjånes DA, Kellis S, Nickl R, Baker B, Aflalo T, Bashford L, Chivukula S, Fifer MS, Osborn LE, Christie B, Wester BA, Celnik PA, Kramer D, Pejsa K, Crone NE, Anderson WS, Pouratian N, Lee B, Liu CY, Tenore F, Rieth L, Andersen RA. Quantifying physical degradation alongside recording and stimulation performance of 980 intracortical microelectrodes chronically implanted in three humans for 956-2246 days. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.09.24313281. [PMID: 39314938 PMCID: PMC11419230 DOI: 10.1101/2024.09.09.24313281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Motivation The clinical success of brain-machine interfaces depends on overcoming both biological and material challenges to ensure a long-term stable connection for neural recording and stimulation. Therefore, there is a need to quantify any damage that microelectrodes sustain when they are chronically implanted in the human cortex. Methods Using scanning electron microscopy (SEM), we imaged 980 microelectrodes from Neuroport arrays chronically implanted in the cortex of three people with tetraplegia for 956-2246 days. We analyzed eleven multi-electrode arrays in total: eight arrays with platinum (Pt) electrode tips and three with sputtered iridium oxide tips (SIROF); one Pt array was left in sterile packaging, serving as a control. The arrays were implanted/explanted across three different clinical sites surgeries (Caltech/UCLA, Caltech/USC and APL/Johns Hopkins) in the anterior intraparietal area, Brodmann's area 5, motor cortex, and somatosensory cortex.Human experts rated the electron micrographs of electrodes with respect to five damage metrics: the loss of metal at the electrode tip, the amount of separation between the silicon shank and tip metal, tissue adherence or bio-material to the electrode, damage to the shank insulation and silicone shaft. These metrics were compared to functional outcomes (recording quality, noise, impedance and stimulation ability). Results Despite higher levels of physical degradation, SIROF electrodes were twice as likely to record neural activity than Pt electrodes (measured by SNR), at the time of explant. Additionally, 1 kHz impedance (measured in vivo prior to explant) significantly correlated with all physical damage metrics, recording, and stimulation performance for SIROF electrodes (but not Pt), suggesting a reliable measurement of in vivo degradation.We observed a new degradation type, primarily occurring on stimulated electrodes ("pockmarked" vs "cracked") electrodes; however, tip metalization damage was not significantly higher due to stimulation or amount of charge. Physical damage was centralized to specific regions of an array often with differences between outer and inner electrodes. This is consistent with degradation due to contact with the biologic milieu, influenced by variations in initial manufactured state. From our data, we hypothesize that erosion of the silicon shank often precedes damage to the tip metal, accelerating damage to the electrode / tissue interface. Conclusions These findings link quantitative measurements, such as impedance, to the physical condition of the microelectrodes and their capacity to record and stimulate. These data could lead to improved manufacturing or novel electrode designs to improve long-term performance of BMIs making them are vitally important as multi-year clinical trials of BMIs are becoming more common.
Collapse
Affiliation(s)
- D. A. Bjånes
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - S. Kellis
- Department of Neurological Surgery, Keck School of Medicine of USC; Los Angeles, CA 90033, USA
| | - R. Nickl
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 20723
| | - B. Baker
- Electrical and Computer Engineering Univ. of Utah, Salt Lake City, UT
| | - T. Aflalo
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - L. Bashford
- Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - S. Chivukula
- Department of Neurosurgery, Kaiser Permanente Los Angeles Medical Center, Los Angeles, CA 90027
| | - M. S. Fifer
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 20723
| | - L. E. Osborn
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA 44106
| | - B. Christie
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 20723
| | - B. A. Wester
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 20723
| | | | - D. Kramer
- Department of Neurological Surgery, University of Colorado Hospital, CO, 80045, USA
| | - K. Pejsa
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - N. E. Crone
- Department of Neurology, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 20723
| | - W. S. Anderson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Laurel, MD, USA 20723
| | - N. Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - B. Lee
- Department of Neurological Surgery, Keck School of Medicine of USC; Los Angeles, CA 90033, USA
| | - C. Y. Liu
- USC Neurorestoration Center, Department of Neurological Surgery, Keck School of Medicine of USC; Los Angeles, CA 90033, USA
| | - F. Tenore
- Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA 20723
| | - L. Rieth
- Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV
| | - R. A. Andersen
- Department of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
35
|
Shah DD, Carter P, Shivdasani MN, Fong N, Duan W, Esrafilzadeh D, Poole-Warren LA, Aregueta Robles UA. Deciphering platinum dissolution in neural stimulation electrodes: Electrochemistry or biology? Biomaterials 2024; 309:122575. [PMID: 38677220 DOI: 10.1016/j.biomaterials.2024.122575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/28/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024]
Abstract
Platinum (Pt) is the metal of choice for electrodes in implantable neural prostheses like the cochlear implants, deep brain stimulating devices, and brain-computer interfacing technologies. However, it is well known since the 1970s that Pt dissolution occurs with electrical stimulation. More recent clinical and in vivo studies have shown signs of corrosion in explanted electrode arrays and the presence of Pt-containing particulates in tissue samples. The process of degradation and release of metallic ions and particles can significantly impact on device performance. Moreover, the effects of Pt dissolution products on tissue health and function are still largely unknown. This is due to the highly complex chemistry underlying the dissolution process and the difficulty in decoupling electrical and chemical effects on biological responses. Understanding the mechanisms and effects of Pt dissolution proves challenging as the dissolution process can be influenced by electrical, chemical, physical, and biological factors, all of them highly variable between experimental settings. By evaluating comprehensive findings on Pt dissolution mechanisms reported in the fuel cell field, this review presents a critical analysis of the possible mechanisms that drive Pt dissolution in neural stimulation in vitro and in vivo. Stimulation parameters, such as aggregate charge, charge density, and electrochemical potential can all impact the levels of dissolved Pt. However, chemical factors such as electrolyte types, dissolved gases, and pH can all influence dissolution, confounding the findings of in vitro studies with multiple variables. Biological factors, such as proteins, have been documented to exhibit a mitigating effect on the dissolution process. Other biological factors like cells and fibro-proliferative responses, such as fibrosis and gliosis, impact on electrode properties and are suspected to impact on Pt dissolution. However, the relationship between electrical properties of stimulating electrodes and Pt dissolution remains contentious. Host responses to Pt degradation products are also controversial due to the unknown chemistry of Pt compounds formed and the lack of understanding of Pt distribution in clinical scenarios. The cytotoxicity of Pt produced via electrical stimulation appears similar to Pt-based compounds, including hexachloroplatinates and chemotherapeutic agents like cisplatin. While the levels of Pt produced under clinical and acute stimulation regimes were typically an order of magnitude lower than toxic concentrations observed in vitro, further research is needed to accurately assess the mass balance and type of Pt produced during long-term stimulation and its impact on tissue response. Finally, approaches to mitigating the dissolution process are reviewed. A wide variety of approaches, including stimulation strategies, coating electrode materials, and surface modification techniques to avoid excess charge during stimulation and minimise tissue response, may ultimately support long-term and safe operation of neural stimulating devices.
Collapse
Affiliation(s)
- Dhyey Devashish Shah
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Paul Carter
- Cochlear Ltd, Macquarie University, NSW, Australia
| | | | - Nicole Fong
- Cochlear Ltd, Macquarie University, NSW, Australia
| | - Wenlu Duan
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Dorna Esrafilzadeh
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| | - Laura Anne Poole-Warren
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia; The Tyree Foundation Institute of Health Engineering, University of New South Wales, Sydney, Australia.
| | | |
Collapse
|
36
|
O'Sullivan KP, Coats B. Coupled Eulerian-Lagrangian model prediction of neural tissue strain during microelectrode insertion. J Neural Eng 2024; 21:046055. [PMID: 39074496 DOI: 10.1088/1741-2552/ad68a6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/29/2024] [Indexed: 07/31/2024]
Abstract
Objective.Implanted neural microelectrodes are an important tool for recording from and stimulating the cerebral cortex. The performance of chronically implanted devices, however, is often hindered by the development of a reactive tissue response. Previous computational models have investigated brain strain from micromotions of neural electrodes after they have been inserted, to investigate design parameters that might minimize triggers to the reactive tissue response. However, these models ignore tissue damage created during device insertion, an important contributing factor to the severity of inflammation. The objective of this study was to evaluate the effect of electrode geometry, insertion speed, and surface friction on brain tissue strain during insertion.Approach. Using a coupled Eulerian-Lagrangian approach, we developed a 3D finite element model (FEM) that simulates the dynamic insertion of a neural microelectrode in brain tissue. Geometry was varied to investigate tip bluntness, cross-sectional shape, and shank thickness. Insertion velocities were varied from 1 to 8 m s-1. Friction was varied from frictionless to 0.4. Tissue strain and potential microvasculature hemorrhage radius were evaluated for brain regions along the electrode shank and near its tip.Main results. Sharper tips resulted in higher mean max principal strains near the tip except for the bluntest tip on the square cross-section electrode, which exhibited high compressive strain values due to stress concentrations at the corners. The potential vascular damage radius around the electrode was primarily a function of the shank diameter, with smaller shank diameters resulting in smaller distributions of radial strain around the electrode. However, the square shank interaction with the tip taper length caused unique strain distributions that increased the damage radius in some cases. Faster insertion velocities created more strain near the tip but less strain along the shank. Increased friction between the brain and electrode created more strain near the electrode tip and along the shank, but frictionless interactions resulted in increased tearing of brain tissue near the tip.Significance. These results demonstrate the first dynamic FEM study of neural electrode insertion, identifying design factors that can reduce tissue strain and potentially mitigate initial reactive tissue responses due to traumatic microelectrode array insertion.
Collapse
Affiliation(s)
- K P O'Sullivan
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States of America
| | - B Coats
- Department of Mechanical Engineering, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
37
|
Sands I, Demarco R, Thurber L, Esteban-Linares A, Song D, Meng E, Chen Y. Interface-Mediated Neurogenic Signaling: The Impact of Surface Geometry and Chemistry on Neural Cell Behavior for Regenerative and Brain-Machine Interfacing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401750. [PMID: 38961531 PMCID: PMC11326983 DOI: 10.1002/adma.202401750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Nanomaterial advancements have driven progress in central and peripheral nervous system applications such as tissue regeneration and brain-machine interfacing. Ideally, neural interfaces with native tissue shall seamlessly integrate, a process that is often mediated by the interfacial material properties. Surface topography and material chemistry are significant extracellular stimuli that can influence neural cell behavior to facilitate tissue integration and augment therapeutic outcomes. This review characterizes topographical modifications, including micropillars, microchannels, surface roughness, and porosity, implemented on regenerative scaffolding and brain-machine interfaces. Their impact on neural cell response is summarized through neurogenic outcome and mechanistic analysis. The effects of surface chemistry on neural cell signaling with common interfacing compounds like carbon-based nanomaterials, conductive polymers, and biologically inspired matrices are also reviewed. Finally, the impact of these extracellular mediated neural cues on intracellular signaling cascades is discussed to provide perspective on the manipulation of neuron and neuroglia cell microenvironments to drive therapeutic outcomes.
Collapse
Affiliation(s)
- Ian Sands
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Ryan Demarco
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Laura Thurber
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Alberto Esteban-Linares
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
38
|
Lv S, Mo F, Xu Z, Wang Y, Yang G, Han M, Jing L, Xu W, Duan Y, Liu Y, Li M, Liu J, Luo J, Wang M, Song Y, Wu Y, Cai X. Tentacle Microelectrode Arrays Uncover Soft Boundary Neurons in Hippocampal CA1. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401670. [PMID: 38828784 PMCID: PMC11304256 DOI: 10.1002/advs.202401670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/28/2024] [Indexed: 06/05/2024]
Abstract
Hippocampal CA1 neurons show intense firing at specific spatial locations, modulated by isolated landmarks. However, the impact of real-world scene transitions on neuronal activity remains unclear. Moreover, long-term neural recording during movement challenges device stability. Conventional rigid-based electrodes cause inflammatory responses, restricting recording durations. Inspired by the jellyfish tentacles, the multi-conductive layer ultra-flexible microelectrode arrays (MEAs) are developed. The tentacle MEAs ensure stable recordings during movement, thereby enabling the discovery of soft boundary neurons. The soft boundary neurons demonstrate high-frequency firing that aligns with the boundaries of scene transitions. Furthermore, the localization ability of soft boundary neurons improves with more scene transition boundaries, and their activity decreases when these boundaries are removed. The innovation of ultra-flexible, high-biocompatible tentacle MEAs improves the understanding of neural encoding in spatial cognition. They offer the potential for long-term in vivo recording of neural information, facilitating breakthroughs in the understanding and application of brain spatial navigation mehanisms.
Collapse
Affiliation(s)
- Shiya Lv
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Fan Mo
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Zhaojie Xu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yu Wang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Gucheng Yang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Meiqi Han
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Luyi Jing
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Wei Xu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yiming Duan
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yaoyao Liu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Ming Li
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Juntao Liu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Jinping Luo
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mixia Wang
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yilin Song
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Yirong Wu
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xinxia Cai
- State Key Laboratory of Transducer TechnologyAerospace Information Research InstituteChinese Academy of SciencesBeijing100190China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
39
|
Sun C, Fan Q, Xie R, Luo C, Hu B, Wang Q. Tetherless Optical Neuromodulation: Wavelength from Orange-red to Mid-infrared. Neurosci Bull 2024; 40:1173-1188. [PMID: 38372931 PMCID: PMC11306867 DOI: 10.1007/s12264-024-01179-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/11/2023] [Indexed: 02/20/2024] Open
Abstract
Optogenetics, a technique that employs light for neuromodulation, has revolutionized the study of neural mechanisms and the treatment of neurological disorders due to its high spatiotemporal resolution and cell-type specificity. However, visible light, particularly blue and green light, commonly used in conventional optogenetics, has limited penetration in biological tissue. This limitation necessitates the implantation of optical fibers for light delivery, especially in deep brain regions, leading to tissue damage and experimental constraints. To overcome these challenges, the use of orange-red and infrared light with greater tissue penetration has emerged as a promising approach for tetherless optical neuromodulation. In this review, we provide an overview of the development and applications of tetherless optical neuromodulation methods with long wavelengths. We first discuss the exploration of orange-red wavelength-responsive rhodopsins and their performance in tetherless optical neuromodulation. Then, we summarize two novel tetherless neuromodulation methods using near-infrared light: upconversion nanoparticle-mediated optogenetics and photothermal neuromodulation. In addition, we discuss recent advances in mid-infrared optical neuromodulation.
Collapse
Affiliation(s)
- Chao Sun
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Qi Fan
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Rougang Xie
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ceng Luo
- Department of Neurobiology, School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Bingliang Hu
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China
| | - Quan Wang
- Key Laboratory of Spectral Imaging Technology, Xi'an Institute of Optics and Precision Mechanics (XIOPM), Chinese Academy of Sciences, Xi'an, 710119, China.
- Key Laboratory of Biomedical Spectroscopy of Xi'an, Key Laboratory of Spectral Imaging Technology, XIOPM, Chinese Academy of Sciences, Xi'an, 710119, China.
| |
Collapse
|
40
|
Darlot F, Villard P, Salam LA, Rousseau L, Piret G. Glial scarring around intra-cortical MEA implants with flexible and free microwires inserted using biodegradable PLGA needles. Front Bioeng Biotechnol 2024; 12:1408088. [PMID: 39104630 PMCID: PMC11298340 DOI: 10.3389/fbioe.2024.1408088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/29/2024] [Indexed: 08/07/2024] Open
Abstract
Introduction: Many invasive and noninvasive neurotechnologies are being developed to help treat neurological pathologies and disorders. Making a brain implant safe, stable, and efficient in the long run is one of the requirements to conform with neuroethics and overcome limitations for numerous promising neural treatments. A main limitation is low biocompatibility, characterized by the damage implants create in brain tissue and their low adhesion to it. This damage is partly linked to friction over time due to the mechanical mismatch between the soft brain tissue and the more rigid wires. Methods: Here, we performed a short biocompatibility assessment of bio-inspired intra-cortical implants named "Neurosnooper" made of a microelectrode array consisting of a thin, flexible polymer-metal-polymer stack with microwires that mimic axons. Implants were assembled into poly-lactic-glycolic acid (PLGA) biodegradable needles for their intra-cortical implantation. Results and Discussion: The study of glial scars around implants, at 7 days and 2 months post-implantation, revealed a good adhesion between the brain tissue and implant wires and a low glial scar thickness. The lowest corresponds to electrode wires with a section size of 8 μm × 10 μm, compared to implants with the 8 μm × 50 μm electrode wire section size, and a straight shape appears to be better than a zigzag. Therefore, in addition to flexibility, size and shape parameters are important when designing electrode wires for the next generation of clinical intra-cortical implants.
Collapse
Affiliation(s)
- Fannie Darlot
- Braintech Laboratory, Institut National de la Santé et de la Recherche Médicale U1205, Université Grenoble Alpes, Grenoble, France
| | - Paul Villard
- Braintech Laboratory, Institut National de la Santé et de la Recherche Médicale U1205, Université Grenoble Alpes, Grenoble, France
| | - Lara Abdel Salam
- Braintech Laboratory, Institut National de la Santé et de la Recherche Médicale U1205, Université Grenoble Alpes, Grenoble, France
| | | | - Gaëlle Piret
- Braintech Laboratory, Institut National de la Santé et de la Recherche Médicale U1205, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
41
|
Spagnoli G, Parrella E, Ghazanfar Tehrani S, Mengoni F, Salari V, Nistreanu C, Scambi I, Sbarbati A, Bertini G, Fabene PF. Glial Response and Neuronal Modulation Induced by Epidural Electrode Implant in the Pilocarpine Mouse Model of Epilepsy. Biomolecules 2024; 14:834. [PMID: 39062548 PMCID: PMC11274793 DOI: 10.3390/biom14070834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
In animal models of epilepsy, cranial surgery is often required to implant electrodes for electroencephalography (EEG) recording. However, electrode implants can lead to the activation of glial cells and interfere with physiological neuronal activity. In this study, we evaluated the impact of epidural electrode implants in the pilocarpine mouse model of temporal lobe epilepsy. Brain neuroinflammation was assessed 1 and 3 weeks after surgery by cytokines quantification, immunohistochemistry, and western blotting. Moreover, we investigated the effect of pilocarpine, administered two weeks after surgery, on mice mortality rate. The reported results indicate that implanted mice suffer from neuroinflammation, characterized by an early release of pro-inflammatory cytokines, microglia activation, and subsequent astrogliosis, which persists after three weeks. Notably, mice subjected to electrode implants displayed a higher mortality rate following pilocarpine injection 2 weeks after the surgery. Moreover, the analysis of EEGs recorded from implanted mice revealed a high number of single spikes, indicating a possible increased susceptibility to seizures. In conclusion, epidural electrode implant in mice promotes neuroinflammation that could lower the seizure thresholds to pilocarpine and increase the death rate. An improved protocol considering the persistent neuroinflammation induced by electrode implants will address refinement and reduction, two of the 3Rs principles for the ethical use of animals in scientific research.
Collapse
Affiliation(s)
- Giulia Spagnoli
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Edoardo Parrella
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
- Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| | - Sara Ghazanfar Tehrani
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Francesca Mengoni
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Valentina Salari
- Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| | - Cristina Nistreanu
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Ilaria Scambi
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Andrea Sbarbati
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Giuseppe Bertini
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Paolo Francesco Fabene
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
- Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
42
|
Abbott JR, Jeakle EN, Haghighi P, Usoro JO, Sturgill BS, Wu Y, Geramifard N, Radhakrishna R, Patnaik S, Nakajima S, Hess J, Mehmood Y, Devata V, Vijayakumar G, Sood A, Doan Thai TT, Dogra K, Hernandez-Reynoso AG, Pancrazio JJ, Cogan SF. Planar amorphous silicon carbide microelectrode arrays for chronic recording in rat motor cortex. Biomaterials 2024; 308:122543. [PMID: 38547834 PMCID: PMC11065583 DOI: 10.1016/j.biomaterials.2024.122543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 04/21/2024]
Abstract
Chronic implantation of intracortical microelectrode arrays (MEAs) capable of recording from individual neurons can be used for the development of brain-machine interfaces. However, these devices show reduced recording capabilities under chronic conditions due, at least in part, to the brain's foreign body response (FBR). This creates a need for MEAs that can minimize the FBR to possibly enable long-term recording. A potential approach to reduce the FBR is the use of MEAs with reduced cross-sectional geometries. Here, we fabricated 4-shank amorphous silicon carbide (a-SiC) MEAs and implanted them into the motor cortex of seven female Sprague-Dawley rats. Each a-SiC MEA shank was 8 μm thick by 20 μm wide and had sixteen sputtered iridium oxide film (SIROF) electrodes (4 per shank). A-SiC was chosen as the fabrication base for its high chemical stability, good electrical insulation properties, and amenability to thin film fabrication. Electrochemical analysis and neural recordings were performed weekly for 4 months. MEAs were characterized pre-implantation in buffered saline and in vivo using electrochemical impedance spectroscopy and cyclic voltammetry at 50 mV/s and 50,000 mV/s. Neural recordings were analyzed for single unit activity. At the end of the study, animals were sacrificed for immunohistochemical analysis. We observed statistically significant, but small, increases in 1 and 30 kHz impedance values and 50,000 mV/s charge storage capacity over the 16-week implantation period. Slow sweep 50 mV/s CV and 1 Hz impedance did not significantly change over time. Impedance values increased from 11.6 MΩ to 13.5 MΩ at 1 Hz, 1.2 MΩ-2.9 MΩ at 1 kHz, and 0.11 MΩ-0.13 MΩ at 30 kHz over 16 weeks. The median charge storage capacity of the implanted electrodes at 50 mV/s was 58.1 mC/cm2 on week 1 and 55.9 mC/cm2 on week 16, and at 50,000 mV/s, 4.27 mC/cm2 on week 1 and 5.93 mC/cm2 on week 16. Devices were able to record neural activity from 92% of all active channels at the beginning of the study, At the study endpoint, a-SiC devices were still recording single-unit activity on 51% of electrochemically active electrode channels. In addition, we observed that the signal-to-noise ratio experienced a small decline of -0.19 per week. We also classified observed units as fast and slow repolarizing based on the trough-to-peak time. Although the overall presence of single units declined, fast and slow repolarizing units declined at a similar rate. At recording electrode depth, immunohistochemistry showed minimal tissue response to the a-SiC devices, as indicated by statistically insignificant differences in activated glial cell response between implanted brains slices and contralateral sham slices at 150 μm away from the implant location, as evidenced by GFAP staining. NeuN staining revealed the presence of neuronal cell bodies close to the implantation site, again statistically not different from a contralateral sham slice. These results warrant further investigation of a-SiC MEAs for future long-term implantation neural recording studies.
Collapse
Affiliation(s)
- Justin R Abbott
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Eleanor N Jeakle
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Pegah Haghighi
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Joshua O Usoro
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Brandon S Sturgill
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Yupeng Wu
- Department of Materials Science and Engineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Negar Geramifard
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Rahul Radhakrishna
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Sourav Patnaik
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Shido Nakajima
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Jordan Hess
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Yusef Mehmood
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Veda Devata
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, TX, United States
| | - Gayathri Vijayakumar
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Armaan Sood
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, United States
| | - Teresa Thuc Doan Thai
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Komal Dogra
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Ana G Hernandez-Reynoso
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Joseph J Pancrazio
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States
| | - Stuart F Cogan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, United States.
| |
Collapse
|
43
|
Xu K, Yang Y, Ding J, Wang J, Fang Y, Tian H. Spatially Precise Genetic Engineering at the Electrode-Tissue Interface. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401327. [PMID: 38692704 DOI: 10.1002/adma.202401327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/17/2024] [Indexed: 05/03/2024]
Abstract
The interface between electrodes and neural tissues plays a pivotal role in determining the efficacy and fidelity of neural activity recording and modulation. While considerable efforts have been made to improve the electrode-tissue interface, the majority of studies have primarily concentrated on the development of biocompatible neural electrodes through abiotic materials and structural engineering. In this study, an approach is presented that seamlessly integrates abiotic and biotic engineering principles into the electrode-tissue interface. Specifically, ultraflexible neural electrodes with short hairpin RNAs (shRNAs) designed to silence the expression of endogenous genes within neural tissues are combined. The system facilitates shRNA-mediated knockdown of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and polypyrimidine tract-binding protein 1 (PTBP1), two essential genes associated in neural survival/growth and neurogenesis, within specific cell populations located at the electrode-tissue interface. Additionally, it is demonstrated that the downregulation of PTEN in neurons can result in an enlargement of neuronal cell bodies at the electrode-tissue interface. Furthermore, the system enables long-term monitoring of neuronal activities following PTEN knockdown in a mouse model of Parkinson's disease and traumatic brain injury. The system provides a versatile approach for genetically engineering the electrode-tissue interface with unparalleled precision, paving the way for the development of regenerative electronics and next-generation brain-machine interfaces.
Collapse
Affiliation(s)
- Ke Xu
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yinan Yang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianfei Ding
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jinfen Wang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Ying Fang
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Huihui Tian
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- Chinese Institute for Brain Research, Beijing, 102206, China
| |
Collapse
|
44
|
Wu B, Castagnola E, McClung CA, Cui XT. PEDOT/CNT Flexible MEAs Reveal New Insights into the Clock Gene's Role in Dopamine Dynamics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308212. [PMID: 38430532 PMCID: PMC11251561 DOI: 10.1002/advs.202308212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/26/2024] [Indexed: 03/04/2024]
Abstract
Substantial evidence has shown that the Circadian Locomotor Output Cycles Kaput (Clock) gene is a core transcription factor of circadian rhythms that regulates dopamine (DA) synthesis. To shed light on the mechanism of this interaction, flexible multielectrode arrays (MEAs) are developed that can measure both DA concentrations and electrophysiology chronically. The dual functionality is enabled by conducting polymer PEDOT doped with acid-functionalized carbon nanotubes (CNT). The PEDOT/CNT microelectrode coating maintained stable electrochemical impedance and DA detection by square wave voltammetry for 4 weeks in vitro. When implanted in wild-type (WT) and Clock mutation (MU) mice, MEAs measured tonic DA concentration and extracellular neural activity with high spatial and temporal resolution for 4 weeks. A diurnal change of DA concentration in WT is observed, but not in MU, and a higher basal DA concentration and stronger cocaine-induced DA increase in MU. Meanwhile, striatal neuronal firing rate is found to be positively correlated with DA concentration in both animal groups. These findings offer new insights into DA dynamics in the context of circadian rhythm regulation, and the chronically reliable performance and dual measurement capability of this technology hold great potential for a broad range of neuroscience research.
Collapse
Affiliation(s)
- Bingchen Wu
- Department of BioengineeringUniversity of PittsburghPittsburghPA15213USA
- Center for the Neural Basis of CognitionPittsburghPA15213USA
| | - Elisa Castagnola
- Department of BioengineeringUniversity of PittsburghPittsburghPA15213USA
- Department of Biomedical EngineeringLouisiana Tech UniversityRustonLA71272USA
| | | | - Xinyan Tracy Cui
- Department of BioengineeringUniversity of PittsburghPittsburghPA15213USA
- Center for the Neural Basis of CognitionPittsburghPA15213USA
- McGowan Institute for Regenerative MedicinePittsburghPA15219USA
| |
Collapse
|
45
|
Meijs S, Andreis FR, Janjua TAM, Jensen W. Reliability of a cranial window for chronic epidural recordings from the pig primary somatosensory cortex. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039725 DOI: 10.1109/embc53108.2024.10782109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Chronically implanted microelectrodes face adverse biological responses and various kinds of device failure. To overcome these challenges, a cranial window was developed allowing repeated access to the primary somatosensory cortex (S1) of the pig. This study evaluated the reliability of the signals recorded using repeated temporary placement of a micro-electrocorticography (µECoG) array via a cranial window. Seven pigs were implanted with a cranial window, which was accessed twice after implantation at 2-3 week intervals. Brain responses were evoked by electrical stimulation to the ulnar nerve. At each session, three trials were recorded, consisting of a hundred stimulations. Averaged responses of P1 amplitude, latency, and variance between channels were obtained. Signal characteristics were stable within and between sessions. No systematic errors were found for the P1 amplitude and channel variability. For the P1 latency, a systematic decrease in latency was found between session 1 (25±2 ms) and sessions 2 and 3 (24±2 ms). These results show that the temporary placement of microelectrodes to record brain signals is a good alternative to permanent implantation.
Collapse
|
46
|
Sturgill BS, Jiang MS, Jeakle EN, Smith TJ, Hoeferlin GF, Duncan J, Thai TTD, Hess JL, Alam NN, Hernandez-Reynoso AG, Capadona JR, Pancrazio JJ. Antioxidant Coated Microelectrode Arrays: Effects on Putative Inhibitory and Excitatory Neurons. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40039888 DOI: 10.1109/embc53108.2024.10781940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Intracortical microelectrode arrays (MEAs) are used to record neural activity in vivo at single-cell resolution for both neuroscience studies and for engineering restorative devices such as brain-computer interfaces (BCIs). The recording performance of these devices are known to degrade over weeks to months after implantation due, in part, to neuroinflammation and oxidative stress. Characterizing and mitigating the degradation of recording performance is of particular interest for chronic applications. Literature suggests that inhibitory neurons may be more susceptible to oxidative stress than excitatory neurons. In this study, we classify recorded neural signals as either putative inhibitory or excitatory based on their waveform characteristics and aim to identify if one preferentially benefits from the use of a Mn(III)tetrakis94-benzoic acid)porphyrin (MnTBAP) coating to reduce reactive oxygen species, which we have previously demonstrated improves chronic neural recordings. In this study, we found that the MnTBAP coating affects these two classes of neurons differently, depending on the cortical depth. The MnTBAP coating improves the number of putative inhibitory signals recorded on the middle electrode sites (L5) and putative excitatory units on the superficial (L2/3 & L4) electrode sites. Our results suggest that decreases in recording performance may be influenced by both cortical depth and neuronal cell type. Furthermore, we show that the benefits of a MnTBAP coating to chronic neural recordings differ between putative inhibitory and excitatory neurons with a depth dependence.
Collapse
|
47
|
Li F, Gallego J, Tirko NN, Greaser J, Bashe D, Patel R, Shaker E, Van Valkenburg GE, Alsubhi AS, Wellman S, Singh V, Padilla CG, Gheres KW, Broussard JI, Bagwell R, Mulvihill M, Kozai TDY. Low-intensity pulsed ultrasound stimulation (LIPUS) modulates microglial activation following intracortical microelectrode implantation. Nat Commun 2024; 15:5512. [PMID: 38951525 PMCID: PMC11217463 DOI: 10.1038/s41467-024-49709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Microglia are important players in surveillance and repair of the brain. Implanting an electrode into the cortex activates microglia, produces an inflammatory cascade, triggers the foreign body response, and opens the blood-brain barrier. These changes can impede intracortical brain-computer interfaces performance. Using two-photon imaging of implanted microelectrodes, we test the hypothesis that low-intensity pulsed ultrasound stimulation can reduce microglia-mediated neuroinflammation following the implantation of microelectrodes. In the first week of treatment, we found that low-intensity pulsed ultrasound stimulation increased microglia migration speed by 128%, enhanced microglia expansion area by 109%, and a reduction in microglial activation by 17%, indicating improved tissue healing and surveillance. Microglial coverage of the microelectrode was reduced by 50% and astrocytic scarring by 36% resulting in an increase in recording performance at chronic time. The data indicate that low-intensity pulsed ultrasound stimulation helps reduce the foreign body response around chronic intracortical microelectrodes.
Collapse
Affiliation(s)
- Fan Li
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
- Computational Modeling and Simulation PhD Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jazlyn Gallego
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Natasha N Tirko
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | | | - Derek Bashe
- Washington University in St. Louis, St. Louis, MO, USA
| | - Rudra Patel
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric Shaker
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Vanshika Singh
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Camila Garcia Padilla
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | | | | | | | | | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA.
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA.
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
48
|
O’Sullivan KP, Orazem ME, Otto KJ, Butson CR, Baker JL. Electrical rejuvenation of chronically implanted macroelectrodes in nonhuman primates. J Neural Eng 2024; 21:10.1088/1741-2552/ad5703. [PMID: 38862007 PMCID: PMC11302379 DOI: 10.1088/1741-2552/ad5703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Objective.Electrodes chronically implanted in the brain undergo complex changes over time that can lower the signal to noise ratio (SNR) of recorded signals and reduce the amount of energy delivered to the tissue during therapeutic stimulation, both of which are relevant for the development of robust, closed-loop control systems. Several factors have been identified that link changes in the electrode-tissue interface (ETI) to increased impedance and degraded performance in micro- and macro-electrodes. Previous studies have demonstrated that brief pulses applied every few days can restore SNR to near baseline levels during microelectrode recordings in rodents, a process referred to as electrical rejuvenation. However, electrical rejuvenation has not been tested in clinically relevant macroelectrode designs in large animal models, which could serve as preliminary data for translation of this technique. Here, several variations of this approach were tested to characterize parameters for optimization.Approach. Alternating-current (AC) and direct-current (DC) electrical rejuvenation methods were explored in three electrode types, chronically implanted in two adult male nonhuman primates (NHP) (Macaca mulatta), which included epidural electrocorticography (ECoG) electrodes and penetrating deep-brain stimulation (DBS) electrodes. Electrochemical impedance spectroscopy (EIS) was performed before and after each rejuvenation paradigm as a gold standard measure of impedance, as well as at subsequent intervals to longitudinally track the evolution of the ETI. Stochastic error modeling was performed to assess the standard deviation of the impedance data, and consistency with the Kramers-Kronig relations was assessed to evaluate the stationarity of EIS measurement.Main results. AC and DC rejuvenation were found to quickly reduce impedance and minimize the tissue component of the ETI on all three electrode types, with DC and low-frequency AC producing the largest impedance drops and reduction of the tissue component in Nyquist plots. The effects of a single rejuvenation session were found to last from several days to over 1 week, and all rejuvenation pulses induced no observable changes to the animals' behavior.Significance. These results demonstrate the effectiveness of electrical rejuvenation for diminishing the impact of chronic ETI changes in NHP with clinically relevant macroelectrode designs.
Collapse
Affiliation(s)
- KP O’Sullivan
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112
| | - ME Orazem
- Department of Chemical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1030 Center Drive P.O. Box 116005 Gainesville, FL 32611
| | - KJ Otto
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1275 Center Drive, NEB 363, P.O. Box 116131, Gainesville, FL 32611
- Department of Neuroscience, University of Florida, Gainesville, FL, United States
- Department of Neurology, University of Florida, Gainesville, FL, United States
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL, United States
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, United States
| | - CR Butson
- Department of Biomedical Engineering, University of Utah, 36 S Wasatch Dr, Salt Lake City, UT 84112
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, 1275 Center Drive, NEB 363, P.O. Box 116131, Gainesville, FL 32611
- Norman Fixel Institute for Neurological Diseases, University of Florida, 3009 Williston Road, Gainesville, FL 32608
| | - JL Baker
- Brain and Mind Research Institute, Weil Cornell Medical College, 407 E 61 St, New York, NY 10065
| |
Collapse
|
49
|
Dhawan V, Martin PN, Hu X, Cui XT. Investigation of a chondroitin sulfate-based bioactive coating for neural interface applications. J Mater Chem B 2024; 12:5535-5550. [PMID: 38747002 PMCID: PMC11152038 DOI: 10.1039/d4tb00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/09/2024] [Indexed: 06/06/2024]
Abstract
Invasive neural implants allow for high-resolution bidirectional communication with the nervous tissue and have demonstrated the ability to record neural activity, stimulate neurons, and sense neurochemical species with high spatial selectivity and resolution. However, upon implantation, they are exposed to a foreign body response which can disrupt the seamless integration of the device with the native tissue and lead to deterioration in device functionality for chronic implantation. Modifying the device surface by incorporating bioactive coatings has been a promising approach to camouflage the device and improve integration while maintaining device performance. In this work, we explored the novel application of a chondroitin sulfate (CS) based hydrophilic coating, with anti-fouling and neurite-growth promoting properties for neural recording electrodes. CS-coated samples exhibited significantly reduced protein-fouling in vitro which was maintained for up to 4-weeks. Cell culture studies revealed a significant increase in neurite attachment and outgrowth and a significant decrease in microglia attachment and activation for the CS group as compared to the control. After 1-week of in vivo implantation in the mouse cortex, the coated probes demonstrated significantly lower biofouling as compared to uncoated controls. Like the in vitro results, increased neuronal population (neuronal nuclei and neurofilament) and decreased microglial activation were observed. To assess the coating's effect on the recording performance of silicon microelectrodes, we implanted coated and uncoated electrodes in the mouse striatum for 1 week and performed impedance and recording measurements. We observed significantly lower impedance in the coated group, likely due to the increased wettability of the coated surface. The peak-to-peak amplitude and the noise floor levels were both lower in the CS group compared to the controls, which led to a comparable signal-to-noise ratio between the two groups. The overall single unit yield (% channels recording a single unit) was 74% for the CS and 67% for the control group on day 1. Taken together, this study demonstrates the effectiveness of the polysaccharide-based coating in reducing biofouling and improving biocompatibility for neural electrode devices.
Collapse
Affiliation(s)
- Vaishnavi Dhawan
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Paige Nicole Martin
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, PA, USA
| | - Xinyan Tracy Cui
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Zhang Y, Chen Y, Contera S, Compton RG. Double Electrode Experiments Reveal the Processes Occurring at PEDOT-Coated Neural Electrode Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29439-29452. [PMID: 38775098 PMCID: PMC11163409 DOI: 10.1021/acsami.4c05204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/11/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Neural electrodes have recently been developed with surface modifications of conductive polymers, in particular poly(3,4-ethylenedioxythiophene) (PEDOT), and extensively studied for their roles in recording and stimulation, aiming to improve their biocompatibility. In this work, the implications for the design of practical neural sensors are clarified, and systematic procedures for their preparation are reported. In particular, this study introduces the use of in vitro double electrode experiments to mimic the responses of neural electrodes with a focus on signal-recording electrodes modified with PEDOT. Specifically, potential steps on one unmodified electrode in an array are used to identify the responses for PEDOT doped with different anions and compared with that of a bare platinum (Pt) electrode. The response is shown to be related to the rearrangement of ions in solution near the detector electrode resulting from the potential step, with a current transient seen at the detector electrode. A rapid response for PEDOT doped with chloride (ca. 0.04 s) ions was observed and attributed to the fast movement of chloride ions in and out of the polymer film. In contrast, PEDOT doped with poly(styrenesulfonate) (PSS) responds much slower (ca. 2.2 s), and the essential immobility of polyanion constrains the direction of current flow.
Collapse
Affiliation(s)
- Yuanmin Zhang
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, Great Britain
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, Great Britain
| | - Yuqi Chen
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, Great Britain
| | - Sonia Contera
- Clarendon
Laboratory, Department of Physics, University
of Oxford, Parks Road, Oxford OX1
3PU, Great Britain
| | - Richard G. Compton
- Physical
and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, Great Britain
| |
Collapse
|