1
|
Neurite growth induced by red light-caused intracellular reactive oxygen species production through cytochrome c oxidase activation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2023; 241:112681. [PMID: 36870246 DOI: 10.1016/j.jphotobiol.2023.112681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/02/2023] [Accepted: 02/23/2023] [Indexed: 02/27/2023]
Abstract
The applications of red-light photobiomodulation (PBM) to enhance neurite growth have been proposed for many years. However, the detailed mechanisms require further studies. In the present work we used a focused red-light spot to illuminate the junction of the longest neurite and the soma of a neuroblastoma cell (N2a), and demonstrated enhanced neurite growth at 620 nm and 760 nm with adequate illumination energy fluences. In contrast, 680 nm light showed no effect on neurite growth. The neurite growth was accompanied with the increase of intracellular reactive oxygen species (ROS). Using Trolox to reduce the ROS level, this red light-induced neurite growth was hindered. Suppressing the activities of cytochrome c oxidase (CCO) by using either a small-molecule inhibitor or siRNA abrogated the red light-induced neurite growth. These results suggest that red light-induced ROS production through the activation of CCO could be beneficial for neurite growth.
Collapse
|
2
|
Medina-Villalobos N, Avila R, Marsal M, Andilla J, Loza-Álvarez P, Ojeda-Ramírez MM, Tamariz E. Infrared Laser Effects on Cell Projection Depend on Irradiation Intermittence and Cell Activity. Cells 2023; 12:540. [PMID: 36831208 PMCID: PMC9954793 DOI: 10.3390/cells12040540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/06/2023] [Accepted: 01/28/2023] [Indexed: 02/10/2023] Open
Abstract
Highly focused near-infrared (NIR) lasers have been used to induce fibroblast and neuron protrusions in a technique called optical guidance. However, little is known about the biochemical and biophysical effects that the laser provokes in the cell and optimal protocols of stimulation have not yet been established. Using intermittent NIR laser radiation and multivariate time series representations of cell leading edge movement, we analyzed the direction and velocity of cell protrusions. We found that the orientation and advance of PC12 neuron phenotype cells and 3T3 fibroblasts protrusions remain after the laser is turned off, but the observed increase in velocity stops when radiation ceases. For an increase in the speed and distance of cell protrusions by NIR laser irradiation, the cell leading edge needs to be advancing prior to the stimulation, and NIR irradiation does not enable the cell to switch between retracting and advancing states. Using timelapse imaging of actin-GFP, we observed that NIR irradiation induces a faster recruitment of actin, promoting filament formation at the induced cell protrusions. These results provide fresh evidence to understand the phenomenon of the optical guidance of cell protrusions.
Collapse
Affiliation(s)
| | - Remy Avila
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), A.P. 1-1010, Juriquilla 76000, Querétaro, Mexico
| | - María Marsal
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Jordi Andilla
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - Pablo Loza-Álvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | | | - Elisa Tamariz
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa 91190, Veracruz, Mexico
| |
Collapse
|
3
|
Liebert A, Capon W, Pang V, Vila D, Bicknell B, McLachlan C, Kiat H. Photophysical Mechanisms of Photobiomodulation Therapy as Precision Medicine. Biomedicines 2023; 11:biomedicines11020237. [PMID: 36830774 PMCID: PMC9953702 DOI: 10.3390/biomedicines11020237] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Despite a significant focus on the photochemical and photoelectrical mechanisms underlying photobiomodulation (PBM), its complex functions are yet to be fully elucidated. To date, there has been limited attention to the photophysical aspects of PBM. One effect of photobiomodulation relates to the non-visual phototransduction pathway, which involves mechanotransduction and modulation to cytoskeletal structures, biophotonic signaling, and micro-oscillatory cellular interactions. Herein, we propose a number of mechanisms of PBM that do not depend on cytochrome c oxidase. These include the photophysical aspects of PBM and the interactions with biophotons and mechanotransductive processes. These hypotheses are contingent on the effect of light on ion channels and the cytoskeleton, the production of biophotons, and the properties of light and biological molecules. Specifically, the processes we review are supported by the resonant recognition model (RRM). This previous research demonstrated that protein micro-oscillations act as a signature of their function that can be activated by resonant wavelengths of light. We extend this work by exploring the local oscillatory interactions of proteins and light because they may affect global body circuits and could explain the observed effect of PBM on neuro-cortical electroencephalogram (EEG) oscillations. In particular, since dysrhythmic gamma oscillations are associated with neurodegenerative diseases and pain syndromes, including migraine with aura and fibromyalgia, we suggest that transcranial PBM should target diseases where patients are affected by impaired neural oscillations and aberrant brain wave patterns. This review also highlights examples of disorders potentially treatable with precise wavelengths of light by mimicking protein activity in other tissues, such as the liver, with, for example, Crigler-Najjar syndrome and conditions involving the dysregulation of the cytoskeleton. PBM as a novel therapeutic modality may thus behave as "precision medicine" for the treatment of various neurological diseases and other morbidities. The perspectives presented herein offer a new understanding of the photophysical effects of PBM, which is important when considering the relevance of PBM therapy (PBMt) in clinical applications, including the treatment of diseases and the optimization of health outcomes and performance.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
- Adventist Hospital Group, Wahroonga 2076, Australia
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Correspondence:
| | - William Capon
- Faculty of Medicine and Health, University of Sydney, Sydney 2006, Australia
| | - Vincent Pang
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Damien Vila
- Faculty of Medicine of Montpellier-Nîmes, University of Montpellier, 34090 Montpellier, France
| | - Brian Bicknell
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
| | - Craig McLachlan
- Faculty of Health, Torrens University, Adelaide 5000, Australia
| | - Hosen Kiat
- NICM Health Research Institute, Western Sydney University, Westmead 2145, Australia
- Faculty of Health, Torrens University, Adelaide 5000, Australia
- Cardiac Health Institute, Sydney 2121, Australia
- ANU College of Health and Medicine, Australian National University, Canberra 2600, Australia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Macquarie Park 2109, Australia
| |
Collapse
|
4
|
Effect of Near-Infrared Pulsed Light on the Human Brain Using Electroencephalography. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6693916. [PMID: 33747113 PMCID: PMC7954620 DOI: 10.1155/2021/6693916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/09/2021] [Accepted: 02/19/2021] [Indexed: 11/17/2022]
Abstract
In our previous study, the low-level laser (LLL) stimulation at the palm with a stimulation frequency of 10 Hz was able to induce significant brain activation in normal subjects. The electroencephalography (EEG) changes caused by the stimulation of light-emitting diode (LED) in normal subjects have not been investigated. This study aimed at identifying the effects of LED stimulation on the human brain using EEG analysis. Moreover, the dosage has been raised 4 times than that in the previous LLL study. The LED array stimulator (6 pcs LEDs, central wavelength 850 nm, output power 30 mW, and operating frequency 10 Hz) was used as the stimulation source. The LED stimulation was found to induce significant variation in alpha activity in the occipital, parietal, and temporal regions of the brain. Compared to the previous low-level laser study, LED has similar effects on EEG in alpha (8–12 Hz) activity. Theta (4–7 Hz) power significantly increased in the posterior head region of the brain. The effect lasted for at least 15 minutes after stimulation ceased. Conversely, beta (13–35 Hz) intensity in the right parietal area increased significantly, and a biphasic dose response has been observed in this study.
Collapse
|
5
|
Neurite regrowth stimulation by a red-light spot focused on the neuronal cell soma following blue light-induced retraction. Sci Rep 2019; 9:18210. [PMID: 31796850 PMCID: PMC6890775 DOI: 10.1038/s41598-019-54687-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/18/2019] [Indexed: 11/13/2022] Open
Abstract
The interaction of light with biological tissues has been considered for various therapeutic applications. Light-induced neurite growth has the potential to be a clinically useful technique for neuron repair. However, most previous studies used either a large illumination area to accelerate overall neurite growth or employed a light spot to guide a growing neurite. It is not clear if optical stimulation can induce the regrowth of a retracted neurite. In the present work, we used blue light (wavelength: 473 nm) to cause neurite retraction, and we proved that using a red-light (wavelength: 650 nm) spot to illuminate the soma near the junction of the retracted neurite could induce neurite regrowth. As a comparison, we found that green light (wavelength 550 nm) had a 62% probability of inducing neurite regrowth, while red light had a 75% probability of inducing neurite regrowth at the same power level. Furthermore, the neurite regrowth length induced by red light was increased by the pre-treatment with inhibitors of myosin functions. We also observed actin propagation from the soma to the tip of the re-growing neurite following red-light stimulation of the soma. The red light-induced extension and regrowth were abrogated in the calcium-free medium. These results suggest that illumination with a red-light spot on the soma may trigger the regrowth of a neurite after the retraction caused by blue-light illumination.
Collapse
|
6
|
Pandanaboina SC, Alghazali KM, Nima ZA, Alawajji RA, Sharma KD, Watanabe F, Saini V, Biris AS, Srivatsan M. Plasmonic nano surface for neuronal differentiation and manipulation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 21:102048. [PMID: 31271878 DOI: 10.1016/j.nano.2019.102048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 04/15/2019] [Accepted: 06/15/2019] [Indexed: 12/28/2022]
Abstract
Neurodegenerative diseases and traumatic brain injuries can destroy neurons, resulting in sensory and motor function loss. Transplantation of differentiated neurons from stem cells could help restore such lost functions. Plasmonic gold nanorods (AuNR) were integrated in growth surfaces to stimulate and modulate neural cells in order to tune cell physiology. An AuNR nanocomposite system was fabricated, characterized, and then utilized to study the differentiation of embryonic rat neural stem cells (NSCs). Results demonstrated that this plasmonic surface 1) accelerated differentiation, yielding almost twice as many differentiated neural cells as a traditional NSC culture surface coated with poly-D-lysine and laminin for the same time period; and 2) promoted differentiation of NSCs into neurons and astrocytes in a 2:1 ratio, as evidenced by the expression of relevant marker proteins. These results indicate that the design and properties of this AuNR plasmonic surface would be advantageous for tissue engineering to address neural degeneration.
Collapse
Affiliation(s)
| | - Karrer M Alghazali
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204
| | - Zeid A Nima
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204
| | - Raad A Alawajji
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204
| | - Krishna Deo Sharma
- Biological Sciences and Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401
| | - Fumiya Watanabe
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204
| | - Viney Saini
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204
| | - Alexandru S Biris
- Center for Integrative Nanotechnology Sciences, University of Arkansas at Little Rock, Little Rock, AR 72204.
| | - Malathi Srivatsan
- Biological Sciences and Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR 72401.
| |
Collapse
|
7
|
Avila R, Tamariz E, Medina-Villalobos N, Andilla J, Marsal M, Loza-Alvarez P. Effects of near infrared focused laser on the fluorescence of labelled cell membrane. Sci Rep 2018; 8:17674. [PMID: 30518772 PMCID: PMC6281678 DOI: 10.1038/s41598-018-36010-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/09/2018] [Indexed: 11/12/2022] Open
Abstract
Near infrared (NIR) laser light can have important reactions on live cells. For example, in a macroscopic scale, it is used therapeutically to reduce inflammation and in a single-cell scale, NIR lasers have been experimentally used to guide neuronal growth. However, little is known about how NIR lasers produce such behaviours on cells. In this paper we report effects of focussing a continuous wave 810-nm wavelength laser on in vivo 3T3 cells plasma membrane. Cell membranes were labelled with FM 4-64, a dye that fluoresces when associated to membrane lipids. Confocal microscopy was used to image cell membranes and perform fluorescence recovery after photobleaching (FRAP) experiments. We found that the NIR laser produces an increase of the fluorescence intensity at the location of laser spot. This intensity boost vanishes once the laser is turned off. The mean fluorescence increase, calculated over 75 independent measurements, equals 19%. The experiments reveal that the fluorescence rise is a growing function of the laser power. This dependence is well fitted with a square root function. The FRAP, when the NIR laser is acting on the cell, is twice as large as when the NIR laser is off, and the recovery time is 5 times longer. Based on the experimental evidence and a linear fluorescence model, it is shown that the NIR laser provokes a rise in the number of molecular associations dye-lipid. The results reported here may be a consequence of a combination of induced increments in membrane fluidity and exocytosis.
Collapse
Affiliation(s)
- Remy Avila
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México (UNAM), A. P. 1-1010, Juriquilla, 76000, Querétaro, Mexico. .,ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain.
| | - Elisa Tamariz
- Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenicda Luis Castelazo Ayala s/n, Xalapa, 91190, Veracruz, Mexico
| | - Norma Medina-Villalobos
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain.,Instituto de Ciencias de la Salud, Universidad Veracruzana, Avenicda Luis Castelazo Ayala s/n, Xalapa, 91190, Veracruz, Mexico
| | - Jordi Andilla
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - María Marsal
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| | - Pablo Loza-Alvarez
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Castelldefels, Barcelona, Spain
| |
Collapse
|
8
|
Pham TQ, Kawaue T, Hoshi T, Tanaka Y, Miyata T, Sano A. Role of extrinsic mechanical force in the development of the RA-I tactile mechanoreceptor. Sci Rep 2018; 8:11085. [PMID: 30038295 PMCID: PMC6056429 DOI: 10.1038/s41598-018-29390-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/10/2018] [Indexed: 11/25/2022] Open
Abstract
Rapidly adapting type I (RA-I) mechanoreceptors play an important role in sensing the low-frequency vibration aspects of touch. The structure of the RA-I mechanoreceptor is extremely complex regardless of its small size, limiting our understanding of its mechanotransduction. As a result of the emergence of bioengineering, we previously proposed an in vitro bioengineering approach for RA-I receptors to overcome this limitation. Currently, the in vitro bioengineering approach for the RA-I receptor is not realizable given the lack of knowledge of its morphogenesis. This paper demonstrates our first attempt to interpret the cellular morphogenesis of the RA-I receptor. We found indications of extrinsic mechanical force nearby the RA-I receptor in the developing fingertip. Using a mechanical compression device, the axon of dorsal root ganglion (DRG) neurons buckled in vitro into a profile that resembled the morphology of the RA-I receptor. This work encourages further implementation of this bioengineering approach in tactile receptor-related research.
Collapse
Affiliation(s)
- Trung Quang Pham
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan.
| | - Takumi Kawaue
- Department of Anatomy and Cell Biology, Nagoya University, Nagoya, 466-8550, Japan
| | | | - Yoshihiro Tanaka
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University, Nagoya, 466-8550, Japan
| | - Akihito Sano
- Robotics Lab, Department of Electrical and Mechanical Engineering, Graduate School of Engineering, Nagoya Institute of Technology, Nagoya, 466-8555, Japan
| |
Collapse
|
9
|
Picazo-Bueno JÁ, Cojoc D, Iseppon F, Torre V, Micó V. Single-shot, dual-mode, water-immersion microscopy platform for biological applications. APPLIED OPTICS 2018; 57:A242-A249. [PMID: 29328152 DOI: 10.1364/ao.57.00a242] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
A single-shot water-immersion digital holographic microscope combined with broadband (white light) illumination mode is presented. This double imaging platform allows conventional incoherent visualization with phase holographic imaging of inspected samples. The holographic architecture is implemented at the image space (that is, after passing the microscope lens), thus reducing the sensitivity of the system to vibrations and/or thermal changes in comparison to regular interferometers. Because of the off-axis holographic recording principle, quantitative phase images of live biosamples can be recorded in a single camera snapshot at full-field geometry without any moving parts. And, the use of water-immersion imaging lenses maximizes the achievable resolution limit. This dual-mode microscope platform is first calibrated using microbeads, then applied to the characterization of fixed cells (neuroblastoma, breast cancer, and hippocampal neuronal cells) and, finally, validated for visualization of dynamic living cells (hippocampal neurons).
Collapse
|
10
|
Oyama K, Zeeb V, Kawamura Y, Arai T, Gotoh M, Itoh H, Itabashi T, Suzuki M, Ishiwata S. Triggering of high-speed neurite outgrowth using an optical microheater. Sci Rep 2015; 5:16611. [PMID: 26568288 PMCID: PMC4645119 DOI: 10.1038/srep16611] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 10/16/2015] [Indexed: 12/12/2022] Open
Abstract
Optical microheating is a powerful non-invasive method for manipulating biological functions such as gene expression, muscle contraction, and cell excitation. Here, we demonstrate its potential usage for regulating neurite outgrowth. We found that optical microheating with a water-absorbable 1,455-nm laser beam triggers directional and explosive neurite outgrowth and branching in rat hippocampal neurons. The focused laser beam under a microscope rapidly increases the local temperature from 36 °C to 41 °C (stabilized within 2 s), resulting in the elongation of neurites by more than 10 μm within 1 min. This high-speed, persistent elongation of neurites was suppressed by inhibitors of both microtubule and actin polymerization, indicating that the thermosensitive dynamics of these cytoskeletons play crucial roles in this heat-induced neurite outgrowth. Furthermore, we showed that microheating induced the regrowth of injured neurites and the interconnection of neurites. These results demonstrate the efficacy of optical microheating methods for the construction of arbitrary neural networks.
Collapse
Affiliation(s)
- Kotaro Oyama
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Vadim Zeeb
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region 142292, Russia
| | - Yuki Kawamura
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Tomomi Arai
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, 3-25-8 Nishi-shinbashi, Minato-ku, Tokyo 105-8461, Japan
| | - Mizuho Gotoh
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hideki Itoh
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore 138648, Singapore
| | - Takeshi Itabashi
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Madoka Suzuki
- WASEDA Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore.,Organization for University Research Initiatives, Waseda University, #304, Block 120-4, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041 Japan
| | - Shin'ichi Ishiwata
- Department of Physics, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.,WASEDA Bioscience Research Institute in Singapore (WABIOS), 11 Biopolis Way, #05-02 Helios, Singapore 138667, Singapore.,Organization for University Research Initiatives, Waseda University, #304, Block 120-4, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo, 162-0041 Japan
| |
Collapse
|
11
|
Liebert A, Bicknell B, Adams R. Prion Protein Signaling in the Nervous System—A Review and Perspective. ACTA ACUST UNITED AC 2014. [DOI: 10.4137/sti.s12319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Prion protein (PrPC) was originally known as the causative agent of transmissible spongiform encephalopathy (TSE) but with recent research, its true function in cells is becoming clearer. It is known to act as a scaffolding protein, binding multiple ligands at the cell membrane and to be involved in signal transduction, passing information from the extracellular matrix (ECM) to the cytoplasm. Its role in the coordination of transmitters at the synapse, glyapse, and gap junction and in short- and long-range neurotrophic signaling gives PrPC a major part in neural transmission and nervous system signaling. It acts to regulate cellular function in multiple targets through its role as a controller of redox status and calcium ion flux. Given the importance of PrPC in cell physiology, this review considers its potential role in disease apart from TSE. The putative functions of PrPC point to involvement in neurodegenerative disease, neuropathic pain, chronic headache, and inflammatory disease including neuroinflammatory disease of the nervous system. Potential targets for the treatment of disease influenced by PrPC are discussed.
Collapse
Affiliation(s)
- Ann Liebert
- Faculty of Health Science, University of Sydney, Australia
| | - Brian Bicknell
- Faculty of Health Science, Australian Catholic University, Australia
| | | |
Collapse
|
12
|
Mondal A, Black B, Kim YT, Mohanty S. Loop formation and self-fasciculation of cortical axon using photonic guidance at long working distance. Sci Rep 2014; 4:6902. [PMID: 25376602 PMCID: PMC4223660 DOI: 10.1038/srep06902] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 10/10/2014] [Indexed: 11/14/2022] Open
Abstract
The accuracy of axonal pathfinding and the formation of functional neural circuitry are crucial for an organism to process, store, and retrieve information from internal networks as well as from the environment. Aberrations in axonal migration is believed to lead to loop formation and self-fasciculation, which can lead to highly dysfunctional neural circuitry and therefore self-avoidance of axons is proposed to be the regulatory mechanism for control of synaptogenesis. Here, we report the application of a newly developed non-contact optical method using a weakly-focused, near infrared laser beam for highly efficient axonal guidance, and demonstrate the formation of axonal loops in cortical neurons, which demonstrate that cortical neurons can self-fasciculate in contrast to self-avoidance. The ability of light for axonal nano-loop formation opens up new avenues for the construction of complex neural circuitry, and non-invasive guidance of neurons at long working distances for restoration of impaired neural connections and functions.
Collapse
Affiliation(s)
- Argha Mondal
- Biophysics and Physiology Lab, Department of Physics
| | - Bryan Black
- Biophysics and Physiology Lab, Department of Physics
| | - Young-tae Kim
- Department of Bioengineering, The University of Texas at Arlington, TX 76019
| | | |
Collapse
|
13
|
Paviolo C, Haycock JW, Cadusch PJ, McArthur SL, Stoddart PR. Laser exposure of gold nanorods can induce intracellular calcium transients. JOURNAL OF BIOPHOTONICS 2014; 7:761-5. [PMID: 23798060 DOI: 10.1002/jbio.201300043] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 05/12/2013] [Accepted: 06/03/2013] [Indexed: 05/08/2023]
Abstract
Uncoated and poly(styrene sulphonate) (PSS)-coated gold nanorods were taken up by NG108-15 neuronal cells. Exposure to 780 nm laser light at the plasmon resonance wavelength of the gold nanorods was found to induce intracellular Ca(2+) transients. The higher Ca(2+) peaks were observed at lower laser doses, with the highest levels obtained at a radiant exposure of 0.33 J/cm(2) . In contrast, the cells without nanoparticles showed a consistently small response, independent of the laser dose. These initial results open up new opportunities for peripheral nerve regeneration treatments and for more efficient optical stimulation techniques.
Collapse
Affiliation(s)
- Chiara Paviolo
- Biotactical Engineering, Industrial Research Institute Swinburne, Faculty of Engineering and Industrial Science, Swinburne University of Technology, Hawthorn, PO Box 218, Victoria 3122, Australia
| | | | | | | | | |
Collapse
|
14
|
Black BJ, Gu L, Mohanty SK. Highly effective photonic cue for repulsive axonal guidance. PLoS One 2014; 9:e86292. [PMID: 24717339 PMCID: PMC3981697 DOI: 10.1371/journal.pone.0086292] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Accepted: 12/11/2013] [Indexed: 01/03/2023] Open
Abstract
In vivo nerve repair requires not only the ability to regenerate damaged axons, but most importantly, the ability to guide developing or regenerating axons along paths that will result in functional connections. Furthermore, basic studies in neuroscience and neuro-electronic interface design require the ability to construct in vitro neural circuitry. Both these applications require the development of a noninvasive, highly effective tool for axonal growth-cone guidance. To date, a myriad of technologies have been introduced based on chemical, electrical, mechanical, and hybrid approaches (such as electro-chemical, optofluidic flow and photo-chemical methods). These methods are either lacking in desired spatial and temporal selectivity or require the introduction of invasive external factors. Within the last fifteen years however, several attractive guidance cues have been developed using purely light based cues to achieve axonal guidance. Here, we report a novel, purely optical repulsive guidance technique that uses low power, near infrared light, and demonstrates the guidance of primary goldfish retinal ganglion cell axons through turns of up to 120 degrees and over distances of ∼90 µm.
Collapse
Affiliation(s)
- Bryan J Black
- Biophysics and Physiology Group, Department of Physics, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Ling Gu
- Biophysics and Physiology Group, Department of Physics, The University of Texas at Arlington, Arlington, Texas, United States of America
| | - Samarendra K Mohanty
- Biophysics and Physiology Group, Department of Physics, The University of Texas at Arlington, Arlington, Texas, United States of America
| |
Collapse
|
15
|
Abstract
The controlled navigation of the axonal growth cone of a neuron toward the dendrite of its synaptic partner neuron is the fundamental process in forming neuronal circuitry. While a number of technologies have been pursued for axonal guidance over the past decades, they are either invasive or not controllable with high spatial and temporal resolution and are often limited by low guidance efficacy. Here, we report a neuronal beacon based on light for highly efficient and controlled guidance of cortical primary neurons.
Collapse
Affiliation(s)
- B Black
- Biophysics and Physiology Laboratory, Department of Physics, The University of Texas at Arlington, Texas 76019, USA
| | | | | | | |
Collapse
|
16
|
Paviolo C, Haycock JW, Yong J, Yu A, Stoddart PR, McArthur SL. Laser exposure of gold nanorods can increase neuronal cell outgrowth. Biotechnol Bioeng 2013; 110:2277-91. [PMID: 23456616 DOI: 10.1002/bit.24889] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 01/27/2023]
Abstract
The usage of gold nanoparticles (Au NPs) in biological applications has risen significantly over the last 10 years. With the wide variety of chemical and biological functionalization available and their distinctive optical properties, Au NPs are currently used in a range of biological applications including sensing, labeling, drug delivery, and imaging applications. Among the available particles, gold nanorods (Au NRs) are particularly useful because their optical absorption can be tuned across the visible to near infrared region. Here, we present a novel application of Au NRs associated with low power laser exposure of NG108-15 neuronal cells. When cells were irradiated with a 780 nm laser, the average number of neurons with neurites increased. A similar stimulatory effect was observed for cells that were cultured with poly-(4-styrenesulfonic acid)-coated and silica-coated Au NRs. Furthermore, when the NG108-15 cells were cultured with both bare and coated Au NRs and then irradiated with 1.2-7.5 W/cm(2) at 780 nm, they showed a neurite length increase of up to 25 µm versus control. To the best of our knowledge, this effect has never been reported before. While the pathways of the stimulation is not yet clear, the data presented here demonstrates that it is linked to the absorption of light by the Au NRs. These initial results open up new opportunities for peripheral nerve regeneration treatments and for novel approaches to addressing central nervous system axons following spinal cord injury.
Collapse
Affiliation(s)
- Chiara Paviolo
- Biotactical Engineering, Industrial Research Institute Swinburne (IRIS), Faculty of Engineering and Industrial Science, Swinburne University of Technology, PO Box 218, Hawthorn, Victoria 3122, Australia
| | | | | | | | | | | |
Collapse
|
17
|
Al-Harbi KS, Qureshi NA. Neuromodulation therapies and treatment-resistant depression. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2012; 5:53-65. [PMID: 23152710 PMCID: PMC3496963 DOI: 10.2147/mder.s33198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Patients with treatment-resistant depression (TRD) who showed partial response to pharmacological and psychotherapeutic interventions need a trial of neuromodulation therapies (NTs). Objective This paper aims to review evidence-based data on the use of NTs in TRD. Method Using keywords and combined-word strategy, multiple computer searches of PubMed, Google Scholar, Quertle(R), and Medline were conducted for retrieving relevant articles published in English-language peer-reviewed journals (2000–2012). Those papers that addressed NTs in TRD were retained for extensive review. Results Despite methodological challenges, a range of 30%–93% of TRD patients showed substantial improvement to one of the NTs. One hundred–percent improvement was reported in two single-case studies on deep brain stimulation. Some studies reported no benefits from transcranial direct current stimulation. NTs were reported to have good clinical efficacy, better safety margin, and benign side-effect profile. Data are limited regarding randomized clinical trials, long-term efficacy, and cost-effectiveness of these approaches. Both modified electroconvulsive therapy and magnetic seizure therapy were associated with reversible but disturbing neurocognitive adverse effects. Besides clinical utility, NTs including approaches on the horizon may unlock the biological basis underlying mood disorders including TRD. Conclusion NTs are promising in patients with TRD, as the majority of them show good clinical response measured by standardized depression scales. NTs need further technological refinements and optimization together with continuing well-designed studies that recruit larger numbers of participants with TRD.
Collapse
|
18
|
Ebbesen CL, Bruus H. Analysis of laser-induced heating in optical neuronal guidance. J Neurosci Methods 2012; 209:168-77. [PMID: 22387314 DOI: 10.1016/j.jneumeth.2012.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Revised: 02/02/2012] [Accepted: 02/04/2012] [Indexed: 01/30/2023]
Abstract
Recently, it has been shown that it is possible to control the growth direction of neuronal growth cones by stimulation with weak laser light; an effect dubbed optical neuronal guidance. The effect exists for a broad range of laser wavelengths, spot sizes, spot intensities, optical intensity profiles and beam modulations, but it is unknown which biophysical mechanisms govern it. Based on thermodynamic modeling and simulation using published experimental parameters as input, we argue that the guidance is linked to heating. Until now, temperature effects due to laser-induced heating of the guided neuron have been neglected in the optical neuronal guidance literature. The results of our finite-element-method simulations show the relevance of the temperature field in optical guidance experiments and are consistent with published experimental results and modeling in the field of optical traps. Furthermore, we propose two experiments designed to test this hypotheses experimentally. For one of these experiments, we have designed a microfluidic platform, to be made using standard microfabrication techniques, for incubation of neurons in temperature gradients on micrometer lengthscales.
Collapse
Affiliation(s)
- Christian L Ebbesen
- Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark.
| | | |
Collapse
|
19
|
Rosa MA, Lisanby SH. Somatic treatments for mood disorders. Neuropsychopharmacology 2012; 37:102-16. [PMID: 21976043 PMCID: PMC3238088 DOI: 10.1038/npp.2011.225] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/18/2011] [Accepted: 08/18/2011] [Indexed: 12/22/2022]
Abstract
Somatic treatments for mood disorders represent a class of interventions available either as a stand-alone option, or in combination with psychopharmacology and/or psychotherapy. Here, we review the currently available techniques, including those already in clinical use and those still under research. Techniques are grouped into the following categories: (1) seizure therapies, including electroconvulsive therapy and magnetic seizure therapy, (2) noninvasive techniques, including repetitive transcranial magnetic stimulation, transcranial direct current stimulation, and cranial electric stimulation, (3) surgical approaches, including vagus nerve stimulation, epidural electrical stimulation, and deep brain stimulation, and (4) technologies on the horizon. Additionally, we discuss novel approaches to the optimization of each treatment, and new techniques that are under active investigation.
Collapse
Affiliation(s)
- Moacyr A Rosa
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| | - Sarah H Lisanby
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
20
|
Wu T, Mohanty S, Gomez-Godinez V, Shi LZ, Liaw LH, Miotke J, Meyer RL, Berns MW. Neuronal growth cones respond to laser-induced axonal damage. J R Soc Interface 2011; 9:535-47. [PMID: 21831892 DOI: 10.1098/rsif.2011.0351] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although it is well known that damage to neurons results in release of substances that inhibit axonal growth, release of chemical signals from damaged axons that attract axon growth cones has not been observed. In this study, a 532 nm 12 ns laser was focused to a diffraction-limited spot to produce site-specific damage to single goldfish axons in vitro. The axons underwent a localized decrease in thickness ('thinning') within seconds. Analysis by fluorescence and transmission electron microscopy indicated that there was no gross rupture of the cell membrane. Mitochondrial transport along the axonal cytoskeleton immediately stopped at the damage site, but recovered over several minutes. Within seconds of damage nearby growth cones extended filopodia towards the injury and were often observed to contact the damaged site. Turning of the growth cone towards the injured axon also was observed. Repair of the laser-induced damage was evidenced by recovery of the axon thickness as well as restoration of mitochondrial movement. We describe a new process of growth cone response to damaged axons. This has been possible through the interface of optics (laser subcellular surgery), fluorescence and electron microscopy, and a goldfish retinal ganglion cell culture model.
Collapse
Affiliation(s)
- Tao Wu
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA 92617, USA.
| | | | | | | | | | | | | | | |
Collapse
|