1
|
Spagnoli G, Parrella E, Ghazanfar Tehrani S, Mengoni F, Salari V, Nistreanu C, Scambi I, Sbarbati A, Bertini G, Fabene PF. Glial Response and Neuronal Modulation Induced by Epidural Electrode Implant in the Pilocarpine Mouse Model of Epilepsy. Biomolecules 2024; 14:834. [PMID: 39062548 PMCID: PMC11274793 DOI: 10.3390/biom14070834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
In animal models of epilepsy, cranial surgery is often required to implant electrodes for electroencephalography (EEG) recording. However, electrode implants can lead to the activation of glial cells and interfere with physiological neuronal activity. In this study, we evaluated the impact of epidural electrode implants in the pilocarpine mouse model of temporal lobe epilepsy. Brain neuroinflammation was assessed 1 and 3 weeks after surgery by cytokines quantification, immunohistochemistry, and western blotting. Moreover, we investigated the effect of pilocarpine, administered two weeks after surgery, on mice mortality rate. The reported results indicate that implanted mice suffer from neuroinflammation, characterized by an early release of pro-inflammatory cytokines, microglia activation, and subsequent astrogliosis, which persists after three weeks. Notably, mice subjected to electrode implants displayed a higher mortality rate following pilocarpine injection 2 weeks after the surgery. Moreover, the analysis of EEGs recorded from implanted mice revealed a high number of single spikes, indicating a possible increased susceptibility to seizures. In conclusion, epidural electrode implant in mice promotes neuroinflammation that could lower the seizure thresholds to pilocarpine and increase the death rate. An improved protocol considering the persistent neuroinflammation induced by electrode implants will address refinement and reduction, two of the 3Rs principles for the ethical use of animals in scientific research.
Collapse
Affiliation(s)
- Giulia Spagnoli
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Edoardo Parrella
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
- Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| | - Sara Ghazanfar Tehrani
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Francesca Mengoni
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Valentina Salari
- Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| | - Cristina Nistreanu
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Ilaria Scambi
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Andrea Sbarbati
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Giuseppe Bertini
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
| | - Paolo Francesco Fabene
- Section of Anatomy and Histology, Department of Neurosciences, Biomedicine, and Movement Science, School of Medicine, University of Verona, 37124 Verona, Italy; (G.S.); (E.P.); (S.G.T.); (F.M.); (C.N.); (I.S.); (A.S.); (G.B.)
- Section of Innovation Biomedicine, Department of Engineering for Innovation Medicine, University of Verona, 37134 Verona, Italy;
| |
Collapse
|
2
|
Wei S, Jiang A, Sun H, Zhu J, Jia S, Liu X, Xu Z, Zhang J, Shang Y, Fu X, Li G, Wang P, Xia Z, Jiang T, Cao A, Duan X. Shape-changing electrode array for minimally invasive large-scale intracranial brain activity mapping. Nat Commun 2024; 15:715. [PMID: 38267440 PMCID: PMC10808108 DOI: 10.1038/s41467-024-44805-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Large-scale brain activity mapping is important for understanding the neural basis of behaviour. Electrocorticograms (ECoGs) have high spatiotemporal resolution, bandwidth, and signal quality. However, the invasiveness and surgical risks of electrode array implantation limit its application scope. We developed an ultrathin, flexible shape-changing electrode array (SCEA) for large-scale ECoG mapping with minimal invasiveness. SCEAs were inserted into cortical surfaces in compressed states through small openings in the skull or dura and fully expanded to cover large cortical areas. MRI and histological studies on rats proved the minimal invasiveness of the implantation process and the high chronic biocompatibility of the SCEAs. High-quality micro-ECoG activities mapped with SCEAs from male rodent brains during seizures and canine brains during the emergence period revealed the spatiotemporal organization of different brain states with resolution and bandwidth that cannot be achieved using existing noninvasive techniques. The biocompatibility and ability to map large-scale physiological and pathological cortical activities with high spatiotemporal resolution, bandwidth, and signal quality in a minimally invasive manner offer SCEAs as a superior tool for applications ranging from fundamental brain research to brain-machine interfaces.
Collapse
Affiliation(s)
- Shiyuan Wei
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Anqi Jiang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Hongji Sun
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jingjun Zhu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- National Biomedical Imaging Centre, Peking University, Beijing, 100871, China
| | - Shengyi Jia
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Xiaojun Liu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Zheng Xu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Jing Zhang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yuanyuan Shang
- Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Xuefeng Fu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Gen Li
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Puxin Wang
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Zhiyuan Xia
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Tianzi Jiang
- Brainnetome Centre, Institute of Automation, Chinese Academy of Sciences (CAS), Beijing, 100190, China
| | - Anyuan Cao
- School of Materials Science and Engineering, Peking University, Beijing, China
| | - Xiaojie Duan
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China.
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- National Biomedical Imaging Centre, Peking University, Beijing, 100871, China.
| |
Collapse
|
3
|
Wang J, Wang T, Liu H, Wang K, Moses K, Feng Z, Li P, Huang W. Flexible Electrodes for Brain-Computer Interface System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211012. [PMID: 37143288 DOI: 10.1002/adma.202211012] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/27/2023] [Indexed: 05/06/2023]
Abstract
Brain-computer interface (BCI) has been the subject of extensive research recently. Governments and companies have substantially invested in relevant research and applications. The restoration of communication and motor function, the treatment of psychological disorders, gaming, and other daily and therapeutic applications all benefit from BCI. The electrodes hold the key to the essential, fundamental BCI precondition of electrical brain activity detection and delivery. However, the traditional rigid electrodes are limited due to their mismatch in Young's modulus, potential damages to the human body, and a decline in signal quality with time. These factors make the development of flexible electrodes vital and urgent. Flexible electrodes made of soft materials have grown in popularity in recent years as an alternative to conventional rigid electrodes because they offer greater conformance, the potential for higher signal-to-noise ratio (SNR) signals, and a wider range of applications. Therefore, the latest classifications and future developmental directions of fabricating these flexible electrodes are explored in this paper to further encourage the speedy advent of flexible electrodes for BCI. In summary, the perspectives and future outlook for this developing discipline are provided.
Collapse
Affiliation(s)
- Junjie Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Tengjiao Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Haoyan Liu
- Department of Computer Science & Computer Engineering (CSCE), University of Arkansas, Fayetteville, AR, 72701, USA
| | - Kun Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Kumi Moses
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Zhuoya Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) & Xi'an Institute of Biomedical Materials and Engineering (IBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, Shaanxi, 710072, P. R. China
| |
Collapse
|
4
|
Yan T, Suzuki K, Kameda S, Maeda M, Mihara T, Hirata M. Chronic subdural electrocorticography in nonhuman primates by an implantable wireless device for brain-machine interfaces. Front Neurosci 2023; 17:1260675. [PMID: 37841689 PMCID: PMC10568031 DOI: 10.3389/fnins.2023.1260675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/12/2023] [Indexed: 10/17/2023] Open
Abstract
Background Subdural electrocorticography (ECoG) signals have been proposed as a stable, good-quality source for brain-machine interfaces (BMIs), with a higher spatial and temporal resolution than electroencephalography (EEG). However, long-term implantation may lead to chronic inflammatory reactions and connective tissue encapsulation, resulting in a decline in signal recording quality. However, no study has reported the effects of the surrounding tissue on signal recording and device functionality thus far. Methods In this study, we implanted a wireless recording device with a customized 32-electrode-ECoG array subdurally in two nonhuman primates for 15 months. We evaluated the neural activities recorded from and wirelessly transmitted to the devices and the chronic tissue reactions around the electrodes. In addition, we measured the gain factor of the newly formed ventral fibrous tissue in vivo. Results Time-frequency analyses of the acute and chronic phases showed similar signal features. The average root mean square voltage and power spectral density showed relatively stable signal quality after chronic implantation. Histological examination revealed thickening of the reactive tissue around the electrode array; however, no evident inflammation in the cortex. From gain factor analysis, we found that tissue proliferation under electrodes reduced the amplitude power of signals. Conclusion This study suggests that subdural ECoG may provide chronic signal recordings for future clinical applications and neuroscience research. This study also highlights the need to reduce proliferation of reactive tissue ventral to the electrodes to enhance long-term stability.
Collapse
Affiliation(s)
- Tianfang Yan
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan
| | | | - Seiji Kameda
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan
| | - Masashi Maeda
- Candidate Discovery Science Labs, Astellas Pharma Inc., Tokyo, Japan
| | - Takuma Mihara
- Candidate Discovery Science Labs, Astellas Pharma Inc., Tokyo, Japan
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita, Japan
- Global Center for Medical Engineering and Informatics, Osaka University, Suita, Japan
| |
Collapse
|
5
|
Brown MA, Zappitelli KM, Singh L, Yuan RC, Bemrose M, Brogden V, Miller DJ, Smear MC, Cogan SF, Gardner TJ. Direct laser writing of 3D electrodes on flexible substrates. Nat Commun 2023; 14:3610. [PMID: 37330565 PMCID: PMC10276853 DOI: 10.1038/s41467-023-39152-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/31/2023] [Indexed: 06/19/2023] Open
Abstract
This report describes a 3D microelectrode array integrated on a thin-film flexible cable for neural recording in small animals. The fabrication process combines traditional silicon thin-film processing techniques and direct laser writing of 3D structures at micron resolution via two-photon lithography. Direct laser-writing of 3D-printed electrodes has been described before, but this report is the first to provide a method for producing high-aspect-ratio structures. One prototype, a 16-channel array with 300 µm pitch, demonstrates successful electrophysiological signal capture from bird and mouse brains. Additional devices include 90 µm pitch arrays, biomimetic mosquito needles that penetrate through the dura of birds, and porous electrodes with enhanced surface area. The rapid 3D printing and wafer-scale methods described here will enable efficient device fabrication and new studies examining the relationship between electrode geometry and electrode performance. Applications include small animal models, nerve interfaces, retinal implants, and other devices requiring compact, high-density 3D electrodes.
Collapse
Affiliation(s)
- Morgan A Brown
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Kara M Zappitelli
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Loveprit Singh
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Rachel C Yuan
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Melissa Bemrose
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Valerie Brogden
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - David J Miller
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Matthew C Smear
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA
| | - Stuart F Cogan
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX, USA
| | - Timothy J Gardner
- Phil and Penny Knight Campus for Accelerating Scientific Impact, University of Oregon, Eugene, OR, USA.
| |
Collapse
|
6
|
Setogawa S, Kanda R, Tada S, Hikima T, Saitoh Y, Ishikawa M, Nakada S, Seki F, Hikishima K, Matsumoto H, Mizuseki K, Fukayama O, Osanai M, Sekiguchi H, Ohkawa N. A novel micro-ECoG recording method for recording multisensory neural activity from the parietal to temporal cortices in mice. Mol Brain 2023; 16:38. [PMID: 37138338 PMCID: PMC10157930 DOI: 10.1186/s13041-023-01019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/09/2023] [Indexed: 05/05/2023] Open
Abstract
Characterization of inter-regional interactions in brain is essential for understanding the mechanism relevant to normal brain function and neurological disease. The recently developed flexible micro (μ)-electrocorticography (μECoG) device is one prominent method used to examine large-scale cortical activity across multiple regions. The sheet-shaped μECoG electrodes arrays can be placed on a relatively wide area of cortical surface beneath the skull by inserting the device into the space between skull and brain. Although rats and mice are useful tools for neuroscience, current μECoG recording methods in these animals are limited to the parietal region of cerebral cortex. Recording cortical activity from the temporal region of cortex in mice has proven difficult because of surgical barriers created by the skull and surrounding temporalis muscle anatomy. Here, we developed a sheet-shaped 64-channel μECoG device that allows access to the mouse temporal cortex, and we determined the factor determining the appropriate bending stiffness for the μECoG electrode array. We also established a surgical technique to implant the electrode arrays into the epidural space over a wide area of cerebral cortex covering from the barrel field to olfactory (piriform) cortex, which is the deepest region of the cerebral cortex. Using histology and computed tomography (CT) images, we confirmed that the tip of the μECoG device reached to the most ventral part of cerebral cortex without causing noticeable damage to the brain surface. Moreover, the device simultaneously recorded somatosensory and odor stimulus-evoked neural activity from dorsal and ventral parts of cerebral cortex in awake and anesthetized mice. These data indicate that our μECoG device and surgical techniques enable the recording of large-scale cortical activity from the parietal to temporal cortex in mice, including somatosensory and olfactory cortices. This system will provide more opportunities for the investigation of physiological functions from wider areas of the mouse cerebral cortex than those currently available with existing ECoG techniques.
Collapse
Affiliation(s)
- Susumu Setogawa
- Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, Tochigi, 321-0293, Japan
- Department of Physiology, Osaka Metropolitan University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Ryota Kanda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Shuto Tada
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan
| | - Takuya Hikima
- Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, Tochigi, 321-0293, Japan
| | - Yoshito Saitoh
- Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, Tochigi, 321-0293, Japan
| | - Mikiko Ishikawa
- Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, Tochigi, 321-0293, Japan
| | - Satoshi Nakada
- Japanese Center for Research on Women in Sport, Graduate School of Health and Sports Science, Juntendo University, Chiba, 270-1695, Japan
| | - Fumiko Seki
- Live Animal Imaging Center, Central Institutes for Experimental Animals (CIEA), Kanagawa, 210-0821, Japan
| | - Keigo Hikishima
- Medical Devices Research Group, Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305-8564, Japan
| | - Hideyuki Matsumoto
- Department of Physiology, Osaka Metropolitan University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Kenji Mizuseki
- Department of Physiology, Osaka Metropolitan University Graduate School of Medicine, Osaka, 545-8585, Japan
| | - Osamu Fukayama
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita, Osaka, 565-0871, Japan
| | - Makoto Osanai
- Laboratory for Physiological Functional Imaging, Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Hiroto Sekiguchi
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, Toyohashi, Aichi, 441-8580, Japan.
- Japan Science and Technology, Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi, Saitama, 332-0012, Japan.
| | - Noriaki Ohkawa
- Division for Memory and Cognitive Function, Research Center for Advanced Medical Science, Comprehensive Research Facilities for Advanced Medical Science, Dokkyo Medical University, Tochigi, 321-0293, Japan.
| |
Collapse
|
7
|
Branco MP, Geukes SH, Aarnoutse EJ, Ramsey NF, Vansteensel MJ. Nine decades of electrocorticography: A comparison between epidural and subdural recordings. Eur J Neurosci 2023; 57:1260-1288. [PMID: 36843389 DOI: 10.1111/ejn.15941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/10/2023] [Accepted: 02/18/2023] [Indexed: 02/28/2023]
Abstract
In recent years, electrocorticography (ECoG) has arisen as a neural signal recording tool in the development of clinically viable neural interfaces. ECoG electrodes are generally placed below the dura mater (subdural) but can also be placed on top of the dura (epidural). In deciding which of these modalities best suits long-term implants, complications and signal quality are important considerations. Conceptually, epidural placement may present a lower risk of complications as the dura is left intact but also a lower signal quality due to the dura acting as a signal attenuator. The extent to which complications and signal quality are affected by the dura, however, has been a matter of debate. To improve our understanding of the effects of the dura on complications and signal quality, we conducted a literature review. We inventorized the effect of the dura on signal quality, decodability and longevity of acute and chronic ECoG recordings in humans and non-human primates. Also, we compared the incidence and nature of serious complications in studies that employed epidural and subdural ECoG. Overall, we found that, even though epidural recordings exhibit attenuated signal amplitude over subdural recordings, particularly for high-density grids, the decodability of epidural recorded signals does not seem to be markedly affected. Additionally, we found that the nature of serious complications was comparable between epidural and subdural recordings. These results indicate that both epidural and subdural ECoG may be suited for long-term neural signal recordings, at least for current generations of clinical and high-density ECoG grids.
Collapse
Affiliation(s)
- Mariana P Branco
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Simon H Geukes
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Erik J Aarnoutse
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
8
|
Belloir T, Montalgo-Vargo S, Ahmed Z, Griggs DJ, Fisher S, Brown T, Chamanzar M, Yazdan-Shahmorad A. Large-scale multimodal surface neural interfaces for primates. iScience 2023; 26:105866. [PMID: 36647381 PMCID: PMC9840154 DOI: 10.1016/j.isci.2022.105866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Deciphering the function of neural circuits can help with the understanding of brain function and treating neurological disorders. Progress toward this goal relies on the development of chronically stable neural interfaces capable of recording and modulating neural circuits with high spatial and temporal precision across large areas of the brain. Advanced innovations in designing high-density neural interfaces for small animal models have enabled breakthrough discoveries in neuroscience research. Developing similar neurotechnology for larger animal models such as nonhuman primates (NHPs) is critical to gain significant insights for translation to humans, yet still it remains elusive due to the challenges in design, fabrication, and system-level integration of such devices. This review focuses on implantable surface neural interfaces with electrical and optical functionalities with emphasis on the required technological features to realize scalable multimodal and chronically stable implants to address the unique challenges associated with nonhuman primate studies.
Collapse
Affiliation(s)
- Tiphaine Belloir
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Sergio Montalgo-Vargo
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Zabir Ahmed
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Devon J. Griggs
- Washington National Primate Research Center, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Shawn Fisher
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Timothy Brown
- Department of Bioethics & Humanities, University of Washington, Seattle, WA, USA
| | - Maysamreza Chamanzar
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Carnegie Mellon Neuroscience Institute, Pittsburgh, PA, USA
| | - Azadeh Yazdan-Shahmorad
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
9
|
Fekete Z, Zátonyi A, Kaszás A, Madarász M, Slézia A. Transparent neural interfaces: challenges and solutions of microengineered multimodal implants designed to measure intact neuronal populations using high-resolution electrophysiology and microscopy simultaneously. MICROSYSTEMS & NANOENGINEERING 2023; 9:66. [PMID: 37213820 PMCID: PMC10195795 DOI: 10.1038/s41378-023-00519-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 02/03/2023] [Accepted: 03/01/2023] [Indexed: 05/23/2023]
Abstract
The aim of this review is to present a comprehensive overview of the feasibility of using transparent neural interfaces in multimodal in vivo experiments on the central nervous system. Multimodal electrophysiological and neuroimaging approaches hold great potential for revealing the anatomical and functional connectivity of neuronal ensembles in the intact brain. Multimodal approaches are less time-consuming and require fewer experimental animals as researchers obtain denser, complex data during the combined experiments. Creating devices that provide high-resolution, artifact-free neural recordings while facilitating the interrogation or stimulation of underlying anatomical features is currently one of the greatest challenges in the field of neuroengineering. There are numerous articles highlighting the trade-offs between the design and development of transparent neural interfaces; however, a comprehensive overview of the efforts in material science and technology has not been reported. Our present work fills this gap in knowledge by introducing the latest micro- and nanoengineered solutions for fabricating substrate and conductive components. Here, the limitations and improvements in electrical, optical, and mechanical properties, the stability and longevity of the integrated features, and biocompatibility during in vivo use are discussed.
Collapse
Affiliation(s)
- Z. Fekete
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
- Institute of Cognitive Neuroscience & Psychology, Eotvos Lorand Research Network, Budapest, Hungary
| | - A. Zátonyi
- Research Group for Implantable Microsystems, Faculty of Information Technology & Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - A. Kaszás
- Mines Saint-Etienne, Centre CMP, Département BEL, F - 13541 Gardanne, France
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005 Marseille, France
| | - M. Madarász
- János Szentágothai PhD Program of Semmelweis University, Budapest, Hungary
- BrainVision Center, Budapest, Hungary
| | - A. Slézia
- Institut de Neurosciences de la Timone, CNRS UMR 7289 & Aix-Marseille Université, 13005 Marseille, France
| |
Collapse
|
10
|
Yeon C, Im JM, Kim M, Kim YR, Chung E. Cranial and Spinal Window Preparation for in vivo Optical Neuroimaging in Rodents and Related Experimental Techniques. Exp Neurobiol 2022; 31:131-146. [PMID: 35786637 PMCID: PMC9272117 DOI: 10.5607/en22015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022] Open
Abstract
Optical neuroimaging provides an effective neuroscience tool for multi-scale investigation of the neural structures and functions, ranging from molecular, cellular activities to the inter-regional connectivity assessment. Amongst experimental preparations, the implementation of an artificial window to the central nervous system (CNS) is primarily required for optical visualization of the CNS and associated brain activities through the opaque skin and bone. Either thinning down or removing portions of the skull or spine is necessary for unobstructed long-term in vivo observations, for which types of the cranial and spinal window and applied materials vary depending on the study objectives. As diversely useful, a window can be designed to accommodate other experimental methods such as electrophysiology or optogenetics. Moreover, auxiliary apparatuses would allow the recording in synchrony with behavior of large-scale brain connectivity signals across the CNS, such as olfactory bulb, cerebral cortex, cerebellum, and spinal cord. Such advancements in the cranial and spinal window have resulted in a paradigm shift in neuroscience, enabling in vivo investigation of the brain function and dysfunction at the microscopic, cellular level. This Review addresses the types and classifications of windows used in optical neuroimaging while describing how to perform in vivo studies using rodent models in combination with other experimental modalities during behavioral tests. The cranial and spinal window has enabled longitudinal examination of evolving neural mechanisms via in situ visualization of the brain. We expect transformable and multi-functional cranial and spinal windows to become commonplace in neuroscience laboratories, further facilitating advances in optical neuroimaging systems.
Collapse
Affiliation(s)
- Chanmi Yeon
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Jeong Myo Im
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Minsung Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| | - Young Ro Kim
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA.,Department of Radiology, Harvard Medical School, Boston, MA 02115, USA
| | - Euiheon Chung
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, Korea.,Research Center for Photon Science Technology, Gwangju Institute of Science and Technology, Gwangju 61005, Korea
| |
Collapse
|
11
|
Sethia M, Sahin M. The size of via holes influence the amplitude and selectivity of neural signals in Micro-ECoG arrays. BMC Biomed Eng 2022; 4:3. [PMID: 35313997 PMCID: PMC8935835 DOI: 10.1186/s42490-022-00060-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/07/2022] [Indexed: 11/11/2022] Open
Abstract
Background Electrocorticography (ECoG) arrays are commonly used to record the brain activity both in animal and human subjects. There is a lack of guidelines in the literature as to how the array geometry, particularly the via holes in the substrate, affects the recorded signals. A finite element (FE) model was developed to simulate the electric field generated by neurons located at different depths in the rat brain cortex and a micro ECoG array (μECoG) was placed on the pia surface for recording the neural signal. The array design chosen was a typical array of 8 × 8 circular (100 μm in diam.) contacts with 500 μm pitch. The size of the via holes between the recording contacts was varied to see the effect. Results The results showed that recorded signal amplitudes were reduced if the substrate was smaller than about four times the depth of the neuron in the gray matter. The signal amplitude profiles had dips around the via holes and the amplitudes were also lower at the contact sites as compared to the design without the holes; an effect that increased with the hole size. Another noteworthy result is that the spatial selectivity of the multi-contact recordings could be improved or reduced by the selection of the via hole sizes, and the effect depended on the distance between the neuron pair targeted for selective recording and its depth. Conclusions The results suggest that the via-hole size clearly affects the recorded neural signal amplitudes and it can be leveraged as a parameter to reduce the inter-channel correlation and thus maximize the information content of neural signals with μECoG arrays.
Collapse
|
12
|
Schweigmann M, Caudal LC, Stopper G, Scheller A, Koch KP, Kirchhoff F. Versatile Surface Electrodes for Combined Electrophysiology and Two-Photon Imaging of the Mouse Central Nervous System. Front Cell Neurosci 2021; 15:720675. [PMID: 34447299 PMCID: PMC8383317 DOI: 10.3389/fncel.2021.720675] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Understanding and modulating CNS function in physiological as well as pathophysiological contexts remains a significant ambition in research and clinical applications. The investigation of the multifaceted CNS cell types including their interactions and contributions to neural function requires a combination of the state-of-the-art in vivo electrophysiology and imaging techniques. We developed a novel type of liquid crystal polymer (LCP) surface micro-electrode manufactured in three customized designs with up to 16 channels for recording and stimulation of brain activity. All designs include spare central spaces for simultaneous 2P-imaging. Nanoporous platinum-plated contact sites ensure a low impedance and high current transfer. The epidural implantation of the LCP micro-electrodes could be combined with standard cranial window surgery. The epidurally positioned electrodes did not only display long-term biocompatibility, but we also observed an additional stabilization of the underlying CNS tissue. We demonstrate the electrode’s versatility in combination with in vivo 2P-imaging by monitoring anesthesia-awake cycles of transgenic mice with GCaMP3 expression in neurons or astrocytes. Cortical stimulation and simultaneous 2P Ca2+ imaging in neurons or astrocytes highlighted the astrocytes’ integrative character in neuronal activity processing. Furthermore, we confirmed that spontaneous astroglial Ca2+ signals are dampened under anesthesia, while evoked signals in neurons and astrocytes showed stronger dependency on stimulation intensity rather than on various levels of anesthesia. Finally, we show that the electrodes provide recordings of the electrocorticogram (ECoG) with a high signal-to noise ratio and spatial signal differences which help to decipher brain activity states during experimental procedures. Summarizing, the novel LCP surface micro-electrode is a versatile, convenient, and reliable tool to investigate brain function in vivo.
Collapse
Affiliation(s)
- Michael Schweigmann
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany.,Department of Electrical Engineering, Trier University of Applied Sciences, Trier, Germany
| | - Laura C Caudal
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Gebhard Stopper
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Anja Scheller
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| | - Klaus P Koch
- Department of Electrical Engineering, Trier University of Applied Sciences, Trier, Germany
| | - Frank Kirchhoff
- Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Homburg, Germany
| |
Collapse
|
13
|
Ramezani Z, Seo KJ, Fang H. Hybrid Electrical and Optical Neural Interfaces. JOURNAL OF MICROMECHANICS AND MICROENGINEERING : STRUCTURES, DEVICES, AND SYSTEMS 2021; 31:044002. [PMID: 34177136 PMCID: PMC8232899 DOI: 10.1088/1361-6439/abeb30] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Neural interfaces bridge the nervous system and the outside world by recording and stimulating neurons. Combining electrical and optical modalities in a single, hybrid neural interface system could lead to complementary and powerful new ways to explore the brain. It has gained robust and exciting momentum recently in neuroscience and neural engineering research. Here, we review developments in the past several years aiming to achieve such hybrid electrical and optical microsystem platforms. Specifically, we cover three major categories of technological advances: transparent neuroelectrodes, optical neural fibers with electrodes, and neural probes/grids integrating electrodes and microscale light-emitting diodes. We discuss examples of these probes tailored to combine electrophysiological recording with optical imaging or optical neural stimulation of the brain and possible directions of future innovation.
Collapse
Affiliation(s)
| | | | - Hui Fang
- Department of Electrical and Computer Engineering
- Department of Mechanical and Industrial Engineering
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Yan T, Kameda S, Suzuki K, Kaiju T, Inoue M, Suzuki T, Hirata M. Minimal Tissue Reaction after Chronic Subdural Electrode Implantation for Fully Implantable Brain-Machine Interfaces. SENSORS 2020; 21:s21010178. [PMID: 33383864 PMCID: PMC7795822 DOI: 10.3390/s21010178] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 12/12/2020] [Accepted: 12/25/2020] [Indexed: 11/16/2022]
Abstract
There is a growing interest in the use of electrocorticographic (ECoG) signals in brain–machine interfaces (BMIs). However, there is still a lack of studies involving the long-term evaluation of the tissue response related to electrode implantation. Here, we investigated biocompatibility, including chronic tissue response to subdural electrodes and a fully implantable wireless BMI device. We implanted a half-sized fully implantable device with subdural electrodes in six beagles for 6 months. Histological analysis of the surrounding tissues, including the dural membrane and cortices, was performed to evaluate the effects of chronic implantation. Our results showed no adverse events, including infectious signs, throughout the 6-month implantation period. Thick connective tissue proliferation was found in the surrounding tissues in the epidural space and subcutaneous space. Quantitative measures of subdural reactive tissues showed minimal encapsulation between the electrodes and the underlying cortex. Immunohistochemical evaluation showed no significant difference in the cell densities of neurons, astrocytes, and microglia between the implanted sites and contralateral sites. In conclusion, we established a beagle model to evaluate cortical implantable devices. We confirmed that a fully implantable wireless device and subdural electrodes could be stably maintained with sufficient biocompatibility in vivo.
Collapse
Affiliation(s)
- Tianfang Yan
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (T.Y.); (S.K.)
| | - Seiji Kameda
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (T.Y.); (S.K.)
- Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| | - Katsuyoshi Suzuki
- Ogino Memorial Laboratory, Nihon Kohden Corporation, Tokorozawa 359-0037, Japan;
| | - Taro Kaiju
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita 565-0871, Japan; (T.K.); (M.I.); (T.S.)
| | - Masato Inoue
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita 565-0871, Japan; (T.K.); (M.I.); (T.S.)
| | - Takafumi Suzuki
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Suita 565-0871, Japan; (T.K.); (M.I.); (T.S.)
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Suita 565-0871, Japan; (T.Y.); (S.K.)
- Global Center for Medical Engineering and Informatics, Osaka University, Suita 565-0871, Japan
- Department of Neurosurgery, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
- Correspondence:
| |
Collapse
|
15
|
Wang Y, Liang G, Liu F, Chen Q, Xi L. A Long-Term Cranial Window for High-Resolution Photoacoustic Imaging. IEEE Trans Biomed Eng 2020; 68:706-711. [PMID: 32746074 DOI: 10.1109/tbme.2020.3012663] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE In this study, we introduce the design, fabrication, and assessment of an optically and acoustically transparent, long-term and biocompatible cranial window for high-resolution photoacoustic microscopy of rat cerebral cortex. METHODS The cranial window is fabricated with a polydimethylsiloxane (PDMS) layer bonded with a glass ring (outer diameter: 8 mm, inner diameter: 5 mm) via air plasma cleaning. A detailed comparison of image quality was performed with the implantation of cranial windows using different thicknesses of the PDMS film, and the cover glass. In addition, long-term in vivo monitoring of rat cerebral cortex was conducted to evaluate the stability of the cranial window. Furthermore, we successfully applied this window for longitudinal photoacoustic imaging in freely moving rats. RESULTS Based on a detailed evaluation, the cranial window fabricated with PDMS has a better imaging quality compared with a conventional cover-glass-based cranial window. The optimal film thickness is 50 μm considering the elastic deforming capability of PDMS. The cranial window maintained good quality for 21 and 12 days in anesthetized and free moving rats, respectively. CONCLUSION The cranial window has a good imaging quality for both anesthetized and behaving rats, enabling long-term, high-resolution, and steady photoacoustic imaging of cerebral vasculatures. SIGNIFICANCE Based on the studies of both anesthetized and behaving rats, the proposed cranial window has the potential to be used in the longitudinal in vivo study of chronic brain diseases in freely moving rodents.
Collapse
|
16
|
Flexible Electrocorticography Electrode Array for Epileptiform Electrical Activity Recording under Glutamate and GABA Modulation on the Primary Somatosensory Cortex of Rats. MICROMACHINES 2020; 11:mi11080732. [PMID: 32751055 PMCID: PMC7465452 DOI: 10.3390/mi11080732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 12/11/2022]
Abstract
Epilepsy is a common neurological disorder. There is still a lack of methods to accurately detect cortical activity and locate lesions. In this work, a flexible electrocorticography (ECoG) electrode array based on polydimethylsiloxane (PDMS)-parylene was fabricated to detect epileptiform activity under glutamate (Glu) and gamma-aminobutyric acid (GABA) modulation on primary somatosensory cortex of rats. The electrode with a thickness of 20 μm has good flexibility to establish reliable contact with the cortex. Fourteen recording sites with a diameter of 60 μm are modified by electroplating platinum black nanoparticles, which effectively improve the performance with lower impedance, obtaining a sensitive sensing interface. The electrode enables real-time capturing changes in neural activity under drug modulation. Under Glu modulation, neuronal populations showed abnormal excitability, manifested as hypsarrhythmia rhythm and continuous or periodic spike wave epileptiform activity, with power increasing significantly. Under GABA modulation, the excitement was inhibited, with amplitude and power reduced to normal. The flexible ECoG electrode array could monitor cortical activity, providing us with an effective tool for further studying epilepsy and locating lesions.
Collapse
|
17
|
Brosch M, Deckert M, Rathi S, Takagaki K, Weidner T, Ohl FW, Schmidt B, Lippert MT. An optically transparent multi-electrode array for combined electrophysiology and optophysiology at the mesoscopic scale. J Neural Eng 2020; 17:046014. [PMID: 32705997 DOI: 10.1088/1741-2552/aba1a4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE A number of tissue penetrating opto-electrodes to simultaneously record and optogenetically influence brain activity have been developed. For experiments at the surface of the brain, such as electrocorticogram (ECoG) recordings and surface optogenetics, fewer devices have been described and no device has found widespread adoption for neuroscientific experiments. One issue slowing adoption is the complexity and fragility of existing devices, typically based on transparent electrode materials like graphene and indium-tin oxide (ITO). We focused here on improving existing processes based on metal traces and polyimide (PI), which produce more robust and cost-effective devices, to develop a multi-electrode array for optophysiology. APPROACH The most widely used substrate material for surface electrodes, PI, has seen little use for optophysiologicalμECoG/ECoG arrays. This is due to its lack of transparency at optogenetically relevant short wavelengths. Here we use very thin layers of PI in combination with chrome-gold-platinum electrodes to achieve the necessary substrate transparency and high mechanical flexibility in a device that still rejects light artifacts well. MAIN RESULTS The manufactured surface arrays have a thickness of only 6.5 µm, resulting in 80% transparency for blue light. We demonstrate immunity against opto-electric artifacts, long term stability and biocompatibility as well as suitability for optical voltage imaging. The biocompatible arrays are capable of recording stable ECoGs over months without any measurable degradation and can be used to map the tonotopic organization of the curved rodent auditory cortex. SIGNIFICANCE Our novel probes combine proven materials and processing steps to create optically near-transparent electrode arrays with superior longevity. In contrast to previous opto-electrodes, our probes are simple to manufacture, robust, offer long-term stability, and are a practical engineering solution for optophysiological experiments not requiring transparency of the electrode sites themselves.
Collapse
Affiliation(s)
- Marcel Brosch
- Systems Physiology of Learning, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Taccola G, Barber S, Horner PJ, Bazo HAC, Sayenko D. Complications of epidural spinal stimulation: lessons from the past and alternatives for the future. Spinal Cord 2020; 58:1049-1059. [DOI: 10.1038/s41393-020-0505-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/04/2020] [Accepted: 06/09/2020] [Indexed: 02/06/2023]
|
19
|
Kim H, Dingle AM, Ness JP, Baek DH, Bong J, Lee IK, Shulzhenko NO, Zeng W, Israel JS, Pisaniello JA, Millevolte AX, Park DW, Suminski AJ, Jung YH, Williams JC, Poore SO, Ma Z. Cuff and sieve electrode (CASE): The combination of neural electrodes for bi-directional peripheral nerve interfacing. J Neurosci Methods 2020; 336:108602. [DOI: 10.1016/j.jneumeth.2020.108602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 10/25/2022]
|
20
|
Zátonyi A, Madarász M, Szabó Á, Lőrincz T, Hodován R, Rózsa B, Fekete Z. Transparent, low-autofluorescence microECoG device for simultaneous Ca2+imaging and cortical electrophysiologyin vivo. J Neural Eng 2020; 17:016062. [DOI: 10.1088/1741-2552/ab603f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
21
|
Welle CG, Gao YR, Ye M, Lozzi A, Boretsky A, Abliz E, Hammer DX. Longitudinal neural and vascular structural dynamics produced by chronic microelectrode implantation. Biomaterials 2020; 238:119831. [PMID: 32045783 DOI: 10.1016/j.biomaterials.2020.119831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 01/06/2020] [Accepted: 01/25/2020] [Indexed: 12/16/2022]
Abstract
Implanted microelectrode arrays sense local neuronal activity, signals which are used as control commands for brain computer interface (BCI) technology. Patients with tetraplegia have used BCI technology to achieve an extraordinary degree of interaction with their local environment. However, current microelectrode arrays for BCIs lose the ability to record high-quality neural signals in the months-to-years following implantation. Very little is known regarding the dynamic response of neurons and vasculature in the months following electrode array implantation, but loss of structural integrity near the electrode may contribute to the degradation of recording signals. Here, we use in-vivo dual-modality imaging to characterize neuronal and vasculature structures in the same animal for 3 months following electrode insertion. We find ongoing neuronal atrophy, but relative vascular stability, in close proximity to the electrode, along with evidence suggesting links between rare, abrupt hypoxic events and neuronal process atrophy.
Collapse
Affiliation(s)
- Cristin G Welle
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA; Departments of Neurosurgery and Physiology & Biophysics, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA.
| | - Yu-Rong Gao
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA; Department of Neuroscience and Multiphoton Imaging Core Facility, University of Rochester Medical Center, Rochester, NY, USA
| | - Meijun Ye
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA
| | - Andrea Lozzi
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA; Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Adam Boretsky
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA; Engility Corporation, San Antonio, TX, USA
| | - Erkinay Abliz
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA
| | - Daniel X Hammer
- Division of Biomedical Physics, Office of Science and Engineering Laboratories, Center for Radiological Devices, Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
22
|
Bent B, Williams AJ, Bolick R, Chiang CH, Trumpis M, Viventi J. 3D Printed Cranial Window System for Chronic μECoG Recording. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2019; 2018:4591-4594. [PMID: 30441374 DOI: 10.1109/embc.2018.8513117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chronic studies of flexible μECoG electrodes and the electrode-brain interface have been limited by the inability to assess tissue response over time. The electrophysiological system presented here combines epidural microelectrocorticographic (μECoG) recording capabilities with the ability to visualize tissue response over time through light microscopy and optical coherence tomography (OCT). With the ability to interchange both the electrode and the electronics, and a flushing port for injection of flushing saline and/or drugs, this 3D printed system has future applications in chronic electrophysiology, optogenetics, and advanced imaging methods.
Collapse
|
23
|
Brodnick SK, Ness JP, Richner TJ, Thongpang S, Novello J, Hayat M, Cheng KP, Krugner-Higby L, Suminski AJ, Ludwig KA, Williams JC. μECoG Recordings Through a Thinned Skull. Front Neurosci 2019; 13:1017. [PMID: 31632232 PMCID: PMC6779785 DOI: 10.3389/fnins.2019.01017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/06/2019] [Indexed: 12/12/2022] Open
Abstract
The studies described in this paper for the first time characterize the acute and chronic performance of optically transparent thin-film micro-electrocorticography (μECoG) grids implanted on a thinned skull as both an electrophysiological complement to existing thinned skull preparation for optical recordings/manipulations, and a less invasive alternative to epidural or subdurally placed μECoG arrays. In a longitudinal chronic study, μECoG grids placed on top of a thinned skull maintain impedances comparable to epidurally placed μECoG grids that are stable for periods of at least 1 month. Optogenetic activation of cortex is also reliably demonstrated through the optically transparent μECoG grids acutely placed on the thinned skull. Finally, spatially distinct electrophysiological recordings were evident on μECoG electrodes placed on a thinned skull separated by 500–750 μm, as assessed by stimulation evoked responses using optogenetic activation of cortex as well as invasive and epidermal stimulation of the sciatic and median nerve at chronic time points. Neural signals were collected through a thinned skull in mice and rats, demonstrating potential utility in neuroscience research applications such as in vivo imaging and optogenetics.
Collapse
Affiliation(s)
- Sarah K Brodnick
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Jared P Ness
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas J Richner
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Sanitta Thongpang
- Department of Biomedical Engineering, Mahidol University, Salaya, Thailand
| | - Joseph Novello
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Mohammed Hayat
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Kevin P Cheng
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States
| | - Lisa Krugner-Higby
- Department of Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| | - Aaron J Suminski
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Kip A Ludwig
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States
| | - Justin C Williams
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, United States.,Department of Neurological Surgery, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
24
|
Gray ME, Meehan J, Blair EO, Ward C, Langdon SP, Morrison LR, Marland JRK, Tsiamis A, Kunkler IH, Murray A, Argyle D. Biocompatibility of common implantable sensor materials in a tumor xenograft model. J Biomed Mater Res B Appl Biomater 2019; 107:1620-1633. [PMID: 30367816 PMCID: PMC6767110 DOI: 10.1002/jbm.b.34254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/30/2018] [Accepted: 09/09/2018] [Indexed: 12/22/2022]
Abstract
Real-time monitoring of tumor microenvironment parameters using an implanted biosensor could provide valuable information on the dynamic nature of a tumor's biology and its response to treatment. However, following implantation biosensors may lose functionality due to biofouling caused by the foreign body response (FBR). This study developed a novel tumor xenograft model to evaluate the potential of six biomaterials (silicon dioxide, silicon nitride, Parylene-C, Nafion, biocompatible EPOTEK epoxy resin, and platinum) to trigger a FBR when implanted into a solid tumor. Biomaterials were chosen based on their use in the construction of a novel biosensor, designed to measure spatial and temporal changes in intra-tumoral O2 , and pH. None of the biomaterials had any detrimental effect on tumor growth or body weight of the murine host. Immunohistochemistry showed no significant changes in tumor necrosis, hypoxic cell number, proliferation, apoptosis, immune cell infiltration, or collagen deposition. The absence of biofouling supports the use of these materials in biosensors; future investigations in preclinical cancer models are required, with a view to eventual applications in humans. To our knowledge this is the first documented investigation of the effects of modern biomaterials, used in the production of implantable sensors, on tumor tissue after implantation. © 2018 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials published by Wiley Periodicals, Inc. J Biomed Mater Res Part B, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 1620-1633, 2019.
Collapse
Affiliation(s)
- Mark E. Gray
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - James Meehan
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
- Institute of Sensors, Signals and Systems, School of Engineering and Physical SciencesHeriot‐Watt UniversityEdinburghEH14 4ASUK
| | - Ewen O. Blair
- School of Engineering, Faraday BuildingEdinburghEH9 3JLUK
| | - Carol Ward
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - Simon P. Langdon
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - Linda R. Morrison
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
| | | | | | - Ian H. Kunkler
- Cancer Research UK Edinburgh Centre and Division of Pathology Laboratories, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghEH4 2XUUK
| | - Alan Murray
- School of Engineering, Faraday BuildingEdinburghEH9 3JLUK
| | - David Argyle
- The Royal (Dick) School of Veterinary Studies and Roslin InstituteUniversity of EdinburghEdinburghEH25 9RGUK
| |
Collapse
|
25
|
Koletar MM, Dorr A, Brown ME, McLaurin J, Stefanovic B. Refinement of a chronic cranial window implant in the rat for longitudinal in vivo two-photon fluorescence microscopy of neurovascular function. Sci Rep 2019; 9:5499. [PMID: 30940849 PMCID: PMC6445076 DOI: 10.1038/s41598-019-41966-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
Longitudinal studies using two–photon fluorescence microscopy (TPFM) are critical for facilitating cellular scale imaging of brain morphology and function. Studies have been conducted in the mouse due to their relatively higher transparency and long term patency of a chronic cranial window. Increasing availability of transgenic rat models, and the range of established behavioural paradigms, necessitates development of a chronic preparation for the rat. However, surgical craniotomies in the rat present challenges due to craniotomy closure by wound healing and diminished image quality due to inflammation, restricting most rat TPFM experiments to acute preparations. Long-term patency is enabled by employing sterile surgical technique, minimization of trauma with precise tissue handling during surgery, judicious selection of the size and placement of the craniotomy, diligent monitoring of animal physiology and support throughout the surgery, and modification of the home cage for long-term preservation of cranial implants. Immunohistochemical analysis employing the glial fibrillary acidic protein (GFAP) and ionized calcium-binding adaptor molecule-1 (Iba-1) showed activation and recruitment of astrocytes and microglia/macrophages directly inferior to the cranial window at one week after surgery, with more diffuse response in deeper cortical layers at two weeks, and amelioration around four weeks post craniotomy. TPFM was conducted up to 14 weeks post craniotomy, reaching cortical depths of 400 µm to 600 µm at most time-points. The rate of signal decay with increasing depth and maximum cortical depth attained had greater variation between individual rats at a single time-point than within a rat across time.
Collapse
Affiliation(s)
- Margaret M Koletar
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada.
| | - Adrienne Dorr
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - Mary E Brown
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| | - JoAnne McLaurin
- Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Circle, Toronto, Ontario, M5S 1A1, Canada
| | - Bojana Stefanovic
- Department of Medical Biophysics, University of Toronto, 610 University Avenue, Toronto, Ontario, M5G 2M9, Canada.,Sunnybrook Research Institute, 2075 Bayview Avenue, Toronto, Ontario, M4N 3M5, Canada
| |
Collapse
|
26
|
Progress in the Field of Micro-Electrocorticography. MICROMACHINES 2019; 10:mi10010062. [PMID: 30658503 PMCID: PMC6356841 DOI: 10.3390/mi10010062] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/10/2019] [Accepted: 01/15/2019] [Indexed: 12/30/2022]
Abstract
Since the 1940s electrocorticography (ECoG) devices and, more recently, in the last decade, micro-electrocorticography (µECoG) cortical electrode arrays were used for a wide set of experimental and clinical applications, such as epilepsy localization and brain⁻computer interface (BCI) technologies. Miniaturized implantable µECoG devices have the advantage of providing greater-density neural signal acquisition and stimulation capabilities in a minimally invasive fashion. An increased spatial resolution of the µECoG array will be useful for greater specificity diagnosis and treatment of neuronal diseases and the advancement of basic neuroscience and BCI research. In this review, recent achievements of ECoG and µECoG are discussed. The electrode configurations and varying material choices used to design µECoG arrays are discussed, including advantages and disadvantages of µECoG technology compared to electroencephalography (EEG), ECoG, and intracortical electrode arrays. Electrode materials that are the primary focus include platinum, iridium oxide, poly(3,4-ethylenedioxythiophene) (PEDOT), indium tin oxide (ITO), and graphene. We discuss the biological immune response to µECoG devices compared to other electrode array types, the role of µECoG in clinical pathology, and brain⁻computer interface technology. The information presented in this review will be helpful to understand the current status, organize available knowledge, and guide future clinical and research applications of µECoG technologies.
Collapse
|
27
|
Eles JR, Vazquez AL, Kozai TDY, Cui XT. Meningeal inflammatory response and fibrous tissue remodeling around intracortical implants: An in vivo two-photon imaging study. Biomaterials 2018; 195:111-123. [PMID: 30634095 DOI: 10.1016/j.biomaterials.2018.12.031] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/15/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
Abstract
Meningeal inflammation and encapsulation of neural electrode arrays is a leading cause of device failure, yet little is known about how it develops over time or what triggers it. This work characterizes the dynamic changes of meningeal inflammatory cells and collagen-I in order to understand the meningeal tissue response to neural electrode implantation. We use in vivo two-photon microscopy of CX3CR1-GFP mice over the first month after electrode implantation to quantify changes in inflammatory cell behavior as well as meningeal collagen-I remodeling. We define a migratory window during the first day after electrode implantation hallmarked by robust inflammatory cell migration along electrodes in the meninges as well as cell trafficking through meningeal venules. This migratory window attenuates by 2 days post-implant, but over the next month, the meningeal collagen-I remodels to conform to the surface of the electrode and thickens. This work shows that there are distinct time courses for initial meningeal inflammatory cell infiltration and meningeal collagen-I remodeling. This may indicate a therapeutic window early after implantation for modulation and mitigation of meningeal inflammation.
Collapse
Affiliation(s)
- J R Eles
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States
| | - A L Vazquez
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; Radiology, University of Pittsburgh, United States
| | - T D Y Kozai
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States; NeuroTech Center of the University of Pittsburgh Brain Institute, United States; Center for Neuroscience, University of Pittsburgh, United States
| | - X T Cui
- Bioengineering, University of Pittsburgh, United States; Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, United States.
| |
Collapse
|
28
|
Macedo LJA, Iost RM, Hassan A, Balasubramanian K, Crespilho FN. Bioelectronics and Interfaces Using Monolayer Graphene. ChemElectroChem 2018. [DOI: 10.1002/celc.201800934] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lucyano J. A. Macedo
- São Carlos Institute of Chemistry; University of São Paulo; São Carlos SP 13560-970 Brazil
| | - Rodrigo M. Iost
- Department of Chemistry School of Analytical Sciences Adlershof (SALSA) and IRIS Adlershof; Humboldt-Universität zu Berlin; Berlin 10099 Germany
| | - Ayaz Hassan
- São Carlos Institute of Chemistry; University of São Paulo; São Carlos SP 13560-970 Brazil
| | - Kannan Balasubramanian
- Department of Chemistry School of Analytical Sciences Adlershof (SALSA) and IRIS Adlershof; Humboldt-Universität zu Berlin; Berlin 10099 Germany
| | - Frank N. Crespilho
- São Carlos Institute of Chemistry; University of São Paulo; São Carlos SP 13560-970 Brazil
| |
Collapse
|
29
|
Chronically Implanted Intracranial Electrodes: Tissue Reaction and Electrical Changes. MICROMACHINES 2018; 9:mi9090430. [PMID: 30424363 PMCID: PMC6187588 DOI: 10.3390/mi9090430] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/13/2018] [Accepted: 08/22/2018] [Indexed: 12/28/2022]
Abstract
The brain-electrode interface is arguably one of the most important areas of study in neuroscience today. A stronger foundation in this topic will allow us to probe the architecture of the brain in unprecedented functional detail and augment our ability to intervene in disease states. Over many years, significant progress has been made in this field, but some obstacles have remained elusive—notably preventing glial encapsulation and electrode degradation. In this review, we discuss the tissue response to electrode implantation on acute and chronic timescales, the electrical changes that occur in electrode systems over time, and strategies that are being investigated in order to minimize the tissue response to implantation and maximize functional electrode longevity. We also highlight the current and future clinical applications and relevance of electrode technology.
Collapse
|
30
|
Gerboni G, John SE, Rind GS, Ronayne SM, May CN, Oxley TJ, Grayden DB, Opie NL, Wong YT. Visual evoked potentials determine chronic signal quality in a stent-electrode endovascular neural interface. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aad714] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
31
|
Matsushita K, Hirata M, Suzuki T, Ando H, Yoshida T, Ota Y, Sato F, Morris S, Sugata H, Goto T, Yanagisawa T, Yoshimine T. A Fully Implantable Wireless ECoG 128-Channel Recording Device for Human Brain-Machine Interfaces: W-HERBS. Front Neurosci 2018; 12:511. [PMID: 30131666 PMCID: PMC6090147 DOI: 10.3389/fnins.2018.00511] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/05/2018] [Indexed: 01/11/2023] Open
Abstract
Brain-machine interfaces (BMIs) are promising devices that can be used as neuroprostheses by severely disabled individuals. Brain surface electroencephalograms (electrocorticograms, ECoGs) can provide input signals that can then be decoded to enable communication with others and to control intelligent prostheses and home electronics. However, conventional systems use wired ECoG recordings. Therefore, the development of wireless systems for clinical ECoG BMIs is a major goal in the field. We developed a fully implantable ECoG signal recording device for human ECoG BMI, i.e., a wireless human ECoG-based real-time BMI system (W-HERBS). In this system, three-dimensional (3D) high-density subdural multiple electrodes are fitted to the brain surface and ECoG measurement units record 128-channel (ch) ECoG signals at a sampling rate of 1 kHz. The units transfer data to the data and power management unit implanted subcutaneously in the abdomen through a subcutaneous stretchable spiral cable. The data and power management unit then communicates with a workstation outside the body and wirelessly receives 400 mW of power from an external wireless transmitter. The workstation records and analyzes the received data in the frequency domain and controls external devices based on analyses. We investigated the performance of the proposed system. We were able to use W-HERBS to detect sine waves with a 4.8-μV amplitude and a 60-200-Hz bandwidth from the ECoG BMIs. W-HERBS is the first fully implantable ECoG-based BMI system with more than 100 ch. It is capable of recording 128-ch subdural ECoG signals with sufficient input-referred noise (3 μVrms) and with an acceptable time delay (250 ms). The system contributes to the clinical application of high-performance BMIs and to experimental brain research.
Collapse
Affiliation(s)
- Kojiro Matsushita
- Department of Neurosurgery, Osaka University Medical School, Osaka, Japan
- Department of Mechanical Engineering, Gifu University, Gifu, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Medical School, Osaka, Japan
- Endowed Research Department of Clinical Neuroengineering, Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Takafumi Suzuki
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Hiroshi Ando
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
| | - Takeshi Yoshida
- Department of Semiconductor Electronics and Integration Science, Hiroshima University, Hiroshima, Japan
| | - Yuki Ota
- Department of Electrical Engineering, Graduate School of Engineering, Tohoku University, Miyagi, Japan
| | - Fumihiro Sato
- Department of Electrical Engineering, Graduate School of Engineering, Tohoku University, Miyagi, Japan
| | - Shayne Morris
- Department of Neurosurgery, Osaka University Medical School, Osaka, Japan
| | - Hisato Sugata
- Department of Neurosurgery, Osaka University Medical School, Osaka, Japan
- Faculty of Welfare and Health Science, Oita University, Oita, Japan
| | - Tetsu Goto
- Department of Neurosurgery, Osaka University Medical School, Osaka, Japan
| | - Takufumi Yanagisawa
- Department of Neurosurgery, Osaka University Medical School, Osaka, Japan
- Endowed Research Department of Clinical Neuroengineering, Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - Toshiki Yoshimine
- Department of Neurosurgery, Osaka University Medical School, Osaka, Japan
- Endowed Research Department of Clinical Neuroengineering, Global Center for Medical Engineering and Informatics, Osaka University, Osaka, Japan
| |
Collapse
|
32
|
Wellman SM, Eles JR, Ludwig KA, Seymour JP, Michelson NJ, McFadden WE, Vazquez AL, Kozai TDY. A Materials Roadmap to Functional Neural Interface Design. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1701269. [PMID: 29805350 PMCID: PMC5963731 DOI: 10.1002/adfm.201701269] [Citation(s) in RCA: 198] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Advancement in neurotechnologies for electrophysiology, neurochemical sensing, neuromodulation, and optogenetics are revolutionizing scientific understanding of the brain while enabling treatments, cures, and preventative measures for a variety of neurological disorders. The grand challenge in neural interface engineering is to seamlessly integrate the interface between neurobiology and engineered technology, to record from and modulate neurons over chronic timescales. However, the biological inflammatory response to implants, neural degeneration, and long-term material stability diminish the quality of interface overtime. Recent advances in functional materials have been aimed at engineering solutions for chronic neural interfaces. Yet, the development and deployment of neural interfaces designed from novel materials have introduced new challenges that have largely avoided being addressed. Many engineering efforts that solely focus on optimizing individual probe design parameters, such as softness or flexibility, downplay critical multi-dimensional interactions between different physical properties of the device that contribute to overall performance and biocompatibility. Moreover, the use of these new materials present substantial new difficulties that must be addressed before regulatory approval for use in human patients will be achievable. In this review, the interdependence of different electrode components are highlighted to demonstrate the current materials-based challenges facing the field of neural interface engineering.
Collapse
Affiliation(s)
- Steven M Wellman
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - James R Eles
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Kip A Ludwig
- Department of Neurologic Surgery, 200 First St. SW, Rochester, MN 55905
| | - John P Seymour
- Electrical & Computer Engineering, 1301 Beal Ave., 2227 EECS, Ann Arbor, MI 48109
| | - Nicholas J Michelson
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - William E McFadden
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Alberto L Vazquez
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| | - Takashi D Y Kozai
- Department of Bioengineering, Center for the Basis of Neural Cognition, McGowan Institute of Regenerative Medicine, NeuroTech Center, University of Pittsburgh Brain Institute, Center for Neuroscience at the University of Pittsburgh, University of Pittsburgh, 208 Center for Biotechnology, 300 Technology Dr., Pittsburgh, PA 15219, United States
| |
Collapse
|
33
|
Park DW, Ness JP, Brodnick SK, Esquibel C, Novello J, Atry F, Baek DH, Kim H, Bong J, Swanson KI, Suminski AJ, Otto KJ, Pashaie R, Williams JC, Ma Z. Electrical Neural Stimulation and Simultaneous in Vivo Monitoring with Transparent Graphene Electrode Arrays Implanted in GCaMP6f Mice. ACS NANO 2018; 12:148-157. [PMID: 29253337 DOI: 10.1021/acsnano.7b04321] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Electrical stimulation using implantable electrodes is widely used to treat various neuronal disorders such as Parkinson's disease and epilepsy and is a widely used research tool in neuroscience studies. However, to date, devices that help better understand the mechanisms of electrical stimulation in neural tissues have been limited to opaque neural electrodes. Imaging spatiotemporal neural responses to electrical stimulation with minimal artifact could allow for various studies that are impossible with existing opaque electrodes. Here, we demonstrate electrical brain stimulation and simultaneous optical monitoring of the underlying neural tissues using carbon-based, fully transparent graphene electrodes implanted in GCaMP6f mice. Fluorescence imaging of neural activity for varying electrical stimulation parameters was conducted with minimal image artifact through transparent graphene electrodes. In addition, full-field imaging of electrical stimulation verified more efficient neural activation with cathode leading stimulation compared to anode leading stimulation. We have characterized the charge density limitation of capacitive four-layer graphene electrodes as 116.07-174.10 μC/cm2 based on electrochemical impedance spectroscopy, cyclic voltammetry, failure bench testing, and in vivo testing. This study demonstrates the transparent ability of graphene neural electrodes and provides a method to further increase understanding and potentially improve therapeutic electrical stimulation in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Dong-Wook Park
- School of Electrical and Computer Engineering, University of Seoul , Seoul 130-743, South Korea
| | | | | | | | | | - Farid Atry
- Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53706, United States
| | | | | | | | - Kyle I Swanson
- Barrow Neurological Institute , Phoenix, Arizona 85013, United States
| | | | | | - Ramin Pashaie
- Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee , Milwaukee, Wisconsin 53706, United States
| | | | | |
Collapse
|
34
|
Park DW, Brodnick SK, Ness JP, Atry F, Krugner-Higby L, Sandberg A, Mikael S, Richner TJ, Novello J, Kim H, Baek DH, Bong J, Frye ST, Thongpang S, Swanson KI, Lake W, Pashaie R, Williams JC, Ma Z. Fabrication and utility of a transparent graphene neural electrode array for electrophysiology, in vivo imaging, and optogenetics. Nat Protoc 2016; 11:2201-2222. [DOI: 10.1038/nprot.2016.127] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 05/19/2016] [Indexed: 11/09/2022]
|
35
|
Degenhart AD, Eles J, Dum R, Mischel JL, Smalianchuk I, Endler B, Ashmore RC, Tyler-Kabara EC, Hatsopoulos NG, Wang W, Batista AP, Cui XT. Histological evaluation of a chronically-implanted electrocorticographic electrode grid in a non-human primate. J Neural Eng 2016; 13:046019. [PMID: 27351722 DOI: 10.1088/1741-2560/13/4/046019] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Electrocorticography (ECoG), used as a neural recording modality for brain-machine interfaces (BMIs), potentially allows for field potentials to be recorded from the surface of the cerebral cortex for long durations without suffering the host-tissue reaction to the extent that it is common with intracortical microelectrodes. Though the stability of signals obtained from chronically implanted ECoG electrodes has begun receiving attention, to date little work has characterized the effects of long-term implantation of ECoG electrodes on underlying cortical tissue. APPROACH We implanted and recorded from a high-density ECoG electrode grid subdurally over cortical motor areas of a Rhesus macaque for 666 d. MAIN RESULTS Histological analysis revealed minimal damage to the cortex underneath the implant, though the grid itself was encapsulated in collagenous tissue. We observed macrophages and foreign body giant cells at the tissue-array interface, indicative of a stereotypical foreign body response. Despite this encapsulation, cortical modulation during reaching movements was observed more than 18 months post-implantation. SIGNIFICANCE These results suggest that ECoG may provide a means by which stable chronic cortical recordings can be obtained with comparatively little tissue damage, facilitating the development of clinically viable BMI systems.
Collapse
Affiliation(s)
- Alan D Degenhart
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA. Center for the Neural Basis of Cognition, Pittsburgh, PA, USA. Systems Neuroscience Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hammer DX, Lozzi A, Boretsky A, Welle CG. Acute insertion effects of penetrating cortical microelectrodes imaged with quantitative optical coherence angiography. NEUROPHOTONICS 2016; 3:025002. [PMID: 32064297 PMCID: PMC7011942 DOI: 10.1117/1.nph.3.2.025002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/16/2016] [Indexed: 05/16/2023]
Abstract
The vascular response during cortical microelectrode insertion was measured with amplitude decorrelation-based quantitative optical coherence angiography (OCA). Four different shank-style microelectrode configurations were inserted in murine motor cortex beneath a surgically implanted window in discrete steps while OCA images were collected and processed for angiography and flowmetry. Quantitative measurements included tissue displacement (measured by optical flow), perfused capillary density, and capillary flow velocity. The primary effect of insertion was mechanical perturbation, the effects of which included tissue displacement, arteriolar rupture, and compression of a branch of the anterior cerebral artery causing a global decrease in flow. Other effects observed included local flow drop-out in the region immediately surrounding the microelectrode. The mean basal capillary network velocity for all animals was 0.23 ( ± 0.05 SD ) and 0.18 ( ± 0.07 SD ) mm / s for capillaries from 100 to 300 μ m and 300 to 500 μ m , respectively. Upon insertion, the 2-shank electrode arrays caused a decrease in capillary flow density and velocity, while the results from other configurations were not different from controls. The proximity to large vessels appears to play a larger role than the array configuration. These results can guide neurosurgeons and electrode designers to minimize trauma and ischemia during microelectrode insertion.
Collapse
Affiliation(s)
- Daniel X. Hammer
- Center for Devices and Radiological Health, Food and Drug Administration, Division of Biomedical Physics, Office of Science and Engineering Laboratories, 20903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
- Address all correspondence to: Daniel X. Hammer, E-mail:
| | - Andrea Lozzi
- Center for Devices and Radiological Health, Food and Drug Administration, Division of Biomedical Physics, Office of Science and Engineering Laboratories, 20903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Adam Boretsky
- Center for Devices and Radiological Health, Food and Drug Administration, Division of Biomedical Physics, Office of Science and Engineering Laboratories, 20903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
| | - Cristin G. Welle
- Center for Devices and Radiological Health, Food and Drug Administration, Division of Biomedical Physics, Office of Science and Engineering Laboratories, 20903 New Hampshire Avenue, Silver Spring, Maryland 20993, United States
- University of Colorado Denver, Departments of Neurosurgery and Bioengineering, 12700 East 19th Avenue, Aurora, Colorado 80045, United States
| |
Collapse
|
37
|
Insanally M, Trumpis M, Wang C, Chiang CH, Woods V, Palopoli-Trojani K, Bossi S, Froemke RC, Viventi J. A low-cost, multiplexed μECoG system for high-density recordings in freely moving rodents. J Neural Eng 2016; 13:026030-26030. [PMID: 26975462 DOI: 10.1088/1741-2560/13/2/026030] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Micro-electrocorticography (μECoG) offers a minimally invasive neural interface with high spatial resolution over large areas of cortex. However, electrode arrays with many contacts that are individually wired to external recording systems are cumbersome and make recordings in freely behaving rodents challenging. We report a novel high-density 60-electrode system for μECoG recording in freely moving rats. APPROACH Multiplexed headstages overcome the problem of wiring complexity by combining signals from many electrodes to a smaller number of connections. We have developed a low-cost, multiplexed recording system with 60 contacts at 406 μm spacing. We characterized the quality of the electrode signals using multiple metrics that tracked spatial variation, evoked-response detectability, and decoding value. Performance of the system was validated both in anesthetized animals and freely moving awake animals. MAIN RESULTS We recorded μECoG signals over the primary auditory cortex, measuring responses to acoustic stimuli across all channels. Single-trial responses had high signal-to-noise ratios (SNR) (up to 25 dB under anesthesia), and were used to rapidly measure network topography within ∼10 s by constructing all single-channel receptive fields in parallel. We characterized evoked potential amplitudes and spatial correlations across the array in the anesthetized and awake animals. Recording quality in awake animals was stable for at least 30 days. Finally, we used these responses to accurately decode auditory stimuli on single trials. SIGNIFICANCE This study introduces (1) a μECoG recording system based on practical hardware design and (2) a rigorous analytical method for characterizing the signal characteristics of μECoG electrode arrays. This methodology can be applied to evaluate the fidelity and lifetime of any μECoG electrode array. Our μECoG-based recording system is accessible and will be useful for studies of perception and decision-making in rodents, particularly over the entire time course of behavioral training and learning.
Collapse
Affiliation(s)
- Michele Insanally
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.,Center for Neural Science, New York University, New York, NY, USA
| | - Michael Trumpis
- Polytechnic Institute of New York University, Department of Electrical and Computer Engineering, New York, NY, USA.,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Charles Wang
- Polytechnic Institute of New York University, Department of Electrical and Computer Engineering, New York, NY, USA.,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Chia-Han Chiang
- Polytechnic Institute of New York University, Department of Electrical and Computer Engineering, New York, NY, USA.,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Virginia Woods
- Polytechnic Institute of New York University, Department of Electrical and Computer Engineering, New York, NY, USA.,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Silvia Bossi
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.,Robotics Laboratory, C.R. Casaccia, ENEA, V. Anguillarese, 301, 00123 S. Maria di Galeria, Roma, Italy.,BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Italy
| | - Robert C Froemke
- Skirball Institute for Biomolecular Medicine, Neuroscience Institute, Departments of Otolaryngology, Neuroscience and Physiology, New York University School of Medicine, New York, NY, USA.,Center for Neural Science, New York University, New York, NY, USA
| | - Jonathan Viventi
- Polytechnic Institute of New York University, Department of Electrical and Computer Engineering, New York, NY, USA.,Department of Biomedical Engineering, Duke University, Durham, NC, USA
| |
Collapse
|
38
|
Adewole DO, Serruya MD, Harris JP, Burrell JC, Petrov D, Chen HI, Wolf JA, Cullen DK. The Evolution of Neuroprosthetic Interfaces. Crit Rev Biomed Eng 2016; 44:123-52. [PMID: 27652455 PMCID: PMC5541680 DOI: 10.1615/critrevbiomedeng.2016017198] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The ideal neuroprosthetic interface permits high-quality neural recording and stimulation of the nervous system while reliably providing clinical benefits over chronic periods. Although current technologies have made notable strides in this direction, significant improvements must be made to better achieve these design goals and satisfy clinical needs. This article provides an overview of the state of neuroprosthetic interfaces, starting with the design and placement of these interfaces before exploring the stimulation and recording platforms yielded from contemporary research. Finally, we outline emerging research trends in an effort to explore the potential next generation of neuroprosthetic interfaces.
Collapse
Affiliation(s)
- Dayo O. Adewole
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Mijail D. Serruya
- Department of Neurology, Jefferson University, Philadelphia, PA, USA
| | - James P. Harris
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Justin C. Burrell
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - Dmitriy Petrov
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - H. Isaac Chen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - John A. Wolf
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
| | - D. Kacy Cullen
- Center for Brain Injury and Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA, USA
- Penn Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
39
|
Kimtan T, Thupmongkol J, Williams JC, Thongpang S. Printable and transparent micro-electrocorticography (μECoG) for optogenetic applications. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2015; 2014:482-5. [PMID: 25570001 DOI: 10.1109/embc.2014.6943633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Micro-electrocorticography (μECoG) displays advantages over traditional invasive methods. The μECoG electrode can record neural activity with high spatial-temporal resolution and it can reduce implantation side effects (e.g. vascular and local-neuronal damage, tissue encapsulation, infection). In this study, we propose a printable transparent μECoG electrode for optogenetic applications by using ultrasonic microfluid printing technique. The device is based on poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT: PSS) as a conductive polymer, polydimethylsiloxane (PDMS) as an insulating polymer and poly(chloro-para-xylylene) (Parylene-C) as the device substrate. We focus on ultrasonic microfluid printing due to its low production cost, excellent material handling capability, and its customizable film thickness (down to 5-20 microns). The ultrasonic fluid-printed μECoG displays high spatial resolution and records simulated signal (0-200 Hz sine wave) effectively with low electrode impedance (50-200 kOhms@1kHz). The μECoG also shows good biocompatibility suitable for customizable chronic implants. This new neural interfacing device could be combined with optogenetics and Brain-Computer Interface (BCI) applications for a possible future use in neurological disease diagnosis and rehabilitations.
Collapse
|
40
|
Richner TJ, Baumgartner R, Brodnick SK, Azimipour M, Krugner-Higby LA, Eliceiri KW, Williams JC, Pashaie R. Patterned optogenetic modulation of neurovascular and metabolic signals. J Cereb Blood Flow Metab 2015; 35:140-7. [PMID: 25388678 PMCID: PMC4294407 DOI: 10.1038/jcbfm.2014.189] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 11/09/2022]
Abstract
The hemodynamic and metabolic response of the cortex depends spatially and temporally on the activity of multiple cell types. Optogenetics enables specific cell types to be modulated with high temporal precision and is therefore an emerging method for studying neurovascular and neurometabolic coupling. Going beyond temporal investigations, we developed a microprojection system to apply spatial photostimulus patterns in vivo. We monitored vascular and metabolic fluorescence signals after photostimulation in Thy1-channelrhodopsin-2 mice. Cerebral arteries increased in diameter rapidly after photostimulation, while nearby veins showed a slower smaller response. The amplitude of the arterial response was depended on the area of cortex stimulated. The fluorescence signal emitted at 450/100 nm and excited with ultraviolet is indicative of reduced nicotinamide adenine dinucleotide, an endogenous fluorescent enzyme involved in glycolysis and the citric acid cycle. This fluorescence signal decreased quickly and transiently after optogenetic stimulation, suggesting that glucose metabolism is tightly locked to optogenetic stimulation. To verify optogenetic stimulation of the cortex, we used a transparent substrate microelectrode array to map cortical potentials resulting from optogenetic stimulation. Spatial optogenetic stimulation is a new tool for studying neurovascular and neurometabolic coupling.
Collapse
Affiliation(s)
- Thomas J Richner
- Laboratory for Optical and Computational Instrumentation and Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin, USA
| | - Ryan Baumgartner
- Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Sarah K Brodnick
- Laboratory for Optical and Computational Instrumentation and Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin, USA
| | - Mehdi Azimipour
- Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | - Lisa A Krugner-Higby
- Laboratory for Optical and Computational Instrumentation and Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation and Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin, USA
| | - Justin C Williams
- Laboratory for Optical and Computational Instrumentation and Department of Biomedical Engineering, University of Wisconsin at Madison, Madison, Wisconsin, USA
| | - Ramin Pashaie
- Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
41
|
Salam MT, Gélinas S, Desgent S, Duss S, Bernier Turmel F, Carmant L, Sawan M, Nguyen DK. Subdural porous and notched mini-grid electrodes for wireless intracranial electroencephalographic recordings. J Multidiscip Healthc 2014; 7:573-86. [PMID: 25525368 PMCID: PMC4266360 DOI: 10.2147/jmdh.s64269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Intracranial electroencephalography (EEG) studies are widely used in the presurgical evaluation of drug-refractory patients with partial epilepsy. Because chronic implantation of intracranial electrodes carries a risk of infection, hemorrhage, and edema, it is best to limit the number of electrodes used without compromising the ability to localize the epileptogenic zone (EZ). There is always a risk that an intracranial study may fail to identify the EZ because of suboptimal coverage. We present a new subdural electrode design that will allow better sampling of suspected areas of epileptogenicity with lower risk to patients. METHOD Impedance of the proposed electrodes was characterized in vitro using electrochemical impedance spectroscopy. The appearance of the novel electrodes on magnetic resonance imaging (MRI) was tested by placing the electrodes into a gel solution (0.9% NaCl with 14 g gelatin). In vivo neural recordings were performed in male Sprague Dawley rats. Performance comparisons were made using microelectrode recordings from rat cortex and subdural/depth recordings from epileptic patients. Histological examinations of rat brain after 3-week icEEG intracerebral electroencephalography (icEEG) recordings were performed. RESULTS The in vitro results showed minimum impedances for optimum choice of pure gold materials for electrode contacts and wire. Different attributes of the new electrodes were identified on MRI. The results of in vivo recordings demonstrated signal stability, 50% noise reduction, and up to 6 dB signal-to-noise ratio (SNR) improvement as compared to commercial electrodes. The wireless icEEG recording system demonstrated on average a 2% normalized root-mean-square (RMS) deviation. Following the long-term icEEG recording, brain histological results showed no abnormal tissue reaction in the underlying cortex. CONCLUSION The proposed subdural electrode system features attributes that could potentially translate into better icEEG recordings and allow sampling of large of areas of epileptogenicity at lower risk to patients. Further validation for use in humans is required.
Collapse
Affiliation(s)
| | - Sébastien Gélinas
- Polystim Neurotechnologies Laboratory, Polytechnique Montréal, QC, Canada
| | - Sébastien Desgent
- Research Center, Sainte-Justine University Hospital Center (CHU Sainte-Justine), Université de Montréal, QC, Canada
| | - Sandra Duss
- Research Center, Sainte-Justine University Hospital Center (CHU Sainte-Justine), Université de Montréal, QC, Canada
| | - Félix Bernier Turmel
- Polystim Neurotechnologies Laboratory, Polytechnique Montréal, QC, Canada ; Neurology Service, Department of Medicine, Notre-Dame Hospital, Centre Hospitalier de l'Université de Montréal (CHUM), QC, Canada
| | - Lionel Carmant
- Research Center, Sainte-Justine University Hospital Center (CHU Sainte-Justine), Université de Montréal, QC, Canada
| | - Mohamad Sawan
- Polystim Neurotechnologies Laboratory, Polytechnique Montréal, QC, Canada
| | - Dang Khoa Nguyen
- Neurology Service, Department of Medicine, Notre-Dame Hospital, Centre Hospitalier de l'Université de Montréal (CHUM), QC, Canada
| |
Collapse
|
42
|
Sommakia S, Lee HC, Gaire J, Otto KJ. Materials approaches for modulating neural tissue responses to implanted microelectrodes through mechanical and biochemical means. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2014; 18:319-328. [PMID: 25530703 PMCID: PMC4267064 DOI: 10.1016/j.cossms.2014.07.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Implantable intracortical microelectrodes face an uphill struggle for widespread clinical use. Their potential for treating a wide range of traumatic and degenerative neural disease is hampered by their unreliability in chronic settings. A major factor in this decline in chronic performance is a reactive response of brain tissue, which aims to isolate the implanted device from the rest of the healthy tissue. In this review we present a discussion of materials approaches aimed at modulating the reactive tissue response through mechanical and biochemical means. Benefits and challenges associated with these approaches are analyzed, and the importance of multimodal solutions tested in emerging animal models are presented.
Collapse
Affiliation(s)
- Salah Sommakia
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-1791
| | - Heui C. Lee
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-1791
| | - Janak Gaire
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1791
| | - Kevin J. Otto
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907-1791
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1791
| |
Collapse
|
43
|
Schendel AA, Eliceiri KW, Williams JC. Advanced Materials for Neural Surface Electrodes. CURRENT OPINION IN SOLID STATE & MATERIALS SCIENCE 2014; 18:301-307. [PMID: 26392802 PMCID: PMC4574303 DOI: 10.1016/j.cossms.2014.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Designing electrodes for neural interfacing applications requires deep consideration of a multitude of materials factors. These factors include, but are not limited to, the stiffness, biocompatibility, biostability, dielectric, and conductivity properties of the materials involved. The combination of materials properties chosen not only determines the ability of the device to perform its intended function, but also the extent to which the body reacts to the presence of the device after implantation. Advances in the field of materials science continue to yield new and improved materials with properties well-suited for neural applications. Although many of these materials have been well-established for non-biological applications, their use in medical devices is still relatively novel. The intention of this review is to outline new material advances for neural electrode arrays, in particular those that interface with the surface of the nervous tissue, as well as to propose future directions for neural surface electrode development.
Collapse
Affiliation(s)
- Amelia A Schendel
- Materials Science Program, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI 53703
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, 1675 Observatory Drive, Madison, WI USA 53706
| | - Justin C Williams
- Department of Biomedical Engineering, University of Wisconsin - Madison, 1550 Engineering Drive, Madison, WI 53703
| |
Collapse
|
44
|
Froeter P, Huang Y, Cangellaris OV, Huang W, Dent EW, Gillette MU, Williams JC, Li X. Toward intelligent synthetic neural circuits: directing and accelerating neuron cell growth by self-rolled-up silicon nitride microtube array. ACS NANO 2014; 8:11108-17. [PMID: 25329686 PMCID: PMC4246008 DOI: 10.1021/nn504876y] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/20/2014] [Indexed: 05/18/2023]
Abstract
In neural interface platforms, cultures are often carried out on a flat, open, rigid, and opaque substrate, posing challenges to reflecting the native microenvironment of the brain and precise engagement with neurons. Here we present a neuron cell culturing platform that consists of arrays of ordered microtubes (2.7-4.4 μm in diameter), formed by strain-induced self-rolled-up nanomembrane (s-RUM) technology using ultrathin (<40 nm) silicon nitride (SiNx) film on transparent substrates. These microtubes demonstrated robust physical confinement and unprecedented guidance effect toward outgrowth of primary cortical neurons, with a coaxially confined configuration resembling that of myelin sheaths. The dynamic neural growth inside the microtube, evaluated with continuous live-cell imaging, showed a marked increase (20×) of the growth rate inside the microtube compared to regions outside the microtubes. We attribute the dramatic accelerating effect and precise guiding of the microtube array to three-dimensional (3D) adhesion and electrostatic interaction with the SiNx microtubes, respectively. This work has clear implications toward building intelligent synthetic neural circuits by arranging the size, site, and patterns of the microtube array, for potential treatment of neurological disorders.
Collapse
Affiliation(s)
- Paul Froeter
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, Department of Bioengineering, and Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Yu Huang
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Olivia V. Cangellaris
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, Department of Bioengineering, and Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Wen Huang
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, Department of Bioengineering, and Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Erik W. Dent
- Department of Neuroscience, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Martha U. Gillette
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, Department of Bioengineering, and Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Justin C. Williams
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Address correspondence to ,
| | - Xiuling Li
- Department of Electrical and Computer Engineering, Micro and Nanotechnology Laboratory, Department of Bioengineering, and Department of Cell and Developmental Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
- Address correspondence to ,
| |
Collapse
|
45
|
Park DW, Schendel AA, Mikael S, Brodnick SK, Richner TJ, Ness JP, Hayat MR, Atry F, Frye ST, Pashaie R, Thongpang S, Ma Z, Williams JC. Graphene-based carbon-layered electrode array technology for neural imaging and optogenetic applications. Nat Commun 2014; 5:5258. [PMID: 25327513 PMCID: PMC4218963 DOI: 10.1038/ncomms6258] [Citation(s) in RCA: 268] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 09/12/2014] [Indexed: 01/06/2023] Open
Abstract
Neural micro-electrode arrays that are transparent over a broad wavelength spectrum from ultraviolet to infrared could allow for simultaneous electrophysiology and optical imaging, as well as optogenetic modulation of the underlying brain tissue. The long-term biocompatibility and reliability of neural micro-electrodes also require their mechanical flexibility and compliance with soft tissues. Here we present a graphene-based, carbon-layered electrode array (CLEAR) device, which can be implanted on the brain surface in rodents for high-resolution neurophysiological recording. We characterize optical transparency of the device at >90% transmission over the ultraviolet to infrared spectrum and demonstrate its utility through optical interface experiments that use this broad spectrum transparency. These include optogenetic activation of focal cortical areas directly beneath electrodes, in vivo imaging of the cortical vasculature via fluorescence microscopy and 3D optical coherence tomography. This study demonstrates an array of interfacing abilities of the CLEAR device and its utility for neural applications. Monitoring neuronal activity in the rodent in vivo brain is commonly done using micro-electrode arrays but these devices are not normally compatible with optical technologies. Here the authors design a transparent and flexible electrode array based on graphene that allows them to combine electrophysiological recordings with optogenetic and imaging experiments.
Collapse
Affiliation(s)
- Dong-Wook Park
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Amelia A Schendel
- Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Solomon Mikael
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Sarah K Brodnick
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Thomas J Richner
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jared P Ness
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mohammed R Hayat
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Farid Atry
- Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Seth T Frye
- Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Ramin Pashaie
- Department of Electrical Engineering and Computer Science, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211, USA
| | - Sanitta Thongpang
- Department of Biomedical Engineering, Mahidol University, Bangkok 73170, Thailand
| | - Zhenqiang Ma
- 1] Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA [2] Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Justin C Williams
- 1] Materials Science Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA [2] Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
46
|
Hammer DX, Lozzi A, Abliz E, Greenbaum N, Agrawal A, Krauthamer V, Welle CG. Longitudinal vascular dynamics following cranial window and electrode implantation measured with speckle variance optical coherence angiography. BIOMEDICAL OPTICS EXPRESS 2014; 5:2823-36. [PMID: 25136505 PMCID: PMC4133009 DOI: 10.1364/boe.5.002823] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 07/14/2014] [Accepted: 07/18/2014] [Indexed: 05/18/2023]
Abstract
Speckle variance optical coherence angiography (OCA) was used to characterize the vascular tissue response from craniotomy, window implantation, and electrode insertion in mouse motor cortex. We observed initial vasodilation ~40% greater than original diameter 2-3 days post-surgery (dps). After 4 weeks, dilation subsided in large vessels (>50 µm diameter) but persisted in smaller vessels (25-50 µm diameter). Neovascularization began 8-12 dps and vessel migration continued throughout the study. Vasodilation and neovascularization were primarily associated with craniotomy and window implantation rather than electrode insertion. Initial evidence of capillary re-mapping in the region surrounding the implanted electrode was manifest in OCA image dissimilarity. Further investigation, including higher resolution imaging, is required to validate the finding. Spontaneous lesions also occurred in many electrode animals, though the inception point appeared random and not directly associated with electrode insertion. OCA allows high resolution, label-free in vivo visualization of neurovascular tissue, which may help determine any biological contribution to chronic electrode signal degradation. Vascular and flow-based biomarkers can aid development of novel neural prostheses.
Collapse
|
47
|
|
48
|
Schendel AA, Nonte MW, Vokoun C, Richner TJ, Brodnick SK, Atry F, Frye S, Bostrom P, Pashaie R, Thongpang S, Eliceiri KW, Williams JC. The effect of micro-ECoG substrate footprint on the meningeal tissue response. J Neural Eng 2014; 11:046011. [PMID: 24941335 DOI: 10.1088/1741-2560/11/4/046011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVE There is great interest in designing implantable neural electrode arrays that maximize function while minimizing tissue effects and damage. Although it has been shown that substrate geometry plays a key role in the tissue response to intracortically implanted, penetrating neural interfaces, there has been minimal investigation into the effect of substrate footprint on the tissue response to surface electrode arrays. This study investigates the effect of micro-electrocorticography (micro-ECoG) device geometry on the longitudinal tissue response. APPROACH The meningeal tissue response to two micro-ECoG devices with differing geometries was evaluated. The first device had each electrode site and trace individually insulated, with open regions in between, while the second device had a solid substrate, in which all 16 electrode sites were embedded in a continuous insulating sheet. These devices were implanted bilaterally in rats, beneath cranial windows, through which the meningeal tissue response was monitored for one month after implantation. Electrode site impedance spectra were also monitored during the implantation period. MAIN RESULTS It was observed that collagenous scar tissue formed around both types of devices. However, the distribution of the tissue growth was different between the two array designs. The mesh devices experienced thick tissue growth between the device and the cranial window, and minimal tissue growth between the device and the brain, while the solid device showed the opposite effect, with thick tissue forming between the brain and the electrode sites. SIGNIFICANCE These data suggest that an open architecture device would be more ideal for neural recording applications, in which a low impedance path from the brain to the electrode sites is critical for maximum recording quality.
Collapse
Affiliation(s)
- Amelia A Schendel
- Materials Science Program, University of Wisconsin-Madison, 1550 Engineering Drive, Madison, WI 53706, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Richner TJ, Thongpang S, Brodnick SK, Schendel AA, Falk RW, Krugner-Higby LA, Pashaie R, Williams JC. Optogenetic micro-electrocorticography for modulating and localizing cerebral cortex activity. J Neural Eng 2014; 11:016010. [PMID: 24445482 DOI: 10.1088/1741-2560/11/1/016010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE Spatial localization of neural activity from within the brain with electrocorticography (ECoG) and electroencephalography remains a challenge in clinical and research settings, and while microfabricated ECoG (micro-ECoG) array technology continues to improve, complementary methods to simultaneously modulate cortical activity while recording are needed. APPROACH We developed a neural interface utilizing optogenetics, cranial windowing, and micro-ECoG arrays fabricated on a transparent polymer. This approach enabled us to directly modulate neural activity at known locations around micro-ECoG arrays in mice expressing Channelrhodopsin-2. We applied photostimuli varying in time, space and frequency to the cortical surface, and we targeted multiple depths within the cortex using an optical fiber while recording micro-ECoG signals. MAIN RESULTS Negative potentials of up to 1.5 mV were evoked by photostimuli applied to the entire cortical window, while focally applied photostimuli evoked spatially localized micro-ECoG potentials. Two simultaneously applied focal stimuli could be separated, depending on the distance between them. Photostimuli applied within the cortex with an optical fiber evoked more complex micro-ECoG potentials with multiple positive and negative peaks whose relative amplitudes depended on the depth of the fiber. SIGNIFICANCE Optogenetic ECoG has potential applications in the study of epilepsy, cortical dynamics, and neuroprostheses.
Collapse
Affiliation(s)
- Thomas J Richner
- Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Ritaccio A, Brunner P, Crone NE, Gunduz A, Hirsch LJ, Kanwisher N, Litt B, Miller K, Moran D, Parvizi J, Ramsey N, Richner TJ, Tandon N, Williams J, Schalk G. Proceedings of the Fourth International Workshop on Advances in Electrocorticography. Epilepsy Behav 2013; 29:259-68. [PMID: 24034899 PMCID: PMC3896917 DOI: 10.1016/j.yebeh.2013.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 10/26/2022]
Abstract
The Fourth International Workshop on Advances in Electrocorticography (ECoG) convened in New Orleans, LA, on October 11-12, 2012. The proceedings of the workshop serves as an accurate record of the most contemporary clinical and experimental work on brain surface recording and represents the insights of a unique multidisciplinary ensemble of expert clinicians and scientists. Presentations covered a broad range of topics, including innovations in passive functional mapping, increased understanding of pathologic high-frequency oscillations, evolving sensor technologies, a human trial of ECoG-driven brain-machine interface, as well as fresh insights into brain electrical stimulation.
Collapse
Affiliation(s)
| | - Peter Brunner
- Albany Medical College, Albany, NY, USA, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Nathan E. Crone
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | - Nancy Kanwisher
- McGovern Institute for Brain Research at MIT, Cambridge, MA, USA
| | - Brian Litt
- University of Pennsylvania, Pittsburgh, PA, USA
| | | | | | | | - Nick Ramsey
- University Medical Center, Utrecht University, Utrecht, The Netherlands
| | | | - Niton Tandon
- University of Texas Health Science Center, Houston, TX, USA
| | | | - Gerwin Schalk
- Albany Medical College, Albany, NY, USA, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| |
Collapse
|