1
|
Stockley JH, Vaquie AM, Xu Z, Bartels T, Jordan GD, Holmqvist S, Gunter S, Lam G, Yamamoto D, Pek RH, Chambers IG, Rock AS, Hill M, Zhao C, Dillon S, Franklin RJM, O'Connor R, Bodine DM, Hamza I, Rowitch DH. Oligodendrocyte Slc48a1 (Hrg1) encodes a functional heme transporter required for myelin integrity. Glia 2025; 73:399-421. [PMID: 39501820 PMCID: PMC11662986 DOI: 10.1002/glia.24641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 12/22/2024]
Abstract
Oligodendrocytes (OLs) of the central nervous system require iron for proteolipid biosynthesis during the myelination process. Although most heme is found complexed to hemoglobin in red blood cells, surprisingly, we found that Slc48a1, encoding the heme transporter Hrg1, is expressed at higher levels in OLs than any other cell type in rodent and humans. We confirmed in situ that Hrg1 is expressed in OLs but not their precursors (OPCs) and found that Hrg1 proteins in CNS white matter co-localized within myelin sheaths. In older Hrg1 null mutant mice we observed reduced expression of myelin associated glycoprotein (Mag) and ultrastructural myelin defects reminiscent of Mag-null animals, suggesting myelin adhesion deficiency. Further, we confirmed reduced myelin iron levels in Hrg1 null animals in vivo, and show that OLs in vitro can directly import both the fluorescent heme analogue ZnMP and heme itself, which rescued iron deficiency induced inhibition of OL differentiation in a heme-oxidase-dependent manner. Together these findings indicate OL Hrg1 encodes a functional heme transporter required for myelin integrity.
Collapse
Affiliation(s)
- John H. Stockley
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Adrien M. Vaquie
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Zhaoyang Xu
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Theresa Bartels
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Gregory D. Jordan
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Staffan Holmqvist
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Simon Gunter
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Guy Lam
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Daniel Yamamoto
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| | - Rini H. Pek
- Department of PediatricsCenter for Blood Oxygen Transport and Hemostasis, University of Maryland School of MedicineBaltimoreMarylandUSA
- Department of Animal and Avian SciencesUniversity of MarylandMarylandUSA
| | - Ian G. Chambers
- Department of PediatricsCenter for Blood Oxygen Transport and Hemostasis, University of Maryland School of MedicineBaltimoreMarylandUSA
- Department of Animal and Avian SciencesUniversity of MarylandMarylandUSA
| | - Andrew S. Rock
- Department of PediatricsCenter for Blood Oxygen Transport and Hemostasis, University of Maryland School of MedicineBaltimoreMarylandUSA
- Department of Animal and Avian SciencesUniversity of MarylandMarylandUSA
| | - Myfanwy Hill
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesBiomedical Campus, University of CambridgeCambridgeUK
| | - Chao Zhao
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesBiomedical Campus, University of CambridgeCambridgeUK
| | - Scott Dillon
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
| | - Robin J. M. Franklin
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of Clinical NeurosciencesBiomedical Campus, University of CambridgeCambridgeUK
| | - Rosemary O'Connor
- School of Biochemistry and Cell Biology, University College CorkCorkIreland
| | - David M. Bodine
- Haematopoiesis Section, Genetics and Molecular Biology Branch, National Human Genome Research InstituteBethesdaMarylandUSA
| | - Iqbal Hamza
- Department of PediatricsCenter for Blood Oxygen Transport and Hemostasis, University of Maryland School of MedicineBaltimoreMarylandUSA
- Department of Animal and Avian SciencesUniversity of MarylandMarylandUSA
| | - David H. Rowitch
- Wellcome—MRC Cambridge Stem Cell Institute, University of CambridgeCambridgeUK
- Department of PaediatricsBiomedical Campus, University of CambridgeCambridgeUK
| |
Collapse
|
2
|
Pastor-Alonso O, Durá I, Bernardo-Castro S, Varea E, Muro-García T, Martín-Suárez S, Encinas-Pérez JM, Pineda JR. HB-EGF activates EGFR to induce reactive neural stem cells in the mouse hippocampus after seizures. Life Sci Alliance 2024; 7:e202201840. [PMID: 38977310 PMCID: PMC11231495 DOI: 10.26508/lsa.202201840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
Hippocampal seizures mimicking mesial temporal lobe epilepsy cause a profound disruption of the adult neurogenic niche in mice. Seizures provoke neural stem cells to switch to a reactive phenotype (reactive neural stem cells, React-NSCs) characterized by multibranched hypertrophic morphology, massive activation to enter mitosis, symmetric division, and final differentiation into reactive astrocytes. As a result, neurogenesis is chronically impaired. Here, using a mouse model of mesial temporal lobe epilepsy, we show that the epidermal growth factor receptor (EGFR) signaling pathway is key for the induction of React-NSCs and that its inhibition exerts a beneficial effect on the neurogenic niche. We show that during the initial days after the induction of seizures by a single intrahippocampal injection of kainic acid, a strong release of zinc and heparin-binding epidermal growth factor, both activators of the EGFR signaling pathway in neural stem cells, is produced. Administration of the EGFR inhibitor gefitinib, a chemotherapeutic in clinical phase IV, prevents the induction of React-NSCs and preserves neurogenesis.
Collapse
Affiliation(s)
- Oier Pastor-Alonso
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Irene Durá
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Sara Bernardo-Castro
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Emilio Varea
- Faculty of Biology, University of Valencia, Valencia, Spain
| | - Teresa Muro-García
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Soraya Martín-Suárez
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
| | - Juan Manuel Encinas-Pérez
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
- Ikerbasque, The Basque Foundation for Science, Bizkaia, Spain
- Department of Neurosciences, University of the Basque Country (UPV/EHU), Bizkaia, Spain
| | - Jose Ramon Pineda
- Laboratory of Neural Stem Cells and Neurogenesis, Achucarro Basque Center for Neuroscience, Bizkaia, Spain
- Signaling Lab, Department of Cell Biology and Histology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bizkaia, Spain
| |
Collapse
|
3
|
Sun Y, Chang Q, Eerqing N, Hu C. Study of the method of spinal cord neuron culture in Sprague-Dawley rats. IBRAIN 2022; 9:270-280. [PMID: 37786761 PMCID: PMC10527773 DOI: 10.1002/ibra.12085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/08/2022] [Accepted: 12/11/2022] [Indexed: 10/04/2023]
Abstract
This study aimed to explore the method of culture of spinal cord neurons (SPNs) in vitro and to provide prerequisites for studying the molecular mechanism and pharmacological mechanism of spinal cord injury and repair. The spinal cord tissues of neonatal Sprague-Dawley rats were taken and digested by trypsin, followed by cytarabine (Ara-C) to inhibit the proliferation of heterogeneous cells, differential velocity adhesion, and natural growth in neuron-specific medium. Then, the morphology of SPNs was observed. Ara-C treatment inhibited the growth of heterogeneous cells and the growth of spinal neurons. Using the differential velocity adhesion method, it was found that the adhesion time of heterogeneous cells and SPNs was not significantly different, and it could not separate neurons and heterogeneous cells well. A large number of mixed cells gathered and floated, and died on the 18th day. Compared with the 20th day, the cell viability of the 18th day was better (p < 0.001). The natural growth and culture of SPNs in Neurobasal-A medium can yield neurons of higher purity and SPNs from the 12th day to the 18th day can be selected for related in vitro cell experiments.
Collapse
Affiliation(s)
- Yi‐Fei Sun
- National‐Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, Institute of Neurological Disease, West China HospitalSichuan UniversityChengduChina
- Center for Epigenetics and Induced Pluripotent Stem Cells, Kennedy Krieger InstituteJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Quan‐Yuan Chang
- Department of AnesthesiologySouthwest Medical UniversityLuzhouChina
| | - Narima Eerqing
- Department of Physics and AstronomyUniversity of ExeterExeterUK
| | - Chang‐Yan Hu
- Animal Zoology DepartmentKunming Medical UniversityKunmingChina
| |
Collapse
|
4
|
Pilus NSM, Muhamad A, Shahidan MA, Yusof NYM. Potential of Epidermal Growth Factor-like Peptide from the Sea Cucumber Stichopus horrens to Increase the Growth of Human Cells: In Silico Molecular Docking Approach. Mar Drugs 2022; 20:md20100596. [PMID: 36286420 PMCID: PMC9605497 DOI: 10.3390/md20100596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The sea cucumber is prominent as a traditional remedy among Asians for wound healing due to its high capacity for regeneration after expulsion of its internal organs. A short peptide consisting of 45 amino acids from transcriptome data of Stichopus horrens (Sh-EGFl-1) shows a convincing capability to promote the growth of human melanoma cells. Molecular docking of Sh-EGFl-1 peptide with human epidermal growth factor receptor (hEGFR) exhibited a favorable intermolecular interaction, where most of the Sh-EGFl-1 residues interacted with calcium binding-like domains. A superimposed image of the docked structure against a human EGF–EGFR crystal model also gave an acceptable root mean square deviation (RMSD) value of less than 1.5 Å. Human cell growth was significantly improved by Sh-EGFl-1 peptide at a lower concentration in a cell proliferation assay. Gene expression profiling of the cells indicated that Sh-EGFl-1 has activates hEGFR through five epidermal growth factor signaling pathways; phosphoinositide 3-kinase (PI3K), mitogen-activated protein kinase (MAPK), phospholipase C gamma (PLC-gamma), Janus kinase-signal transducer and activator of transcription (JAK-STAT) and Ras homologous (Rho) pathways. All these pathways triggered cells’ proliferation, differentiation, survival and re-organization of the actin cytoskeleton. Overall, this marine-derived, bioactive peptide has the capability to promote proliferation and could be further explored as a cell-growth-promoting agent for biomedical and bioprocessing applications.
Collapse
Affiliation(s)
- Nur Shazwani Mohd Pilus
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: (N.S.M.P.); (N.Y.M.Y.)
| | - Azira Muhamad
- Department of Structural Biology and Functional Omics, Malaysia Genome and Vaccine Institute (MGVI), National Institutes of Biotechnology Malaysia (NIBM), Kajang 43000, Selangor, Malaysia
| | - Muhammad Ashraf Shahidan
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
- Correspondence: (N.S.M.P.); (N.Y.M.Y.)
| |
Collapse
|
5
|
Zheng Y, Huang Z, Xu J, Hou K, Yu Y, Lv S, Chen L, Li Y, Quan C, Chi G. MiR-124 and Small Molecules Synergistically Regulate the Generation of Neuronal Cells from Rat Cortical Reactive Astrocytes. Mol Neurobiol 2021; 58:2447-2464. [PMID: 33725319 DOI: 10.1007/s12035-021-02345-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/25/2021] [Indexed: 01/04/2023]
Abstract
Irreversible neuron loss caused by central nervous system injuries usually leads to persistent neurological dysfunction. Reactive astrocytes, because of their high proliferative capacity, proximity to neuronal lineage, and significant involvement in glial scarring, are ideal starting cells for neuronal regeneration. Having previously identified several small molecules as important regulators of astrocyte-to-neuron reprogramming, we established herein that miR-124, ruxolitinib, SB203580, and forskolin could co-regulate rat cortical reactive astrocyte-to-neuron conversion. The induced cells had reduced astroglial properties, displayed typical neuronal morphologies, and expressed neuronal markers, reflecting 25.9% of cholinergic neurons and 22.3% of glutamatergic neurons. Gene analysis revealed that induced neuron gene expression patterns were more similar to that of primary neurons than of initial reactive astrocytes. On the molecular level, miR-124-driven neuronal differentiation of reactive astrocytes was via targeting of the SOX9-NFIA-HES1 axis to inhibit HES1 expression. In conclusion, we present a novel approach to inducing endogenous rat cortical reactive astrocytes into neurons through co-regulation involving miR-124 and three small molecules. Thus, our research has potential implications for inhibiting glial scar formation and promoting neuronal regeneration after central nervous system injury or disease.
Collapse
Affiliation(s)
- Yangyang Zheng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Zhehao Huang
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130031, Jilin, China
| | - Jinying Xu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Kun Hou
- The First Hospital of Jilin University, No. 1 Xinmin Avenue, Changchun, 130021, Jilin, China
| | - Yifei Yu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Shuang Lv
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China
| | - Lin Chen
- China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun, 130031, Jilin, China
| | - Yulin Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Chengshi Quan
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China.
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, 126 Xinmin Street, Changchun, 130021, Jilin, China.
| |
Collapse
|
6
|
Gordon SR, Reaume DR, Perkins TR. Insulin and IGF-2 support rat corneal endothelial cell growth and wound repair in the organ cultured tissue. Growth Factors 2020; 38:269-281. [PMID: 34388064 DOI: 10.1080/08977194.2021.1963721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The ability of insulin and IGF-2 to support wound repair in the organ-cultured rat corneal endothelium was investigated. Corneas given a circular transcorneal freeze injury, were explanted into organ cultures containing either insulin or IGF-2 and cultured up to72 h. Both factors increased [3H]-thymidine incorporation and mitotic levels compared to controls. Insulin's ability to mediate wound closure without serum was dependent on its continuous presence in the medium. PKC was also investigated in endothelial repair using the PKC promoter phorbol 12-myristate 13-acetate (PMA). Concentrations between 10-6 and 10-8 M, PMA failed to accelerate wound closure. When injured endothelia were cultured in the presence of insulin and the PKC inhibitor H-7, wound closure was also unaffected. These results indicate that insulin and IGF-2 stimulate cell growth in injured rat corneal endothelium and that insulin without the benefit of serum promotes wound closure in situ independent of the PKC pathway.
Collapse
Affiliation(s)
- Sheldon R Gordon
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Darryl R Reaume
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| | - Thomas R Perkins
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
| |
Collapse
|
7
|
Jeanneau C, Le Fournis C, About I. Xenogeneic bone filling materials modulate mesenchymal stem cell recruitment: role of the Complement C5a. Clin Oral Investig 2019; 24:2321-2329. [PMID: 31646394 DOI: 10.1007/s00784-019-03087-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 09/22/2019] [Indexed: 11/24/2022]
Abstract
OBJECTIVES When bone filling materials are applied onto the periodontal tissues in vivo, they interact with the injured periodontal ligament (PDL) tissue and modulate its activity. This may lead to mesenchymal stem cells (MSCs) recruitment from bone marrow and initiate bone regeneration. Our hypothesis is that the filling materials affect PDL cells and MSCs functional activities by modulating PDL C5a secretion and subsequent MSCs proliferation and recruitment. MATERIALS AND METHODS Materials' extracts were prepared from 3 bone-grafting materials: Gen-Os® of equine and porcine origins and bovine Bio-Oss®. Expression and secretion of C5a protein by injured PDL cells were investigated by RT-PCR and ELISA. MSCs proliferation was analyzed by MTT assay. C5a binding to MSCs C5aR and its phosphorylation was studied by ELISA. C5a implication in MSCs recruitment toward injured PDL cells was investigated using Boyden chambers. RESULTS MSCs proliferation significantly increased with Gen-Os® materials but significantly decreased with Bio-Oss®. C5a secretion slightly increased with Bio-Oss® while its level doubled with Gen-Os® materials. C5a fixation on MSCs C5aR and its phosphorylation significantly increased with Gen-Os® materials but not with Bio-Oss®. MSCs recruitment toward injured PDL cells increased with the three materials but was significantly higher with Gen-Os® materials than with Bio-Oss®. Adding C5a antagonist inhibited MSCs recruitment demonstrating a C5a-mediated migration. CONCLUSIONS Injured PDL cells secrete C5a leading MSCs proliferation and recruitment to the PDL injured cells. Gen-Os® materials enhanced both C5a secretion by injured PDL cells and MSCs recruitment. Bio-Oss® inhibited MSCs and was less efficient than Gen-Os® materials in inducing MSCs recruitment. CLINICAL RELEVANCE Within the limits of this study in vitro, Gen-Os® filling materials have a higher potential than Bio-Oss® on MSCs proliferation and C5a-dependent recruitment to the PDL injury site and the subsequent bone regeneration.
Collapse
Affiliation(s)
| | - Chloé Le Fournis
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France
| | - Imad About
- Aix Marseille Univ, CNRS, ISM, Inst Movement Sci, Marseille, France.
| |
Collapse
|
8
|
Jeanneau C, Giraud T, Laurent P, About I. BioRoot RCS Extracts Modulate the Early Mechanisms of Periodontal Inflammation and Regeneration. J Endod 2019; 45:1016-1023. [PMID: 31160081 DOI: 10.1016/j.joen.2019.04.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/04/2019] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION The balance between periapical tissue inflammation and regeneration after the removal of necrotic/infected tissues is pivotal in determining the success of endodontic treatment. This study was designed to investigate the effect of silicate-based root canal sealer BioRoot RCS (BRCS; Septodont, Saint-Maur-des-Fossés, France) on modulating the inflammatory mechanisms and early steps of regeneration initiated by human periodontal ligament (PDL) fibroblasts. METHODS Samples of BRCS and Pulp Canal Sealer (PCS; SybronEndo, Orange, CA) were incubated in culture medium to obtain material extracts. To simulate bacterial infection and endodontic sealer use, PDL fibroblasts were stimulated with lipopolysaccharides and cultured with material extracts. The secretion of proinflammatory cytokine (interleukin 6) and growth factor (transforming growth factor beta 1) were quantified by enzyme-linked immunosorbent assay. Inflammatory cell recruitment sequence was investigated using a human inflammatory monocytic cell line (THP-1) that can be activated into macrophage-like cells. The adhesion of THP-1 to endothelial cells (human umbilical vein endothelial cells) was studied using fluorescent THP-1, their migration using Boyden chambers, and their activation into macrophage-like cells using a cell adhesion assay. The proliferation of PDL fibroblasts was quantified by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, whereas the migration of PDL stem cells was investigated using Boyden chambers after immunofluorescence and reverse transcription polymerase chain reaction characterization. RESULTS Interleukin 6 secretion decreased with BRCS, whereas it increased with PCS. Transforming growth factor beta 1 secretion significantly increased only with BRCS. The material extracts did not affect THP-1 adhesion to human umbilical vein endothelial cells, but only BRCS inhibited their migration. Moreover, activation of THP-1 decreased with BRCS and to a lesser extent with PCS. Finally, BRCS increased PDL fibroblast proliferation without affecting PDL stem cell migration. By contrast, PCS decreased PDL fibroblast proliferation and PDL stem cell migration. CONCLUSIONS This work shows that the endodontic sealers modulate the PDL inflammatory and regeneration potentials in vitro. It demonstrates that BRCS has anti-inflammatory effects and the potential to promote tissue regeneration.
Collapse
Affiliation(s)
- Charlotte Jeanneau
- Aix Marseille University, Centre National de la Recherche Scientifique ISM, Institut des Sciences du Mouvement, Marseille, France
| | - Thomas Giraud
- Aix Marseille University, Centre National de la Recherche Scientifique ISM, Institut des Sciences du Mouvement, Marseille, France; Assistance Publique - Hôpitaux de Marseille, Hôpital Timone, Service d'Odontologie, Marseille, France
| | - Patrick Laurent
- Aix Marseille University, Centre National de la Recherche Scientifique ISM, Institut des Sciences du Mouvement, Marseille, France; Assistance Publique - Hôpitaux de Marseille, Hôpital Timone, Service d'Odontologie, Marseille, France
| | - Imad About
- Aix Marseille University, Centre National de la Recherche Scientifique ISM, Institut des Sciences du Mouvement, Marseille, France.
| |
Collapse
|
9
|
Lewitt MS, Boyd GW. The Role of Insulin-Like Growth Factors and Insulin-Like Growth Factor-Binding Proteins in the Nervous System. BIOCHEMISTRY INSIGHTS 2019; 12:1178626419842176. [PMID: 31024217 PMCID: PMC6472167 DOI: 10.1177/1178626419842176] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 03/15/2019] [Indexed: 01/23/2023]
Abstract
The insulin-like growth factors (IGF-I and IGF-II) and their receptors are widely expressed in nervous tissue from early embryonic life. They also cross the blood brain barriers by active transport, and their regulation as endocrine factors therefore differs from other tissues. In brain, IGFs have paracrine and autocrine actions that are modulated by IGF-binding proteins and interact with other growth factor signalling pathways. The IGF system has roles in nervous system development and maintenance. There is substantial evidence for a specific role for this system in some neurodegenerative diseases, and neuroprotective actions make this system an attractive target for new therapeutic approaches. In developing new therapies, interaction with IGF-binding proteins and other growth factor signalling pathways should be considered. This evidence is reviewed, gaps in knowledge are highlighted, and recommendations are made for future research.
Collapse
Affiliation(s)
- Moira S Lewitt
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| | - Gary W Boyd
- School of Health & Life Sciences, University of the West of Scotland, Paisley, UK
| |
Collapse
|
10
|
Chen J, Zhang J, Hong L, Zhou Y. EGFLAM correlates with cell proliferation, migration, invasion and poor prognosis in glioblastoma. Cancer Biomark 2019; 24:343-350. [PMID: 30829611 PMCID: PMC6484271 DOI: 10.3233/cbm-181740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
EGFLAM as a novel gene biomarker has been reported in some cancers but not glioblastoma (GBM) yet. To clarify the functional role of EGFLAM in GBM, we performed this study. Firstly, based on TCGA and Oncomine database, EGFLAM expression and clinical significance in GBM patients was analyzed. Furthermore, the biological effect of EGFLAM in GBM cells was determined by qRT-PCR, CCK-8 assay, colony formation assay, wound healing assay, transwell assays and western blot analysis. The databases analysis showed that EGFLAM expression was at higher levels in GBM patients with poor prognosis. The results indicated that EGFLAM silence inhibited the proliferation, migration and invasion of U87 cells, which was regulated through repression of PI3K/AKT pathway. Accordingly, the data from our work shed some light on EGFLAM might be a prognostic biomarker and therapeutic target for GBM.
Collapse
Affiliation(s)
- Juhui Chen
- Department of Abdominal Radiotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Jingshi Zhang
- Department of Pathology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Liang Hong
- Department of Pathology, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| | - Yongtao Zhou
- Department of Abdominal Radiotherapy, Fujian Cancer Hospital, Fujian Medical University Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
11
|
He C, Ji H, Qian Y, Wang Q, Liu X, Zhao W, Zhao C. Heparin-based and heparin-inspired hydrogels: size-effect, gelation and biomedical applications. J Mater Chem B 2019; 7:1186-1208. [PMID: 32255159 DOI: 10.1039/c8tb02671h] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Heparin is the highest negatively charged biomolecule, which is a polysaccharide belonging to the glycosaminoglycan family, and its role as a regulator of various proteins, cells and tissues in the human body makes it an indispensable macromolecule. Heparin-based hydrogels are widely investigated in various applications including implantation, tissue engineering, biosensors, and drug-controlled release due to the 3D-constructs of hydrogels. However, heparin has supply and safety problems because it is usually derived from animal sources, and has the clinical limitations of bleeding and thrombocytopenia. Therefore, analogous heparin-mimicking polymers and hydrogels derived from non-animal and/or totally synthetic sources have been widely studied in recent years. In this review, the progress and potential biomedical applications of heparin-based and heparin-inspired hydrogels are highlighted. We classify the forms of these hydrogels by their size including macro-hydrogels, injectable hydrogels, and nano-hydrogels. Then, we summarize the various fabrication strategies for these hydrogels including chemical covalent bonding, physical conjugation, and the combination of chemical and physical interactions. Covalent bonding includes free radical polymerization of vinyl-containing components, amide bond formation reaction, Michael-type addition reaction, click-chemistry, divinyl sulfone crosslinking, and mussel-inspired coating. Hydrogels physically conjugated via host-guest interaction, electrostatic interaction, hydrogen bonding, and hydrophobic interaction are also discussed. Finally, we conclude with the challenges and future directions for the fabrication and the industrialization of heparin-based and heparin-inspired hydrogels. We believe that this review will attract more attention toward the design of heparin-based and heparin-inspired hydrogels, leading to future advancements in this emerging research field.
Collapse
Affiliation(s)
- Chao He
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
| | | | | | | | | | | | | |
Collapse
|