1
|
Chayanopparat S, Banyatcharoen P, Jitprapaikulsan J, Uawithya E, Apiraksattayakul N, Viarasilpa V. Efficacy and safety of rituximab in anti-MuSK myasthenia Gravis: a systematic review and meta-analysis. Sci Rep 2025; 15:7219. [PMID: 40021769 PMCID: PMC11871026 DOI: 10.1038/s41598-025-90937-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 02/17/2025] [Indexed: 03/03/2025] Open
Abstract
This systematic review and meta-analysis evaluated the effectiveness and safety of rituximab in patients with myasthenia gravis harboring antibodies to muscle-specific kinase (anti-MuSK). Four databases were searched from inception to December 23, 2023. We included adult patients (aged ≥ 18 years) who were diagnosed with anti-MuSK myasthenia gravis and who received rituximab. The outcomes assessed were the proportions of patients who achieved minimal manifestations or better and those who achieved complete stable remission or pharmacologic remission, according to the Myasthenia Gravis Foundation of America Postintervention Status (MGFA-PIS) scale at the last follow-up. Additional outcomes were mean glucocorticoid dose reduction and severe adverse events. Twelve studies with 111 participants were included. Overall, 82% (95% CI, 71‒91%; I2 = 30.12%, P = 0.15) of patients achieved MGFA-PIS minimal manifestations or better, and 56% (95% CI, 45‒67%; I2 = 0.00%, P = 0.60) achieved MGFA-PIS complete stable remission or pharmacologic remission. The mean reduction in the glucocorticoid dose was 17.15 mg (95% CI, 11.77‒22.53; I2 = 32.40%, P = 0.19). Only one patient developed osteomyelitis during rituximab treatment. This study demonstrated that rituximab is a safe and effective treatment for anti-MuSK myasthenia gravis, helping patients achieve minimal manifestations, complete stable remission, or pharmacologic remission with minimal serious adverse events.
Collapse
Affiliation(s)
| | | | - Jiraporn Jitprapaikulsan
- Siriraj Neuroimmunology Center, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ekdanai Uawithya
- Siriraj Neuroimmunology Center, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Natnasak Apiraksattayakul
- Siriraj Neuroimmunology Center, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vasinee Viarasilpa
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
- Wanglang Road, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand.
| |
Collapse
|
2
|
Oh S, Mao X, Manfredo-Vieira S, Lee J, Patel D, Choi EJ, Alvarado A, Cottman-Thomas E, Maseda D, Tsao PY, Ellebrecht CT, Khella SL, Richman DP, O'Connor KC, Herzberg U, Binder GK, Milone MC, Basu S, Payne AS. Precision targeting of autoantigen-specific B cells in muscle-specific tyrosine kinase myasthenia gravis with chimeric autoantibody receptor T cells. Nat Biotechnol 2023; 41:1229-1238. [PMID: 36658341 PMCID: PMC10354218 DOI: 10.1038/s41587-022-01637-z] [Citation(s) in RCA: 81] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 12/08/2022] [Indexed: 01/21/2023]
Abstract
Muscle-specific tyrosine kinase myasthenia gravis (MuSK MG) is an autoimmune disease that causes life-threatening muscle weakness due to anti-MuSK autoantibodies that disrupt neuromuscular junction signaling. To avoid chronic immunosuppression from current therapies, we engineered T cells to express a MuSK chimeric autoantibody receptor with CD137-CD3ζ signaling domains (MuSK-CAART) for precision targeting of B cells expressing anti-MuSK autoantibodies. MuSK-CAART demonstrated similar efficacy as anti-CD19 chimeric antigen receptor T cells for depletion of anti-MuSK B cells and retained cytolytic activity in the presence of soluble anti-MuSK antibodies. In an experimental autoimmune MG mouse model, MuSK-CAART reduced anti-MuSK IgG without decreasing B cells or total IgG levels, reflecting MuSK-specific B cell depletion. Specific off-target interactions of MuSK-CAART were not identified in vivo, in primary human cell screens or by high-throughput human membrane proteome array. These data contributed to an investigational new drug application and phase 1 clinical study design for MuSK-CAART for the treatment of MuSK autoantibody-positive MG.
Collapse
Affiliation(s)
- Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xuming Mao
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Silvio Manfredo-Vieira
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Eun Jung Choi
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Damian Maseda
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Patricia Y Tsao
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christoph T Ellebrecht
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sami L Khella
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David P Richman
- Department of Neurology, University of California - Davis, Davis, CA, USA
| | - Kevin C O'Connor
- Departments of Neurology and Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | | | | | - Michael C Milone
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Vakrakou AG, Karachaliou E, Chroni E, Zouvelou V, Tzanetakos D, Salakou S, Papadopoulou M, Tzartos S, Voumvourakis K, Kilidireas C, Giannopoulos S, Tsivgoulis G, Tzartos J. Immunotherapies in MuSK-positive Myasthenia Gravis; an IgG4 antibody-mediated disease. Front Immunol 2023; 14:1212757. [PMID: 37564637 PMCID: PMC10410455 DOI: 10.3389/fimmu.2023.1212757] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Muscle-specific kinase (MuSK) Myasthenia Gravis (MG) represents a prototypical antibody-mediated disease characterized by predominantly focal muscle weakness (neck, facial, and bulbar muscles) and fatigability. The pathogenic antibodies mostly belong to the immunoglobulin subclass (Ig)G4, a feature which attributes them their specific properties and pathogenic profile. On the other hand, acetylcholine receptor (AChR) MG, the most prevalent form of MG, is characterized by immunoglobulin (Ig)G1 and IgG3 antibodies to the AChR. IgG4 class autoantibodies are impotent to fix complement and only weakly bind Fc-receptors expressed on immune cells and exert their pathogenicity via interfering with the interaction between their targets and binding partners (e.g. between MuSK and LRP4). Cardinal differences between AChR and MuSK-MG are the thymus involvement (not prominent in MuSK-MG), the distinct HLA alleles, and core immunopathological patterns of pathology in neuromuscular junction, structure, and function. In MuSK-MG, classical treatment options are usually less effective (e.g. IVIG) with the need for prolonged and high doses of steroids difficult to be tapered to control symptoms. Exceptional clinical response to plasmapheresis and rituximab has been particularly observed in these patients. Reduction of antibody titers follows the clinical efficacy of anti-CD20 therapies, a feature implying the role of short-lived plasma cells (SLPB) in autoantibody production. Novel therapeutic monoclonal against B cells at different stages of their maturation (like plasmablasts), or against molecules involved in B cell activation, represent promising therapeutic targets. A revolution in autoantibody-mediated diseases is pharmacological interference with the neonatal Fc receptor, leading to a rapid reduction of circulating IgGs (including autoantibodies), an approach already suitable for AChR-MG and promising for MuSK-MG. New precision medicine approaches involve Chimeric autoantibody receptor T (CAAR-T) cells that are engineered to target antigen-specific B cells in MuSK-MG and represent a milestone in the development of targeted immunotherapies. This review aims to provide a detailed update on the pathomechanisms involved in MuSK-MG (cellular and humoral aberrations), fostering the understanding of the latest indications regarding the efficacy of different treatment strategies.
Collapse
Affiliation(s)
- Aigli G. Vakrakou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleni Karachaliou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | - Vasiliki Zouvelou
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Dimitrios Tzanetakos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stavroula Salakou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Marianna Papadopoulou
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Physiotherapy, University of West Attica, Athens, Greece
| | - Socrates Tzartos
- Tzartos NeuroDiagnostics, Athens, Greece
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece
- Department of Pharmacy, University of Patras, Patras, Greece
| | - Konstantinos Voumvourakis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Constantinos Kilidireas
- First Department of Neurology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, Henry Dunant Hospital Center, Athens, Greece
| | - Sotirios Giannopoulos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
- Department of Neurology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - John Tzartos
- Second Department of Neurology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
4
|
Functional monovalency amplifies the pathogenicity of anti-MuSK IgG4 in myasthenia gravis. Proc Natl Acad Sci U S A 2021; 118:2020635118. [PMID: 33753489 PMCID: PMC8020787 DOI: 10.1073/pnas.2020635118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
An expanding group of autoimmune diseases is now recognized to be hallmarked by pathogenic IgG4 autoantibodies. IgG4 has the unique ability to exchange Fab-arms, rendering it bispecific and functionally monovalent. Here we show that autoantibody functional monovalency significantly amplifies the pathogenicity of IgG4 autoantibodies using patient-derived monoclonal antibodies in an in vivo model of MuSK myasthenia gravis. Therefore, subclass switching to predominant IgG4 autoantibodies is a critical step in the development of MuSK myasthenia gravis. This new mechanism in autoimmunity is also potentially relevant to 29 other IgG4-mediated autoimmune diseases known to date, allergy and other disease settings where IgG4 antibodies contribute to pathology. Human immunoglobulin (Ig) G4 usually displays antiinflammatory activity, and observations of IgG4 autoantibodies causing severe autoimmune disorders are therefore poorly understood. In blood, IgG4 naturally engages in a stochastic process termed “Fab-arm exchange” in which unrelated IgG4s exchange half-molecules continuously. The resulting IgG4 antibodies are composed of two different binding sites, thereby acquiring monovalent binding and inability to cross-link for each antigen recognized. Here, we demonstrate that this process amplifies autoantibody pathogenicity in a classic IgG4-mediated autoimmune disease: muscle-specific kinase (MuSK) myasthenia gravis. In mice, monovalent anti-MuSK IgG4s caused rapid and severe myasthenic muscle weakness, whereas the same antibodies in their parental bivalent form were less potent or did not induce a phenotype. Mechanistically this could be explained by opposing effects on MuSK signaling. Isotype switching to IgG4 in an autoimmune response thereby may be a critical step in the development of disease. Our study establishes functional monovalency as a pathogenic mechanism in IgG4-mediated autoimmune disease and potentially other disorders.
Collapse
|
5
|
Vergoossen DLE, Augustinus R, Huijbers MG. MuSK antibodies, lessons learned from poly- and monoclonality. J Autoimmun 2020; 112:102488. [PMID: 32505442 DOI: 10.1016/j.jaut.2020.102488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 11/25/2022]
Abstract
Muscle-specific kinase (MuSK) plays a critical role in establishing and maintaining neuromuscular synapses. Antibodies derived from immunizing animals with MuSK were important tools to help detect MuSK and its activity. The role of antibodies in MuSK-related research got an extra dimension when autoantibodies to MuSK were found to cause myasthenia gravis (MG) in 2001. Active immunization with MuSK or passive transfer of polyclonal purified IgG(4) fractions from patients reproduced myasthenic muscle weakness in a range of animal models. Polyclonal patient-purified autoantibodies were furthermore found to block agrin-Lrp4-MuSK signaling, explaining the synaptic disassembly, failure of neuromuscular transmission and ultimately muscle fatigue observed in vivo. MuSK autoantibodies are predominantly of the IgG4 subclass. Low levels of other subclass MuSK antibodies coexist, but their role in the pathogenesis is unclear. Patient-derived monoclonal antibodies revealed that MuSK antibody subclass and valency alters their functional effects and possibly their pathogenicity. Interestingly, recombinant functional bivalent MuSK antibodies might even have therapeutic potential for a variety of neuromuscular disorders, due to their agonistic nature on the MuSK signaling cascade. Thus, MuSK antibodies have proven to be helpful tools to study neuromuscular junction physiology, contributed to our understanding of the pathophysiology of MuSK MG and might be used to treat neuromuscular disorders. The source of MuSK antibodies and consequently their (mixed) polyclonal or monoclonal nature were important confounding factors in these experiments. Here we review the variety of MuSK antibodies described thus far, the insights they have given us and their potential for the future.
Collapse
Affiliation(s)
- Dana L E Vergoossen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands
| | - Roy Augustinus
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands; Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
6
|
Abstract
Thirty to fifty percent of patients with acetylcholine receptor (AChR) antibody (Ab)-negative myasthenia gravis (MG) have Abs to muscle specific kinase (MuSK) and are referred to as having MuSK-MG. MuSK is a 100 kD single-pass post-synaptic transmembrane receptor tyrosine kinase crucial to the development and maintenance of the neuromuscular junction. The Abs in MuSK-MG are predominantly of the IgG4 immunoglobulin subclass. MuSK-MG differs from AChR-MG, in exhibiting more focal muscle involvement, including neck, shoulder, facial and bulbar-innervated muscles, as well as wasting of the involved muscles. MuSK-MG is highly associated with the HLA DR14-DQ5 haplotype and occurs predominantly in females with onset in the fourth decade of life. Some of the standard treatments of AChR-MG have been found to have limited effectiveness in MuSK-MG, including thymectomy and cholinesterase inhibitors. Therefore, current treatment involves immunosuppression, primarily by corticosteroids. In addition, patients respond especially well to B cell depletion agents, e.g., rituximab, with long-term remissions. Future treatments will likely derive from the ongoing analysis of the pathogenic mechanisms underlying this disease, including histologic and physiologic studies of the neuromuscular junction in patients as well as information derived from the development and study of animal models of the disease.
Collapse
Affiliation(s)
| | - David P. Richman
- Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
7
|
Rivner MH, Pasnoor M, Dimachkie MM, Barohn RJ, Mei L. Muscle-Specific Tyrosine Kinase and Myasthenia Gravis Owing to Other Antibodies. Neurol Clin 2019; 36:293-310. [PMID: 29655451 DOI: 10.1016/j.ncl.2018.01.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Around 20% of patients with myasthenia gravis are acetylcholine receptor antibody negative; muscle-specific tyrosine kinase antibodies (MuSK) were identified as the cause of myasthenia gravis in 30% to 40% of these cases. Anti MuSK myasthenia gravis is associated with specific clinical phenotypes. One is a bulbar form with fewer ocular symptoms. Others show an isolated head drop or symptoms indistinguishable from acetylcholine receptor-positive myasthenia gravis. These patients usually respond well to immunosuppressive therapy, but not as well to cholinesterase inhibitors. Other antibodies associated with myasthenia gravis, including low-density lipoprotein receptor-related protein 4, are discussed.
Collapse
Affiliation(s)
- Michael H Rivner
- EMG Lab, Augusta University, 1120 15th Street, BP-4390, Augusta, GA 30912, USA.
| | - Mamatha Pasnoor
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, 3599 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66103, USA
| | - Richard J Barohn
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 4017, Kansas City, KS 66160, USA
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine, Augusta University, 1120 15th Street, CA-2014, Augusta, GA 30912, USA
| |
Collapse
|
8
|
Abstract
Myasthenia gravis (MG) diagnosis is primarily clinically based. By the end of the clinical evaluation, clinicians have a sense as to whether presenting symptoms and elicited signs are weakly or strongly supportive of MG. Diagnostic tests can reaffirm the clinicians' impression. Edrophonium testing is rarely used but helpful in cases of measurable ptosis. Decremental response on slow-frequency repetitive nerve stimulation has a modest diagnostic yield in ocular MG but is helpful in generalized MG cases. The most sensitive test is single-fiber electromyography. In this article, the authors review the diagnostic testing approach of practicing clinicians for suspected MG cases.
Collapse
Affiliation(s)
- Mamatha Pasnoor
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA.
| | - Mazen M Dimachkie
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Constantine Farmakidis
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| | - Richard J Barohn
- Department of Neurology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Mail Stop 2012, Kansas City, KS 66160, USA
| |
Collapse
|
9
|
miR-1933-3p is upregulated in skeletal muscles of MuSK+ EAMG mice and affects Impa1 and Mrpl27. Neurosci Res 2019; 151:46-52. [PMID: 30763589 DOI: 10.1016/j.neures.2019.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 12/15/2022]
Abstract
MuSK antibody seropositive (MuSK+) Myasthenia Gravis (MG) typically affects skeletal muscles of the bulbar area, including the omohyoid muscle, causing focal fatigue, weakness and atrophy. The profile of circulating extracellular microRNA (miRNA) is changed in MuSK + MG, but the intracellular miRNA profile in skeletal muscles of MuSK + MG and MuSK + experimental autoimmune MG (EAMG) remains unknown. This study elucidated the intracellular miRNA profile in the omohyoid muscle of mice with MuSK + EAMG. The levels of eleven mouse miRNAs were elevated and two mouse miRNAs were reduced in muscles of MuSK + EAMG mice. Transient expression of miR-1933-3p and miR-1930-5p in mouse muscle (C2C12) cells revealed several downregulated genes, out of which five had predicted binding sites for miR-1933-3p. The mRNA expression of mitochondrial ribosomal protein L27 (Mrpl27) and Inositol monophosphatase I (Impa1) was reduced in miR-1933-3p transfected C2C12 cells compared to control cells (p = 0.032 versus p = 0.020). Further, transient expression of miR-1933-3p reduced Impa1 protein accumulation in C2C12 cells. These findings provide novel insights of dysregulated miRNAs and their intracellular pathways in muscle tissue afflicted with MuSK + EAMG, providing a possible link to mitochondrial dysfunction and muscle atrophy observed in MuSK + MG.
Collapse
|
10
|
Sarcoglycan Alpha Mitigates Neuromuscular Junction Decline in Aged Mice by Stabilizing LRP4. J Neurosci 2018; 38:8860-8873. [PMID: 30171091 DOI: 10.1523/jneurosci.0860-18.2018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 08/07/2018] [Accepted: 08/22/2018] [Indexed: 01/08/2023] Open
Abstract
During aging, acetylcholine receptor (AChR) clusters become fragmented and denervated at the neuromuscular junction (NMJ). Underpinning molecular mechanisms are not well understood. We showed that LRP4, a receptor for agrin and critical for NMJ formation and maintenance, was reduced at protein level in aged mice, which was associated with decreased MuSK tyrosine phosphorylation, suggesting compromised agrin-LRP4-MuSK signaling in aged muscles. Transgenic expression of LRP4 in muscles alleviated AChR fragmentation and denervation and improved neuromuscular transmission in aged mice. LRP4 ubiquitination was augmented in aged muscles, suggesting increased LRP4 degradation as a mechanism for reduced LRP4. We found that sarcoglycan α (SGα) interacted with LRP4 and delayed LRP4 degradation in cotransfected cells. AAV9-mediated expression of SGα in muscles mitigated AChR fragmentation and denervation and improved neuromuscular transmission in aged mice. These observations support a model where compromised agrin-LRP4-MuSK signaling serves as a pathological mechanism of age-related NMJ decline and identify a novel function of SGα in stabilizing LRP4 for NMJ stability in aged mice.SIGNIFICANCE STATEMENT This study provides evidence that LRP4, a receptor of agrin that is critical for NMJ formation and maintenance, is reduced at protein level in aged muscles. Transgenic expression of LRP4 in muscles ameliorates AChR fragmentation and denervation and improves neuromuscular transmission in aged mice, demonstrating a critical role of the agrin-LRP4-MuSK signaling. Our study also reveals a novel function of SGα to prevent LRP4 degradation in aged muscles. Finally, we show that NMJ decline in aged mice can be mitigated by AAV9-mediated expression of SGα in muscles. These observations provide insight into pathological mechanisms of age-related NMJ decline and suggest that improved agrin-LRP4-MuSK signaling may be a target for potential therapeutic intervention.
Collapse
|
11
|
Morren J, Li Y. Myasthenia gravis with muscle-specific tyrosine kinase antibodies: A narrative review. Muscle Nerve 2018; 58:344-358. [DOI: 10.1002/mus.26107] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/09/2018] [Accepted: 02/18/2018] [Indexed: 12/14/2022]
Affiliation(s)
- John Morren
- Neuromuscular Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk S90; Cleveland Ohio 44195 USA
| | - Yuebing Li
- Neuromuscular Center, Neurological Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk S90; Cleveland Ohio 44195 USA
| |
Collapse
|
12
|
Fundamental Molecules and Mechanisms for Forming and Maintaining Neuromuscular Synapses. Int J Mol Sci 2018; 19:ijms19020490. [PMID: 29415504 PMCID: PMC5855712 DOI: 10.3390/ijms19020490] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/24/2018] [Accepted: 01/29/2018] [Indexed: 02/08/2023] Open
Abstract
The neuromuscular synapse is a relatively large synapse with hundreds of active zones in presynaptic motor nerve terminals and more than ten million acetylcholine receptors (AChRs) in the postsynaptic membrane. The enrichment of proteins in presynaptic and postsynaptic membranes ensures a rapid, robust, and reliable synaptic transmission. Over fifty years ago, classic studies of the neuromuscular synapse led to a comprehensive understanding of how a synapse looks and works, but these landmark studies did not reveal the molecular mechanisms responsible for building and maintaining a synapse. During the past two-dozen years, the critical molecular players, responsible for assembling the specialized postsynaptic membrane and regulating nerve terminal differentiation, have begun to be identified and their mechanism of action better understood. Here, we describe and discuss five of these key molecular players, paying heed to their discovery as well as describing their currently understood mechanisms of action. In addition, we discuss the important gaps that remain to better understand how these proteins act to control synaptic differentiation and maintenance.
Collapse
|
13
|
Vincent A, Huda S, Cao M, Cetin H, Koneczny I, Rodriguez Cruz PM, Jacobson L, Viegas S, Jacob S, Woodhall M, Nagaishi A, Maniaol A, Damato V, Leite MI, Cossins J, Webster R, Palace J, Beeson D. Serological and experimental studies in different forms of myasthenia gravis. Ann N Y Acad Sci 2018; 1413:143-153. [PMID: 29377162 DOI: 10.1111/nyas.13592] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022]
Abstract
Antibodies to the acetylcholine receptor (AChR) have been recognized for over 40 years and have been important in the diagnosis of myasthenia gravis (MG), and its recognition in patients of different ages and thymic pathologies. The 10-20% of patients who do not have AChR antibodies are now known to comprise different subgroups, the most commonly reported of which is patients with antibodies to muscle-specific kinase (MuSK). The use of cell-based assays has extended the repertoire of antibody tests to clustered AChRs, low-density lipoprotein receptor-related protein 4, and agrin. Autoantibodies against intracellular targets, namely cortactin, titin, and ryanodine receptor (the latter two being associated with the presence of thymoma), may also be helpful as biomarkers in some patients. IgG4 MuSK antibodies are clearly pathogenic, but the coexisting IgG1, IgG2, and IgG3 antibodies, collectively, have effects that question the dominance of IgG4 as the sole pathologic factor in MuSK MG. After a brief historical review, we define the different subgroups and summarize the antibody characteristics. Experiments to demonstrate the in vitro and in vivo pathogenic roles of MuSK antibodies are discussed.
Collapse
Affiliation(s)
- Angela Vincent
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Saif Huda
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Michelangelo Cao
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hakan Cetin
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Inga Koneczny
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Pedro M Rodriguez Cruz
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Leslie Jacobson
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Stuart Viegas
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Saiju Jacob
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mark Woodhall
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Akiko Nagaishi
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Angelina Maniaol
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Valentina Damato
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - M Isabel Leite
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Judith Cossins
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Richard Webster
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jacqueline Palace
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David Beeson
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Huijbers MG, Plomp JJ, van der Maarel SM, Verschuuren JJ. IgG4-mediated autoimmune diseases: a niche of antibody-mediated disorders. Ann N Y Acad Sci 2018; 1413:92-103. [PMID: 29377160 DOI: 10.1111/nyas.13561] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022]
Abstract
Immunoglobulin 4 (IgG4) is one of four human IgG subclasses and has several unique functional characteristics. It exhibits low affinity for complement and for most Fc receptors. It furthermore has generally high affinity for its antigen, with binding occurring in a monovalent fashion, as IgG4 can exchange Fab-arms with other IgG4 molecules. Because of these characteristics, IgG4 is believed to block its targets and prevent inflammation, which, depending on the setting, can have a protective or pathogenic effect. One example of IgG4 pathogenicity is muscle-specific kinase (MuSK) myasthenia gravis (MG), in which patients develop IgG4 MuSK autoantibodies, resulting in muscle weakness. As a consequence of the distinct IgG4 characteristics, the pathomechanism of MuSK MG is very different from IgG1-and IgG3-mediated autoimmune diseases, such as acetylcholine receptor MG. In recent years, new autoantibodies in a spectrum of autoimmune diseases have been discovered. Interestingly, some were found to be predominantly IgG4. These IgG4-mediated autoimmune diseases share many pathomechanistic aspects with MuSK MG, suggesting that IgG4-mediated autoimmunity forms a separate niche among the antibody-mediated disorders. In this review, we summarize the group of IgG4-mediated autoimmune diseases, discuss the role of IgG4 in MuSK MG, and highlight interesting future research questions for IgG4-mediated autoimmunity.
Collapse
Affiliation(s)
- Maartje G Huijbers
- Departments of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jaap J Plomp
- Departments of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Jan J Verschuuren
- Departments of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
15
|
Yan M, Xing GL, Xiong WC, Mei L. Agrin and LRP4 antibodies as new biomarkers of myasthenia gravis. Ann N Y Acad Sci 2018; 1413:126-135. [PMID: 29377176 DOI: 10.1111/nyas.13573] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 11/08/2017] [Accepted: 11/11/2017] [Indexed: 12/13/2022]
Abstract
Myasthenia gravis (MG) is a common disorder that affects the neuromuscular junction. It is caused by antibodies against acetylcholine receptor and muscle-specific tyrosine kinase; however, some MG patients do not have antibodies against either of the proteins. Recent studies have revealed antibodies against agrin and its receptor LRP4-both critical for neuromuscular junction formation and maintenance-in MG patients from various populations. Results from experimental autoimmune MG animal models indicate that anti-LRP4 antibodies are causal to MG. Clinical studies have begun to reveal the significance of the new biomarkers. With their identification, MG appears to be a complex disease entity that can be classified into different subtypes with different etiology, each with unique symptoms. Future systematic studies of large cohorts of well-diagnosed MG patients are needed to determine whether each subtype of patients would respond to different therapeutic strategies. Results should contribute to the goal of precision medicine for MG patients. Anti-agrin and anti-LRP4 antibodies are also detectable in some patients with amyotrophic lateral sclerosis or Lou Gehrig's disease; however, whether they are a cause or response to the disorder remains unclear.
Collapse
Affiliation(s)
- Min Yan
- Institute of Life Science, Nanchang University, Nanchang, China.,School of Basic Medical Sciences, Nanchang University, Nanchang, China.,Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Guang-Lin Xing
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Wen-Cheng Xiong
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Louis Stokes Cleveland VAMC, Cleveland, Ohio
| | - Lin Mei
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio.,Louis Stokes Cleveland VAMC, Cleveland, Ohio
| |
Collapse
|
16
|
Verschuuren JJGM, Plomp JJ, Burden SJ, Zhang W, Fillié-Grijpma YE, Stienstra-van Es IE, Niks EH, Losen M, van der Maarel SM, Huijbers MG. Passive transfer models of myasthenia gravis with muscle-specific kinase antibodies. Ann N Y Acad Sci 2018; 1413:111-118. [PMID: 29356029 DOI: 10.1111/nyas.13543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
Abstract
Myasthenia gravis (MG) with antibodies to muscle-specific kinase (MuSK) is characterized by fluctuating fatigable weakness. In MuSK MG, involvement of bulbar muscles, neck, and shoulder and respiratory weakness are more prominent than in acetylcholine receptor (AChR) MG. MuSK autoantibodies are mainly of the IgG4 subclass, and as such are unable to activate complement, have low affinity for Fc receptors, and are functionally monovalent. Therefore, the pathogenicity of IgG4 MuSK autoantibodies was initially questioned. A broad collection of in vitro active immunization and passive transfer models has been developed that have shed light on the pathogenicity of MuSK autoantibodies. Passive transfer studies with purified IgG4 from MuSK MG patients confirmed that IgG4 is sufficient to reproduce clear clinical, electrophysiological, and histological signs of myasthenia. In vitro experiments revealed that MuSK IgG4 autoantibodies preferably bind the first Ig-like domain of MuSK, correlate with disease severity, and interfere with the association between MuSK and low-density lipoprotein receptor-related protein 4 and collagen Q. Some patients have additional IgG1 MuSK autoantibodies, but their role in the disease is unclear. Altogether, this provides a rationale for epitope-specific or IgG4-specific treatment strategies for MuSK MG and emphasizes the importance of the development of different experimental models.
Collapse
Affiliation(s)
| | - Jaap J Plomp
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Steve J Burden
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Medical School, New York, New York
| | - Wei Zhang
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Medical School, New York, New York
| | | | | | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | - Maartje G Huijbers
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
17
|
Induction of Anti-agrin Antibodies Causes Myasthenia Gravis in Mice. Neuroscience 2018; 373:113-121. [PMID: 29339325 DOI: 10.1016/j.neuroscience.2018.01.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2017] [Revised: 12/27/2017] [Accepted: 01/05/2018] [Indexed: 11/21/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disorder of the neuromuscular junction (NMJ). Most cases of MG are caused by autoantibodies against the acetylcholine receptor (AChR), muscle-specific kinase (MuSK) and low-density lipoprotein receptor-related protein 4 (LRP4). Recent studies have identified anti-agrin antibodies in MG patients lacking these three antibodies (i.e., triple negative MG). Agrin is a basal lamina protein that has two isoforms. Neural agrin (N-agrin) binds to LRP4 to activate MuSK to induce AChR clusters and is thus critical for NMJ formation. We demonstrate that mice immunized with N-agrin showed MG-associated symptoms including muscle weakness, fragmented and distorted NMJs. These effects were not observed in mice injected with muscle agrin (M-agrin), an isoform that is inactive in inducing AChR clusters. Treatment with anti-N-agrin, but not anti-M-agrin, antibodies reduced agrin-induced AChR clusters in muscle cells. Together, these observations suggest that agrin antibodies may be play a role in MG pathogenesis.
Collapse
|
18
|
Plomp JJ, Huijbers MGM, Verschuuren JJGM. Neuromuscular synapse electrophysiology in myasthenia gravis animal models. Ann N Y Acad Sci 2017; 1412:146-153. [PMID: 29068559 DOI: 10.1111/nyas.13507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/30/2017] [Accepted: 09/06/2017] [Indexed: 12/12/2022]
Abstract
The neuromuscular junction (NMJ) forms the synaptic connection between a motor neuron and a skeletal muscle fiber. In order to achieve a sustained muscle contraction, this synapse has to reliably transmit motor neuronal action potentials onto the muscle fiber. To guarantee successful transmission even during intense activation of the NMJ, a safety factor of neuromuscular transmission exists. In the neuromuscular disorder myasthenia gravis (MG), autoantibodies are directed against acetylcholine receptors or, in the rarer variants, against other postsynaptic NMJ proteins. This causes loss of functional acetylcholine receptors, which compromises the safety factor of neuromuscular transmission, leading to the typical fatigable muscle weakness of MG. With intracellular microelectrode measurement of (miniature) endplate potentials at NMJs in ex vivo nerve-muscle preparations from MG animal models, these functional synaptic defects have been determined in much detail. Here, we describe the electrophysiological events at the normal NMJ and the pathoelectrophysiology at NMJs of animal models for MG.
Collapse
Affiliation(s)
- Jaap J Plomp
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Maartje G M Huijbers
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | |
Collapse
|
19
|
Ohno K, Ohkawara B, Ito M. Agrin-LRP4-MuSK signaling as a therapeutic target for myasthenia gravis and other neuromuscular disorders. Expert Opin Ther Targets 2017; 21:949-958. [PMID: 28825343 DOI: 10.1080/14728222.2017.1369960] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Signal transduction at the neuromuscular junction (NMJ) is compromised in a diverse array of diseases including myasthenia gravis, Lambert-Eaton myasthenic syndrome, Isaacs' syndrome, congenital myasthenic syndromes, Fukuyama-type congenital muscular dystrophy, amyotrophic lateral sclerosis, and sarcopenia. Except for sarcopenia, all are orphan diseases. In addition, the NMJ signal transduction is impaired by tetanus, botulinum, curare, α-bungarotoxin, conotoxins, organophosphate, sarin, VX, and soman to name a few. Areas covered: This review covers the agrin-LRP4-MuSK signaling pathway, which drives clustering of acetylcholine receptors (AChRs) and ensures efficient signal transduction at the NMJ. We also address diseases caused by autoantibodies against the NMJ molecules and by germline mutations in genes encoding the NMJ molecules. Expert opinion: Representative small compounds to treat the defective NMJ signal transduction are cholinesterase inhibitors, which exert their effects by increasing the amount of acetylcholine at the synaptic space. Another possible therapeutic strategy to enhance the NMJ signal transduction is to increase the number of AChRs, but no currently available drug has this functionality.
Collapse
Affiliation(s)
- Kinji Ohno
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Bisei Ohkawara
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| | - Mikako Ito
- a Division of Neurogenetics , Nagoya University Graduate School of Medicine , Nagoya , Japan
| |
Collapse
|
20
|
Abstract
Myasthenia gravis is an autoimmune disease of the neuromuscular junction (NMJ) caused by antibodies that attack components of the postsynaptic membrane, impair neuromuscular transmission, and lead to weakness and fatigue of skeletal muscle. This can be generalised or localised to certain muscle groups, and involvement of the bulbar and respiratory muscles can be life threatening. The pathogenesis of myasthenia gravis depends upon the target and isotype of the autoantibodies. Most cases are caused by immunoglobulin (Ig)G1 and IgG3 antibodies to the acetylcholine receptor (AChR). They produce complement-mediated damage and increase the rate of AChR turnover, both mechanisms causing loss of AChR from the postsynaptic membrane. The thymus gland is involved in many patients, and there are experimental and genetic approaches to understand the failure of immune tolerance to the AChR. In a proportion of those patients without AChR antibodies, antibodies to muscle-specific kinase (MuSK), or related proteins such as agrin and low-density lipoprotein receptor-related protein 4 (LRP4), are present. MuSK antibodies are predominantly IgG4 and cause disassembly of the neuromuscular junction by disrupting the physiological function of MuSK in synapse maintenance and adaptation. Here we discuss how knowledge of neuromuscular junction structure and function has fed into understanding the mechanisms of AChR and MuSK antibodies. Myasthenia gravis remains a paradigm for autoantibody-mediated conditions and these observations show how much there is still to learn about synaptic function and pathological mechanisms.
Collapse
Affiliation(s)
- William D Phillips
- Physiology and Bosch Institute, University of Sydney, Anderson Stuart Bldg (F13), Sydney, 2006, Australia
| | - Angela Vincent
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
21
|
Mantegazza R, Cordiglieri C, Consonni A, Baggi F. Animal models of myasthenia gravis: utility and limitations. Int J Gen Med 2016; 9:53-64. [PMID: 27019601 PMCID: PMC4786081 DOI: 10.2147/ijgm.s88552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Myasthenia gravis (MG) is a chronic autoimmune disease caused by the immune attack of the neuromuscular junction. Antibodies directed against the acetylcholine receptor (AChR) induce receptor degradation, complement cascade activation, and postsynaptic membrane destruction, resulting in functional reduction in AChR availability. Besides anti-AChR antibodies, other autoantibodies are known to play pathogenic roles in MG. The experimental autoimmune MG (EAMG) models have been of great help over the years in understanding the pathophysiological role of specific autoantibodies and T helper lymphocytes and in suggesting new therapies for prevention and modulation of the ongoing disease. EAMG can be induced in mice and rats of susceptible strains that show clinical symptoms mimicking the human disease. EAMG models are helpful for studying both the muscle and the immune compartments to evaluate new treatment perspectives. In this review, we concentrate on recent findings on EAMG models, focusing on their utility and limitations.
Collapse
Affiliation(s)
- Renato Mantegazza
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Chiara Cordiglieri
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Alessandra Consonni
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| | - Fulvio Baggi
- Neurology IV Unit, Neuroimmunology and Neuromuscular Disorders, Foundation IRCCS Neurological Institute "Carlo Besta", Milan, Italy
| |
Collapse
|
22
|
Bradl M, Lassmann H. Neurologic autoimmunity: mechanisms revealed by animal models. HANDBOOK OF CLINICAL NEUROLOGY 2016; 133:121-43. [PMID: 27112675 DOI: 10.1016/b978-0-444-63432-0.00008-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Over the last decade, neurologic autoimmunity has become a major consideration in the diagnosis and management of patients with many neurologic presentations. The nature of the associated antibodies and their targets has led to appreciation of the importance of the accessibility of the target antigen to antibodies, and a partial understanding of the different mechanisms that can follow antibody binding. This chapter will first describe the basic principles of autoimmune inflammation and tissue damage in the central and peripheral nervous system, and will then demonstrate what has been learnt about neurologic autoimmunity from circumstantial clinical evidence and from passive, active, and occasionally spontaneous or genetic animal models. It will cover neurologic autoimmune diseases ranging from disorders of neuromuscular transmission, peripheral and ganglionic neuropathy, to diseases of the central nervous system, where autoantibodies are either pathogenic and cause destruction or changes in function of their targets, where they are harmless bystanders of T-cell-mediated tissue damage, or are not involved at all. Finally, this chapter will summarize the relevance of current animal models for studying the different neurologic autoimmune diseases, and it will identify aspects where future animal models need to be improved to better reflect the disease reality experienced by affected patients, e.g., the chronicity or the relapsing/remitting nature of their disease.
Collapse
Affiliation(s)
- Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria.
| | - Hans Lassmann
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, Vienna, Austria
| |
Collapse
|
23
|
Ghazanfari N, Linsao ELTB, Trajanovska S, Morsch M, Gregorevic P, Liang SX, Reddel SW, Phillips WD. Forced expression of muscle specific kinase slows postsynaptic acetylcholine receptor loss in a mouse model of MuSK myasthenia gravis. Physiol Rep 2015; 3:3/12/e12658. [PMID: 26702075 PMCID: PMC4760443 DOI: 10.14814/phy2.12658] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 11/20/2015] [Indexed: 12/12/2022] Open
Abstract
We investigated the influence of postsynaptic tyrosine kinase signaling in a mouse model of muscle‐specific kinase (MuSK) myasthenia gravis (MG). Mice administered repeated daily injections of IgG from MuSK MG patients developed impaired neuromuscular transmission due to progressive loss of acetylcholine receptor (AChR) from the postsynaptic membrane of the neuromuscular junction. In this model, anti‐MuSK‐positive IgG caused a reduction in motor endplate immunolabeling for phosphorylated Src‐Y418 and AChR β‐subunit‐Y390 before any detectable loss of MuSK or AChR from the endplate. Adeno‐associated viral vector (rAAV) encoding MuSK fused to enhanced green fluorescent protein (MuSK‐EGFP) was injected into the tibialis anterior muscle to increase MuSK synthesis. When mice were subsequently challenged with 11 daily injections of IgG from MuSK MG patients, endplates expressing MuSK‐EGFP retained more MuSK and AChR than endplates of contralateral muscles administered empty vector. Recordings of compound muscle action potentials from myasthenic mice revealed less impairment of neuromuscular transmission in muscles that had been injected with rAAV‐MuSK‐EGFP than contralateral muscles (empty rAAV controls). In contrast to the effects of MuSK‐EGFP, forced expression of rapsyn‐EGFP provided no such protection to endplate AChR when mice were subsequently challenged with MuSK MG IgG. In summary, the immediate in vivo effect of MuSK autoantibodies was to suppress MuSK‐dependent tyrosine phosphorylation of proteins in the postsynaptic membrane, while increased MuSK synthesis protected endplates against AChR loss. These results support the hypothesis that reduced MuSK kinase signaling initiates the progressive disassembly of the postsynaptic membrane scaffold in this mouse model of MuSK MG.
Collapse
Affiliation(s)
- Nazanin Ghazanfari
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Erna L T B Linsao
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Sofie Trajanovska
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Marco Morsch
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia Department of Biomedical Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Paul Gregorevic
- Baker IDI Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Simon X Liang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Liaoning Medical University, Liaoning, China
| | - Stephen W Reddel
- Department of Molecular Medicine, Concord Hospital, Sydney, New South Wales, Australia
| | - William D Phillips
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
24
|
Huijbers MG, Querol LA, Niks EH, Plomp JJ, van der Maarel SM, Graus F, Dalmau J, Illa I, Verschuuren JJ. The expanding field of IgG4-mediated neurological autoimmune disorders. Eur J Neurol 2015; 22:1151-61. [PMID: 26032110 DOI: 10.1111/ene.12758] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/27/2015] [Indexed: 12/13/2022]
Abstract
At least 13 different disease entities affecting the central nervous system, peripheral nervous system and connective tissue of the skin or kidneys are associated with immunoglobulin G4 (IgG4) immune reactivity. IgG4 has always been considered a benign, non-inflammatory subclass of IgG, in contrast to the well-known complement-activating pro-inflammatory IgG1 subclass. A comprehensive review of these IgG4 autoimmune disorders reveals striking similarities in epitope binding and human leukocyte antigen (HLA) associations. Mechanical interference of extracellular ligand-receptor interactions by the associated IgG4 antibodies seems to be the common/converging disease mechanism in these disorders.
Collapse
Affiliation(s)
- M G Huijbers
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands.,Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - L A Querol
- Department of Neurology, Hospital Santa Creu I Sant Pau, Barcelona, Spain
| | - E H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - J J Plomp
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - S M van der Maarel
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - F Graus
- Department of Neurology, Hospital Santa Creu I Sant Pau, Barcelona, Spain
| | - J Dalmau
- Department of Neurology, Hospital Santa Creu I Sant Pau, Barcelona, Spain
| | - I Illa
- Department of Neurology, Hospital Santa Creu I Sant Pau, Barcelona, Spain
| | - J J Verschuuren
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
25
|
Ha JC, Richman DP. Myasthenia gravis and related disorders: Pathology and molecular pathogenesis. Biochim Biophys Acta Mol Basis Dis 2015; 1852:651-7. [DOI: 10.1016/j.bbadis.2014.11.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 11/20/2014] [Accepted: 11/29/2014] [Indexed: 12/21/2022]
|
26
|
Plomp JJ, Morsch M, Phillips WD, Verschuuren JJGM. Electrophysiological analysis of neuromuscular synaptic function in myasthenia gravis patients and animal models. Exp Neurol 2015; 270:41-54. [PMID: 25620417 DOI: 10.1016/j.expneurol.2015.01.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/07/2015] [Accepted: 01/16/2015] [Indexed: 12/21/2022]
Abstract
Study of the electrophysiological function of the neuromuscular junction (NMJ) is instrumental in the understanding of the symptoms and pathophysiology of myasthenia gravis (MG), an autoimmune disorder characterized by fluctuating and fatigable muscle weakness. Most patients have autoantibodies to the acetylcholine receptor at the NMJ. However, in recent years autoantibodies to other crucial postsynaptic membrane proteins have been found in previously 'seronegative' MG patients. Electromyographical recording of compound and single-fibre muscle action potentials provides a crucial in vivo method to determine neuromuscular transmission failure while ex vivo (miniature) endplate potential recordings can reveal the precise synaptic impairment. Here we will review these electrophysiological methods used to assess NMJ function and discuss their application and typical results found in the diagnostic and experimental study of patients and animal models of the several forms of MG.
Collapse
Affiliation(s)
- Jaap J Plomp
- Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands.
| | - Marco Morsch
- Motor Neuron Disease Research Group, Macquarie University, Sydney, Australia
| | | | | |
Collapse
|
27
|
Phillips WD, Christadoss P, Losen M, Punga AR, Shigemoto K, Verschuuren J, Vincent A. Guidelines for pre-clinical animal and cellular models of MuSK-myasthenia gravis. Exp Neurol 2014; 270:29-40. [PMID: 25542979 DOI: 10.1016/j.expneurol.2014.12.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/12/2014] [Accepted: 12/17/2014] [Indexed: 11/17/2022]
Abstract
Muscle-specific tyrosine kinase (MuSK) autoantibodies are the hallmark of a form of myasthenia gravis (MG) that can challenge the neurologist and the experimentalist. The clinical disease can be difficult to treat effectively. MuSK autoantibodies affect the neuromuscular junction in several ways. When added to muscle cells in culture, MuSK antibodies disperse acetylcholine receptor clusters. Experimental animals actively immunized with MuSK develop MuSK autoantibodies and muscle weakness. Weakness is associated with reduced postsynaptic acetylcholine receptor numbers, reduced amplitudes of miniature endplate potentials and endplate potentials, and failure of neuromuscular transmission. Similar impairments have been found in mice injected with IgG from MG patients positive for MuSK autoantibody (MuSK-MG). The active and passive models have begun to reveal the mechanisms by which MuSK antibodies disrupt synaptic function at the neuromuscular junction, and should be valuable in developing therapies for MuSK-MG. However, translation into new and improved treatments for patients requires procedures that are not too cumbersome but suitable for examining different aspects of MuSK function and the effects of potential therapies. Study design, conduct and analysis should be carefully considered and transparently reported. Here we review what has been learnt from animal and culture models of MuSK-MG, and offer guidelines for experimental design and conduct of studies, including sample size determination, randomization, outcome parameters and precautions for objective data analysis. These principles may also be relevant to the increasing number of other antibody-mediated diseases that are now recognized.
Collapse
Affiliation(s)
- W D Phillips
- School of Medical Sciences (Physiology) and Bosch Institute, Anderson Stuart Bldg (F13), University of Sydney, NSW 2006, Australia.
| | - P Christadoss
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - M Losen
- Department of Neuroscience, School of Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - A R Punga
- Institute of Neuroscience, Department of Clinical Neurophysiology, Uppsala University, Uppsala, Sweden.
| | - K Shigemoto
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan.
| | - J Verschuuren
- Department of Neurology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - A Vincent
- Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
28
|
Patel V, Oh A, Voit A, Sultatos LG, Babu GJ, Wilson BA, Ho M, McArdle JJ. Altered active zones, vesicle pools, nerve terminal conductivity, and morphology during experimental MuSK myasthenia gravis. PLoS One 2014; 9:e110571. [PMID: 25438154 PMCID: PMC4249869 DOI: 10.1371/journal.pone.0110571] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/15/2014] [Indexed: 11/18/2022] Open
Abstract
Recent studies demonstrate reduced motor-nerve function during autoimmune muscle-specific tyrosine kinase (MuSK) myasthenia gravis (MG). To further understand the basis of motor-nerve dysfunction during MuSK-MG, we immunized female C57/B6 mice with purified rat MuSK ectodomain. Nerve-muscle preparations were dissected and neuromuscular junctions (NMJs) studied electrophysiologically, morphologically, and biochemically. While all mice produced antibodies to MuSK, only 40% developed respiratory muscle weakness. In vitro study of respiratory nerve-muscle preparations isolated from these affected mice revealed that 78% of NMJs produced endplate currents (EPCs) with significantly reduced quantal content, although potentiation and depression at 50 Hz remained qualitatively normal. EPC and mEPC amplitude variability indicated significantly reduced number of vesicle-release sites (active zones) and reduced probability of vesicle release. The readily releasable vesicle pool size and the frequency of large amplitude mEPCs also declined. The remaining NMJs had intermittent (4%) or complete (18%) failure of neurotransmitter release in response to 50 Hz nerve stimulation, presumably due to blocked action potential entry into the nerve terminal, which may arise from nerve terminal swelling and thinning. Since MuSK-MG-affected muscles do not express the AChR γ subunit, the observed prolongation of EPC decay time was not due to inactivity-induced expression of embryonic acetylcholine receptor, but rather to reduced catalytic activity of acetylcholinesterase. Muscle protein levels of MuSK did not change. These findings provide novel insight into the pathophysiology of autoimmune MuSK-MG.
Collapse
MESH Headings
- Animals
- Female
- Immunization, Passive
- Mice
- Motor Endplate/pathology
- Motor Endplate/physiopathology
- Motor Neurons/pathology
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/metabolism
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Myasthenia Gravis, Autoimmune, Experimental/physiopathology
- Neural Conduction
- Neurotransmitter Agents/metabolism
- Protein Structure, Tertiary
- Rats
- Receptor Protein-Tyrosine Kinases/chemistry
- Receptor Protein-Tyrosine Kinases/immunology
- Receptors, Cholinergic/metabolism
- Synaptic Vesicles/metabolism
- Vaccination
Collapse
Affiliation(s)
- Vishwendra Patel
- Department of Pharmacology and Physiology, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
| | - Anne Oh
- Department of Pharmacology and Physiology, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
| | - Antanina Voit
- Department Cell Biology and Molecular Medicine, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
| | - Lester G. Sultatos
- Department of Pharmacology and Physiology, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
| | - Gopal J. Babu
- Department Cell Biology and Molecular Medicine, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
| | - Brenda A. Wilson
- Department of Microbiology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Mengfei Ho
- Department of Microbiology, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Joseph J. McArdle
- Department of Pharmacology and Physiology, New Jersey Medical School-Rutgers University, Newark, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
29
|
Zhang B, Shen C, Bealmear B, Ragheb S, Xiong WC, Lewis RA, Lisak RP, Mei L. Autoantibodies to agrin in myasthenia gravis patients. PLoS One 2014; 9:e91816. [PMID: 24632822 PMCID: PMC3954737 DOI: 10.1371/journal.pone.0091816] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/02/2014] [Indexed: 11/19/2022] Open
Abstract
To determine if patients with myasthenia gravis (MG) have antibodies to agrin, a proteoglycan released by motor neurons and is critical for neuromuscular junction (NMJ) formation, we collected serum samples from 93 patients with MG with known status of antibodies to acetylcholine receptor (AChR), muscle specific kinase (MuSK) and lipoprotein-related 4 (LRP4) and samples from control subjects (healthy individuals and individuals with other diseases). Sera were assayed for antibodies to agrin. We found antibodies to agrin in 7 serum samples of MG patients. None of the 25 healthy controls and none of the 55 control neurological patients had agrin antibodies. Two of the four triple negative MG patients (i.e., no detectable AChR, MuSK or LRP4 antibodies, AChR-/MuSK-/LRP4-) had antibodies against agrin. In addition, agrin antibodies were detected in 5 out of 83 AChR+/MuSK-/LRP4- patients but were not found in the 6 patients with MuSK antibodies (AChR-/MuSK+/LRP4-). Sera from MG patients with agrin antibodies were able to recognize recombinant agrin in conditioned media and in transfected HEK293 cells. These sera also inhibited the agrin-induced MuSK phosphorylation and AChR clustering in muscle cells. Together, these observations indicate that agrin is another autoantigen in patients with MG and agrin autoantibodies may be pathogenic through inhibition of agrin/LRP4/MuSK signaling at the NMJ.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Neuroscience and Regenerative Medicine and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Physiology, Basic Medical School, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, Hubei Province, P. R. China
| | - Chengyong Shen
- Department of Neuroscience and Regenerative Medicine and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
| | - Beverly Bealmear
- Department of Neurology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Samia Ragheb
- Department of Neurology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
- Department of Biomedical Sciences, Oakland University William Beaumont School of Medicine, Rochester, Michigan, United States of America
| | - Wen-Cheng Xiong
- Department of Neuroscience and Regenerative Medicine and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
| | - Richard A. Lewis
- Department of Neurology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
- Department of Neurology, Cedars-Sinai Medical Center, West Hollywood, California, United States of America
| | - Robert P. Lisak
- Department of Neurology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
- Department of Immunology and Microbiology, School of Medicine, Wayne State University, Detroit, Michigan, United States of America
| | - Lin Mei
- Department of Neuroscience and Regenerative Medicine and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Charlie Norwood VA Medical Center, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
30
|
Ghazanfari N, Morsch M, Tse N, Reddel SW, Phillips WD. Effects of the ß2-adrenoceptor agonist, albuterol, in a mouse model of anti-MuSK myasthenia gravis. PLoS One 2014; 9:e87840. [PMID: 24505322 PMCID: PMC3914858 DOI: 10.1371/journal.pone.0087840] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 12/31/2013] [Indexed: 11/19/2022] Open
Abstract
The β2-adrenergic receptor agonist, albuterol, has been reported beneficial in treating several forms of congenital myasthenia. Here, for the first time, we examined the potential benefit of albuterol in a mouse model of anti-Muscle Specific Kinase (MuSK) myasthenia gravis. Mice received 15 daily injections of IgG from anti-MuSK positive patients, which resulted in whole-body weakness. At neuromuscular junctions in the tibialis anterior and diaphragm muscles the autoantibodies caused loss of postsynaptic acetylcholine receptors, and reduced the amplitudes of the endplate potential and spontaneous miniature endplate potential in the diaphragm muscle. Treatment with albuterol (8 mg/kg/day) during the two-week anti-MuSK injection series reduced the degree of weakness and weight loss, compared to vehicle-treated mice. However, the compound muscle action potential recorded from the gastrocnemius muscle displayed a decremental response in anti-MuSK-injected mice whether treated with albuterol or vehicle. Ongoing albuterol treatment did not increase endplate potential amplitudes compared to vehicle-treated mice nor did it prevent the loss of acetylcholine receptors from motor endplates. On the other hand, albuterol treatment significantly reduced the degree of fragmentation of endplate acetylcholine receptor clusters and increased the extent to which the remaining receptor clusters were covered by synaptophysin-stained nerve terminals. The results provide the first evidence that short-term albuterol treatment can ameliorate weakness in a robust mouse model of anti-MuSK myasthenia gravis. The results also demonstrate that it is possible for albuterol treatment to reduce whole-body weakness without necessarily reversing myasthenic impairment to the structure and function of the neuromuscular junction.
Collapse
MESH Headings
- Adrenergic beta-2 Receptor Agonists/pharmacology
- Albuterol/pharmacology
- Animals
- Autoantibodies/immunology
- Autoantibodies/toxicity
- Female
- Humans
- Mice
- Muscle, Skeletal/immunology
- Muscle, Skeletal/pathology
- Myasthenia Gravis, Autoimmune, Experimental/chemically induced
- Myasthenia Gravis, Autoimmune, Experimental/drug therapy
- Myasthenia Gravis, Autoimmune, Experimental/immunology
- Myasthenia Gravis, Autoimmune, Experimental/pathology
- Neuromuscular Junction/immunology
- Neuromuscular Junction/pathology
- Receptor Protein-Tyrosine Kinases/immunology
Collapse
Affiliation(s)
- Nazanin Ghazanfari
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Marco Morsch
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Nigel Tse
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Stephen W. Reddel
- Department of Molecular Medicine, Concord Hospital, Concord, New South Wales, Australia
| | - William D. Phillips
- Physiology and Bosch Institute, University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
31
|
George S, Paulick S, Knütter I, Röber N, Hiemann R, Roggenbuck D, Conrad K, Küpper JH. Stable expression of human muscle-specific kinase in HEp-2 M4 cells for automatic immunofluorescence diagnostics of myasthenia gravis. PLoS One 2014; 9:e83924. [PMID: 24416182 PMCID: PMC3886972 DOI: 10.1371/journal.pone.0083924] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/11/2013] [Indexed: 12/22/2022] Open
Abstract
Muscle-specific kinase (MuSK) belongs to the nicotinic acetylcholine receptor complex which is targeted by pathogenic autoantibodies causing Myasthenia gravis. While up to 95% of patients with generalized Myasthenia gravis were shown to be positive for acetylcholine receptor-specific autoantibodies, up to 70% of the remaining patients develop autoantibodies against MuSK. Discrimination of the autoantibody specificity is important for therapy of Myasthenia gravis. Recently, the new automatic fluorescence assessment platform AKLIDES has been developed for immunofluorescence-based diagnostics of autoimmune diseases. In order to establish an AKLIDES procedure for the detection of MuSK-specific autoantibodies (anti-MuSK), we developed a recombinant HEp-2 cell clone expressing the human MuSK cDNA. Here we show at the mRNA and protein level that the cell clone HEp-2 M4 stably expresses human MuSK. We provide evidence for a localization of MuSK at the cell membrane. Using cell clone HEp-2 M4 on the AKLIDES system, we investigated 34 patient sera that were previously tested anti-MuSK positive by radioimmunoassay as positive controls. As negative controls, we tested 29 acetylcholine receptor-positive but MuSK-negative patient sera, 30 amytrophic lateral sclerosis (ALS) patient sera and 45 blood donors. HEp-2 M4 cells revealed a high specificity for the detection of MuSK autoantibodies from 25 patient sera assessed by a specific pattern on HEp-2 M4 cells. By using appropriate cell culture additives, the fraction of cells stained positive with anti-MuSK containing sera can be increased from 2-16% to 10-48%, depending on the serum. In conclusion, we provide data showing that the novel recombinant cell line HEp-2 M4 can be used to screen for anti-MuSK with the automatic AKLIDES system.
Collapse
Affiliation(s)
- Sandra George
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Institute of Immunology, Technical University Dresden, Dresden, Germany
| | - Silvia Paulick
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Ilka Knütter
- GA Generic Assays GmbH, Dahlewitz/Berlin, Germany
| | - Nadja Röber
- Institute of Immunology, Technical University Dresden, Dresden, Germany
| | - Rico Hiemann
- GA Generic Assays GmbH, Dahlewitz/Berlin, Germany
| | - Dirk Roggenbuck
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- GA Generic Assays GmbH, Dahlewitz/Berlin, Germany
| | - Karsten Conrad
- Institute of Immunology, Technical University Dresden, Dresden, Germany
| | - Jan-Heiner Küpper
- Faculty of Science, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| |
Collapse
|
32
|
Shen C, Lu Y, Zhang B, Figueiredo D, Bean J, Jung J, Wu H, Barik A, Yin DM, Xiong WC, Mei L. Antibodies against low-density lipoprotein receptor-related protein 4 induce myasthenia gravis. J Clin Invest 2013; 123:5190-202. [PMID: 24200689 DOI: 10.1172/jci66039] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 08/29/2013] [Indexed: 11/17/2022] Open
Abstract
Myasthenia gravis (MG) is the most common disorder affecting the neuromuscular junction (NMJ). MG is frequently caused by autoantibodies against acetylcholine receptor (AChR) and a kinase critical for NMJ formation, MuSK; however, a proportion of MG patients are double-negative for anti-AChR and anti-MuSK antibodies. Recent studies in these subjects have identified autoantibodies against low-density lipoprotein receptor-related protein 4 (LRP4), an agrin receptor also critical for NMJ formation. LRP4 autoantibodies have not previously been implicated in MG pathogenesis. Here we demonstrate that mice immunized with the extracellular domain of LRP4 generated anti-LRP4 antibodies and exhibited MG-associated symptoms, including muscle weakness, reduced compound muscle action potentials (CMAPs), and compromised neuromuscular transmission. Additionally, fragmented and distorted NMJs were evident at both the light microscopic and electron microscopic levels. We found that anti-LRP4 sera decreased cell surface LRP4 levels, inhibited agrin-induced MuSK activation and AChR clustering, and activated complements, revealing potential pathophysiological mechanisms. To further confirm the pathogenicity of LRP4 antibodies, we transferred IgGs purified from LRP4-immunized rabbits into naive mice and found that they exhibited MG-like symptoms, including reduced CMAP and impaired neuromuscular transmission. Together, these data demonstrate that LRP4 autoantibodies induce MG and that LRP4 contributes to NMJ maintenance in adulthood.
Collapse
|
33
|
Koneczny I, Cossins J, Waters P, Beeson D, Vincent A. MuSK myasthenia gravis IgG4 disrupts the interaction of LRP4 with MuSK but both IgG4 and IgG1-3 can disperse preformed agrin-independent AChR clusters. PLoS One 2013; 8:e80695. [PMID: 24244707 PMCID: PMC3820634 DOI: 10.1371/journal.pone.0080695] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/13/2013] [Indexed: 12/24/2022] Open
Abstract
A variable proportion of patients with generalized myasthenia gravis (MG) have autoantibodies to muscle specific tyrosine kinase (MuSK). During development agrin, released from the motor nerve, interacts with low density lipoprotein receptor-related protein-4 (LRP4), which then binds to MuSK; MuSK interaction with the intracellular protein Dok7 results in clustering of the acetylcholine receptors (AChRs) on the postsynaptic membrane. In mature muscle, MuSK helps maintain the high density of AChRs at the neuromuscular junction. MuSK antibodies are mainly IgG4 subclass, which does not activate complement and can be monovalent, thus it is not clear how the antibodies cause disruption of AChR numbers or function to cause MG. We hypothesised that MuSK antibodies either reduce surface MuSK expression and/or inhibit the interaction with LRP4. We prepared MuSK IgG, monovalent Fab fragments, IgG1-3 and IgG4 fractions from MuSK-MG plasmas. We asked whether the antibodies caused endocytosis of MuSK in MuSK-transfected cells or if they inhibited binding of LRP4 to MuSK in co-immunoprecipitation experiments. In parallel, we investigated their ability to reduce AChR clusters in C2C12 myotubes induced by a) agrin, reflecting neuromuscular development, and b) by Dok7- overexpression, producing AChR clusters that more closely resemble the adult neuromuscular synapse. Total IgG, IgG4 or IgG1-3 MuSK antibodies were not endocytosed unless cross-linked by divalent anti-human IgG. MuSK IgG, Fab fragments and IgG4 inhibited the binding of LRP4 to MuSK and reduced agrin-induced AChR clustering in C2C12 cells. By contrast, IgG1-3 antibodies did not inhibit LRP4-MuSK binding but, surprisingly, did inhibit agrin-induced clustering. Moreover, both IgG4 and IgG1-3 preparations dispersed agrin-independent AChR clusters in Dok7-overexpressing C2C12 cells. Thus interference by IgG4 antibodies of the LRP4-MuSK interaction will be one pathogenic mechanism of MuSK antibodies, but IgG1-3 MuSK antibodies will also contribute to the reduced AChR density and neuromuscular dysfunction in myasthenia patients with MuSK antibodies.
Collapse
Affiliation(s)
- Inga Koneczny
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Judith Cossins
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Patrick Waters
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Angela Vincent
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Skjei KL, Lennon VA, Kuntz NL. Muscle specific kinase autoimmune myasthenia gravis in children: a case series. Neuromuscul Disord 2013; 23:874-82. [PMID: 24012245 DOI: 10.1016/j.nmd.2013.07.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/25/2013] [Accepted: 07/29/2013] [Indexed: 11/17/2022]
Abstract
We report clinical, neurophysiological and autoantibody profiles of 9 children presenting with fatigable weakness and MuSK autoantibody seropositivity. Eight were female, 3 were black; median onset age was 8 years. Diplopia or bulbar dysfunction were common presenting symptoms. Half of the patients experienced moderate to severe weakness of bulbar, facial and respiratory muscles (including exacerbations requiring mechanical ventilation). Muscle AChR antibodies were detected transiently in 2 patients but no other autoantibodies were detected. Clinical response to treatment was variable and incomplete. No thymic abnormalities were noted by CT or pathologically (3 underwent thymectomy). Electromyographic (EMG) abnormalities (decrement of compound muscle action potential amplitude during slow repetitive nerve stimulation and variation in individual motor unit potentials) were limited to clinically weak muscles. Single fiber EMG demonstrated abnormalities in an asymptomatic muscle in the single patient studied. As in adults, MuSK autoimmune MG presents more commonly in females, and weakness preferentially affects bulbar, facial and respiratory muscles. Morbidity is significant and responses to standard therapies are variable and incomplete. Neurophysiological confirmation is more challenging in children because testing of weak muscles (cranial nerve-innervated and respiratory) may require moderate sedation and monitoring.
Collapse
Affiliation(s)
- Karen L Skjei
- Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | | | | |
Collapse
|
35
|
Mechanisms associated with the pathogenicity of antibodies against muscle-specific kinase in myasthenia gravis. Autoimmun Rev 2013; 12:912-7. [DOI: 10.1016/j.autrev.2013.03.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2013] [Indexed: 12/27/2022]
|
36
|
Richman DP, Nishi K, Ferns MJ, Schnier J, Pytel P, Maselli RA, Agius MA. Animal models of antimuscle-specific kinase myasthenia. Ann N Y Acad Sci 2013; 1274:140-7. [PMID: 23252909 DOI: 10.1111/j.1749-6632.2012.06782.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Antimuscle-specific kinase (anti-MuSK) myasthenia (AMM) differs from antiacetylcholine receptor myasthenia gravis in exhibiting more focal muscle involvement (neck, shoulder, facial, and bulbar muscles) with wasting of the involved, primarily axial, muscles. AMM is not associated with thymic hyperplasia and responds poorly to anticholinesterase treatment. Animal models of AMM have been induced in rabbits, mice, and rats by immunization with purified xenogeneic MuSK ectodomain, and by passive transfer of large quantities of purified serum IgG from AMM patients into mice. The models have confirmed the pathogenic role of the MuSK antibodies in AMM and have demonstrated the involvement of both the presynaptic and postsynaptic components of the neuromuscular junction. The observations in this human disease and its animal models demonstrate the role of MuSK not only in the formation of this synapse but also in its maintenance.
Collapse
Affiliation(s)
- David P Richman
- Department of Neurology, Center for Neuroscience, University of California, Davis, 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
37
|
Koneczny I, Cossins J, Vincent A. The role of muscle-specific tyrosine kinase (MuSK) and mystery of MuSK myasthenia gravis. J Anat 2013; 224:29-35. [PMID: 23458718 DOI: 10.1111/joa.12034] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2013] [Indexed: 11/28/2022] Open
Abstract
MuSK myasthenia gravis is a rare, severe autoimmune disease of the neuromuscular junction, only identified in 2001, with unclear pathogenic mechanisms. In this review we describe the clinical aspects that distinguish MuSK MG from AChR MG, review what is known about the role of MuSK in the development and function of the neuromuscular junction, and discuss the data that address how the antibodies to MuSK lead to neuromuscular transmission failure.
Collapse
Affiliation(s)
- Inga Koneczny
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | | | | |
Collapse
|
38
|
Morsch M, Reddel SW, Ghazanfari N, Toyka KV, Phillips WD. Pyridostigmine but not 3,4-diaminopyridine exacerbates ACh receptor loss and myasthenia induced in mice by muscle-specific kinase autoantibody. J Physiol 2013; 591:2747-62. [PMID: 23440963 DOI: 10.1113/jphysiol.2013.251827] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In myasthenia gravis, the neuromuscular junction is impaired by the antibody-mediated loss of postsynaptic acetylcholine receptors (AChRs). Muscle weakness can be improved upon treatment with pyridostigmine, a cholinesterase inhibitor, or with 3,4-diaminopyridine, which increases the release of ACh quanta. The clinical efficacy of pyridostigmine is in doubt for certain forms of myasthenia. Here we formally examined the effects of these compounds in the antibody-induced mouse model of anti-muscle-specific kinase (MuSK) myasthenia gravis. Mice received 14 daily injections of IgG from patients with anti-MuSK myasthenia gravis. This caused reductions in postsynaptic AChR densities and in endplate potential amplitudes. Systemic delivery of pyridostigmine at therapeutically relevant levels from days 7 to 14 exacerbated the anti-MuSK-induced structural alterations and functional impairment at motor endplates in the diaphragm muscle. No such effect of pyridostigmine was found in mice receiving control human IgG. Mice receiving smaller amounts of MuSK autoantibodies did not display overt weakness, but 9 days of pyridostigmine treatment precipitated generalised muscle weakness. In contrast, one week of treatment with 3,4-diaminopyridine enhanced neuromuscular transmission in the diaphragm muscle. Both pyridostigmine and 3,4-diaminopyridine increase ACh in the synaptic cleft yet only pyridostigmine potentiated the anti-MuSK-induced decline in endplate ACh receptor density. These results thus suggest that ongoing pyridostigmine treatment potentiates anti-MuSK-induced AChR loss by prolonging the activity of ACh in the synaptic cleft.
Collapse
Affiliation(s)
- Marco Morsch
- School of Medical Sciences (Physiology) and Bosch Institute, Anderson Stuart Bldg (F13), University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
39
|
Plomp JJ, Huijbers MG, van der Maarel SM, Verschuuren JJ. Pathogenic IgG4 subclass autoantibodies in MuSK myasthenia gravis. Ann N Y Acad Sci 2012; 1275:114-22. [DOI: 10.1111/j.1749-6632.2012.06808.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Meriggioli MN, Sanders DB. Muscle autoantibodies in myasthenia gravis: beyond diagnosis? Expert Rev Clin Immunol 2012; 8:427-38. [PMID: 22882218 DOI: 10.1586/eci.12.34] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Myasthenia gravis is an autoimmune disorder of the neuromuscular junction. A number of molecules, including ion channels and other proteins at the neuromuscular junction, may be targeted by autoantibodies leading to abnormal neuromuscular transmission. In approximately 85% of patients, autoantibodies, directed against the postsynaptic nicotinic acetylcholine receptor can be detected in the serum and confirm the diagnosis, but in general, do not precisely predict the degree of weakness or response to therapy. Antibodies to the muscle-specific tyrosine kinase are detected in approximately 50% of generalized myasthenia gravis patients who are seronegative for anti-acetylcholine receptor antibodies, and levels of anti-muscle-specific tyrosine kinase antibodies do appear to correlate with disease severity and treatment response. Antibodies to other muscle antigens may be found in the subsets of myasthenia gravis patients, potentially providing clinically useful diagnostic information, but their utility as relevant biomarkers (measures of disease state or response to treatment) is currently unclear.
Collapse
Affiliation(s)
- Matthew N Meriggioli
- Department of Neurology and Rehabilitation, College of Medicine, University of Illinois Hospital and Health Sciences System, Chicago, IL 60612, USA.
| | | |
Collapse
|
41
|
Poulas K, Koutsouraki E, Kordas G, Kokla A, Tzartos SJ. Anti-MuSK- and anti-AChR-positive myasthenia gravis induced by d-penicillamine. J Neuroimmunol 2012; 250:94-8. [DOI: 10.1016/j.jneuroim.2012.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 03/17/2012] [Accepted: 05/16/2012] [Indexed: 10/28/2022]
|
42
|
Muscle specific kinase autoantibodies cause synaptic failure through progressive wastage of postsynaptic acetylcholine receptors. Exp Neurol 2012; 237:286-95. [PMID: 22789393 DOI: 10.1016/j.expneurol.2012.06.034] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 11/21/2022]
Abstract
In myasthenia gravis muscle weakness is caused by autoantibodies against components of the neuromuscular junction. Patient autoantibodies against muscle specific kinase (MuSK) deplete MuSK from the postsynaptic membrane and reproduce signs of myasthenia gravis when injected into mice. Here we have examined the time-course of structural and functional changes that lead up to synaptic failure. C57Bl6J mice received daily injections of anti-MuSK patient IgG for 15 days. Mice began to lose weight from day 12 and demonstrated whole-body weakness by day 14. Electromyography indicated synaptic impairment from day 6 in the gastrocnemius muscle and from day 10 in the diaphragm muscle. Confocal microscopy revealed linear declines in the area and density of postsynaptic acetylcholine receptors (3-5% per day) from day 1 through day 15 of the injection series in all five muscles examined. Intracellular recordings from the diaphragm muscle revealed comparable progressive declines in the amplitude of the endplate potential and miniature endplate potential of 3-4% per day. Neither quantal content nor the postsynaptic action potential threshold changed significantly over the injection series. The inverse relationship between the quantal amplitude of a synapse and its quantal content disappeared only late in the injection series (day 10). Our results suggest that the primary myasthenogenic action of anti-MuSK IgG is to cause wastage of postsynaptic acetylcholine receptor density. Consequent reductions in endplate potential amplitudes culminated in failure of neuromuscular transmission.
Collapse
|
43
|
Barik A, Xiong WC, Mei L. MuSK: A Kinase Critical for the Formation and Maintenance of the Neuromuscular Junction. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/978-1-61779-824-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
|
44
|
Richman DP. Antibodies to low density lipoprotein receptor-related protein 4 in seronegative myasthenia gravis. ARCHIVES OF NEUROLOGY 2012; 69:434-5. [PMID: 22158717 PMCID: PMC3903387 DOI: 10.1001/archneurol.2011.2855] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
45
|
Klooster R, Plomp JJ, Huijbers MG, Niks EH, Straasheijm KR, Detmers FJ, Hermans PW, Sleijpen K, Verrips A, Losen M, Martinez-Martinez P, De Baets MH, van der Maarel SM, Verschuuren JJ. Muscle-specific kinase myasthenia gravis IgG4 autoantibodies cause severe neuromuscular junction dysfunction in mice. Brain 2012; 135:1081-101. [DOI: 10.1093/brain/aws025] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
46
|
Viegas S, Jacobson L, Waters P, Cossins J, Jacob S, Leite MI, Webster R, Vincent A. Passive and active immunization models of MuSK-Ab positive myasthenia: electrophysiological evidence for pre and postsynaptic defects. Exp Neurol 2012; 234:506-12. [PMID: 22326541 DOI: 10.1016/j.expneurol.2012.01.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 01/21/2012] [Accepted: 01/27/2012] [Indexed: 10/14/2022]
Abstract
Antibodies directed against the post-synaptic neuromuscular junction protein, muscle specific kinase (MuSK) are found in a small proportion of generalized myasthenia gravis (MuSK-MG) patients. MuSK is a receptor tyrosine kinase which is essential for clustering of the acetylcholine receptors (AChRs) at the neuromuscular junction, but the mechanisms by which MuSK antibodies (MuSK-Abs) affect neuromuscular transmission are not clear. Experimental models of MuSK-MG have been described but there have been no detailed electrophysiological studies and no comparisons between the MuSK-MG and the typical form with AChR-Abs (AChR-MG). Here we studied the electrophysiology of neuromuscular transmission after immunization against MuSK compared with immunization against AChR, and also after passive transfer of IgG from MuSK-MG or AChR-MG patients. Overt clinical weakness was observed in 6/10 MuSK-immunized and 3/9 AChR-immunized mice but not in those injected with patients' IgG. Miniature endplate potentials (MEPPS) were reduced in all weak mice consistent with the reduction in postsynaptic AChRs that was found. However, whereas there was an increase in the quantal release of acetylcholine (ACh) in the weak AChR-immunized mice, no such increase was found in the weak MuSK-immunized mice. Similar trends were found after the passive transfer of purified IgG antibodies from MuSK-MG or AChR-MG patients. Preliminary results showed that MuSK expression was considerably higher at the neuromuscular junctions of the masseter (facial) than in the gastrocnemius (leg) with no reduction in MuSK immunostaining at the neuromuscular junctions. Overall, these results suggest that MuSK antibodies act in at least two ways. Firstly by indirectly affecting MuSK's ability to maintain the high density of AChRs and secondly by interfering with a compensatory presynaptic mechanism that regulates quantal release and helps to preserve neuromuscular function. These results raise questions about how MuSK is involved in retrograde signaling, and the combination of post-synaptic defects with lack of presynaptic compensation may begin to explain the more severe disease in MuSK-MG patients.
Collapse
Affiliation(s)
- Stuart Viegas
- Weatherall Institute of Molecular Medicine and Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, Oxford OX3 9DS, UK
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Chroni E, Punga AR. Neurophysiological characteristics of MuSK antibody positive myasthenia gravis mice: focal denervation and hypersensitivity to acetylcholinesterase inhibitors. J Neurol Sci 2012; 316:150-7. [PMID: 22251934 DOI: 10.1016/j.jns.2011.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/20/2011] [Accepted: 12/22/2011] [Indexed: 11/17/2022]
Abstract
Myasthenia Gravis (MG) patients with antibodies against the muscle specific tyrosine kinase (MuSK+) typically present with focal fatigue and atrophy of the facial and bulbar muscles, along with unbeneficial reactions upon administration of acetylcholinesterase inhibitors (AChEIs). This study addresses the neurophysiological characteristics in facial versus limb muscles, before and after intraperitoneal injection of AChEIs, in mice immunized with MuSK. We performed in-vivo neurophysiological examinations in the masseter and gastrocnemius muscles of mice with MuSK+experimental autoimmune MG (EAMG) and in healthy control mice before and after administration of AChEIs. Abnormal spontaneous activity (fibrillations) was observed in the masseter muscle of MuSK+mice. Furthermore, 94% of MuSK-immunized mice displayed so called extra discharges (EDs) upon administration of a therapeutic AChEI dose, in contrast to 22% of the control mice, indicating neuromuscular hyperactivity. These findings support functional denervation in the masseter muscle and neuromuscular hypersensitivity already at a standard dose of AChEIs in MuSK+EAMG.
Collapse
Affiliation(s)
- Elisabeth Chroni
- Department of Neurology, School of Medicine, University of Patras, Patras, Greece
| | | |
Collapse
|
48
|
Richman DP, Nishi K, Morell SW, Chang JM, Ferns MJ, Wollmann RL, Maselli RA, Schnier J, Agius MA. Acute severe animal model of anti-muscle-specific kinase myasthenia: combined postsynaptic and presynaptic changes. ACTA ACUST UNITED AC 2011; 69:453-60. [PMID: 22158720 DOI: 10.1001/archneurol.2011.2200] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
OBJECTIVES To determine the pathogenesis of anti-muscle-specific kinase (MuSK) myasthenia, a newly described severe form of myasthenia gravis associated with MuSK antibodies characterized by focal muscle weakness and wasting and absence of acetylcholine receptor antibodies, and to determine whether antibodies to MuSK, a crucial protein in the formation of the neuromuscular junction (NMJ) during development, can induce disease in the mature NMJ. Design, Setting, and PARTICIPANTS Lewis rats were immunized with a single injection of a newly discovered splicing variant of MuSK, MuSK 60, which has been demonstrated to be expressed primarily in the mature NMJ. Animals were assessed clinically, serologically, and by repetitive stimulation of the median nerve. Muscle tissue was examined immunohistochemically and by electron microscopy. RESULTS Animals immunized with 100 μg of MuSK 60 developed severe progressive weakness starting at day 16, with 100% mortality by day 27. The weakness was associated with high MuSK antibody titers, weight loss, axial muscle wasting, and decrementing compound muscle action potentials. Light and electron microscopy demonstrated fragmented NMJs with varying degrees of postsynaptic muscle end plate destruction along with abnormal nerve terminals, lack of registration between end plates and nerve terminals, local axon sprouting, and extrajunctional dispersion of cholinesterase activity. CONCLUSIONS These findings support the role of MuSK antibodies in the human disease, demonstrate the role of MuSK not only in the development of the NMJ but also in the maintenance of the mature synapse, and demonstrate involvement of this disease in both presynaptic and postsynaptic components of the NMJ.
Collapse
Affiliation(s)
- David P Richman
- Department of Neurology, University of California-Davis, 1515 Newton Ct., Davis, CA 95616, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Mori S, Kubo S, Akiyoshi T, Yamada S, Miyazaki T, Hotta H, Desaki J, Kishi M, Konishi T, Nishino Y, Miyazawa A, Maruyama N, Shigemoto K. Antibodies against muscle-specific kinase impair both presynaptic and postsynaptic functions in a murine model of myasthenia gravis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 180:798-810. [PMID: 22142810 DOI: 10.1016/j.ajpath.2011.10.031] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 10/04/2011] [Accepted: 10/25/2011] [Indexed: 01/17/2023]
Abstract
Antibodies against acetylcholine receptors (AChRs) cause pathogenicity in myasthenia gravis (MG) patients through complement pathway-mediated destruction of postsynaptic membranes at neuromuscular junctions (NMJs). However, antibodies against muscle-specific kinase (MuSK), which constitute a major subclass of antibodies found in MG patients, do not activate the complement pathway. To investigate the pathophysiology of MuSK-MG and establish an experimental autoimmune MG (EAMG) model, we injected MuSK protein into mice deficient in complement component five (C5). MuSK-injected mice simultaneously developed severe muscle weakness, accompanied by an electromyographic pattern such as is typically observed in MG patients. In addition, we observed morphological and functional defects in the NMJs of EAMG mice, demonstrating that complement activation is not necessary for the onset of MuSK-MG. Furthermore, MuSK-injected mice exhibited acetylcholinesterase (AChE) inhibitor-evoked cholinergic hypersensitivity, as is observed in MuSK-MG patients, and a decrease in both AChE and the AChE-anchoring protein collagen Q at postsynaptic membranes. These findings suggest that MuSK is indispensable for the maintenance of NMJ structure and function, and that disruption of MuSK activity by autoantibodies causes MG. This mouse model of EAMG could be used to develop appropriate medications for the treatment of MuSK-MG in humans.
Collapse
Affiliation(s)
- Shuuichi Mori
- Department of Geriatric Medicine, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ragheb S, Lisak RP. B-cell-activating factor and autoimmune myasthenia gravis. Autoimmune Dis 2011; 2011:939520. [PMID: 22235365 PMCID: PMC3251912 DOI: 10.4061/2011/939520] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/08/2011] [Indexed: 11/26/2022] Open
Abstract
BAFF is a potent B-cell survival factor, and it plays an essential role in B-cell homeostasis and B-cell function in the periphery. Both normal and autoreactive B cells are BAFF dependent; however, excess BAFF promotes the survival, growth, and maturation of autoreactive B cells. When overexpressed, BAFF protects B cells from apoptosis, thereby contributing to autoimmunity. Three independent studies have shown higher BAFF levels in the circulation of MG patients. BAFF may play an important role in the pathogenesis of MG. BAFF antagonists may well provide new treatment options for MG patients, particularly those patients with thymic lymphoid follicular hyperplasia.
Collapse
Affiliation(s)
- Samia Ragheb
- Department of Neurology, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | |
Collapse
|