1
|
Maity D, Rahi V, Dorai ST, Chandrashekharappa S, Kaundal RK. Urolithin-A Derivative UAS03 Improves Cognitive Deficits and Memory by Activating Nrf2 Pathways to Alleviate Oxidative Stress and Neuroinflammation. ACS Chem Neurosci 2025; 16:1815-1826. [PMID: 40227891 DOI: 10.1021/acschemneuro.4c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
Neuroinflammation is a key factor in age-related cognitive decline and memory impairment. UAS03, a potent synthetic analogue of Urolithin-A, has demonstrated anti-inflammatory and antioxidant properties. This investigation examined the neuroprotective effect of UAS03 on lipopolysaccharide (LPS) induced neuroinflammation, and its associated cognitive impairments, memory deficits, and depression-like behaviors. Intracerebroventricular administration of LPS (12 μg/kg) was performed to induce neuroinflammation in mice, followed by a 7 day treatment with UAS03 at 10 and 30 mg/kg doses. Mice were evaluated for depressive and anxiety-like behavior, spatial memory, and learning functions using a series of neurobehavioral test paradigms. Histopathological and molecular analyses were conducted using hematoxylin-eosin and cresyl violet staining, immunohistochemistry, ELISA, and Western blotting techniques. We have found that, UAS03 significantly enhanced cognitive and memory functions impaired by LPS while concurrently reducing depressive symptoms. Furthermore, the compound attenuated neuronal damage and decreased the expression of IBA-1 and GFAP in hippocampal region. Through the activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway, UAS03 effectively mitigated markers of oxidative stress and reduced levels of pro-inflammatory factors, including IL-1β, TNF-α, and COX-2. Cumulatively, this study provides compelling evidence that UAS03 exerts neuroprotective effects by regulating essential pathways involved in anti-inflammatory and neuroprotective mechanisms, suggesting its potential as a preventative measure against age-related cognitive decline and memory impairments associated with neuroinflammation.
Collapse
Affiliation(s)
- Dipan Maity
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226002, India
| | - Vikrant Rahi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226002, India
| | - Sandya Tambi Dorai
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226002, India
| | - Sandeep Chandrashekharappa
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226002, India
- Department of Regulatory Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, Uttar Pradesh 226002, India
| |
Collapse
|
2
|
Matuszewska M, Wilkaniec A, Cieślik M, Strawski M, Czapski GA. The Inhibition of Bromodomain and Extraterminal Domain (BET) Proteins Protects Against Microglia-Mediated Neuronal Loss In Vitro. Biomolecules 2025; 15:528. [PMID: 40305227 PMCID: PMC12025334 DOI: 10.3390/biom15040528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Neuroinflammation is a key feature of all neurodegenerative disorders, including Alzheimer's disease, and is tightly regulated by epigenetic mechanisms. Among them, bromodomain and extraterminal domain (BET) proteins play a crucial role by recognizing acetylated histones and acting as transcriptional co-regulators to modulate gene expression. This study investigates the potential of inhibiting BET proteins in preventing microglia-mediated neuronal damage in vitro. Murine BV2 microglial cells were exposed to lipopolysaccharide (LPS) or amyloid-β (Aβ) to induce an inflammatory response, and the subsequent effects on murine HT22 neuronal cells were examined. Among the BET proteins tested, only Brd4 was significantly upregulated in BV2 cells upon pro-inflammatory stimulation. JQ1, a potent pan-inhibitor of BET proteins, suppressed LPS-induced upregulation of pro-inflammatory cytokine mRNA levels, including Il1b, Il6, and Tnf, in BV2 microglia. Pre-treatment with JQ1 attenuated the cytotoxicity of LPS-activated BV2 cells toward neurons. Additionally, conditioned media from Aβ fibril-stimulated BV2 cells induced neuronal cell death, which was partially prevented by pre-treatment with JQ1. Co-culture assays further demonstrated the beneficial effect of BET inhibition. Our findings suggest that targeting BET proteins may offer a neuroprotective strategy by modulating microglial activation, potentially providing therapeutic benefits in neurodegenerative diseases.
Collapse
Affiliation(s)
- Marta Matuszewska
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Department of Cellular Signalling, ul. Pawińskiego 5, 02-106 Warsaw, Poland; (M.M.); (A.W.); (M.C.)
| | - Anna Wilkaniec
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Department of Cellular Signalling, ul. Pawińskiego 5, 02-106 Warsaw, Poland; (M.M.); (A.W.); (M.C.)
| | - Magdalena Cieślik
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Department of Cellular Signalling, ul. Pawińskiego 5, 02-106 Warsaw, Poland; (M.M.); (A.W.); (M.C.)
| | - Marcin Strawski
- University of Warsaw, Faculty of Chemistry, ul. Pasteura 1, 02-093 Warsaw, Poland;
| | - Grzegorz A. Czapski
- Mossakowski Medical Research Institute, Polish Academy of Sciences, Department of Cellular Signalling, ul. Pawińskiego 5, 02-106 Warsaw, Poland; (M.M.); (A.W.); (M.C.)
| |
Collapse
|
3
|
Wang S, Li Y, Wang R, Liu J, Li S, Wang E. Comparative Analysis of Health, Inflammatory Markers, and Rumen Microbiota Between Mildly Lame and Healthy Cows. Animals (Basel) 2025; 15:468. [PMID: 40002950 PMCID: PMC11852104 DOI: 10.3390/ani15040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Bovine lameness leads to significant economic losses in the dairy industry. This study investigated the relationship between rumen microbiota and lameness in Holstein cows. Rumen fluid and blood samples were collected from 11 cows with mild lameness and 10 healthy cows before morning feeding. Using high-throughput sequencing and ELISA kits, we found that cows with lameness exhibited decreased rumen pH and increased lameness scores compared to healthy cows. Additionally, cows with lameness had higher blood concentrations of LPS, IL-1, IL-8, and TNF-α. Although there were no significant differences in microbial alpha diversity, principal coordinate analysis (PCoA) revealed significant differences in the rumen microbial structure between the two groups. Further analysis showed that the relative abundances of ruminal Clostridium_IV, Streptococcus, Bacillus, Acinetobacter, Desulfobulbus, Methanobrevibacter, and Mogibacterium were significantly higher in the lameness group, whereas Succinivibrio, Lachnobacterium, Elusimicrobium, Succiniclasticum, and Prevotella were significantly more abundant in the rumen of healthy cows. Importantly, the microbial interaction network in the rumen of cows with lameness was more complex, with key bacteria such as Mogibacterium dominating the microbial interaction network. This study highlights the relationship between rumen microbiota and lameness, providing insights into the prevention and treatment of bovine lameness.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (J.L.); (S.L.)
| | - Yushan Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (Y.L.); (R.W.)
| | - Runyu Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (Y.L.); (R.W.)
| | - Jingjing Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (J.L.); (S.L.)
| | - Shengli Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (J.L.); (S.L.)
| | - Erdan Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology & College of Veterinary Medicine, Zhejiang Agricultural and Forestry University, Hangzhou 311300, China; (Y.L.); (R.W.)
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.W.); (J.L.); (S.L.)
| |
Collapse
|
4
|
Lloyd AF, Martinez-Muriana A, Davis E, Daniels MJD, Hou P, Mancuso R, Brenes AJ, Sinclair LV, Geric I, Snellinx A, Craessaerts K, Theys T, Fiers M, De Strooper B, Howden AJM. Deep proteomic analysis of microglia reveals fundamental biological differences between model systems. Cell Rep 2024; 43:114908. [PMID: 39460937 DOI: 10.1016/j.celrep.2024.114908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Using high-resolution quantitative mass spectrometry, we present comprehensive human and mouse microglia proteomic datasets consisting of over 11,000 proteins across six microglia groups. Microglia share a core protein signature of over 5,600 proteins, yet fundamental differences are observed between species and culture conditions. Mouse microglia demonstrate proteome differences in inflammation- and Alzheimer's disease-associated proteins. We identify differences in the protein content of ex vivo and in vitro cells and significant proteome differences associated with protein synthesis, metabolism, microglia marker expression, and environmental sensors. Culturing microglia induces rapidly increased growth, protein content, and inflammatory protein expression. These changes are restored by engrafting in vitro cells into the brain, with xenografted human embryonic stem cell (hESC)-derived microglia closely resembling microglia from the human brain. These data provide an important resource for the field and highlight important considerations needed when using model systems to study human physiology and pathology of microglia.
Collapse
Affiliation(s)
- Amy F Lloyd
- Cell Signaling and Immunology, University of Dundee, Dundee, UK.
| | - Anna Martinez-Muriana
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Emma Davis
- The Francis Crick Institute, London, UK; UK Dementia Research Institute at UCL, University College London, London, UK
| | | | - Pengfei Hou
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Renzo Mancuso
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium; MINDlab, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
| | - Alejandro J Brenes
- Cell Signaling and Immunology, University of Dundee, Dundee, UK; Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | | | - Ivana Geric
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - An Snellinx
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Katleen Craessaerts
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Tom Theys
- Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
| | - Mark Fiers
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, Belgium; Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium; The Francis Crick Institute, London, UK; UK Dementia Research Institute at UCL, University College London, London, UK.
| | | |
Collapse
|
5
|
Chuang AEY, Lin YW, Jheng PR, Rethi L, Nguyen HT, Weng PW. Bio-intelligent plasma-engineered diferuloylmethane/fucoidan/neutrophil lysate/iron oxide nanoclusters for phototherapeutic and magnetotherapeutic with in situ magnetic gelation mitigating inflammatory diseases. Colloids Surf B Biointerfaces 2024; 243:114054. [PMID: 39079188 DOI: 10.1016/j.colsurfb.2024.114054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Accepted: 06/21/2024] [Indexed: 09/17/2024]
Abstract
Creating a versatile and remotely self-assembling biocomposite for delivering therapeutics to alleviate inflammatory diseases poses significant challenges. This study introduces a novel biocomposite, created through cold-atmosphere plasma treatment, that combines fucoidan (Fu) and neutrophil lysate (Nu) to mediate the self-assembly of diferuloylmethane (DIF) and iron oxide (IO) nanoclusters, termed DIF-Nu/Fu-IO NC. This biocomposite forms a phototherapeutic and magnetically-driven in situ gel with open-porous architecture loaded with DIF, offering non-invasive theranostic capabilities for treating inflammatory diseases. It demonstrates efficacy in both an intraarticular zymosan-induced rheumatoid arthritis animal model and an intranasal LPS-induced inflammatory lung model. Upon administration, near-infrared (NIR) irradiation and magnet application significantly improved the condition of the animals with rheumatoid arthritis and lung inflammation. This breakthrough heralds a new paradigm in bioinspired, versatile, theranostic, self-assembling biocomposites for addressing clinical inflammatory diseases.
Collapse
Affiliation(s)
- Andrew E-Y Chuang
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, Republic of China; International Ph.D Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, New Taipei City, Taiwan, Republic of China; Cell Physiology and Molecular Image Research Center, Taipei Medical University-Wan Fang Hospital, Taipei 11696, Taiwan, Republic of China
| | - Yung-Wei Lin
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei, Taiwan, Republic of China; Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan, Republic of China
| | - Pei-Ru Jheng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, Republic of China
| | - Lekshmi Rethi
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, Republic of China
| | - Hieu Trung Nguyen
- Department of Orthopedics and Trauma, Faculty of Medicine, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Pei-Wei Weng
- Graduate Institute of Biomedical Materials and Tissue Engineering, International Ph.D. Program in Biomedical Engineering, Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan, Republic of China; Department of Orthopedics, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan, Republic of China; Department of Orthopedics, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, Republic of China; Research Center of Biomedical Devices, Taipei Medical University, Taipei 11031, Taiwan, Republic of China; International Ph.D. Program for Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, Republic of China.
| |
Collapse
|
6
|
García-García D, Vidal-Gil L, Parain K, Lun J, Audic Y, Chesneau A, Siron L, Van Westendorp D, Lourdel S, Sánchez-Sáez X, Kazani D, Ricard J, Pottin S, Donval A, Bronchain O, Locker M, Roger JE, Borday C, Pla P, Bitard J, Perron M. Neuroinflammation as a cause of differential Müller cell regenerative responses to retinal injury. SCIENCE ADVANCES 2024; 10:eadp7916. [PMID: 39356769 PMCID: PMC11446274 DOI: 10.1126/sciadv.adp7916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024]
Abstract
Unlike mammals, some nonmammalian species recruit Müller glia for retinal regeneration after injury. Identifying the underlying mechanisms may help to foresee regenerative medicine strategies. Using a Xenopus model of retinitis pigmentosa, we found that Müller cells actively proliferate upon photoreceptor degeneration in old tadpoles but not in younger ones. Differences in the inflammatory microenvironment emerged as an explanation for such stage dependency. Functional analyses revealed that enhancing neuroinflammation is sufficient to trigger Müller cell proliferation, not only in young tadpoles but also in mice. In addition, we showed that microglia are absolutely required for the response of mouse Müller cells to mitogenic factors while negatively affecting their neurogenic potential. However, both cell cycle reentry and neurogenic gene expression are allowed when applying sequential pro- and anti-inflammatory treatments. This reveals that inflammation benefits Müller glia proliferation in both regenerative and nonregenerative vertebrates and highlights the importance of sequential inflammatory modulation to create a regenerative permissive microenvironment.
Collapse
Affiliation(s)
- Diana García-García
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Lorena Vidal-Gil
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Karine Parain
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Jingxian Lun
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Yann Audic
- Univ Rennes, CNRS, IGDR (Institut de Genetique et Developpement de Rennes), Rennes, France
| | - Albert Chesneau
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Léa Siron
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Demi Van Westendorp
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Sophie Lourdel
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Xavier Sánchez-Sáez
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Despoina Kazani
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Julien Ricard
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Solène Pottin
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Alicia Donval
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Odile Bronchain
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Morgane Locker
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Jérôme E. Roger
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Caroline Borday
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Patrick Pla
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Juliette Bitard
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| | - Muriel Perron
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, Saclay, France
| |
Collapse
|
7
|
Sleiman A, Miller KB, Flores D, Kuan J, Altwasser K, Smith BJ, Kozbenko T, Hocking R, Wood SJ, Huff J, Adam-Guillermin C, Hamada N, Yauk C, Wilkins R, Chauhan V. AOP report: Development of an adverse outcome pathway for deposition of energy leading to learning and memory impairment. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2024; 65 Suppl 3:57-84. [PMID: 39228295 DOI: 10.1002/em.22622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 08/14/2024] [Indexed: 09/05/2024]
Abstract
Understanding radiation-induced non-cancer effects on the central nervous system (CNS) is essential for the risk assessment of medical (e.g., radiotherapy) and occupational (e.g., nuclear workers and astronauts) exposures. Herein, the adverse outcome pathway (AOP) approach was used to consolidate relevant studies in the area of cognitive decline for identification of research gaps, countermeasure development, and for eventual use in risk assessments. AOPs are an analytical construct describing critical events to an adverse outcome (AO) in a simplified form beginning with a molecular initiating event (MIE). An AOP was constructed utilizing mechanistic information to build empirical support for the key event relationships (KERs) between the MIE of deposition of energy to the AO of learning and memory impairment through multiple key events (KEs). The evidence for the AOP was acquired through a documented scoping review of the literature. In this AOP, the MIE is connected to the AO via six KEs: increased oxidative stress, increased deoxyribonucleic acid (DNA) strand breaks, altered stress response signaling, tissue resident cell activation, increased pro-inflammatory mediators, and abnormal neural remodeling that encompasses atypical structural and functional alterations of neural cells and surrounding environment. Deposition of energy directly leads to oxidative stress, increased DNA strand breaks, an increase of pro-inflammatory mediators and tissue resident cell activation. These KEs, which are themselves interconnected, can lead to abnormal neural remodeling impacting learning and memory processes. Identified knowledge gaps include improving quantitative understanding of the AOP across several KERs and additional testing of proposed modulating factors through experimental work. Broadly, it is envisioned that the outcome of these efforts could be extended to other cognitive disorders and complement ongoing work by international radiation governing bodies in their review of the system of radiological protection.
Collapse
Affiliation(s)
- Ahmad Sleiman
- Institut de Radioprotection et de Sûreté Nucléaire, St. Paul Lez Durance, Provence, France
| | - Kathleen B Miller
- Department of Health and Exercise Science, Morrison College Family of Health, University of St. Thomas, Saint Paul, Minnesota, USA
| | - Danicia Flores
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Jaqueline Kuan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Kaitlyn Altwasser
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Benjamin J Smith
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Tatiana Kozbenko
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Robyn Hocking
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | | | - Janice Huff
- NASA Langley Research Center, Hampton, Virginia, USA
| | | | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
8
|
Fahoum L, Moshe-Belisowski S, Zaydel K, Ghatpande N, Guttmann-Raviv N, Zhang W, Li K, Tong WH, Nyska A, Waterman M, Weisshof R, Zuckerman A, Meyron-Holtz EG. Iron regulatory protein 1 is required for the propagation of inflammation in inflammatory bowel disease. J Biol Chem 2024; 300:107639. [PMID: 39122013 PMCID: PMC11408829 DOI: 10.1016/j.jbc.2024.107639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 07/02/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024] Open
Abstract
Inflammatory bowel diseases (IBDs) are complex disorders. Iron accumulates in the inflamed tissue of IBD patients, yet neither a mechanism for the accumulation nor its implication on the course of inflammation is known. We hypothesized that the inflammation modifies iron homeostasis, affects tissue iron distribution, and that this in turn perpetuates the inflammation. This study analyzed human biopsies, animal models, and cellular systems to decipher the role of iron homeostasis in IBD. We found inflammation-mediated modifications of iron distribution, and iron-decoupled activation of the iron regulatory protein (IRP) 1. To understand the role of IRP1 in the course of this inflammation-associated iron pattern, a novel cellular coculture model was established, which replicated the iron-pattern observed in vivo, and supported involvement of nitric oxide in the activation of IRP1 and the typical iron pattern in inflammation. Importantly, deletion of IRP1 from an IBD mouse model completely abolished both, the misdistribution of iron and intestinal inflammation. These findings suggest that IRP1 plays a central role in the coordination of the inflammatory response in the intestinal mucosa and that it is a viable candidate for therapeutic intervention in IBD.
Collapse
Affiliation(s)
- Lulu Fahoum
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, Israel
| | - Shirly Moshe-Belisowski
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, Israel
| | - Kristina Zaydel
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, Israel
| | - Niraj Ghatpande
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, Israel
| | - Noga Guttmann-Raviv
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, Israel
| | - Wenxin Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Kuanyu Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Wing-Hang Tong
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, Maryland, USA
| | - Abraham Nyska
- Department of Biotechnology and Food Engineering, Tel Aviv University and Consultant in Toxicologic Pathology, Tel Aviv, Israel
| | - Matti Waterman
- Department of Biotechnology and Food Engineering, Rambam/Technion- Israel Institute of Technology, Haifa, Israel
| | - Ronni Weisshof
- Department of Biotechnology and Food Engineering, Rambam/Technion- Israel Institute of Technology, Haifa, Israel
| | - Avi Zuckerman
- Department of Biotechnology and Food Engineering, Aviv Projects, Ness Ziona, Israel
| | - Esther G Meyron-Holtz
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion- Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
9
|
Lee JW, Mizuno K, Watanabe H, Lee IH, Tsumita T, Hida K, Yawaka Y, Kitagawa Y, Hasebe A, Iimura T, Kong SW. Enhanced phagocytosis associated with multinucleated microglia via Pyk2 inhibition in an acute β-amyloid infusion model. J Neuroinflammation 2024; 21:196. [PMID: 39107821 PMCID: PMC11301859 DOI: 10.1186/s12974-024-03192-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Multinucleated microglia have been observed in contexts associated with infection, inflammation, and aging. Though commonly linked to pathological conditions, the larger cell size of multinucleated microglia might enhance their phagocytic functions, potentially aiding in the clearance of brain debris and suggesting a reassessment of their pathological significance. To assess the phagocytic capacity of multinucleated microglia and its implications for brain debris clearance, we induced their formation by inhibiting Pyk2 activity using the pharmacological inhibitor PF-431396, which triggers cytokinesis regression. Multinucleated microglia demonstrate enhanced phagocytic function, as evidenced by their increased capacity to engulf β-amyloid (Aβ) oligomers. Concurrently, the phosphorylation of Pyk2, induced by Aβ peptide, was diminished upon treatment with a Pyk2 inhibitor (Pyk2-Inh, PF-431396). Furthermore, the increased expression of Lamp1, a lysosomal marker, with Pyk2-inh treatment, suggests an enhancement in proteolytic activity. In vivo, we generated an acute Alzheimer's disease (AD) model by infusing Aβ into the brains of Iba-1 EGFP transgenic (Tg) mice. The administration of the Pyk2-Inh led to an increased migration of microglia toward amyloid deposits in the brains of Iba-1 EGFP Tg mice, accompanied by morphological activation, suggesting a heightened affinity for Aβ. In human microglia, lipopolysaccharide (LPS)-induced inflammatory responses showed that inhibition of Pyk2 signaling significantly reduced the transcription and protein expression of pro-inflammatory markers. These results suggest that Pyk2 inhibition can modulate microglial functions, potentially reducing neuroinflammation and aiding in the clearance of neurodegenerative disease markers. This highlights Pyk2 as a promising target for therapeutic intervention in neurodegenerative diseases.
Collapse
Affiliation(s)
- Ji-Won Lee
- Microbiology, Department of Oral Pathobiological Science, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan.
| | - Kaito Mizuno
- Microbiology, Department of Oral Pathobiological Science, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
- Dentistry for Children and Disabled Persons, Department of Oral Functional Science, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Haruhisa Watanabe
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
- Oral Diagnosis and Medicine, Department of Oral Pathobiological Science, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - In-Hee Lee
- Computational Health and Informatics Program, Boston Children's Hospital, Boston, MA, 02215, USA
| | - Takuya Tsumita
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Yasutaka Yawaka
- Dentistry for Children and Disabled Persons, Department of Oral Functional Science, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Yoshimasa Kitagawa
- Oral Diagnosis and Medicine, Department of Oral Pathobiological Science, Faculty of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Akira Hasebe
- Microbiology, Department of Oral Pathobiological Science, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Tadahiro Iimura
- Department of Pharmacology, Faculty and Graduate School of Dental Medicine, Hokkaido University, Kita13 Nishi7, Kita-Ku, Sapporo, 060-8586, Japan
| | - Sek Won Kong
- Computational Health and Informatics Program, Boston Children's Hospital, Boston, MA, 02215, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
10
|
Bulondo F, Babensee JE. Optimization of Interleukin-10 incorporation for dendritic cells embedded in Poly(ethylene glycol) hydrogels. J Biomed Mater Res A 2024; 112:1317-1336. [PMID: 38562052 DOI: 10.1002/jbm.a.37714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
Translational research in biomaterials and immunoengineering is leading to the development of novel advanced therapeutics to treat diseases such as cancer, autoimmunity, and viral infections. Dendritic cells (DCs) are at the center of these therapeutics given that they bridge innate and adaptive immunity. The biomaterial system developed herein uses a hydrogel carrier to deliver immunomodulatory DCs for amelioration of autoimmunity. This biomaterial vehicle is comprised of a poly (ethylene glycol)-4 arm maleimide (PEG-4MAL) hydrogels, conjugated with the immunosuppressive cytokine, interleukin-10, IL-10, and cross-linked with a collagenase-degradable peptide sequence for the injectable delivery of immunosuppressive DCs to an anatomical disease-relevant site of the cervical lymph nodes, for intended application to treat multiple sclerosis. The amount of IL-10 incorporated in the hydrogel was optimized to be 500 ng in vitro, based on immunological endpoints. At this concentration, DCs exhibited the best viability, most immunosuppressive phenotype, and protection against proinflammatory insult as compared with hydrogel-incorporated DCs with lower IL-10 loading amounts. Additionally, the effect of the degradability of the PEG-4MAL hydrogel on the release rate of incorporated IL-10 was assessed by varying the ratio of degradable peptides: VPM (degradable) and DTT (nondegradable) and measuring the IL-10 release rates. This IL-10-conjugated hydrogel delivery system for immunosuppressive DCs is set to be assessed for in vivo functionality as the immunosuppressive cytokine provides a tolerogenic environment that keeps DCs in their immature phenotype, which consequently enhances cell viability and optimizes the system's immunomodulatory functionality.
Collapse
Affiliation(s)
- Fredrick Bulondo
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
- Department of Biomedical Sciences and Engineering, Mbarara University of Science and Technology, Mbarara, Uganda
| | - Julia E Babensee
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
11
|
Procès A, Alpizar YA, Halliez S, Brône B, Saudou F, Ris L, Gabriele S. Stretch-injury promotes microglia activation with enhanced phagocytic and synaptic stripping activities. Biomaterials 2024; 305:122426. [PMID: 38134473 DOI: 10.1016/j.biomaterials.2023.122426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023]
Abstract
Microglial cells, as the primary defense line in the central nervous system, play a crucial role in responding to various mechanical signals that can trigger their activation. Despite extensive research on the impact of chemical signaling on brain cells, the understanding of mechanical signaling in microglia remains limited. To bridge this gap, we subjected microglial cells to a singular mechanical stretch and compared their responses with those induced by lipopolysaccharide treatment, a well-established chemical activator. Here we show that stretching microglial cells leads to their activation, highlighting their significant mechanosensitivity. Stretched microglial cells exhibited distinct features, including elevated levels of Iba1 protein, a denser actin cytoskeleton, and increased persistence in migration. Unlike LPS-treated microglial cells, the secretory profile of chemokines and cytokines remained largely unchanged in response to stretching, except for TNF-α. Intriguingly, a single stretch injury resulted in more compacted chromatin and DNA damage, suggesting potential long-term genomic instabilities in stretched microglia. Using compartmentalized microfluidic chambers with neuronal networks, we observed that stretched microglial cells exhibited enhanced phagocytic and synaptic stripping activities. These findings collectively suggest that stretching events can unlock the immune potential of microglial cells, contributing to the maintenance of brain tissue homeostasis following mechanical injury.
Collapse
Affiliation(s)
- Anthony Procès
- Mechanobiology & Biomaterials Group, CIRMAP, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium; Neuroscience Laboratory, Neuroscience Department, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium
| | - Yeranddy A Alpizar
- Neurophysiology Laboratory, BIOMED Research Institute, UHasselt, B-3500, Hasselt, Belgium
| | - Sophie Halliez
- Univ. Lille, Inserm, CHU Lille, U1172 - LilNCog - Lille Neuroscience & Cognition, F-59000, Lille, France
| | - Bert Brône
- Neurophysiology Laboratory, BIOMED Research Institute, UHasselt, B-3500, Hasselt, Belgium
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, F-38000, Grenoble, France
| | - Laurence Ris
- Neuroscience Laboratory, Neuroscience Department, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology & Biomaterials Group, CIRMAP, Research Institute for Biosciences, University of Mons, B-7000, Mons, Belgium.
| |
Collapse
|
12
|
Tawbeh A, Raas Q, Tahri-Joutey M, Keime C, Kaiser R, Trompier D, Nasser B, Bellanger E, Dessard M, Hamon Y, Benani A, Di Cara F, Cunha Alves T, Berger J, Weinhofer I, Mandard S, Cherkaoui-Malki M, Andreoletti P, Gondcaille C, Savary S. Immune response of BV-2 microglial cells is impacted by peroxisomal beta-oxidation. Front Mol Neurosci 2023; 16:1299314. [PMID: 38164407 PMCID: PMC10757945 DOI: 10.3389/fnmol.2023.1299314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/23/2023] [Indexed: 01/03/2024] Open
Abstract
Microglia are crucial for brain homeostasis, and dysfunction of these cells is a key driver in most neurodegenerative diseases, including peroxisomal leukodystrophies. In X-linked adrenoleukodystrophy (X-ALD), a neuroinflammatory disorder, very long-chain fatty acid (VLCFA) accumulation due to impaired degradation within peroxisomes results in microglial defects, but the underlying mechanisms remain unclear. Using CRISPR/Cas9 gene editing of key genes in peroxisomal VLCFA breakdown (Abcd1, Abcd2, and Acox1), we recently established easily accessible microglial BV-2 cell models to study the impact of dysfunctional peroxisomal β-oxidation and revealed a disease-associated microglial-like signature in these cell lines. Transcriptomic analysis suggested consequences on the immune response. To clarify how impaired lipid degradation impacts the immune function of microglia, we here used RNA-sequencing and functional assays related to the immune response to compare wild-type and mutant BV-2 cell lines under basal conditions and upon pro-inflammatory lipopolysaccharide (LPS) activation. A majority of genes encoding proinflammatory cytokines, as well as genes involved in phagocytosis, antigen presentation, and co-stimulation of T lymphocytes, were found differentially overexpressed. The transcriptomic alterations were reflected by altered phagocytic capacity, inflammasome activation, increased release of inflammatory cytokines, including TNF, and upregulated response of T lymphocytes primed by mutant BV-2 cells presenting peptides. Together, the present study shows that peroxisomal β-oxidation defects resulting in lipid alterations, including VLCFA accumulation, directly reprogram the main cellular functions of microglia. The elucidation of this link between lipid metabolism and the immune response of microglia will help to better understand the pathogenesis of peroxisomal leukodystrophies.
Collapse
Affiliation(s)
- Ali Tawbeh
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Quentin Raas
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Mounia Tahri-Joutey
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Céline Keime
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Romain Kaiser
- Plateforme GenomEast, IGBMC, CNRS UMR 7104, Inserm U1258, University of Strasbourg, Illkirch, France
| | - Doriane Trompier
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences and Techniques, University Hassan I, Settat, Morocco
| | - Emma Bellanger
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Marie Dessard
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Yannick Hamon
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | - Alexandre Benani
- Centre des Sciences du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, University of Bourgogne, Dijon, France
| | - Francesca Di Cara
- Department of Microbiology and Immunology, Dalhousie University, IWK Health Centre, Halifax, NS, Canada
| | - Tânia Cunha Alves
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Isabelle Weinhofer
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Stéphane Mandard
- LipSTIC LabEx, University of Bourgogne, INSERM LNC UMR1231, Dijon, France
| | | | | | | | - Stéphane Savary
- Laboratoire Bio-PeroxIL EA7270, University of Bourgogne, Dijon, France
| |
Collapse
|
13
|
Wevers NR, De Vries HE. Microfluidic models of the neurovascular unit: a translational view. Fluids Barriers CNS 2023; 20:86. [PMID: 38008744 PMCID: PMC10680291 DOI: 10.1186/s12987-023-00490-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/15/2023] [Indexed: 11/28/2023] Open
Abstract
The vasculature of the brain consists of specialized endothelial cells that form a blood-brain barrier (BBB). This barrier, in conjunction with supporting cell types, forms the neurovascular unit (NVU). The NVU restricts the passage of certain substances from the bloodstream while selectively permitting essential nutrients and molecules to enter the brain. This protective role is crucial for optimal brain function, but presents a significant obstacle in treating neurological conditions, necessitating chemical modifications or advanced drug delivery methods for most drugs to cross the NVU. A deeper understanding of NVU in health and disease will aid in the identification of new therapeutic targets and drug delivery strategies for improved treatment of neurological disorders.To achieve this goal, we need models that reflect the human BBB and NVU in health and disease. Although animal models of the brain's vasculature have proven valuable, they are often of limited translational relevance due to interspecies differences or inability to faithfully mimic human disease conditions. For this reason, human in vitro models are essential to improve our understanding of the brain's vasculature under healthy and diseased conditions. This review delves into the advancements in in vitro modeling of the BBB and NVU, with a particular focus on microfluidic models. After providing a historical overview of the field, we shift our focus to recent developments, offering insights into the latest achievements and their associated constraints. We briefly examine the importance of chip materials and methods to facilitate fluid flow, emphasizing their critical roles in achieving the necessary throughput for the integration of microfluidic models into routine experimentation. Subsequently, we highlight the recent strides made in enhancing the biological complexity of microfluidic NVU models and propose recommendations for elevating the biological relevance of future iterations.Importantly, the NVU is an intricate structure and it is improbable that any model will fully encompass all its aspects. Fit-for-purpose models offer a valuable compromise between physiological relevance and ease-of-use and hold the future of NVU modeling: as simple as possible, as complex as needed.
Collapse
Affiliation(s)
- Nienke R Wevers
- MIMETAS BV, De Limes 7, Oegstgeest, 2342 DH, The Netherlands.
| | - Helga E De Vries
- Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam Neuroscience - Neuroinfection and Neuroinflammation, De Boelelaan 1117, Amsterdam, the Netherlands
| |
Collapse
|
14
|
Barbalace MC, Freschi M, Rinaldi I, Mazzara E, Maraldi T, Malaguti M, Prata C, Maggi F, Petrelli R, Hrelia S, Angeloni C. Identification of Anti-Neuroinflammatory Bioactive Compounds in Essential Oils and Aqueous Distillation Residues Obtained from Commercial Varieties of Cannabis sativa L. Int J Mol Sci 2023; 24:16601. [PMID: 38068924 PMCID: PMC10706820 DOI: 10.3390/ijms242316601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Neuroinflammation, which is mainly triggered by microglia, is a key contributor to multiple neurodegenerative diseases. Natural products, and in particular Cannabis sativa L., due to its richness in phytochemical components, represent ideal candidates to counteract neuroinflammation. We previously characterized different C. sativa commercial varieties which showed significantly different chemical profiles. On these bases, the aim of this study was to evaluate essential oils and aqueous distillation residues from the inflorescences of three different hemp varieties for their anti-neuroinflammatory activity in BV-2 microglial cells. Cells were pretreated with aqueous residues or essential oils and then activated with LPS. Unlike essential oils, aqueous residues showed negligible effects in terms of anti-inflammatory activity. Among the essential oils, the one obtained from 'Gorilla Glue' was the most effective in inhibiting pro-inflammatory mediators and in upregulating anti-inflammatory ones through the modulation of the p38 MAPK/NF-κB pathway. Moreover, the sesquiterpenes (E)-caryophyllene, α-humulene, and caryophyllene oxide were identified as the main contributors to the essential oils' anti-inflammatory activity. To our knowledge, the anti-neuroinflammatory activity of α-humulene has not been previously described. In conclusion, our work shows that C. sativa essential oils characterized by high levels of sesquiterpenes can be promising candidates in the prevention/counteraction of neuroinflammation.
Collapse
Affiliation(s)
- Maria Cristina Barbalace
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Michela Freschi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Irene Rinaldi
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Eugenia Mazzara
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (E.M.); (F.M.); (R.P.)
| | - Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41125 Modena, Italy;
| | - Marco Malaguti
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Via Irnerio, 48, 40126 Bologna, Italy;
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (E.M.); (F.M.); (R.P.)
| | - Riccardo Petrelli
- Chemistry Interdisciplinary Project (ChIP) Research Center, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (E.M.); (F.M.); (R.P.)
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| | - Cristina Angeloni
- Department for Life Quality Studies, Alma Mater Studiorum-University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; (M.C.B.); (M.F.); (I.R.)
| |
Collapse
|
15
|
Rojas DB, Vizuete AFK, de Andrade VS, de Andrade RB, Gemelli T, Kim TDH, Gonçalves CA, Leipnitz G, Wannmacher CMD. Lipopolysaccharide impairs neurodevelopment and induces changes in astroglial reactivity, antioxidant defenses and bioenergetics in the cerebral cortex of neonatal rats. Int J Dev Neurosci 2023; 83:600-614. [PMID: 37477051 DOI: 10.1002/jdn.10288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023] Open
Abstract
Neonates have an immature immune system, which increases their vulnerability to infectious agents and inflammatory insults. The administration of the immunostimulatory agent lipopolysaccharide (LPS) has been shown to induce the expression of pro-inflammatory cytokines and cause behavior alterations in rodents at different ages. However, the effects of LPS administration during the neonatal period and its consequences during immune system maturation remain to be elucidated. We showed here that a single intraperitoneal administration of LPS in rats on postnatal day (PND) 7 caused early and variable alterations in TNF-α, S100B and GFAP levels in the cerebral cortex, CSF and serum of the animals, indicating long-term induction of neuroinflammation and astroglial reactivity. However, on PND 21, only GFAP levels were increased by LPS. Additionally, LPS induced oxidative stress and altered energy metabolism enzymes in the cerebral cortex on PND 21, and caused neurodevelopment impairment over time. These data suggest that neuroinflammation induction during the neonatal period induces glial reactivity, oxidative stress and bioenergetic disruption that may lead to neurodevelopment impairment and cognitive deficit in adult life.
Collapse
Affiliation(s)
- Denise Bertin Rojas
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Adriana Fernanda K Vizuete
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vivian Strassburger de Andrade
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Tanise Gemelli
- Universidade do Vale do Rio dos Sinos, São Leopoldo, Rio Grande do Sul, Brazil
| | - Tomas Duk Hwa Kim
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Carlos Alberto Gonçalves
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Laboratory of Calcium-Binding Proteins in the CNS, Department of Biochemistry, Institute of Basic Health Sciences, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
- Departmento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Guilhian Leipnitz
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departmento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Clovis Milton Duval Wannmacher
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
- Departmento de Bioquímica, Instituto de Ciências Básicas da Saúde, UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
16
|
Socodato R, Rodrigues-Santos A, Tedim-Moreira J, Almeida TO, Canedo T, Portugal CC, Relvas JB. RhoA balances microglial reactivity and survival during neuroinflammation. Cell Death Dis 2023; 14:690. [PMID: 37863874 PMCID: PMC10589285 DOI: 10.1038/s41419-023-06217-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 09/29/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Microglia are the largest myeloid cell population in the brain. During injury, disease, or inflammation, microglia adopt different functional states primarily involved in restoring brain homeostasis. However, sustained or exacerbated microglia inflammatory reactivity can lead to brain damage. Dynamic cytoskeleton reorganization correlates with alterations of microglial reactivity driven by external cues, and proteins controlling cytoskeletal reorganization, such as the Rho GTPase RhoA, are well positioned to refine or adjust the functional state of the microglia during injury, disease, or inflammation. Here, we use multi-biosensor-based live-cell imaging approaches and tissue-specific conditional gene ablation in mice to understand the role of RhoA in microglial response to inflammation. We found that a decrease in RhoA activity is an absolute requirement for microglial metabolic reprogramming and reactivity to inflammation. However, without RhoA, inflammation disrupts Ca2+ and pH homeostasis, dampening mitochondrial function, worsening microglial necrosis, and triggering microglial apoptosis. Our results suggest that a minimum level of RhoA activity is obligatory to concatenate microglia inflammatory reactivity and survival during neuroinflammation.
Collapse
Affiliation(s)
- Renato Socodato
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.
| | - Artur Rodrigues-Santos
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Joana Tedim-Moreira
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal
| | - Tiago O Almeida
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
- ICBAS - School of Medicine and Biomedical Sciences, Porto, Portugal
| | - Teresa Canedo
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Camila C Portugal
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - João B Relvas
- Institute of Research and Innovation in Health (i3S) and Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal.
- Faculty of Medicine of the University of Porto (FMUP), Porto, Portugal.
| |
Collapse
|
17
|
Snijders GJLJ, de Paiva Lopes K, Sneeboer MAM, Muller BZ, Gigase FAJ, Vialle RA, Missall R, Kubler R, Raj T, Humphrey J, de Witte LD. The human microglia responsome: a resource to better understand microglia states in health and disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.12.562067. [PMID: 37873223 PMCID: PMC10592813 DOI: 10.1101/2023.10.12.562067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Microglia, the immune cells of the brain, are increasingly implicated in neurodegenerative disorders through genetic studies. However, how genetic risk factors for these diseases are related to microglial gene expression, microglial function, and ultimately disease, is still largely unknown. Microglia change rapidly in response to alterations in their cellular environment, which is regulated through changes in transcriptional programs, which are as yet poorly understood. Here, we compared the effects of a set of inflammatory and restorative stimuli (lipopolysaccharide, interferon-gamma, resiquimod, tumor necrosis factor-alpha, adenosine triphosphate, dexamethasone, and interleukin-4) on human microglial cells from 67 different donors (N = 398 samples) at the gene and transcript level. We show that microglia from different anatomical brain regions show distinct responses to inflammatory stimuli. We observed a greater overlap between human stimulated microglia and human monocytes than with mouse microglia. We define specific microglial signatures across conditions which are highly relevant for a wide range of biological functions and complex human diseases. Finally, we used our stimulation signatures to interpret associations from Alzheimer's disease (AD) genetic studies and microglia by integrating our inflammatory gene expression profiles with common genetic variants to map cis -expression QTLs (eQTLs). Together, we provide the most comprehensive transcriptomic database of the human microglia responsome. Highlights RNA-sequencing of 398 human microglial samples exposed to six different triggers.Microglia from different anatomical regions show distinct stimulation responses.Responses in human microglia show a greater overlap with human monocytes than murine microglia.Mapping of response Quantitative Trait Loci identifies interactions between genotype and effect of stimulation on gene expression.Our atlas provides a reference map for interpreting microglia signatures in health and disease.
Collapse
|
18
|
Li X, Li Y, Jin Y, Zhang Y, Wu J, Xu Z, Huang Y, Cai L, Gao S, Liu T, Zeng F, Wang Y, Wang W, Yuan TF, Tian H, Shu Y, Guo F, Lu W, Mao Y, Mei X, Rao Y, Peng B. Transcriptional and epigenetic decoding of the microglial aging process. NATURE AGING 2023; 3:1288-1311. [PMID: 37697166 PMCID: PMC10570141 DOI: 10.1038/s43587-023-00479-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/03/2023] [Indexed: 09/13/2023]
Abstract
As important immune cells, microglia undergo a series of alterations during aging that increase the susceptibility to brain dysfunctions. However, the longitudinal characteristics of microglia remain poorly understood. In this study, we mapped the transcriptional and epigenetic profiles of microglia from 3- to 24-month-old mice. We first discovered unexpected sex differences and identified age-dependent microglia (ADEM) genes during the aging process. We then compared the features of aging and reactivity in female microglia at single-cell resolution and epigenetic level. To dissect functions of aged microglia excluding the influence from other aged brain cells, we established an accelerated microglial turnover model without directly affecting other brain cells. By this model, we achieved aged-like microglia in non-aged brains and confirmed that aged-like microglia per se contribute to cognitive decline. Collectively, our work provides a comprehensive resource for decoding the aging process of microglia, shedding light on how microglia maintain brain functions.
Collapse
Affiliation(s)
- Xiaoyu Li
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Yuxin Li
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Yuxiao Jin
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yuheng Zhang
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Jingchuan Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhen Xu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yubin Huang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lin Cai
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shuai Gao
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Taohui Liu
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Fanzhuo Zeng
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yafei Wang
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Wenxu Wang
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hengli Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yousheng Shu
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Feifan Guo
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Wei Lu
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xifan Mei
- Department of Orthopedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Yanxia Rao
- Department of Neurology, Zhongshan Hospital, Department of Laboratory Animal Science, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
| | - Bo Peng
- Department of Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Innovative Center for New Drug Development of Immune Inflammatory Diseases, Ministry of Education, Fudan University, Shanghai, China.
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
- Co-Innovation Center of Neurodegeneration, Nantong University, Nantong, China.
| |
Collapse
|
19
|
Fahoum L, Belisowski S, Ghatpande N, Guttmann-Raviv N, Zhang W, Li K, Tong WH, Nyska A, Waterman M, Weisshof R, Zuckerman A, Meyron-Holtz E. Iron Regulatory Protein 1 is Required for the Propagation of Inflammation in Inflammatory Bowel Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.27.525690. [PMID: 36789413 PMCID: PMC9928023 DOI: 10.1101/2023.01.27.525690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Objective Inflammatory bowel diseases (IBD) are complex disorders. Iron accumulates in the inflamed tissue of IBD patients, yet neither a mechanism for the accumulation nor its implication on the course of inflammation are known. We hypothesized that the inflammation modifies iron homeostasis, affects tissue iron distribution and that this in turn perpetuates the inflammation. Design This study analyzed human biopsies, animal models and cellular systems to decipher the role of iron homeostasis in IBD. Results We found inflammation-mediated modifications of iron distribution, and iron-decoupled activation of the iron regulatory protein (IRP)1. To understand the role of IRP1 in the course of this inflammation-associated iron pattern, a novel cellular co-culture model was established, that replicated the iron-pattern observed in vivo, and supported involvement of nitric oxide in the activation of IRP1 and the typical iron pattern in inflammation. Importantly, deletion of IRP1 from an IBD mouse model completely abolished both, the misdistribution of iron and intestinal inflammation. Conclusion These findings suggest that IRP1 plays a central role in the coordination of the inflammatory response in the intestinal mucosa and that it is a viable candidate for therapeutic intervention in IBD.
Collapse
Affiliation(s)
- L. Fahoum
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - S. Belisowski
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - N. Ghatpande
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - N. Guttmann-Raviv
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| | - W. Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - K. Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - W-H. Tong
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - A. Nyska
- Tel Aviv University and Consultant in Toxicologic Pathology, Tel Aviv, Israel
| | - M. Waterman
- Rambam / Technion– Israel Institute of Technology, Haifa, Israel
| | - R. Weisshof
- Rambam / Technion– Israel Institute of Technology, Haifa, Israel
| | | | - E.G. Meyron-Holtz
- Laboratory of Molecular Nutrition, Department of Biotechnology and Food Engineering, Technion– Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
20
|
Müller MA, Zweig N, Spengler B, Weinert M, Heiles S. Lipid Signatures and Inter-Cellular Heterogeneity of Naı̈ve and Lipopolysaccharide-Stimulated Human Microglia-like Cells. Anal Chem 2023; 95:11672-11679. [PMID: 37506282 DOI: 10.1021/acs.analchem.3c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Microglia are non-neuronal cells, which reside in the central nervous system and are known to play an important role in health and disease. We investigated the lipidomic phenotypes of human naı̈ve and stimulated microglia-like cells by atmospheric-pressure scanning microprobe matrix-assisted laser desorption/ionization mass spectrometry imaging (AP-SMALDI MSI). With lateral resolutions between 5 and 1.5 μm pixel size, we were able to chart lipid compositions of individual cells, enabling differentiation of cell lines and stimulation conditions. This allowed us to reveal local lipid heterogeneities in naı̈ve and lipopolysaccharide (LPS)-stimulated cells. We were able to identify individual cells with elevated triglyceride (TG) levels and could show that the number of these TG-enriched cells increased with LPS stimulation as a hallmark for a proinflammatory phenotype. Additionally, the observed local abundance alterations of specific phosphatidylinositols (PIs) indicate a cell specific regulation of the PI metabolism.
Collapse
Affiliation(s)
- Max A Müller
- Institute of Inorganic and Analytical Chemistry, Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Norman Zweig
- Institute of Inorganic and Analytical Chemistry, Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Bernhard Spengler
- Institute of Inorganic and Analytical Chemistry, Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Maria Weinert
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, W12 0NN London, U.K
| | - Sven Heiles
- Institute of Inorganic and Analytical Chemistry, Analytical Chemistry, Justus Liebig University Giessen, 35392 Giessen, Germany
- Leibniz-Institut für Analytische Wissenschaften─ISAS─e.V., 44139 Dortmund, Germany
- Faculty of Chemistry, University of Duisburg-Essen, 45141 Essen, Germany
| |
Collapse
|
21
|
Tu D, Velagapudi R, Gao Y, Hong JS, Zhou H, Gao HM. Activation of neuronal NADPH oxidase NOX2 promotes inflammatory neurodegeneration. Free Radic Biol Med 2023; 200:47-58. [PMID: 36870375 PMCID: PMC10164140 DOI: 10.1016/j.freeradbiomed.2023.03.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 02/12/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Strong evidence indicates critical roles of NADPH oxidase (a key superoxide-producing enzyme complex during inflammation) in activated microglia for mediating neuroinflammation and neurodegeneration. However, little is known about roles of neuronal NADPH oxidase in neurodegenerative diseases. This study aimed to investigate expression patterns, regulatory mechanisms and pathological roles of neuronal NADPH oxidase in inflammation-associated neurodegeneration. The results showed persistent upregulation of NOX2 (gp91phox; the catalytic subunit of NADPH oxidase) in both microglia and neurons in a chronic mouse model of Parkinson's disease (PD) with intraperitoneal LPS injection and LPS-treated midbrain neuron-glia cultures (a cellular model of PD). Notably, NOX2 was found for the first time to exhibit a progressive and persistent upregulation in neurons during chronic neuroinflammation. While primary neurons and N27 neuronal cells displayed basal expression of NOX1, NOX2 and NOX4, significant upregulation only occurred in NOX2 but not NOX1 or NOX4 under inflammatory conditions. Persistent NOX2 upregulation was associated with functional outcomes of oxidative stress including increased ROS production and lipid peroxidation. Neuronal NOX2 activation displayed membrane translocation of cytosolic p47phox subunit and was inhibited by apocynin and diphenyleneiodonium chloride (two widely-used NADPH oxidase inhibitors). Importantly, neuronal ROS production, mitochondrial dysfunction and degeneration induced by inflammatory mediators in microglia-derived conditional medium were blocked by pharmacological inhibition of neuronal NOX2. Furthermore, specific deletion of neuronal NOX2 prevented LPS-elicited dopaminergic neurodegeneration in neuron-microglia co-cultures separately grown in the transwell system. The attenuation of inflammation-elicited upregulation of NOX2 in neuron-enriched and neuron-glia cultures by ROS scavenger N-acetylcysteine indicated a positive feedback mechanism between excessive ROS production and NOX2 upregulation. Collectively, our findings uncovered crucial contribution of neuronal NOX2 upregulation and activation to chronic neuroinflammation and inflammation-related neurodegeneration. This study reinforced the importance of developing NADPH oxidase-targeting therapeutics for neurodegenerative diseases.
Collapse
Affiliation(s)
- Dezhen Tu
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu Province, 210061, China; Neurobiology Laboratory, Neuropharmacology Section, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Ravikanth Velagapudi
- Neurobiology Laboratory, Neuropharmacology Section, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Yun Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu Province, 210061, China; Neurobiology Laboratory, Neuropharmacology Section, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Jau-Shyong Hong
- Neurobiology Laboratory, Neuropharmacology Section, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Hui Zhou
- Neurobiology Laboratory, Neuropharmacology Section, National Institute of Environmental Health Sciences/National Institutes of Health, Research Triangle Park, NC, 27709, USA; Department of Occupational and Environmental Health Sciences, Peking University, Beijing, 100191, China.
| | - Hui-Ming Gao
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Institute for Brain Sciences, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, 12 Xuefu Road, Nanjing, Jiangsu Province, 210061, China.
| |
Collapse
|
22
|
Varghese N, Morrison B. Partial Depletion of Microglia Attenuates Long-Term Potentiation Deficits following Repeated Blast Traumatic Brain Injury in Organotypic Hippocampal Slice Cultures. J Neurotrauma 2023; 40:547-560. [PMID: 36508265 PMCID: PMC10081725 DOI: 10.1089/neu.2022.0284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Blast-induced traumatic brain injury (bTBI) has been a health concern in both military and civilian populations due to recent military and geopolitical conflicts. Military service members are frequently exposed to repeated bTBI throughout their training and deployment. Our group has previously reported compounding functional deficits as a result of increased number of blast exposures. In this study, we further characterized the decrease in long-term potentiation (LTP) by varying the blast injury severity and the inter-blast interval between two blast exposures. LTP deficits were attenuated with increasing inter-blast intervals. We also investigated changes in microglial activation; expression of CD68 was increased and expression of CD206 was decreased after multiple blast exposures. Expression of macrophage inflammatory protein (MIP)-1α, interleukin (IL)-1β, monocyte chemoattractant protein (MCP)-1, interferon gamma-inducible protein (IP)-10, and regulated on activation, normal T cell expressed and secreted (RANTES) increased, while expression of IL-10 decreased in the acute period after both single and repeated bTBI. By partially depleting microglia prior to injury, LTP deficits after injury were significantly reduced. Treatment with the novel drug, MW-189, prevented LTP deficits when administered immediately following a repeated bTBI and even when administered only for an acute period (24 h) between two blast injuries. These findings could inform the development of therapeutic strategies to treat the neurological deficits of repeated bTBI suggesting that microglia play a major role in functional neuronal deficits and may be a viable therapeutic target to lessen the neurophysiological deficits after bTBI.
Collapse
Affiliation(s)
- Nevin Varghese
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| |
Collapse
|
23
|
Harris VK, Bishop D, Wollowitz J, Carling G, Carlson AL, Daviaud N, Sadiq SA. Mesenchymal stem cell-derived neural progenitors attenuate proinflammatory microglial activation via paracrine mechanisms. Regen Med 2023; 18:259-273. [PMID: 36852422 DOI: 10.2217/rme-2023-0005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Background: Mesenchymal stem cell-derived neural progenitor cell (MSC-NP) therapy is an experimental approach to treat multiple sclerosis. The influence of MSC-NPs on microglial activation was investigated. Methods: Microglia were stimulated in the presence of MSC-NP-conditioned media, and proinflammatory or proregenerative marker expression was assessed by quantitative PCR and ELISA. Results: Microglia stimulated in the presence of MSC-NP-conditioned media displayed reduced expression of proinflammatory markers including CCL2, increased expression of proregenerative markers and reduced phagocytic activity. The paracrine effects of MSC-NPs from multiple donors correlated with TGF-β3 gene expression and was reversed by TGF-β signaling inhibition. Conclusion: MSC-NPs promote beneficial microglial polarization through secreted factors. This study suggests that microglia are a potential therapeutic target of MSC-NP cell therapy.
Collapse
Affiliation(s)
| | - Derek Bishop
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| | - Jaina Wollowitz
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| | - Gillian Carling
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| | - Alyssa L Carlson
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| | - Nicolas Daviaud
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| | - Saud A Sadiq
- Tisch Multiple Sclerosis Research Center of New York, NY 10019, USA
| |
Collapse
|
24
|
Sharaf A, Roos B, Timmerman R, Kremers GJ, Bajramovic JJ, Accardo A. Two-Photon Polymerization of 2.5D and 3D Microstructures Fostering a Ramified Resting Phenotype in Primary Microglia. Front Bioeng Biotechnol 2022; 10:926642. [PMID: 35979173 PMCID: PMC9376863 DOI: 10.3389/fbioe.2022.926642] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 06/06/2022] [Indexed: 01/02/2023] Open
Abstract
Microglia are the resident macrophages of the central nervous system and contribute to maintaining brain’s homeostasis. Current 2D “petri-dish” in vitro cell culturing platforms employed for microglia, are unrepresentative of the softness or topography of native brain tissue. This often contributes to changes in microglial morphology, exhibiting an amoeboid phenotype that considerably differs from the homeostatic ramified phenotype in healthy brain tissue. To overcome this problem, multi-scale engineered polymeric microenvironments are developed and tested for the first time with primary microglia derived from adult rhesus macaques. In particular, biomimetic 2.5D micro- and nano-pillar arrays (diameters = 0.29–1.06 µm), featuring low effective shear moduli (0.25–14.63 MPa), and 3D micro-cages (volume = 24 × 24 × 24 to 49 × 49 × 49 μm3) with and without micro- and nano-pillar decorations (pillar diameters = 0.24–1 µm) were fabricated using two-photon polymerization (2PP). Compared to microglia cultured on flat substrates, cells growing on the pillar arrays exhibit an increased expression of the ramified phenotype and a higher number of primary branches per ramified cell. The interaction between the cells and the micro-pillar-decorated cages enables a more homogenous 3D cell colonization compared to the undecorated ones. The results pave the way for the development of improved primary microglia in vitro models to study these cells in both healthy and diseased conditions.
Collapse
Affiliation(s)
- Ahmed Sharaf
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Brian Roos
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
| | - Raissa Timmerman
- Alternatives Unit, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Gert-Jan Kremers
- Erasmus Optical Imaging Centre, Erasmus MC, Rotterdam, Netherlands
| | | | - Angelo Accardo
- Department of Precision and Microsystems Engineering, Delft University of Technology, Delft, Netherlands
- *Correspondence: Angelo Accardo,
| |
Collapse
|
25
|
Taylor X, Cisternas P, Jury N, Martinez P, Huang X, You Y, Redding-Ochoa J, Vidal R, Zhang J, Troncoso J, Lasagna-Reeves CA. Activated endothelial cells induce a distinct type of astrocytic reactivity. Commun Biol 2022; 5:282. [PMID: 35351973 PMCID: PMC8964703 DOI: 10.1038/s42003-022-03237-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 03/09/2022] [Indexed: 12/13/2022] Open
Abstract
Reactive astrogliosis is a universal response of astrocytes to abnormal events and injuries. Studies have shown that proinflammatory microglia can polarize astrocytes (designated A1 astrocytes) toward a neurotoxic phenotype characterized by increased Complement Component 3 (C3) expression. It is still unclear if inflammatory stimuli from other cell types may also be capable of inducing a subset of C3+ neurotoxic astrocytes. Here, we show that a subtype of C3+ neurotoxic astrocytes is induced by activated endothelial cells that is distinct from astrocytes activated by microglia. Furthermore, we show that endothelial-induced astrocytes have upregulated expression of A1 astrocytic genes and exhibit a distinctive extracellular matrix remodeling profile. Finally, we demonstrate that endothelial-induced astrocytes are Decorin-positive and are associated with vascular amyloid deposits but not parenchymal amyloid plaques in mouse models and AD/CAA patients. These findings demonstrate the existence of potentially extensive and subtle functional diversity of C3+-reactive astrocytes. Injured endothelial cells are shown to induce an A1 phenotype in astrocytes, characterized by a genetic signature associated with extracellular matrix remodeling factors (e.g. decorin and vascular Aß deposits).
Collapse
Affiliation(s)
- Xavier Taylor
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Neuroscience Discovery, Lilly Research Laboratories, Eli Lilly & Co, Lilly Corporate Center, Indianapolis, IN, 46225, USA
| | - Pablo Cisternas
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Nur Jury
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Pablo Martinez
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Xiaoqing Huang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yanwen You
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Javier Redding-Ochoa
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Ruben Vidal
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Zhang
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Juan Troncoso
- Department of Pathology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Cristian A Lasagna-Reeves
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA. .,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
26
|
Shiraki N, Maruyama K, Hayashi R, Oguchi A, Murakawa Y, Katayama T, Takigawa T, Sakimoto S, Quantock AJ, Tsujikawa M, Nishida K. PAX6-positive microglia evolve locally in hiPSC-derived ocular organoids. Stem Cell Reports 2021; 17:221-230. [PMID: 35030319 PMCID: PMC8828554 DOI: 10.1016/j.stemcr.2021.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Microglia are the resident immune cells of the central nervous system (CNS). They govern the immunogenicity of the retina, which is considered to be part of the CNS; however, it is not known how microglia develop in the eye. Here, we studied human-induced pluripotent stem cells (hiPSCs) that had been expanded into a self-formed ectodermal autonomous multi-zone (SEAM) of cells that partially mimics human eye development. Our results indicated that microglia-like cells, which have characteristics of yolk-sac-like linage cells, naturally develop in 2D eye-like SEAM organoids, which lack any vascular components. These cells are unique in that they are paired box protein 6 (PAX6)-positive, yet they possess some characteristics of mesoderm. Collectively, the data support the notion of the existence of an isolated, locally developing immune system in the eye, which is independent of the body’s vasculature and general immune system. Eye-like organoids from hiPSCs contained immune cells similar to microglia cells RNA-sequencing shows they have specific characteristic of microglia Single-cell analyses indicate they resemble yol-sac-derived myeloid progenitors These cells are unique in that they are PAX6- (eye master gene) positive immune cells
Collapse
Affiliation(s)
- Nobuhiko Shiraki
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazuichi Maruyama
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Vision Informatics, Osaka University Graduate School of Medicine, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
| | - Ryuhei Hayashi
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan; Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akiko Oguchi
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Yasuhiro Murakawa
- RIKEN-IFOM Joint Laboratory for Cancer Genomics, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan; Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan; Department of Medical Systems Genomics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomohiko Katayama
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Takigawa
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Susumu Sakimoto
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Andrew J Quantock
- School of Optometry and Vision Sciences, Cardiff University, Cardiff, Wales, UK
| | - Motokazu Tsujikawa
- Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.
| |
Collapse
|
27
|
Wen W, Gong X, Cheung H, Yang Y, Cai M, Zheng J, Tong X, Zhang M. Dexmedetomidine Alleviates Microglia-Induced Spinal Inflammation and Hyperalgesia in Neonatal Rats by Systemic Lipopolysaccharide Exposure. Front Cell Neurosci 2021; 15:725267. [PMID: 34955749 PMCID: PMC8692868 DOI: 10.3389/fncel.2021.725267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/27/2021] [Indexed: 12/24/2022] Open
Abstract
Noxious stimulus and painful experience in early life can induce cognitive deficits and abnormal pain sensitivity. As a major component of the outer membrane of gram-negative bacteria, lipopolysaccharide (LPS) injection mimics clinical symptoms of bacterial infections. Spinal microglial activation and the production of pro-inflammatory cytokines have been implicated in the pathogenesis of LPS-induced hyperalgesia in neonatal rats. Dexmedetomidine (DEX) possesses potent anti-neuroinflammatory and neuroprotective properties through the inhibition of microglial activation and microglial polarization toward pro-inflammatory (M1) phenotype and has been widely used in pediatric clinical practice. However, little is known about the effects of DEX on LPS-induced spinal inflammation and hyperalgesia in neonates. Here, we investigated whether systemic LPS exposure has persistent effects on spinal inflammation and hyperalgesia in neonatal rats and explored the protective role of DEX in adverse effects caused by LPS injection. Systemic LPS injections induced acute mechanical hyperalgesia, increased levels of pro-inflammatory cytokines in serum, and short-term increased expressions of pro-inflammatory cytokines and M1 microglial markers in the spinal cord of neonatal rats. Pretreatment with DEX significantly decreased inflammation and alleviated mechanical hyperalgesia induced by LPS. The inhibition of M1 microglial polarization and microglial pro-inflammatory cytokines expression in the spinal cord may implicate its neuroprotective effect, which highlights a new therapeutic target in the treatment of infection-induced hyperalgesia in neonates and preterm infants.
Collapse
Affiliation(s)
- Wen Wen
- Department of Anesthesiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingrui Gong
- Department of Anesthesiology, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang, China
| | - Hoiyin Cheung
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanyan Yang
- Department of Anesthesiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Meihua Cai
- Department of Anesthesiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jijian Zheng
- Department of Anesthesiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Tong
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mazhong Zhang
- Department of Anesthesiology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Center for Brain Science of Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Poshtkohi A, Wade J, McDaid L, Liu J, Dallas M, Bithell A. Mathematical modelling of human P2X-mediated plasma membrane electrophysiology and calcium dynamics in microglia. PLoS Comput Biol 2021; 17:e1009520. [PMID: 34723961 PMCID: PMC8584768 DOI: 10.1371/journal.pcbi.1009520] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 11/11/2021] [Accepted: 10/02/2021] [Indexed: 01/14/2023] Open
Abstract
Regulation of cytosolic calcium (Ca2+) dynamics is fundamental to microglial function. Temporal and spatial Ca2+ fluxes are induced from a complicated signal transduction pathway linked to brain ionic homeostasis. In this paper, we develop a novel biophysical model of Ca2+ and sodium (Na+) dynamics in human microglia and evaluate the contribution of purinergic receptors (P2XRs) to both intracellular Ca2+ and Na+ levels in response to agonist/ATP binding. This is the first comprehensive model that integrates P2XRs to predict intricate Ca2+ and Na+ transient responses in microglia. Specifically, a novel compact biophysical model is proposed for the capture of whole-cell patch-clamp currents associated with P2X4 and P2X7 receptors, which is composed of only four state variables. The entire model shows that intricate intracellular ion dynamics arise from the coupled interaction between P2X4 and P2X7 receptors, the Na+/Ca2+ exchanger (NCX), Ca2+ extrusion by the plasma membrane Ca2+ ATPase (PMCA), and Ca2+ and Na+ leak channels. Both P2XRs are modelled as two separate adenosine triphosphate (ATP) gated Ca2+ and Na+ conductance channels, where the stoichiometry is the removal of one Ca2+ for the hydrolysis of one ATP molecule. Two unique sets of model parameters were determined using an evolutionary algorithm to optimise fitting to experimental data for each of the receptors. This allows the proposed model to capture both human P2X7 and P2X4 data (hP2X7 and hP2X4). The model architecture enables a high degree of simplicity, accuracy and predictability of Ca2+ and Na+ dynamics thus providing quantitative insights into different behaviours of intracellular Na+ and Ca2+ which will guide future experimental research. Understanding the interactions between these receptors and other membrane-bound transporters provides a step forward in resolving the qualitative link between purinergic receptors and microglial physiology and their contribution to brain pathology. Mathematical modelling and computer simulation are powerful tools by which we can analyse complex biological systems, particularly, neural phenomena involved in brain dysfunction. In this research, we develop a theoretical foundation for studying P2X-mediated calcium and sodium signalling in human microglial cells. Microglia, which are brain-resident macrophages, restructure their intracellular actin cytoskeleton to enable motility; this restructuring requires a complex molecular cascade involving a set of ionic channels, membrane-coupled receptors and cytosolic components. Recent studies highlight the importance for increasing our understanding of microglia physiology, since their functions play critical roles in both normal physiological and pathological dynamics of the brain. There is a need to develop reliable human cellular models to investigate the biology of microglia aimed at understanding the influence of purinergic signalling in brain dysfunction to provide novel drug discovery targets. In this work, a detailed mathematical model is built for the dynamics of human P2XRs in microglia. Subsequently, experimental whole-cell currents are used to derive P2X-mediated electrophysiology of human microglia (i.e. sodium and calcium dynamics, and membrane potential). Our predictions reveal new quantitative insights into P2XRs on how they regulate ionic concentrations in terms of physiological interactions and transient responses.
Collapse
Affiliation(s)
- Alireza Poshtkohi
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
- * E-mail:
| | - John Wade
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Liam McDaid
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Junxiu Liu
- School of Computing, Engineering and Intelligent Systems, Ulster University, Londonderry, United Kingdom
| | - Mark Dallas
- School of Pharmacy, University of Reading, Reading, United Kingdom
| | - Angela Bithell
- School of Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
29
|
Tret’yakova LV, Kvichansky AA, Bolshakov AP, Gulyaeva NV. Dexamethasone Modulates Lipopolysaccharide-Induced Expression of Proinflammatory Cytokines in Rat Hippocampus. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421330011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Carroll JA, Race B, Williams K, Striebel JF, Chesebro B. Innate immune responses after stimulation with Toll-like receptor agonists in ex vivo microglial cultures and an in vivo model using mice with reduced microglia. J Neuroinflammation 2021; 18:194. [PMID: 34488805 PMCID: PMC8419892 DOI: 10.1186/s12974-021-02240-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/14/2021] [Indexed: 12/02/2022] Open
Abstract
Background Past experiments studying innate immunity in the central nervous system (CNS) utilized microglia obtained from neonatal mouse brain, which differ developmentally from adult microglia. These differences might impact our current understanding of the role of microglia in CNS development, function, and disease. Methods Cytokine protein secretion was compared in ex vivo P3 and adult microglial cultures after exposure to agonists for three different toll-like receptors (TLR4, lipopolysaccharide [LPS]; TLR7, imiquimod [IMQ]; and TLR9, CpG Oligodeoxynucleotide [CpG-ODN] 1585). In addition, changes in inflammatory gene expression in ex vivo adult microglia in response to the TLR agonists was assessed. Furthermore, in vivo experiments evaluated changes in gene expression associated with inflammation and TLR signaling in brains of mice with or without treatment with PLX5622 to reduce microglia. Results Ex vivo adult and P3 microglia increased cytokine secretion when exposed to TLR4 agonist LPS and to TLR7 agonist IMQ. However, adult microglia decreased expression of numerous genes after exposure to TLR 9 agonist CpG-ODN 1585. In contrast, in vivo studies indicated a core group of inflammatory and TLR signaling genes increased when each of the TLR agonists was introduced into the CNS. Reducing microglia in the brain led to decreased expression of various inflammatory and TLR signaling genes. Mice with reduced microglia showed extreme impairment in upregulation of genes after exposure to TLR7 agonist IMQ. Conclusions Cultured adult microglia were more reactive than P3 microglia to LPS or IMQ exposure. In vivo results indicated microglial influences on neuroinflammation were agonist specific, with responses to TLR7 agonist IMQ more dysregulated in mice with reduced microglia. Thus, TLR7-mediated innate immune responses in the CNS appeared more dependent on the presence of microglia. Furthermore, partial responses to TLR4 and TLR9 agonists in mice with reduced microglia suggested other cell types in the CNS can compensate for their absence. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02240-w.
Collapse
Affiliation(s)
- James A Carroll
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA.
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| | - Katie Williams
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| | - James F Striebel
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South Fourth Street, Hamilton, MT, 59840, USA
| |
Collapse
|
31
|
Al-Marsoummi S, Vomhof-DeKrey EE, Basson MD. Schlafens: Emerging Proteins in Cancer Cell Biology. Cells 2021; 10:2238. [PMID: 34571887 PMCID: PMC8465726 DOI: 10.3390/cells10092238] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 12/29/2022] Open
Abstract
Schlafens (SLFN) are a family of genes widely expressed in mammals, including humans and rodents. These intriguing proteins play different roles in regulating cell proliferation, cell differentiation, immune cell growth and maturation, and inhibiting viral replication. The emerging evidence is implicating Schlafens in cancer biology and chemosensitivity. Although Schlafens share common domains and a high degree of homology, different Schlafens act differently. In particular, they show specific and occasionally opposing effects in some cancer types. This review will briefly summarize the history, structure, and non-malignant biological functions of Schlafens. The roles of human and mouse Schlafens in different cancer types will then be outlined. Finally, we will discuss the implication of Schlafens in the anti-tumor effect of interferons and the use of Schlafens as predictors of chemosensitivity.
Collapse
Affiliation(s)
- Sarmad Al-Marsoummi
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (E.E.V.-D.)
| | - Emilie E. Vomhof-DeKrey
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (E.E.V.-D.)
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| | - Marc D. Basson
- Department of Biomedical Sciences, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA; (S.A.-M.); (E.E.V.-D.)
- Department of Surgery, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
- Department of Pathology, School of Medicine and the Health Sciences, University of North Dakota, Grand Forks, ND 58202, USA
| |
Collapse
|
32
|
Xu X, Du L, Jiang J, Yang M, Wang Z, Wang Y, Tang T, Fu X, Hao J. Microglial TREM2 Mitigates Inflammatory Responses and Neuronal Apoptosis in Angiotensin II-Induced Hypertension in Middle-Aged Mice. Front Aging Neurosci 2021; 13:716917. [PMID: 34489683 PMCID: PMC8417947 DOI: 10.3389/fnagi.2021.716917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/16/2021] [Indexed: 11/15/2022] Open
Abstract
Growing evidence suggests that hypertension and aging are prominent risk factors for the development of late-onset Alzheimer's disease (LOAD) by inducement of neuroinflammation. Recent study showed that neuroinflammation via activated microglia induces reactive astrocytes, termed A1 astrocytes, that highly upregulate numerous classical complement cascade genes that are destructive to neurons in neurodegeneration diseases. Moreover, triggering receptor expressed on myeloid cells 2 (TREM2) is considered as one of the strongest single-allele genetic risk factors and plays important roles in neuroinflammation for LOAD. However, the mechanisms of microglia in the regulation of A1 astrocytic activation are still not clear. We introduced angiotensin II-induced hypertension in middle-aged mice and found that hypertension-upregulated TREM2 expression and A1 astrocytic activation were involved in neuroinflammation in the animal models used in this study. The in vitro results revealed that overexpression of microglial TREM2 not only mitigated microglial inflammatory response but also had salutary effects on reverse A1 astrocytic activation and neuronal toxicity.
Collapse
Affiliation(s)
- Xiaotian Xu
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| | - Lin Du
- Department of Cardiology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ming Yang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Zhaoxia Wang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Yingge Wang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Tieyu Tang
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Xuetao Fu
- Department of Neurology, The Affiliated Hospital, Yangzhou University, Yangzhou, China
| | - Jiukuan Hao
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, United States
| |
Collapse
|
33
|
GSTP1 Inhibits LPS-Induced Inflammatory Response Through Regulating Autophagy in THP-1 Cells. Inflammation 2021; 43:1157-1169. [PMID: 32128658 DOI: 10.1007/s10753-020-01202-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glutathione S-transferase Pi (GSTP1) was originally identified as one of the cytosolic phase II detoxification enzymes and was also considered to function via its non-catalytic, ligand-binding activity. Autophagy is a self-protective mechanism of the cell to remove unnecessary or dysfunctional components, which plays a crucial role in balancing the beneficial and detrimental effects of immunity and inflammation. However, little is known about whether and how GSTP1 mediates autophagy via inhibiting LPS-induced inflammatory response. Here, we show that LPS-induced autophagy and autophagic flux blockade in THP-1 cells in a concentration- and time-dependent manner. Further, we found that the autophagy activation inhibited the activation of inflammatory signaling pathway and the release of inflammatory factors. However, inhibition of autophagy by 3-methyladenine or chloroquine significantly reduced the anti-inflammatory effect of GSTP1. In addition, our findings provide evidence that GSTP1 regulates autophagy through PI3K-Akt-mTOR pathway and inhibits LPS-induced inflammation. Overall, the current study provides an important reference for future applications of GSTP1 in the treatment of inflammatory diseases.
Collapse
|
34
|
Kim JH, Afridi R, Han J, Jung HG, Kim SC, Hwang EM, Shim HS, Ryu H, Choe Y, Hoe HS, Suk K. Gamma subunit of complement component 8 is a neuroinflammation inhibitor. Brain 2021; 144:528-552. [PMID: 33382892 DOI: 10.1093/brain/awaa425] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 12/20/2022] Open
Abstract
The complement system is part of the innate immune system that comprises several small proteins activated by sequential cleavages. The majority of these complement components, such as components 3a (C3a) and C5a, are chemotactic and pro-inflammatory. However, in this study, we revealed an inhibitory role of complement component 8 gamma (C8G) in neuroinflammation. In patients with Alzheimer's disease, who exhibit strong neuroinflammation, we found higher C8G levels in brain tissue, CSF, and plasma. Our novel findings also showed that the expression level of C8G increases in the inflamed mouse brain, and that C8G is mainly localized to brain astrocytes. Experiments using recombinant C8G protein and shRNA-mediated knockdown showed that C8G inhibits glial hyperactivation, neuroinflammation, and cognitive decline in acute and chronic animal models of Alzheimer's disease. Additionally, we identified sphingosine-1-phosphate receptor 2 (S1PR2) as a novel interaction protein of C8G and demonstrated that astrocyte-derived C8G interacts with S1PR2 to antagonize the pro-inflammatory action of S1P in microglia. Taken together, our results reveal the previously unrecognized role of C8G as a neuroinflammation inhibitor. Our findings pave the way towards therapeutic containment of neuroinflammation in Alzheimer's disease and related neurological diseases.
Collapse
Affiliation(s)
- Jong-Heon Kim
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Ruqayya Afridi
- Department of Pharmacology and Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Jin Han
- Department of Pharmacology and Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hyun-Gug Jung
- Center for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Seung-Chan Kim
- Center for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
- School of Biosystems and Biomedical Sciences, College of Health Science, Korea University, Seoul, Republic of Korea
| | - Eun Mi Hwang
- Center for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Hyun Soo Shim
- Center for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
| | - Hoon Ryu
- Center for Neuromedicine and Neuroscience, Brain Science Institute, Korea Institute of Science and Technology, Seoul, Korea
- VA Boston Healthcare System, Boston, MA, USA
- Boston University Alzheimer's Disease Center and Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Youngshik Choe
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Hyang-Sook Hoe
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Kyoungho Suk
- Brain Science and Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology and Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
35
|
Gonçalves de Andrade E, Šimončičová E, Carrier M, Vecchiarelli HA, Robert MÈ, Tremblay MÈ. Microglia Fighting for Neurological and Mental Health: On the Central Nervous System Frontline of COVID-19 Pandemic. Front Cell Neurosci 2021; 15:647378. [PMID: 33737867 PMCID: PMC7961561 DOI: 10.3389/fncel.2021.647378] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 01/15/2021] [Indexed: 12/15/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is marked by cardio-respiratory alterations, with increasing reports also indicating neurological and psychiatric symptoms in infected individuals. During COVID-19 pathology, the central nervous system (CNS) is possibly affected by direct severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) invasion, exaggerated systemic inflammatory responses, or hypoxia. Psychosocial stress imposed by the pandemic further affects the CNS of COVID-19 patients, but also the non-infected population, potentially contributing to the emergence or exacerbation of various neurological or mental health disorders. Microglia are central players of the CNS homeostasis maintenance and inflammatory response that exert their crucial functions in coordination with other CNS cells. During homeostatic challenges to the brain parenchyma, microglia modify their density, morphology, and molecular signature, resulting in the adjustment of their functions. In this review, we discuss how microglia may be involved in the neuroprotective and neurotoxic responses against CNS insults deriving from COVID-19. We examine how these responses may explain, at least partially, the neurological and psychiatric manifestations reported in COVID-19 patients and the general population. Furthermore, we consider how microglia might contribute to increased CNS vulnerability in certain groups, such as aged individuals and people with pre-existing conditions.
Collapse
Affiliation(s)
| | - Eva Šimončičová
- Division of Medical Science, University of Victoria, Victoria, BC, Canada
| | - Micaël Carrier
- Division of Medical Science, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada
| | | | - Marie-Ève Robert
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Division of Medical Science, University of Victoria, Victoria, BC, Canada.,Axe Neurosciences, Centre de Recherche du CHU de Québec, Université de Laval, Québec City, QC, Canada.,Neurology and Neurosurgery Department, McGill University, Montréal, QC, Canada.,Department of Molecular Medicine, Université de Laval, Québec City, QC, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
36
|
Abdulmalek SA, Fessal M, El-Sayed M. Effective amelioration of hepatic inflammation and insulin response in high fat diet-fed rats via regulating AKT/mTOR signaling: Role of Lepidium sativum seed extracts. JOURNAL OF ETHNOPHARMACOLOGY 2021; 266:113439. [PMID: 33017634 DOI: 10.1016/j.jep.2020.113439] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obesity-induced insulin resistance and chronic inflammation appears to be the most frequent cause of diabetes and its related metabolic complications; in this way a new therapeutic approaches are needed to prevent the chronic obesity and insulin resistance. Lepidium sativum has been extensively used in traditional alternative medicine for cough, skin disease, liver disorder, diuretic, gastrointestinal problems, hair loss treatment, milk secretion during lactation as well as antioxidant, antihypertensive, anti-inflammatory, and antidiabetic activities. The hypoglycemic and hypolipidemic effect of Lepidium sativum have been observed by previous studies, but the underlying molecular mechanisms are unclear. AIM OF THE STUDY In this study, we investigated the beneficial effect of Lepidium sativum ethanol and aqueous seed extracts on obesity, oxidative, inflammatory, and insulin sensitivity changes in the liver tissue of high fat diet (HFD)-fed rats. The bioactive constituents responsible for these activities have been identified for both extracts using HPLC and GC-MS. MATERIALS AND METHODS Rats were fed HFD for 10 weeks. The obese rats were treated orally with the Lepidium sativum ethanol extracts (LSEE) at dose 200 and 400 mg/kg body weight (BW) and Lepidium sativum aqueous extracts (LSAE) at dose 200 mg/kg BW daily for 8 weeks. RESULTS The findings of the present study pointed out a significant increase in the hepatic transaminases, lipid profile, leptin, and hepatic oxidative stress with decreased antioxidant capacity of HFD-fed rats. Consistent with this depiction; we determined the up-regulation of liver inflammatory markers with a significant down-regulation of insulin signaling components phospho-insulin receptor (p-IR), p-AKT, p-mammalian target of rapamycin (p-mTOR), and p-p70S6K after consumption of HFD for 10 weeks that indicates a deterioration of insulin sensitivity. Interestingly, the phytochemical screening of LSEE and LSAE exhibited positive results for phenolic, flavonoid, lipid, and some bioactive components as well as the in vitro antioxidant activity of both extracts clearly demonstrated their high antioxidant activities. Notably, LSEE and LSAE displayed a wide range of biological features including anti-obesity, anti-inflammatory, and antioxidant properties. Both extracts significantly decreased high glucose, leptin, lipid profile, liver enzymes levels, and body weight. We also found that LSEE and LSAE significantly alleviated lipid peroxidation and restored the antioxidant enzymes to normal levels. In parallel, the intracellular phosphorylation of classical markers of insulin signaling cascade p-IR/p-AKT/p-mTOR/p-p70S6K was up-regulated in the hepatic tissues of LSEE and LSAE-treated groups. CONCLUSION This study provides evidence that LSEE and LSAE might be one promising dietary supplementation that could safely and effectively prevent the early metabolic alterations and weight gain caused by HFD further regulate the activation of insulin signaling pathway beside their powerful antioxidant and low-toxicity properties.
Collapse
Affiliation(s)
- Shaymaa A Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt.
| | - Marina Fessal
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Mohamed El-Sayed
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| |
Collapse
|
37
|
Abstract
BACKGROUND Chromogranin A (CHGA) is an index granin protein critical for biogenesis and exocytotic release of catecholamine storage granules. It is elevated in plasma of patients with sympathetic over-activity and kidney dysfunction. Several CHGA polymorphisms are associated with hypertensive kidney disease. Previously, we unraveled the molecular mechanism by which CHGA expression is regulated in African Americans carrying a genetic variation associated with hypertensive chronic kidney disease (CKD). METHOD Experimental CKD mouse model were created by 5/6th nephrectomy (Npx) using wild-type and Chga-/- knockout mouse strains to delineate the role of CHGA in CKD. RESULT Wild-type-Npx mice expressing Chga developed exacerbated azotemia and fibrosis as compared with their knockout-Npx counterparts. Gene expression profiling revealed downregulation of mitochondrial respiratory complexes genes consistent with maladaptive mitochondria in wild-type-Npx mice, contrasted to knockout-Npx. In healthy individuals, an inverse relationship between circulating CHGA levels and glomerular function was observed. In vitro, mesangial cells treated with CHGA-triggered nitric oxide release by a signaling mechanism involving scavenger receptor SR-A. The CHGA-treated and untreated mesangial cells displayed differential expression of cytokine, chemokine, complement, acute phase inflammatory and apoptotic pathway genes. Thus, build-up of plasma CHGA because of kidney injury served as an insult to the mesangial cells resulting in expression of genes promoting inflammation, fibrosis, and progression of CKD. CONCLUSION These findings improve understanding of the role of elevated CHGA in the progression of CKD and reveal novel pathways that could be exploited for therapeutic strategies in hypertensive kidney disease.
Collapse
|
38
|
Lian L, Zhang Y, Liu L, Yang L, Cai Y, Zhang J, Xu S. Neuroinflammation in Ischemic Stroke: Focus on MicroRNA-mediated Polarization of Microglia. Front Mol Neurosci 2021; 13:612439. [PMID: 33488360 PMCID: PMC7817943 DOI: 10.3389/fnmol.2020.612439] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/19/2022] Open
Abstract
Ischemic stroke is one of the most common causes of death and disability worldwide. Neuroinflammation is a major pathological event involved in the process of ischemic injury and repair. In particular, microglia play a dual role in neuroinflammation. During the acute phase of stroke onset, M2 microglia are the dominant phenotype and exert protective effects on neuronal cells, whereas permanent M1 microglia contribute to prolonged inflammation and are detrimental to brain tissue. Emerging evidence indicates that microRNAs (miRNAs) may have regulatory effects on microglia-associated inflammation. Thus, we briefly reviewed the dynamic response of microglia after a stroke and assessed how specific miRNAs affect the behavior of reactive microglia. We concluded that miRNAs may be useful novel therapeutic targets to improve stroke outcomes and modulate neuroinflammation.
Collapse
Affiliation(s)
- Lu Lian
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yunsha Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lu Liu
- Binhai New Area Hospital of TCM. Tian Jin, Fourth Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Liji Yang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yichen Cai
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China.,Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Junping Zhang
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| | - Shixin Xu
- Medical Experiment Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China.,Tianjin Key Laboratory of Translational Research of TCM Prescription and Syndrome, Tianjin, China
| |
Collapse
|
39
|
Microglia in Prion Diseases: Angels or Demons? Int J Mol Sci 2020; 21:ijms21207765. [PMID: 33092220 PMCID: PMC7589037 DOI: 10.3390/ijms21207765] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/16/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Prion diseases are rare transmissible neurodegenerative disorders caused by the accumulation of a misfolded isoform (PrPSc) of the cellular prion protein (PrPC) in the central nervous system (CNS). Neuropathological hallmarks of prion diseases are neuronal loss, astrogliosis, and enhanced microglial proliferation and activation. As immune cells of the CNS, microglia participate both in the maintenance of the normal brain physiology and in driving the neuroinflammatory response to acute or chronic (e.g., neurodegenerative disorders) insults. Microglia involvement in prion diseases, however, is far from being clearly understood. During this review, we summarize and discuss controversial findings, both in patient and animal models, suggesting a neuroprotective role of microglia in prion disease pathogenesis and progression, or—conversely—a microglia-mediated exacerbation of neurotoxicity in later stages of disease. We also will consider the active participation of PrPC in microglial functions, by discussing previous reports, but also by presenting unpublished results that support a role for PrPC in cytokine secretion by activated primary microglia.
Collapse
|
40
|
Fritz M, Klawonn AM, Zhao Q, Sullivan EV, Zahr NM, Pfefferbaum A. Structural and biochemical imaging reveals systemic LPS-induced changes in the rat brain. J Neuroimmunol 2020; 348:577367. [PMID: 32866714 DOI: 10.1016/j.jneuroim.2020.577367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Despite mounting evidence for the role of inflammation in Major Depressive Disorder (MDD), in vivo preclinical investigations of inflammation-induced negative affect using whole brain imaging modalities are scarce, precluding a valid model within which to evaluate pharmacological interventions. Here we used an E. coli lipopolysaccharide (LPS)-based model of inflammation-induced depressive signs in rats to explore brain changes using multimodal neuroimaging methods. During the acute phase of the LPS response (2 h post injection), prior to the emergence of a task-quantifiable depressive phenotype, striatal glutamine levels and splenial, retrosplenial, and peri-callosal hippocampal cortex volumes were greater than at baseline. LPS-induced depressive behaviors observed at 24 h, however, occurred concurrently with lower than control levels of striatal glutamine and a reversibility of volume expansion (i.e., shrinkage of splenial, retrosplenial, and peri-callosal hippocampal cortex to baseline volumes). In both striatum and hippocampus at 24 h, mRNA expression in LPS relative to control animals demonstrated alterations in enzymes and transporters regulating glutamine homeostasis. Collectively, the observed behavioral, in vivo structural and metabolic, and mRNA expression alterations suggest a critical role for astrocytic regulation of inflammation-induced depressive behaviors.
Collapse
Affiliation(s)
- Michael Fritz
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America
| | - Anna M Klawonn
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America
| | - Qingyu Zhao
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America; Neuroscience Program, SRI International, Menlo Park, CA 94025, United States of America
| | - Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America; Neuroscience Program, SRI International, Menlo Park, CA 94025, United States of America.
| | - Adolf Pfefferbaum
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, Stanford, CA 94304, United States of America; Neuroscience Program, SRI International, Menlo Park, CA 94025, United States of America
| |
Collapse
|
41
|
Zhou F, Liu R, Han P, Zhang X, Li Z, Zhang S, Liu C, Xia Y, Tang Z. Pertussis Toxin Ameliorates Microglial Activation Associated With Ischemic Stroke. Front Cell Neurosci 2020; 14:152. [PMID: 32676009 PMCID: PMC7333375 DOI: 10.3389/fncel.2020.00152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the effect and the underlying mechanism of Pertussis toxin (PTX) on microglia in the setting of cerebral ischemia. Methods: We tested the effect of PTX 400 ng/days on middle cerebral artery occlusion stroke model by evaluating the neurologic function, infarct size, microglial distribution, and activation. In parallel, we also tested the effect of PTX on primary cultured microglia by evaluating microglial proliferation, activation, cytokine release, and CX3CR1 expression. Results: PTX reduced the poststroke infarct size, improved the neurologic function as evaluated by Longa score, and reduced microglial aggregation and activation in the infarcted area. Further, PTX significantly decreased lipopolysaccharide-stimulated microglial proliferation, the release of interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α), and the expression of CX3CR1. Interpretation: PTX treatment in stroke reduced microglial accumulation and activation in the infarct zone, resulting in a better functional outcome. The benefits of PTX treatment may be attributed to the reduced production of proinflammatory cytokine such as IL-1β and TNF-α and reduced expression of chemokine CX3CR1.
Collapse
Affiliation(s)
- Feihui Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Pengcheng Han
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Xingkui Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhigao Li
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shen Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Chang Liu
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Xia
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhiwei Tang
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
42
|
Hope KT, Hawes IA, Moca EN, Bonci A, De Biase LM. Maturation of the microglial population varies across mesolimbic nuclei. Eur J Neurosci 2020; 52:3689-3709. [PMID: 32281691 DOI: 10.1111/ejn.14740] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/10/2020] [Accepted: 04/02/2020] [Indexed: 11/28/2022]
Abstract
Microglia play critical roles during CNS development and undergo dramatic changes in tissue distribution, morphology, and gene expression as they transition from embryonic to neonatal to adult microglial phenotypes. Despite the magnitude of these phenotypic shifts, little is known about the time course and dynamics of these transitions and whether they vary across brain regions. Here, we define the time course of microglial maturation in key regions of the basal ganglia in mice, where significant regional differences in microglial phenotype are present in adults. We found that microglial density peaks in the ventral tegmental area (VTA) and nucleus accumbens (NAc) during the third postnatal week, driven by a burst of microglial proliferation. Microglial abundance is then refined to adult levels through a combination of tissue expansion and microglial programmed cell death. This overproduction and refinement of microglia was significantly more pronounced in the NAc than in the VTA and was accompanied by a sharp peak in NAc microglial lysosome abundance in the third postnatal week. Collectively, these data identify a key developmental window when elevated microglial density in discrete basal ganglia nuclei may support circuit refinement and could increase susceptibility to inflammatory insults.
Collapse
Affiliation(s)
- Keenan T Hope
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Isobel A Hawes
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Eric N Moca
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Lindsay M De Biase
- Department of Physiology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.,Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
43
|
Ahmed MB, Islam SU, Lee YS. Decursin negatively regulates LPS-induced upregulation of the TLR4 and JNK signaling stimulated by the expression of PRP4 in vitro. Anim Cells Syst (Seoul) 2020; 24:44-52. [PMID: 32158615 PMCID: PMC7048231 DOI: 10.1080/19768354.2020.1726811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 02/03/2020] [Indexed: 02/08/2023] Open
Abstract
The current investigation was carried out to analyze the correlation of bacterial lipopolysaccharide (LPS) and pre-mRNA processing factor 4B (PRP4) in inducing inflammatory response and cell actin cytoskeleton rearrangement in macrophages (Raw 264.7) and colorectal (HCT116) as well as skin cancer (B16-F10) cells. Cell lines were stimulated with LPS, and the expression of PRP4 as well as pro-inflammatory cytokines and proteins like IL-6, IL-1β, TLR4, and NF-κB were assayed. The results demonstrated that LPS markedly increased the expression of PRP4, IL-6, IL-1β, TLR4, and NF-κB in the cells. LPS and PRP4 concomitantly altered the morphology of cells from an aggregated, flattened shape to a round shape. Decursin, a pyranocoumarin from Angelica gigas, inhibited the LPS and PRP4-induced inflammatory response, and reversed the induction of morphological changes. Finally, we established a possible link of LPS with TLR4 and JNK signaling, through which it activated PRP4. Our study provides molecular insights for LPS and PRP4-related pathogenesis and a basis for developing new strategies against metastasis in colorectal cancer and skin melanoma. Our study emphasizes that decursin may be an effective treatment strategy for various cancers in which LPS and PRP4 perform a critical role in inducing inflammatory response and morphological changes leading to cell survival and protection against anti-cancer drugs.
Collapse
Affiliation(s)
- Muhammad Bilal Ahmed
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Salman Ul Islam
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| | - Young Sup Lee
- School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
44
|
Reich M, Paris I, Ebeling M, Dahm N, Schweitzer C, Reinhardt D, Schmucki R, Prasad M, Köchl F, Leist M, Cowley SA, Zhang JD, Patsch C, Gutbier S, Britschgi M. Alzheimer's Risk Gene TREM2 Determines Functional Properties of New Type of Human iPSC-Derived Microglia. Front Immunol 2020; 11:617860. [PMID: 33613545 PMCID: PMC7887311 DOI: 10.3389/fimmu.2020.617860] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/29/2020] [Indexed: 12/17/2022] Open
Abstract
Microglia are key in the homeostatic well-being of the brain and microglial dysfunction has been implicated in neurodegenerative disorders such as Alzheimer's disease (AD). Due to the many limitations to study microglia in situ or isolated for large scale drug discovery applications, there is a high need to develop robust and scalable human cellular models of microglia with reliable translatability to the disease. Here, we describe the generation of microglia-like cells from human induced pluripotent stem cells (iPSC) with distinct phenotypes for mechanistic studies in AD. We started out from an established differentiation protocol to generate primitive macrophage precursors mimicking the yolk sac ontogeny of microglia. Subsequently, we tested 36 differentiation conditions for the cells in monoculture where we exposed them to various combinations of media, morphogens, and extracellular matrices. The optimized protocol generated robustly ramified cells expressing key microglial markers. Bulk mRNA sequencing expression profiles revealed that compared to cells obtained in co-culture with neurons, microglia-like cells derived from a monoculture condition upregulate mRNA levels for Triggering Receptor Expressed On Myeloid Cells 2 (TREM2), which is reminiscent to the previously described disease-associated microglia. TREM2 is a risk gene for AD and an important regulator of microglia. The regulatory function of TREM2 in these cells was confirmed by comparing wild type with isogenic TREM2 knock-out iPSC microglia. The TREM2-deficient cells presented with stronger increase in free cytosolic calcium upon stimulation with ATP and ADP, as well as stronger migration towards complement C5a, compared to TREM2 expressing cells. The functional differences were associated with gene expression modulation of key regulators of microglia. In conclusion, we have established and validated a work stream to generate functional human iPSC-derived microglia-like cells by applying a directed and neuronal co-culture independent differentiation towards functional phenotypes in the context of AD. These cells can now be applied to study AD-related disease settings and to perform compound screening and testing for drug discovery.
Collapse
Affiliation(s)
- Marvin Reich
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.,In Vitro Toxicology and Biomedicine, Department inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Iñaki Paris
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland.,Achucarro Basque Center for Neuroscience, Science Park of the UPV/EHU, Leioa, Spain
| | - Martin Ebeling
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Nadine Dahm
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christophe Schweitzer
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Dieter Reinhardt
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Roland Schmucki
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Megana Prasad
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Fabian Köchl
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Department inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, Konstanz, Germany
| | - Sally A Cowley
- James Martin Stem Cell Facility, Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Jitao David Zhang
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Christoph Patsch
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Simon Gutbier
- Roche Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Markus Britschgi
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases Discovery and Translational Area, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| |
Collapse
|
45
|
Savage JC, St-Pierre MK, Hui CW, Tremblay ME. Microglial Ultrastructure in the Hippocampus of a Lipopolysaccharide-Induced Sickness Mouse Model. Front Neurosci 2019; 13:1340. [PMID: 31920505 PMCID: PMC6932978 DOI: 10.3389/fnins.2019.01340] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/27/2019] [Indexed: 12/13/2022] Open
Abstract
Sickness behavior is a set of behavioral changes induced by infections and mediated by pro-inflammatory cytokines. It is characterized by fatigue, decreased appetite and weight loss, changes in sleep patterns, cognitive functions, and lost interest in social activity. It can expedite recovery by conserving energy to mount an immune response involving innate immunity. To provide insights into microglial implication in sickness behavior with special focus on cognitive and social impairment, we investigated changes in their ultrastructure and interactions with synapses using a toxemia mouse model. Adult mice were injected with 1 mg/kg lipopolysaccharide (LPS) or saline, and assayed for signs of sickness behavior. LPS treated mice displayed reduced activity in open-field tests 24 h post-injection, while social avoidance and weight gain/loss were not significantly different between treatment groups. Microglia were investigated using electron microscopy to describe changes in their structure and function at nanoscale resolution. Microglial cell bodies and processes were investigated in the hippocampus CA1, a region responsible for learning and memory that is often impacted after peripheral LPS administration. Microglia in LPS treated animals displayed larger cell bodies as well as less complex processes at the time point examined. Strikingly, microglial processes in LPS injected animals were also more likely to contact excitatory synapses and contained more phagocytic material compared with saline injected controls. We have identified at the ultrastructural level significant changes in microglia-synapse interactions shortly after LPS administration, which draws attention to studying the roles of microglia in synaptic rewiring after inflammatory stimuli.
Collapse
Affiliation(s)
- Julie C Savage
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Marie-Kim St-Pierre
- Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| | - Chin Wai Hui
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada.,Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de Recherche du CHU de Québec-Université Laval, Quebec, QC, Canada.,Départment de Médecine Moléculaire, Faculté de Médecine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
46
|
Zhong F, Liang S, Zhong Z. Emerging Role of Mitochondrial DNA as a Major Driver of Inflammation and Disease Progression. Trends Immunol 2019; 40:1120-1133. [PMID: 31744765 DOI: 10.1016/j.it.2019.10.008] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 12/13/2022]
Abstract
Inflammation benefits the host by promoting the elimination of invading pathogens and clearance of cellular debris after tissue injury. Inflammation also stimulates tissue repair and regeneration to restore homeostasis and organismal health. Emerging evidence suggests that mitochondrial DNA (mtDNA), the only form of non-nuclear DNA in eukaryotic cells, is a major activator of inflammation when leaked out from stressed mitochondria. Here, we review the current understanding on the role of mtDNA in innate immunity, discussing how dysregulated mtDNA metabolism can promote chronic inflammation and disease progression.
Collapse
Affiliation(s)
- Fei Zhong
- Laboratory of Molecular Virology and Immunology, College of Animal Science and Technology and College of Veterinary Medicine, Agricultural University of Hebei, Baoding, Hebei 071000, China
| | - Shuang Liang
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Zhenyu Zhong
- Department of Immunology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA.
| |
Collapse
|
47
|
Abdulmalek SA, Balbaa M. Synergistic effect of nano-selenium and metformin on type 2 diabetic rat model: Diabetic complications alleviation through insulin sensitivity, oxidative mediators and inflammatory markers. PLoS One 2019; 14:e0220779. [PMID: 31442295 PMCID: PMC6707613 DOI: 10.1371/journal.pone.0220779] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 07/23/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES In the present article, we explore a novel strategy of selenium nanoparticles (Se-NPs) for the treatment of type 2 diabetes mellitus (T2DM) by investigating the effect of Se-NPs alone and in combination with standard anti-diabetic drug metformin (MET) in high-fat diet/streptozotocin (HFD/STZ)-induced T2DM. METHODS HFD was supplemented daily to experimental rats for 8 weeks, followed by a single low dose injection of 35 mg/kg of STZ to induce T2DM. The synergistic effect of the different therapeutic strategies on diabetic complications was evaluated after the Se-NPs and MET administration for 8 weeks. Molecular and biochemical analyses were conducted to figure out the effectiveness of our treatment on insulin sensitivity, oxidative mediators and inflammatory markers. RESULTS Our observations demonstrated that HFD/STZ-induced rats have a toxic effect on serum and hepatic tissues resulted in inducing remarkable oxidative damage and hyper-inflammation with a significant disturbance in the insulin signaling pathway. Experimental animals either treated with mono-therapeutic-two doses Se-NPs (0.1 and 0.4 mg/kg) and/or MET (100 mg/kg) alone as well as the combined therapy resulted in a remarkable protective anti-diabetic effect illustrated by significant decreases in fasting blood glucose and insulin levels after 8 weeks treatment. At the same time, the levels of active insulin signaling proteins pIRS1/pAKT/pGSK-3β/pAMPK were significantly improved. Moreover, Se-NPs exhibited an anti-inflammatory effect by the mitigation of cytokine expression and a balance between oxidative stress and antioxidant status was restored. Furthermore, the anti-diabetic drug MET administration also exhibited a significant improvement in diabetic complications after the treatment period. CONCLUSION This study provides mightily the mechanism of action of combined Se-NPs and MET as a promising therapeutic alternative that synergistically alleviates most of diabetic complications and insulin resistance.
Collapse
Affiliation(s)
- Shaymaa A. Abdulmalek
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mahmoud Balbaa
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
48
|
Golubinskaya V, Vontell R, Supramaniam V, Wyatt-Ashmead J, Gustafsson H, Mallard C, Nilsson H. Bestrophin-3 Expression in a Subpopulation of Astrocytes in the Neonatal Brain After Hypoxic-Ischemic Injury. Front Physiol 2019; 10:23. [PMID: 30761013 PMCID: PMC6362097 DOI: 10.3389/fphys.2019.00023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 01/10/2019] [Indexed: 11/23/2022] Open
Abstract
Bestrophin-3, a potential candidate for a calcium-activated chloride channel, recently was suggested to have cell-protective functions. We studied the expression and alternative splicing of bestrophin-3 in neonatal mouse brain and after hypoxic-ischemic (HI) injury and in human neonatal brain samples. HI brain injury was induced in 9-day old mice by unilateral permanent common carotid artery occlusion in combination with exposure to 10% oxygen for 50 min. Endoplasmic reticulum stress was induced by thapsigargin treatment in primary culture of mouse brain astrocytes. We also investigated expression of bestrophin-3 protein in a sample of human neonatal brain tissue. Bestrophin-3 protein expression was detected with immunohistochemical methods and western blot; mRNA expression and splicing were analyzed by RT-PCR. HI induced a brain tissue infarct and a pronounced increase in the endoplasmic reticulum-associated marker CHOP. Three days after HI a population of astrocytes co-expressed bestrophin-3 and nestin in a penumbra-like area of the injured hemisphere. However, total levels of Bestrophin-3 protein in mouse cortex were reduced after injury. Mouse astrocytes in primary culture also expressed bestrophin-3 protein, the amount of which was reduced by endoplasmic reticulum stress. Bestrophin-3 protein was detected in astrocytes in the hippocampal region of the human neonatal brain which had patchy white matter gliosis and neuronal loss in the Sommer’s sector of the Ammon’s horn (CA1). Analysis of bestrophin-3 mRNA in mouse brain with and without injury showed the presence of two truncated spliced variants, but no full-length mRNA. Total amount of bestrophin-3 mRNA increased after HI, but showed only minor injury-related change. However, the splice variants of bestrophin-3 mRNA were differentially regulated after HI depending on the presence of tissue injury. Our results show that bestrophin-3 is expressed in neonatal mouse brain after injury and in the human neonatal brain with pathology. In mouse brain bestrophin-3 protein is upregulated in a specific astrocyte population after injury and is co-expressed with nestin. Splice variants of bestrophin-3 mRNA respond differently to HI, which might indicate their different roles in tissue injury.
Collapse
Affiliation(s)
- Veronika Golubinskaya
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Regina Vontell
- Division of Imaging Sciences & Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Veena Supramaniam
- Division of Imaging Sciences & Biomedical Engineering, Centre for the Developing Brain, King's College London, King's Health Partners, St Thomas' Hospital, London, United Kingdom
| | - Josephine Wyatt-Ashmead
- Wigglesworth Perinatal-Padiatric Pathology Service, Imperial College Healthcare NHS Trust, London, United Kingdom
| | - Helena Gustafsson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Mallard
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Holger Nilsson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
49
|
Gee MS, Kim SW, Kim N, Lee SJ, Oh MS, Jin HK, Bae JS, Inn KS, Kim NJ, Lee JK. A Novel and Selective p38 Mitogen-Activated Protein Kinase Inhibitor Attenuates LPS-Induced Neuroinflammation in BV2 Microglia and a Mouse Model. Neurochem Res 2018; 43:2362-2371. [PMID: 30327995 DOI: 10.1007/s11064-018-2661-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 10/01/2018] [Accepted: 10/12/2018] [Indexed: 12/17/2022]
Abstract
Neuroinflammation is an important pathological feature in neurodegenerative diseases. Accumulating evidence has suggested that neuroinflammation is mainly aggravated by activated microglia, which are macrophage like cells in the central nervous system. Therefore, the inhibition of microglial activation may be considered for treating neuroinflammatory diseases. p38 mitogen-activated protein kinase (MAPK) has been identified as a crucial enzyme with inflammatory roles in several immune cells, and its activation also relates to neuroinflammation. Considering the proinflammatory roles of p38 MAPK, its inhibitors can be potential therapeutic agents for neurodegenerative diseases relating to neuroinflammation initiated by microglia activation. This study was designed to evaluate whether NJK14047, a recently identified novel and selective p38 MAPK inhibitor, could modulate microglia-mediated neuroinflammation by utilizing lipopolysaccharide (LPS)-stimulated BV2 cells and an LPS-injected mice model. Our results showed that NJK14047 markedly reduced the production of nitric oxide and prostaglandin E2 by downregulating the expression of various proinflammatory mediators such as nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α and interleukin-1β in LPS-induced BV2 microglia. Moreover, NJK14047 significantly reduced microglial activation in the brains of LPS-injected mice. Overall, these results suggest that NJK14047 significantly reduces neuroinflammation in cellular/vivo model and would be a therapeutic candidate for various neuroinflammatory diseases.
Collapse
Affiliation(s)
- Min Sung Gee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Sang-Won Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Namkwon Kim
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Soo Jin Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, South Korea
| | - Myung Sook Oh
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Hee Kyung Jin
- Department of Laboratory Animal Medicine, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Jae-Sung Bae
- Department of Physiology, Cell and Matrix Research Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyung-Soo Inn
- Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul, South Korea
| | - Nam-Jung Kim
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, South Korea.
| | - Jong Kil Lee
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul, South Korea.
| |
Collapse
|
50
|
Porte Alcon S, Gorojod RM, Kotler ML. Regulated Necrosis Orchestrates Microglial Cell Death in Manganese-Induced Toxicity. Neuroscience 2018; 393:206-225. [PMID: 30316909 DOI: 10.1016/j.neuroscience.2018.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/01/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022]
Abstract
Microglia, the brain resident immune cells, play prominent roles in immune surveillance, tissue repair and neural regeneration. Despite these pro-survival actions, the relevance of these cells in the progression of several neuropathologies has been established. In the context of manganese (Mn) overexposure, it has been proposed that microglial activation contributes to enhance the neurotoxicity. However, the occurrence of a direct cytotoxic effect of Mn on microglial cells remains controversial. In the present work, we investigated the potential vulnerability of immortalized mouse microglial cells (BV-2) toward Mn2+, focusing on the signaling pathways involved in cell death. Evidence obtained showed that Mn2+ induces a decrease in cell viability which is associated with reactive oxygen species (ROS) generation. In this report we demonstrated, for the first time, that Mn2+ triggers regulated necrosis (RN) in BV-2 cells involving two central mechanisms: parthanatos and lysosomal disruption. The occurrence of parthanatos is supported by several cellular and molecular events: (i) DNA damage; (ii) AIF translocation from mitochondria to the nucleus; (iii) mitochondrial membrane permeabilization; and (iv) PARP1-dependent cell death. On the other hand, Mn2+ induces lysosomal membrane permeabilization (LMP) and cathepsin D (CatD) release into the cytosol supporting the lysosomal disruption. Pre-incubation with CatB and D inhibitors partially prevented the Mn2+-induced cell viability decrease. Altogether these events point to lysosomes as players in the execution of RN. In summary, our results suggest that microglial cells could be direct targets of Mn2+ damage. In this scenario, Mn2+ triggers cell death involving RN pathways.
Collapse
Affiliation(s)
- Soledad Porte Alcon
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Roxana Mayra Gorojod
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| | - Mónica Lidia Kotler
- CONICET-Universidad de Buenos Aires, Instituto de Química Biológica Ciencias Exactas y Naturales (IQUIBICEN), Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Laboratorio de Disfunción Celular en Enfermedades Neurodegenerativas y Nanomedicina, Buenos Aires, Argentina.
| |
Collapse
|