1
|
Bensimon G, Leigh PN, Tree T, Malaspina A, Payan CA, Pham HP, Klaassen P, Shaw PJ, Al Khleifat A, Amador MDM, Attarian S, Bell SM, Beltran S, Bernard E, Camu W, Corcia P, Corvol JC, Couratier P, Danel V, Debs R, Desnuelle C, Dimitriou A, Ealing J, Esselin F, Fleury MC, Gorrie GH, Grapperon AM, Hesters A, Juntas-Morales R, Kolev I, Lautrette G, Le Forestier N, McDermott CJ, Pageot N, Salachas F, Sharma N, Soriani MH, Sreedharan J, Svahn J, Verber N, Verschueren A, Yildiz O, Suehs CM, Saker-Delye S, Muller C, Masseguin C, Hajduchova H, Kirby J, Garlanda C, Locati M, Zetterberg H, Asselain B, Al-Chalabi A. Efficacy and safety of low-dose IL-2 as an add-on therapy to riluzole (MIROCALS): a phase 2b, double-blind, randomised, placebo-controlled trial. Lancet 2025:S0140-6736(25)00262-4. [PMID: 40354799 DOI: 10.1016/s0140-6736(25)00262-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a life-threatening disease characterised by progressive loss of motor neurons with few therapeutic options. The MIROCALS study tested the hypothesis that low-dose interleukin-2 (IL-2LD) improves survival and function in ALS. METHODS In this randomised, double-blind, placebo-controlled trial, male and female riluzole-naive participants, with either a possible, laboratory-supported probable, probable, or definite ALS diagnosis (revised El Escorial criteria), aged 18-76 years, with symptom duration of 24 months or fewer, and slow vital capacity of 70% or more, underwent a riluzole-only 12-18 week run-in period before randomisation in a 1:1 ratio to either 2 million international units (MIU) IL-2LD or placebo by subcutaneous injection daily for 5 days every 28 days over 18 months. The primary endpoint was survival at 640 days (21 months). Secondary outcomes included safety, ALS Functional Rating Scale-Revised (ALSFRS-R) score, and biomarker measurements including regulatory T-cells (Tregs), cerebrospinal fluid (CSF)-phosphorylated-neurofilament heavy-chain (CSF-pNFH), and plasma and CSF-chemokine ligand 2 (CCL2). The primary endpoint analysis used unadjusted log-rank and Cox's model adjusted analyses using pre-defined prognostic covariates to control for the disease and treatment response heterogeneity. The study was 80% powered to detect a two-fold decrease in the risk of death by the log-rank test in the intention-to-treat (ITT) population, including all randomly allocated participants. MIROCALS is registered with ClinicalTrials.gov (NCT03039673) and is complete. FINDINGS From June 19, 2017, to Oct 16, 2019, 304 participants were screened, of whom 220 (72%) met all criteria for random allocation after the 12-to-18-week run-in period on riluzole. 136 (62%) of participants were male and 84 participants (38%) were female. 25 (11%) of the 220 randomly allocated participants were defined as having possible ALS under El Escorial criteria. At the cutoff date there was no loss to follow-up, and all 220 patients who were randomly allocated were documented as either deceased (90 [41%]) or alive (130 [59%]), so all participants were included in the ITT and safety populations. The primary endpoint unadjusted analysis showed a non-significant 19% decrease in risk of death with IL-2LD (hazard ratio 0·81 [95% CI 0·54-1·22], p=0·33), failing to demonstrate the expected two-fold decrease in risk of death. The analysis of the primary endpoint adjusted on prognostic covariates, all measured at time of random allocation, showed a significant decrease of the risk of death with IL-2LD (0·32 [0·14-0·73], p=0·007), with a significant treatment by CSF-pNFH interaction (1·0003 [1·0001-1·0005], p=0·001). IL-2LD was safe, and significantly increased Tregs and decreased plasma-CCL2 at all timepoints. Stratification on CSF-pNFH levels measured at random allocation showed that IL-2LD was associated with a significant 48% decrease in risk of death (0·52 [0·30-0·89], p=0·016) in the 70% of the population with low (750-3700 pg/mL) CSF-pNFH levels, while in the 21% with high levels (>3700 pg/mL), there was no significant difference (1·37 [0·68-2·75], p=0·38). INTERPRETATION With this treatment schedule, IL-2LD resulted in a non-significant reduction in mortality in the primary unadjusted analysis. However, the difference between the results of unadjusted and adjusted analyses of the primary endpoint emphasises the importance of controlling for disease heterogeneity in ALS randomised controlled trials. The decrease in risk of death achieved by IL-2LD therapy in the trial population with low CSF-pNFH levels requires further investigation of the potential benefit of this therapy in ALS. FUNDING European Commission H2020 Programme; French Health Ministry PHRC2014; and Motor Neurone Disease Association.
Collapse
Affiliation(s)
- Gilbert Bensimon
- Department of Clinical Pharmacology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Department of Pharmacology, Paris Sorbonne University, Paris, France; Department of Biostatistics, Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Nîmes, France.
| | - P Nigel Leigh
- Department of Neuroscience, Brighton and Sussex Medical School, Falmer, Brighton, BN1 9PX, UK
| | - Timothy Tree
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Andrea Malaspina
- Centre of Neuroscience and Trauma, Blizard Institute, Queen Mary University London, London, UK; UCL Queen Square MND Care and Research Centre, Institute of Neurology, University College London, London, UK
| | - Christine Am Payan
- Department of Clinical Pharmacology, Pitié-Salpêtrière Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France; Department of Biostatistics, Clinical Epidemiology, Public Health, and Innovation in Methodology, Nîmes University Hospital, Nîmes, France
| | | | | | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Ahmad Al Khleifat
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | - Maria D M Amador
- Centre de Référence Maladies Rares CRMR SLA Ile de France, Department of Neurology, DMU Neurosciences, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Shahram Attarian
- Centre de Référence Maladies Rares CRMR SLA, ERN-EURO NMD, CHU La Timone, APHM, Marseille, France; Aix-Marseille University, Marseille, France
| | - Simon M Bell
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Stéphane Beltran
- Centre de Référence Maladies Rares CRMR SLA CHRU Bretonneau, Tours, France
| | - Emilien Bernard
- Centre de Référence Maladies Rares CRMR CHU Lyon, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université de Lyon, Lyon, France; Institut NeuroMyoGène, CNRS UMR5310, INSERM U1217, Faculté de Médecine Rockefeller, Université Claude Bernard Lyon I, Lyon, France
| | - William Camu
- Centre de Référence Maladies Rares CRMR SLA CHU Montpellier, INM, Univ Montpellier, INSERM, Explorations neurologiques, Hôpital Gui de Chauliac, Montpellier, France
| | - Philippe Corcia
- Centre de Référence Maladies Rares CRMR SLA CHRU Bretonneau, Tours, France
| | - Jean-Christophe Corvol
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Paris Brain Institute, Pitié-Salpêtrière Hospital, Paris, France
| | - Philippe Couratier
- Centre de Référence Maladies Rares CRMR SLA CHU Limoges, Hôpital Dupuytren, Limoges, France
| | - Véronique Danel
- Centre de Référence Maladies Rares CRMR SLA CHU Lille, Lille, France
| | - Rabab Debs
- Centre de Référence Maladies Rares CRMR SLA Ile de France, Department of Neurology, DMU Neurosciences, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France; Département de neurophysiologie clinique, Groupe Hospitalier Pitié Salpetrière, Paris, France
| | - Claude Desnuelle
- Centre de Référence Maladies Rares CRMR SLA CHU de Nice, Service de Neurologie Hopital Pasteur 2, Nice, France
| | - Aikaterini Dimitriou
- Department of Neurology, King's College Hospital London, UK; Department of Neurology, Sismanogleio Hospital, Athens, Greece
| | - John Ealing
- Manchester Centre for Clinical Neurosciences, Manchester, UK
| | - Florence Esselin
- Centre de Référence Maladies Rares CRMR SLA CHU Montpellier, INM, Univ Montpellier, INSERM, Explorations neurologiques, Hôpital Gui de Chauliac, Montpellier, France
| | - Marie-Céline Fleury
- Centre de Resources et de Compétances CRC-SLA, CHU Hautepierre, Strasbourg, France
| | - George H Gorrie
- Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Aude-Marie Grapperon
- Centre de Référence Maladies Rares CRMR SLA, ERN-EURO NMD, CHU La Timone, APHM, Marseille, France
| | - Adèle Hesters
- Centre de Référence Maladies Rares CRMR SLA Ile de France, Department of Neurology, DMU Neurosciences, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Raul Juntas-Morales
- Centre de Référence Maladies Rares CRMR SLA CHU Montpellier, INM, Univ Montpellier, INSERM, Explorations neurologiques, Hôpital Gui de Chauliac, Montpellier, France; Neuromuscular Unit, department of Neurology, University Hospital of Vall d'Hebron, Barcelona, Spain
| | - Ivan Kolev
- Centre de Resources et de Compétances CRC-SLA Hospital-Saint Brieuc, Saint Brieuc, France; Service de Neurologie, Hôpital de Pontivy, Noyal-Pontivy, France
| | - Géraldine Lautrette
- Centre de Référence Maladies Rares CRMR SLA CHU Limoges, Hôpital Dupuytren, Limoges, France
| | - Nadine Le Forestier
- Centre de Référence Maladies Rares CRMR SLA Ile de France, Department of Neurology, DMU Neurosciences, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Christopher J McDermott
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK; NIHR Sheffield Biomedical Research Centre, University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Nicolas Pageot
- Centre de Référence Maladies Rares CRMR SLA CHU Montpellier, INM, Univ Montpellier, INSERM, Explorations neurologiques, Hôpital Gui de Chauliac, Montpellier, France; Clinique Beau Soleil, Montpellier, France
| | - François Salachas
- Centre de Référence Maladies Rares CRMR SLA Ile de France, Department of Neurology, DMU Neurosciences, Pitié-Salpêtrière Hospital, Assistance Publique Hôpitaux de Paris, Paris, France
| | - Nikhil Sharma
- Department of Neurology, The National Hospital of Neurology and Neurosurgery, London, UK; BioCorteX, London, UK
| | - Marie-Hélène Soriani
- Centre de Référence Maladies Rares CRMR SLA CHU de Nice, Service de Neurologie Hopital Pasteur 2, Nice, France
| | | | - Juliette Svahn
- Centre de Référence Maladies Rares CRMR CHU Lyon, Hôpital Neurologique Pierre Wertheimer, Hospices Civils de Lyon, Université de Lyon, Lyon, France
| | - Nick Verber
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Annie Verschueren
- Centre de Référence Maladies Rares CRMR SLA, ERN-EURO NMD, CHU La Timone, APHM, Marseille, France
| | - Ozlem Yildiz
- Centre of Neuroscience and Trauma, Blizard Institute, Queen Mary University London, London, UK; UCL Queen Square MND Care and Research Centre, Institute of Neurology, University College London, London, UK; Hertfordshire Partnership University NHS Foundation Trust, Psychiatry, London, UK
| | - Carey M Suehs
- Departments of Medical Information and Respiratory Diseases, University of Montpellier, CHU Montpellier, Montpellier, France; Department of Research and Informatics, University Health, San Antonio, TX, USA
| | | | - Claudie Muller
- Delegation for Clinical Research and Innovation, Nîmes University Hospital, Nîmes, France
| | - Christophe Masseguin
- Delegation for Clinical Research and Innovation, Nîmes University Hospital, Nîmes, France
| | | | - Janine Kirby
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Milano, Italy; IRCCS Humanitas Research Hospital, Milano, Italy
| | - Massimo Locati
- IRCCS Humanitas Research Hospital, Milano, Italy; Department of Medical Biotechnologies and Translational Medicine, Università degli Studi di Milano, Milano, Italy
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Bernard Asselain
- Groupe d'Investigateurs Nationaux pour l'Etude des Cancers Ovariens, GINECO, Paris, France
| | | |
Collapse
|
2
|
Stacchiotti C, Mazzella di Regnella S, Cinotti M, Spalloni A, Volpe E. Neuroinflammation and Amyotrophic Lateral Sclerosis: Recent Advances in Anti-Inflammatory Cytokines as Therapeutic Strategies. Int J Mol Sci 2025; 26:3854. [PMID: 40332510 PMCID: PMC12028049 DOI: 10.3390/ijms26083854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Neuroinflammation is an inflammatory response occurring within the central nervous system (CNS). The process is marked by the production of pro-inflammatory cytokines, chemokines, small-molecule messengers, and reactive oxygen species. Microglia and astrocytes are primarily involved in this process, while endothelial cells and infiltrating blood cells contribute to neuroinflammation when the blood-brain barrier (BBB) is damaged. Neuroinflammation is increasingly recognized as a pathological hallmark of several neurological diseases, including amyotrophic lateral sclerosis (ALS), and is closely linked to neurodegeneration, another key feature of ALS. In fact, neurodegeneration is a pathological trigger for inflammation, and neuroinflammation, in turn, contributes to motor neuron (MN) degeneration through the induction of synaptic dysfunction, neuronal death, and inhibition of neurogenesis. Importantly, resolution of acute inflammation is crucial for avoiding chronic inflammation and tissue destruction. Inflammatory processes are mediated by soluble factors known as cytokines, which are involved in both promoting and inhibiting inflammation. Cytokines with anti-inflammatory properties may exert protective roles in neuroinflammatory diseases, including ALS. In particular, interleukin (IL)-10, transforming growth factor (TGF)-β, IL-4, IL-13, and IL-9 have been shown to exert an anti-inflammatory role in the CNS. Other recently emerging immune regulatory cytokines in the CNS include IL-35, IL-25, IL-37, and IL-27. This review describes the current understanding of neuroinflammation in ALS and highlights recent advances in the role of anti-inflammatory cytokines within CNS with a particular focus on their potential therapeutic applications in ALS. Furthermore, we discuss current therapeutic strategies aimed at enhancing the anti-inflammatory response to modulate neuroinflammation in this disease.
Collapse
Affiliation(s)
- Costanza Stacchiotti
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Simona Mazzella di Regnella
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
| | - Miriam Cinotti
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
| | - Alida Spalloni
- Molecular Neurobiology Unit, Santa Lucia Foundation, 00143 Rome, Italy
| | - Elisabetta Volpe
- Molecular Neuroimmunology Unit, Santa Lucia Foundation, 00143 Rome, Italy; (C.S.); (S.M.d.R.); (M.C.); (E.V.)
| |
Collapse
|
3
|
Murdock BJ, Zhao B, Webber-Davis IF, Teener SJ, Pawlowski KD, Famie JP, Piecuch CE, Jang DG, Feldman EL, Zhao L, Goutman SA. Early immune system changes in amyotrophic lateral sclerosis correlate with later disease progression. MED 2025:100673. [PMID: 40286795 DOI: 10.1016/j.medj.2025.100673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 01/09/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease with no cure and limited treatment options. The immune system is implicated in disease pathology, unlocking a potential therapeutic avenue. However, it is unclear whether immune changes are a cause or consequence of disease progression. METHODS Peripheral immune cells were longitudinally measured at monthly intervals in 55 ALS and 50 control participants. 22 peripheral immune markers in the blood were assessed using flow cytometry, and clinical progression was assessed using the revised ALS functional rating scale (ALSFRS-R). Individual immune markers, their trajectories, and overall variability were compared in ALS versus control participants; ALS participants were also stratified by clinical progression rates and assessed similarly across progression groups. Finally, a novel, lagged linear regression model correlated the rate of immune changes to subsequent downstream ALSFRS-R changes. FINDINGS Numerous immune markers were dysregulated in ALS versus control participants, with altered levels, trajectories, or variability in immune populations and surface markers. ALS participants had increased immune variability relative to control participants; within ALS participants, faster progressors overall had decreased marker variability. Finally, natural killer (NK) cell numbers, NK cell subpopulations, and NK cell surface markers were significantly associated with downstream ALS progression. CONCLUSIONS The immune system is dysregulated in ALS and more consistently dysregulated in faster ALS progression, and immune dysregulation occurs upstream of clinical changes. These findings suggest that the immune system is a causal factor of ALS progression in human patients. FUNDING CReATe Consortium, NIH, Target ALS, DoD, ALSA.
Collapse
Affiliation(s)
- Benjamin J Murdock
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Bangyao Zhao
- Biostatistics Department, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ian F Webber-Davis
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Samuel J Teener
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Joshua P Famie
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Caroline E Piecuch
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dae Gyu Jang
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lili Zhao
- Biostatistics Department, School of Public Health, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Yang W, Liu X, Fan D. Low CD3 level is a risk factor for amyotrophic lateral sclerosis: a Mendelian randomization study. Amyotroph Lateral Scler Frontotemporal Degener 2025; 26:64-72. [PMID: 39316061 DOI: 10.1080/21678421.2024.2407408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive and fatal disease characterized by neuronal degeneration of the spinal cord and brain and believed to be related to the immune system. In this study, our aim is to use Mendelian randomization (MR) to search for immune markers related to ALS. A total of 731 immune cell traits were included in this study. MR analysis was used to identify the causality between 731 immune cell traits (with 3,757 Europeans) and ALS (with 138,086 Europeans). Colocalization analysis was used to verify the found causality, protein-protein interaction prediction was used to look for the interacting proteins that are known to be involved in ALS. We found low expression levels of CD3 on central memory CD8+ T cell is risk factor for ALS (OR = 0.90, 95% CI: 0.86-0.95, P = 0.0000303). CD3 can interact with three ALS-related proteins: VCP, HLA-DRA and HLA-DRB5, which are associated with adaptive immune response. Our study reported for the first time that low-level CD3 is a risk factor for ALS and the possible mechanism, which could provide a potential strategy for ALS diagnosis and therapy.
Collapse
Affiliation(s)
- Wenzhi Yang
- Department of Neurology, Peking University Third Hospital Beijing, China and
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Xiangyi Liu
- Department of Neurology, Peking University Third Hospital Beijing, China and
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital Beijing, China and
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| |
Collapse
|
5
|
Faller KME, Chaytow H, Gillingwater TH. Targeting common disease pathomechanisms to treat amyotrophic lateral sclerosis. Nat Rev Neurol 2025; 21:86-102. [PMID: 39743546 DOI: 10.1038/s41582-024-01049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2024] [Indexed: 01/04/2025]
Abstract
The motor neuron disease amyotrophic lateral sclerosis (ALS) is a devastating condition with limited treatment options. The past few years have witnessed a ramping up of translational ALS research, offering the prospect of disease-modifying therapies. Although breakthroughs using gene-targeted approaches have shown potential to treat patients with specific disease-causing mutations, the applicability of such therapies remains restricted to a minority of individuals. Therapies targeting more general mechanisms that underlie motor neuron pathology in ALS are therefore of considerable interest. ALS pathology is associated with disruption to a complex array of key cellular pathways, including RNA processing, proteostasis, metabolism and inflammation. This Review details attempts to restore cellular homeostasis by targeting these pathways in order to develop effective, broadly-applicable ALS therapeutics.
Collapse
Affiliation(s)
- Kiterie M E Faller
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Helena Chaytow
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK
| | - Thomas H Gillingwater
- Edinburgh Medical School, Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
- Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
6
|
Weiner HL. Immune mechanisms and shared immune targets in neurodegenerative diseases. Nat Rev Neurol 2025; 21:67-85. [PMID: 39681722 DOI: 10.1038/s41582-024-01046-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2024] [Indexed: 12/18/2024]
Abstract
The immune system plays a major part in neurodegenerative diseases. In some, such as multiple sclerosis, it is the primary driver of the disease. In others, such as Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, it has an amplifying role. Immunotherapeutic approaches that target the adaptive and innate immune systems are being explored for the treatment of almost all neurological diseases, and the targets and approaches are often common across diseases. Microglia are the primary immune cells in the brain that contribute to disease pathogenesis, and are consequently a common immune target for therapy. Other therapeutic approaches target components of the peripheral immune system, such as regulatory T cells and monocytes, which in turn act within the CNS. This Review considers in detail how microglia, monocytes and T cells contribute to the pathogenesis of multiple sclerosis, Alzheimer disease, amyotrophic lateral sclerosis and Parkinson disease, and their potential as shared therapeutic targets across these diseases. The microbiome is also highlighted as an emerging therapeutic target that indirectly modulates the immune system. Therapeutic approaches being developed to target immune function in neurodegenerative diseases are discussed, highlighting how immune-based approaches developed to treat one disease could be applicable to multiple other neurological diseases.
Collapse
Affiliation(s)
- Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Lu T, Luo L, Yang J, Cheng X, Sun J. Circulating Levels of T-Cell Traits and the Risk of Amyotrophic Lateral Sclerosis: A Mendelian Randomization Study. Mol Neurobiol 2024; 61:10529-10537. [PMID: 38748065 DOI: 10.1007/s12035-024-04226-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/08/2024] [Indexed: 11/24/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) represents a rare and potentially fatal neurodegenerative disease. Diverse T-cell subsets could potentially exert diametrically opposite impacts upon ALS development. A two-sample Mendelian randomization (MR) analysis was performed to investigate the correlation between 244 T-cell subsets and ALS risk. Genetic instrumental variables were procured from a standard genome-wide association study (GWAS) that encompassed 244 T-cell subsets in 3757 individuals of European lineage. ALS-related data were collected from a GWAS comprising 20,806 ALS instances and 59,804 European control participants. Multiple sensitivity analyses were performed to verify the robustness of the significant results. Reverse MR analysis was used for delineating the effects of ALS on the characteristics of T-cells. After multiple comparison corrections, 24 out of the 244 subtypes demonstrated a potential association with ALS risk. Significantly, 75% of these associations encompassed the expression of the CD3 on diverse T-cell subtypes, revealing a highly consistent inverse relation to ALS risk. The proportion of T regulatory cells (Tregs) in CD4+ T cells and secreting Tregs in CD4+ T cells demonstrated negative associations with the risk of ALS. CCR7 expression on naive CD4+ T cells and CCR7 expression on naive CD8+ T cells showed positive associations with ALS risk. Certain T-cell subsets, particularly those identified by CD3 expression on terminally differentiated CD8+ T cells, proportions of Tregs, and CCR7 expression, indicated an association with ALS risk. These findings harmonize with and extend previous observational studies investigating the involvement of T lymphocyte subset-induced immunological processes in ALS.
Collapse
Affiliation(s)
- Ting Lu
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Lijun Luo
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, 430033, China
| | - Jie Yang
- Department of Neurology, Wuhan No.1 Hospital, Wuhan, 430033, China
| | - Xiao Cheng
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120, China.
| | - Jingbo Sun
- The Second School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Department of Neurology, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.
- State Key Laboratory of Dampness, Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
- Guangdong Provincial Key Laboratory of Research on Emergency in TCM, Guangzhou, 510120, China.
| |
Collapse
|
8
|
Jiang Q, Wei Q, Zhang L, Yang T, Lin J, Xiao Y, Li C, Hou Y, Ou R, Liu K, Zhao B, Wu Y, Lai X, Shang H. Peripheral immunity relate to disease progression and prognosis in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:465-474. [PMID: 38270154 DOI: 10.1080/21678421.2024.2306969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/13/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease. Abnormalities in the peripheral immune system in ALS have been paid attention; however, the results of changes in peripheral immune parameters were inconsistent. METHODS A total of 1109 ALS patients were enrolled in the study. All patients received clinical evaluation and peripheral immune parameters measurement. The outcomes were analyzed by correlation analysis, multiple linear regression and cox survival analysis. RESULTS We found that ALS patients had significantly higher percentage of CD4+ T cells (39.3 vs. 37.1%, p < 0.001) and CD4+/CD8+ ratio (1.88 vs. 1.72, p = 0.011), significantly lower IgG (11.73 vs.12.82, p < 0.001) and IgA (2130.70 vs. 2284.8, p = 0.013) compared with the health controls. In the multivariate linear model, we found that each increase of 1.262, 0.278, and 4.44E-4 in ALSFRS-R scores were significantly associated with each increment of lymphocyte count, IgG, and IgA, respectively. However, each decrease of 0.341, 0.068, and 0.682 in ALSFRS-R score was associated with each increment in neutrophils, CD4+ T cells, and CD4+/CD8+ ratio, respectively. Cox survival regression analysis showed that the death risk of ALS patients was related to the levels of C3 (HR 0.592, 95% CI 0.361-0.973). CONCLUSION We found that there were differences in peripheral immune parameters of ALS patients with the severity of the disease, especially neutrophil, lymphocyte, CD4+ T, and IgG; C3 is an independent predictor of survival in ALS patients. More studies are needed to elucidate the mechanisms associated with altered immune parameters in ALS.
Collapse
Affiliation(s)
- Qirui Jiang
- Department of Neurology, Laboratory of Neurodegenerative Disorders and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyu Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanbing Hou
- Department of Neurology, Laboratory of Neurodegenerative Disorders and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Kuncheng Liu
- Department of Neurology, Laboratory of Neurodegenerative Disorders and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bi Zhao
- Department of Neurology, Laboratory of Neurodegenerative Disorders and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ying Wu
- Department of Neurology, Laboratory of Neurodegenerative Disorders and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohui Lai
- Department of Neurology, Laboratory of Neurodegenerative Disorders and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders and Immunology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Sacharczuk M, Mickael ME, Kubick N, Kamińska A, Horbańczuk JO, Atanasov AG, Religa P, Ławiński M. The Current Landscape of Hypotheses Describing the Contribution of CD4+ Heterogeneous Populations to ALS. Curr Issues Mol Biol 2024; 46:7846-7861. [PMID: 39194682 DOI: 10.3390/cimb46080465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a poorly understood and fatal disease. It has a low prevalence and a 2-4 year survival period. Various theories and hypotheses relating to its development process have been proposed, albeit with no breakthrough in its treatment. Recently, the role of the adaptive immune system in ALS, particularly CD4+ T cells, has begun to be investigated. CD4+ T cells are a heterogeneous group of immune cells. They include highly pro-inflammatory types such as Th1 and Th17, as well as highly anti-inflammatory cells such as Tregs. However, the landscape of the role of CD4+ T cells in ALS is still not clearly understood. This review covers current hypotheses that elucidate how various CD4+ T cells can contribute to ALS development. These hypotheses include the SWITCH model, which suggests that, in the early stages of the disease, Tregs are highly capable of regulating the immune response. However, in the later stages of the disease, it seems that pro-inflammatory cells such as Th1 and Th17 are capable of overwhelming Treg function. The reason why this occurs is not known. Several research groups have proposed that CD4+ T cells as a whole might experience aging. Others have proposed that gamma delta T cells might directly target Tregs. Additionally, other research groups have argued that less well-known CD4+ T cells, such as Emoes+ CD4+ T cells, may be directly responsible for neuron death by producing granzyme B. We propose that the ALS landscape is highly complicated and that there is more than one feasible hypothesis. However, it is critical to take into consideration the differences in the ability of different populations of CD4+ T cells to infiltrate the blood-brain barrier, taking into account the brain region and the time of infiltration. Shedding more light on these still obscure factors can help to create a personalized therapy capable of regaining the balance of power in the battle between the anti-inflammatory and pro-inflammatory cells in the central nervous system of ALS patients.
Collapse
Affiliation(s)
- Mariusz Sacharczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Michel-Edwar Mickael
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Norwin Kubick
- Department of Biology, Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorststr. 18, 22609 Hamburg, Germany
| | - Agnieszka Kamińska
- Faculty of Medicine, Collegium Medicum Cardinal Stefan Wyszyński University in Warsaw, 01-938 Warsaw, Poland
| | - Jarosław Olav Horbańczuk
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
| | - Atanas G Atanasov
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Ludwig Boltzmann Institute Digital Health and Patient Safety, Medical University of Vienna, 1090 Vienna, Austria
| | - Piotr Religa
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institute, SE-141 86 Stockholm, Sweden
| | - Michał Ławiński
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Postępu 36A, 05-552 Jastrzębiec, Poland
- Department of General Surgery, Gastroenterology and Oncology, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
10
|
Alarcan H, Bruno C, Emond P, Raoul C, Vourc'h P, Corcia P, Camu W, Veyrune JL, Garlanda C, Locati M, Juntas-Morales R, Saker S, Suehs C, Masseguin C, Kirby J, Shaw P, Malaspina A, De Vos J, Al-Chalabi A, Leigh PN, Tree T, Bensimon G, Blasco H. Pharmacometabolomics applied to low-dose interleukin-2 treatment in amyotrophic lateral sclerosis. Ann N Y Acad Sci 2024; 1536:82-91. [PMID: 38771698 DOI: 10.1111/nyas.15147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motor neuron disease. The immunosuppressive functions of regulatory T lymphocytes (Tregs) are impaired in ALS, and correlate to disease progression. The phase 2a IMODALS trial reported an increase in Treg number in ALS patients following the administration of low-dose (ld) interleukin-2 (IL-2). We propose a pharmacometabolomics approach to decipher metabolic modifications occurring in patients treated with ld-IL-2 and its relationship with Treg response. Blood metabolomic profiles were determined on days D1, D64, and D85 from patients receiving 2 MIU of IL-2 (n = 12) and patients receiving a placebo (n = 12). We discriminated the three time points for the treatment group (average error rate of 42%). Among the important metabolites, kynurenine increased between D1 and D64, followed by a reduction at D85. The percentage increase of Treg number from D1 to D64, as predicted by the metabolome at D1, was highly correlated with the observed value. This study provided a proof of concept for metabolic characterization of the effect of ld-IL-2 in ALS. These data could present advances toward a personalized medicine approach and present pharmacometabolomics as a key tool to complement genomic and transcriptional data for drug characterization, leading to systems pharmacology.
Collapse
Affiliation(s)
- Hugo Alarcan
- Service de Biochimie et Biologie Moléculaire, CHRU Bretonneau, Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
| | - Clément Bruno
- Service de Pharmacologie Médicale, CHRU Bretonneau, Tours, France
| | - Patrick Emond
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
- Laboratoire de Médecine nucléaire in vitro, CHRU Bretonneau, Tours, France
| | - Cédric Raoul
- INM, University of Montpellier, INSERM, Montpellier, France
- ALS Reference Center, University of Montpellier, CHU Montpellier, Montpellier, France
| | - Patrick Vourc'h
- Service de Biochimie et Biologie Moléculaire, CHRU Bretonneau, Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
| | - Philippe Corcia
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
- Service de Neurologie, CHRU Bretonneau, Tours, France
| | - William Camu
- INM, University of Montpellier, INSERM, Montpellier, France
- ALS Reference Center, University of Montpellier, CHU Montpellier, Montpellier, France
| | - Jean-Luc Veyrune
- Institute of Human Genetics, University of Montepllier, Montpellier, France
| | - Cecilia Garlanda
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano, Italy
| | | | - Raúl Juntas-Morales
- Neuromuscular Diseases Unit, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Department of Neurology, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Carey Suehs
- Laboratoire de Biostatistique, Epidémiologie clinique, Santé Publique, Innovation et Méthodologie (BESPIM), Université de Nîmes, Nîmes, France
| | - Christophe Masseguin
- Delegation for Clinical Research and Innovation, Nîmes University Hospital, Nîmes, France
| | - Janine Kirby
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Pamela Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Andrea Malaspina
- UCL Queen Square Motor Neuron Disease Centre, UCL Queen Square Institute of Neurology, University College London, Queen Square, London, UK
| | - John De Vos
- Department of Cell and Tissue Engineering, University Montpellier, CHU Montpellier, Montpellier, France
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
| | | | - Timothy Tree
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | - Gilbert Bensimon
- Laboratoire de Biostatistique, Epidémiologie clinique, Santé Publique, Innovation et Méthodologie (BESPIM), Université de Nîmes, Nîmes, France
| | - Hélène Blasco
- Service de Biochimie et Biologie Moléculaire, CHRU Bretonneau, Tours, France
- UMR 1253 iBrain, Université de Tours, Inserm, Tours, France
| |
Collapse
|
11
|
Yang T, Wei Q, Li C, Ou R, Lin J, Cheng Y, Xiao Y, Shang H. Peripheral immunity involvement in the cognitive impairment of sporadic amyotrophic lateral sclerosis. Front Neurol 2024; 15:1405275. [PMID: 38882692 PMCID: PMC11176427 DOI: 10.3389/fneur.2024.1405275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Background Recent research has indicated the significance of immune activation in amyotrophic lateral sclerosis (ALS). However, the impact of peripheral immunity on cognitive impairment in sporadic ALS remains poorly characterized. Therefore, we aim to assess the relationship between peripheral immune parameters and cognitive impairment in patients with sporadic ALS. Methods A case-control study involving 289 patients with sporadic ALS was conducted. All participants underwent cognitive assessment and measurements of blood immune parameters. The main outcomes included adjusted odds ratios (ORs) in multivariate logistic regression analysis and adjusted coefficients in a multivariate linear regression model. Sensitivity analysis was performed with stratification by the King's clinical stage. Results Cognitive impairment was observed in 98 (33.9%) patients. Higher counts of leukocyte (OR, 0.53; 95% CI, 0.29 to 0.95; p = 0.03), neutrophil (OR, 0.48; 95% CI, 0.26 to 0.88; p = 0.02), and monocyte (OR, 0.33; 95% CI, 0.18 to 0.60; p < 0.001) were significantly associated with better cognitive preformence in sporadic ALS, particularly among patients in King's clinical stages 1 and 2. Conversely, a higher percentage of CD4+ T cells was linked to an increased risk of cognitive impairment (OR, 2.79; 95% CI, 1.52 to 5.09; p = 0.001), particularly evident in patients in King's clinical stage 3. Conclusion These results highlight the involvement of peripheral immunity in the cognitive impairment of sporadic ALS and suggest dynamic and intricate roles that vary across disease stages. Elucidating the links between immunity and ALS sheds light on the pathophysiological mechanisms underlying this fatal neurodegenerative disorder and informs potential immunotherapeutic strategies.
Collapse
Affiliation(s)
- Tianmi Yang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Wei
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyu Li
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ruwei Ou
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Junyu Lin
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Xiao
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Limone F, Couto A, Wang JY, Zhang Y, McCourt B, Huang C, Minkin A, Jani M, McNeer S, Keaney J, Gillet G, Gonzalez RL, Goodman WA, Kadiu I, Eggan K, Burberry A. Myeloid and lymphoid expression of C9orf72 regulates IL-17A signaling in mice. Sci Transl Med 2024; 16:eadg7895. [PMID: 38295187 PMCID: PMC11247723 DOI: 10.1126/scitranslmed.adg7895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 01/10/2024] [Indexed: 02/02/2024]
Abstract
A mutation in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Patients with ALS or FTD often develop autoimmunity and inflammation that precedes or coincides with the onset of neurological symptoms, but the underlying mechanisms are poorly understood. Here, we knocked out murine C9orf72 in seven hematopoietic progenitor compartments by conditional mutagenesis and found that myeloid lineage C9orf72 prevents splenomegaly, loss of tolerance, and premature mortality. Furthermore, we demonstrated that C9orf72 plays a role in lymphoid cells to prevent interleukin-17A (IL-17A) production and neutrophilia. Mass cytometry identified early and sustained elevation of the costimulatory molecule CD80 expressed on C9orf72-deficient mouse macrophages, monocytes, and microglia. Enrichment of CD80 was similarly observed in human spinal cord microglia from patients with C9ORF72-mediated ALS compared with non-ALS controls. Single-cell RNA sequencing of murine spinal cord, brain cortex, and spleen demonstrated coordinated induction of gene modules related to antigen processing and presentation and antiviral immunity in C9orf72-deficient endothelial cells, microglia, and macrophages. Mechanistically, C9ORF72 repressed the trafficking of CD80 to the cell surface in response to Toll-like receptor agonists, interferon-γ, and IL-17A. Deletion of Il17a in C9orf72-deficient mice prevented CD80 enrichment in the spinal cord, reduced neutrophilia, and reduced gut T helper type 17 cells. Last, systemic delivery of an IL-17A neutralizing antibody augmented motor performance and suppressed neuroinflammation in C9orf72-deficient mice. Altogether, we show that C9orf72 orchestrates myeloid costimulatory potency and provide support for IL-17A as a therapeutic target for neuroinflammation associated with ALS or FTD.
Collapse
Affiliation(s)
- Francesco Limone
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Leiden University Medical Center, LUMC, 2333 ZA Leiden, The Netherlands
| | - Alexander Couto
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Jin-Yuan Wang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Yingying Zhang
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Blake McCourt
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Cerianne Huang
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Adina Minkin
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Marghi Jani
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sarah McNeer
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - James Keaney
- Neuroinflammation Focus Area, UCB Biopharma SRL, Braine-l’Alleud, 1420, Belgium
| | - Gaëlle Gillet
- Neuroinflammation Focus Area, UCB Biopharma SRL, Braine-l’Alleud, 1420, Belgium
| | - Rodrigo Lopez Gonzalez
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44196, USA
| | - Wendy A. Goodman
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Irena Kadiu
- Neuroinflammation Focus Area, UCB Biopharma SRL, Braine-l’Alleud, 1420, Belgium
| | - Kevin Eggan
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
| | - Aaron Burberry
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA, 02138, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH, 44106, USA
| |
Collapse
|
13
|
Ratano P, Cocozza G, Pinchera C, Busdraghi LM, Cantando I, Martinello K, Scioli M, Rosito M, Bezzi P, Fucile S, Wulff H, Limatola C, D’Alessandro G. Reduction of inflammation and mitochondrial degeneration in mutant SOD1 mice through inhibition of voltage-gated potassium channel Kv1.3. Front Mol Neurosci 2024; 16:1333745. [PMID: 38292023 PMCID: PMC10824952 DOI: 10.3389/fnmol.2023.1333745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 12/31/2023] [Indexed: 02/01/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with no effective therapy, causing progressive loss of motor neurons in the spinal cord, brainstem, and motor cortex. Regardless of its genetic or sporadic origin, there is currently no cure for ALS or therapy that can reverse or control its progression. In the present study, taking advantage of a human superoxide dismutase-1 mutant (hSOD1-G93A) mouse that recapitulates key pathological features of human ALS, we investigated the possible role of voltage-gated potassium channel Kv1.3 in disease progression. We found that chronic administration of the brain-penetrant Kv1.3 inhibitor, PAP-1 (40 mg/Kg), in early symptomatic mice (i) improves motor deficits and prolongs survival of diseased mice (ii) reduces astrocyte reactivity, microglial Kv1.3 expression, and serum pro-inflammatory soluble factors (iii) improves structural mitochondrial deficits in motor neuron mitochondria (iv) restores mitochondrial respiratory dysfunction. Taken together, these findings underscore the potential significance of Kv1.3 activity as a contributing factor to the metabolic disturbances observed in ALS. Consequently, targeting Kv1.3 presents a promising avenue for modulating disease progression, shedding new light on potential therapeutic strategies for ALS.
Collapse
Affiliation(s)
| | - Germana Cocozza
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | | | | | - Iva Cantando
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | | | | | - Maria Rosito
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Paola Bezzi
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
- Department of Fundamental Neurosciences, University of Lausanne, Lausanne, Switzerland
| | - Sergio Fucile
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| | - Heike Wulff
- Department of Pharmacology, University of California Davis, Health Sciences Drive, Davis, CA, United States
| | - Cristina Limatola
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, Laboratory Affiliated to Istituto Pasteur, Sapienza University, Rome, Italy
| | - Giuseppina D’Alessandro
- IRCCS Neuromed, Pozzilli, Italy
- Department of Physiology and Pharmacology, University of Rome Sapienza, Rome, Italy
| |
Collapse
|
14
|
Mimic S, Aru B, Pehlivanoğlu C, Sleiman H, Andjus PR, Yanıkkaya Demirel G. Immunology of amyotrophic lateral sclerosis - role of the innate and adaptive immunity. Front Neurosci 2023; 17:1277399. [PMID: 38105925 PMCID: PMC10723830 DOI: 10.3389/fnins.2023.1277399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/07/2023] [Indexed: 12/19/2023] Open
Abstract
This review aims to summarize the latest evidence about the role of innate and adaptive immunity in Amyotrophic Lateral Sclerosis (ALS). ALS is a devastating neurodegenerative disease affecting upper and lower motor neurons, which involves essential cells of the immune system that play a basic role in innate or adaptive immunity, that can be neurotoxic or neuroprotective for neurons. However, distinguishing between the sole neurotoxic or neuroprotective function of certain cells such as astrocytes can be challenging due to intricate nature of these cells, the complexity of the microenvironment and the contextual factors. In this review, in regard to innate immunity we focus on the involvement of monocytes/macrophages, microglia, the complement, NK cells, neutrophils, mast cells, and astrocytes, while regarding adaptive immunity, in addition to humoral immunity the most important features and roles of T and B cells are highlighted, specifically different subsets of CD4+ as well as CD8+ T cells. The role of autoantibodies and cytokines is also discussed in distinct sections of this review.
Collapse
Affiliation(s)
- Stefan Mimic
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | - Başak Aru
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Cemil Pehlivanoğlu
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Hadi Sleiman
- Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Pavle R. Andjus
- Centre for Laser Microscopy, Institute of Physiology and Biochemistry “Jean Giaja”, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
15
|
Zhang Z, Sun S. Linking ALS mutations to the disruption of the MHC-II pathway. Proc Natl Acad Sci U S A 2023; 120:e2315240120. [PMID: 37819987 PMCID: PMC10614208 DOI: 10.1073/pnas.2315240120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Affiliation(s)
- Zhe Zhang
- Department of Physiology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Shuying Sun
- Department of Physiology and Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD21205
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
16
|
Lemos JP, Tenório LPG, Mouly V, Butler-Browne G, Mendes-da-Cruz DA, Savino W, Smeriglio P. T cell biology in neuromuscular disorders: a focus on Duchenne Muscular Dystrophy and Amyotrophic Lateral Sclerosis. Front Immunol 2023; 14:1202834. [PMID: 37920473 PMCID: PMC10619758 DOI: 10.3389/fimmu.2023.1202834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023] Open
Abstract
Growing evidence demonstrates a continuous interaction between the immune system, the nerve and the muscle in neuromuscular disorders of different pathogenetic origins, such as Duchenne Muscular Dystrophy (DMD) and Amyotrophic Lateral Sclerosis (ALS), the focus of this review. Herein we highlight the complexity of the cellular and molecular interactions involving the immune system in neuromuscular disorders, as exemplified by DMD and ALS. We describe the distinct types of cell-mediated interactions, such as cytokine/chemokine production as well as cell-matrix and cell-cell interactions between T lymphocytes and other immune cells, which target cells of the muscular or nervous tissues. Most of these interactions occur independently of exogenous pathogens, through ligand-receptor binding and subsequent signal transduction cascades, at distinct levels of specificity. Although this issue reveals the complexity of the system, it can also be envisioned as a window of opportunity to design therapeutic strategies (including synthetic moieties, cell and gene therapy, as well as immunotherapy) by acting upon one or more targets. In this respect, we discuss ongoing clinical trials using VLA-4 inhibition in DMD, and in ALS, with a focus on regulatory T cells, both revealing promising results.
Collapse
Affiliation(s)
- Julia Pereira Lemos
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Liliane Patrícia Gonçalves Tenório
- Laboratory of Cell Biology, Institute of Biological and Health Sciences, Federal University of Alagoas, Maceio, Alagoas, Brazil
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Vincent Mouly
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Gillian Butler-Browne
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Rio de Janeiro Research Network on Neuroinflammation (RENEURIN), Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- INOVA-IOC Network on Neuroimmunomodulation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Piera Smeriglio
- Sorbonne Université, INSERM, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| |
Collapse
|
17
|
Lee SY, Cho HY, Oh JP, Park J, Bae SH, Park H, Kim EJ, Lee JH. Therapeutic Effects of Combination of Nebivolol and Donepezil: Targeting Multifactorial Mechanisms in ALS. Neurotherapeutics 2023; 20:1779-1795. [PMID: 37782409 PMCID: PMC10684847 DOI: 10.1007/s13311-023-01444-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/13/2023] [Indexed: 10/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized by progressive loss of motor neurons in the spinal cord. Although the disease's pathophysiological mechanism remains poorly understood, multifactorial mechanisms affecting motor neuron loss converge to worsen the disease. Although two FDA-approved drugs, riluzole and edaravone, targeting excitotoxicity and oxidative stress, respectively, are available, their efficacies are limited to extending survival by only a few months. Here, we developed combinatorial drugs targeting multifactorial mechanisms underlying key components in ALS disease progression. Using data analysis based on the genetic information of patients with ALS-derived cells and pharmacogenomic data of the drugs, a combination of nebivolol and donepezil (nebivolol-donepezil) was identified for ALS therapy. Here, nebivolol-donepezil markedly reduced the levels of cytokines in the microglial cell line, inhibited nuclear factor-κB (NF-κB) nucleus translocation in the HeLa cell and substantially protected against excitotoxicity-induced neuronal loss by regulating the PI3K-Akt pathway. Nebivolol-donepezil significantly promoted the differentiation of neural progenitor cells (NPC) into motor neurons. Furthermore, we verified the low dose efficacy of nebivolol-donepezil on multiple indices corresponding to the quality of life of patients with ALS in vivo using SOD1G93A mice. Nebivolol-donepezil delayed motor function deterioration and halted motor neuronal loss in the spinal cord. Drug administration effectively suppressed muscle atrophy by mitigating the proportion of smaller myofibers and substantially reducing phospho-neurofilament heavy chain (pNF-H) levels in the serum, a promising ALS biomarker. High-dose nebivolol-donepezil significantly prolonged survival and delayed disease onset compared with vehicle-treated mice. These results indicate that the combination of nebivolol-donepezil efficiently prevents ALS disease progression, benefiting the patients' quality of life and life expectancy.
Collapse
Affiliation(s)
- Soo Yeon Lee
- DR. NOAH BIOTECH Inc., 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Hye-Yeon Cho
- DR. NOAH BIOTECH Inc., 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Jung-Pyo Oh
- DR. NOAH BIOTECH Inc., 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Jiae Park
- DR. NOAH BIOTECH Inc., 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Sang-Hun Bae
- DR. NOAH BIOTECH Inc., 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Haesun Park
- DR. NOAH BIOTECH Inc., 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea
| | - Eun Jung Kim
- DR. NOAH BIOTECH Inc., 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea.
| | - Ji-Hyun Lee
- DR. NOAH BIOTECH Inc., 91, Changnyong-daero 256beon-gil, Yeongtong-gu, Suwon-si, Gyeonggi-do, 16229, Republic of Korea.
| |
Collapse
|
18
|
Grassano M, Manera U, De Marchi F, Cugnasco P, Matteoni E, Daviddi M, Solero L, Bombaci A, Palumbo F, Vasta R, Canosa A, Salamone P, Fuda G, Casale F, Mazzini L, Calvo A, Moglia C, Chiò A. The role of peripheral immunity in ALS: a population-based study. Ann Clin Transl Neurol 2023; 10:1623-1632. [PMID: 37482930 PMCID: PMC10502618 DOI: 10.1002/acn3.51853] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/14/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Systemic inflammation has been proposed as a relevant mechanism in amyotrophic lateral sclerosis (ALS). Still, comprehensive data on ALS patients' innate and adaptive immune responses and their effect on the clinical phenotype are lacking. Here, we investigate systemic immunity in a population-based ALS cohort using readily available hematological indexes. METHODS We collected clinical data and the complete blood count (CBC) at diagnosis in ALS patients from the Piemonte and Valle d'Aosta Register for ALS (PARALS) from 2007 to 2019. Leukocytes populations, neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic-immune-inflammation index (SII), and lymphocyte-to-monocyte ratio (LMR) were derived from CBC. All variables were analyzed for association with clinical features in the entire cohort and then in sex- and age-based subgroups. RESULTS Neutrophils (P = 0.001) and markers of increased innate immunity (NLR, P = 0.008 and SII, P = 0.006) were associated with a faster disease progression. Similarly, elevated innate immunity correlated with worse pulmonary function and shorter survival. The prognosis in women also correlated with low lymphocytes (P = 0.045) and a decreased LMR (P = 0.013). ALS patients with cognitive impairment exhibited lower monocytes (P = 0.0415). CONCLUSIONS AND RELEVANCE The dysregulation of the systemic immune system plays a multifaceted role in ALS. More specifically, an elevated innate immune response is associated with faster progression and reduced survival. Conversely, ALS patients with cognitive impairment showed a reduction in monocyte count. Additionally, immune response varied according to sex and age, thus suggesting that involved immune pathways are patient specific. Further studies will help translate those findings into clinical practice or targeted treatments.
Collapse
Affiliation(s)
- Maurizio Grassano
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Umberto Manera
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
- SC Neurologia 1UAOU Città della Salute e della Scienza of TorinoTurinItaly
| | - Fabiola De Marchi
- Department of Neurology and ALS CentreUniversity of Piemonte Orientale, Maggiore della Carità HospitalNovaraItaly
| | - Paolo Cugnasco
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Enrico Matteoni
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Margherita Daviddi
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Luca Solero
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Alessandro Bombaci
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Francesca Palumbo
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Rosario Vasta
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Antonio Canosa
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
- SC Neurologia 1UAOU Città della Salute e della Scienza of TorinoTurinItaly
| | - Paolina Salamone
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Giuseppe Fuda
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Federico Casale
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
| | - Letizia Mazzini
- Department of Neurology and ALS CentreUniversity of Piemonte Orientale, Maggiore della Carità HospitalNovaraItaly
| | - Andrea Calvo
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
- SC Neurologia 1UAOU Città della Salute e della Scienza of TorinoTurinItaly
| | - Cristina Moglia
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
- SC Neurologia 1UAOU Città della Salute e della Scienza of TorinoTurinItaly
| | - Adriano Chiò
- ALS Centre, Department of Neuroscience “Rita Levi Montalcini”University of TorinoTurinItaly
- SC Neurologia 1UAOU Città della Salute e della Scienza of TorinoTurinItaly
| |
Collapse
|
19
|
Mandrioli J, D'Amico R, Zucchi E, De Biasi S, Banchelli F, Martinelli I, Simonini C, Lo Tartaro D, Vicini R, Fini N, Gianferrari G, Pinti M, Lunetta C, Gerardi F, Tarlarini C, Mazzini L, De Marchi F, Scognamiglio A, Sorarù G, Fortuna A, Lauria G, Bella ED, Caponnetto C, Meo G, Chio A, Calvo A, Cossarizza A. Randomized, double-blind, placebo-controlled trial of rapamycin in amyotrophic lateral sclerosis. Nat Commun 2023; 14:4970. [PMID: 37591957 PMCID: PMC10435464 DOI: 10.1038/s41467-023-40734-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
In preclinical studies rapamycin was found to target neuroinflammation, by expanding regulatory T cells, and affecting autophagy, two pillars of amyotrophic lateral sclerosis (ALS) pathogenesis. Herein we report a multicenter, randomized, double-blind trial, in 63 ALS patients who were randomly assigned in a 1:1:1 ratio to receive rapamycin 2 mg/m2/day,1 mg/m2/day or placebo (EUDRACT 2016-002399-28; NCT03359538). The primary outcome, the number of patients exhibiting an increase >30% in regulatory T cells from baseline to treatment end, was not attained. Secondary outcomes were changes from baseline of T, B, NK cell subpopulations, inflammasome mRNA expression and activation status, S6-ribosomal protein phosphorylation, neurofilaments; clinical outcome measures of disease progression; survival; safety and quality of life. Of the secondary outcomes, rapamycin decreased mRNA relative expression of the pro-inflammatory cytokine IL-18, reduced plasmatic IL-18 protein, and increased the percentage of classical monocytes and memory switched B cells, although no corrections were applied for multiple tests. In conclusion, we show that rapamycin treatment is well tolerated and provides reassuring safety findings in ALS patients, but further trials are necessary to understand the biological and clinical effects of this drug in ALS.
Collapse
Affiliation(s)
- Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Department of Neurosciences, St. Agostino-Estense Hospital, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy.
| | - Roberto D'Amico
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena, Italy
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Elisabetta Zucchi
- Department of Neurosciences, St. Agostino-Estense Hospital, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- Neurosciences PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Sara De Biasi
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Federico Banchelli
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Ilaria Martinelli
- Department of Neurosciences, St. Agostino-Estense Hospital, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Simonini
- Department of Neurosciences, St. Agostino-Estense Hospital, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberto Vicini
- Unit of Statistical and Methodological Support to Clinical Research, Azienda Ospedaliero-Universitaria, Modena, Italy
| | - Nicola Fini
- Department of Neurosciences, St. Agostino-Estense Hospital, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Neurosciences, St. Agostino-Estense Hospital, Azienda Ospedaliero-Universitaria di Modena, Modena, Italy
| | - Marcello Pinti
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125, Modena, Italy
| | - Christian Lunetta
- NEuroMuscular Omnicenter, Serena Onlus Foundation, Milan, Italy
- Istituto Maugeri IRCCS Milano, Milan, Italy
| | | | | | - Letizia Mazzini
- ALS Centre, Neurologic Clinic, Maggiore della Carità University Hospital, Novara, Italy
| | - Fabiola De Marchi
- ALS Centre, Neurologic Clinic, Maggiore della Carità University Hospital, Novara, Italy
| | - Ada Scognamiglio
- ALS Centre, Neurologic Clinic, Maggiore della Carità University Hospital, Novara, Italy
| | - Gianni Sorarù
- Department of Neurosciences, University of Padua, Padua, Italy
- Centro Regionale Specializzato Malattie del Motoneurone, Azienda Ospedale Università di Padova, Padua, Italy
| | - Andrea Fortuna
- Department of Neurosciences, University of Padua, Padua, Italy
| | - Giuseppe Lauria
- 3rd Neurology Unit and ALS Centre, IRCCS 'Carlo Besta' Neurological Institute, Milan, Italy
| | - Eleonora Dalla Bella
- 3rd Neurology Unit and ALS Centre, IRCCS 'Carlo Besta' Neurological Institute, Milan, Italy
| | - Claudia Caponnetto
- Department of Neurosciences, Rehabilitatioņ Ophthalmology, Genetics, Mother and Child Disease, Ospedale Policlinico San Martino, Genova, Italy
| | - Giuseppe Meo
- Department of Neurosciences, Rehabilitatioņ Ophthalmology, Genetics, Mother and Child Disease, Ospedale Policlinico San Martino, Genova, Italy
| | - Adriano Chio
- 'Rita Levi Montalcini' Department of Neurosciences, ALS Centre, University of Turin and Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Andrea Calvo
- 'Rita Levi Montalcini' Department of Neurosciences, ALS Centre, University of Turin and Azienda Ospedaliero Universitaria Città della Salute e della Scienza, Turin, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, Modena, Italy
- National Institute for Cardiovascular Research, via Irnerio 48, 40126, Bologna, Italy
| |
Collapse
|
20
|
Mohovic N, Peradinovic J, Markovinovic A, Cimbro R, Minic Z, Dominovic M, Jakovac H, Nimac J, Rogelj B, Munitic I. Neuroimmune characterization of optineurin insufficiency mouse model during ageing. Sci Rep 2023; 13:11840. [PMID: 37481656 PMCID: PMC10363168 DOI: 10.1038/s41598-023-38875-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023] Open
Abstract
Optineurin is a multifunctional polyubiquitin-binding protein implicated in inflammatory signalling. Optineurin mutations are associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), neurodegenerative diseases characterised by neuronal loss, neuroinflammation, and peripheral immune disbalance. However, the pathogenic role of optineurin mutations is unclear. We previously observed no phenotype in the unmanipulated young optineurin insufficiency mice (Optn470T), designed to mimic ALS/FTD-linked truncations deficient in polyubiquitin binding. The purpose of this study was to investigate whether ageing would trigger neurodegeneration. We performed a neurological, neuropathological, and immunological characterization of ageing wild-type (WT) and Optn470T mice. No motor or cognitive differences were detected between the genotypes. Neuropathological analyses demonstrated signs of ageing including lipofuscin accumulation and microglial activation in WT mice. However, this was not worsened in Optn470T mice, and they did not exhibit TAR DNA-binding protein 43 (TDP-43) aggregation or neuronal loss. Spleen immunophenotyping uncovered T cell immunosenescence at two years but without notable differences between the WT and Optn470T mice. Conventional dendritic cells (cDC) and macrophages exhibited increased expression of activation markers in two-year-old Optn470T males but not females, although the numbers of innate immune cells were similar between genotypes. Altogether, a combination of optineurin insufficiency and ageing did not induce ALS/FTD-like immune imbalance and neuropathology in mice.
Collapse
Affiliation(s)
- Nikolina Mohovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia
| | - Josip Peradinovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia
| | - Andrea Markovinovic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, 5 Cutcombe Road, London, SE5 9RX, UK
| | - Raffaello Cimbro
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia
| | - Zeljka Minic
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia
| | - Marin Dominovic
- Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia
| | - Hrvoje Jakovac
- Department of Physiology and Immunology, Medical Faculty, University of Rijeka, Brace Branchetta 20, 51000, Rijeka, Croatia
| | - Jerneja Nimac
- Department of Biotechnology, Jozef Stefan Institute, 1000, Ljubljana, Slovenia
- Graduate School of Biomedicine, Faculty of Medicine, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, 1000, Ljubljana, Slovenia
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, Radmile Matejcic 2, 51000, Rijeka, Croatia.
| |
Collapse
|
21
|
Carata E, Muci M, Di Giulio S, Mariano S, Panzarini E. Looking to the Future of the Role of Macrophages and Extracellular Vesicles in Neuroinflammation in ALS. Int J Mol Sci 2023; 24:11251. [PMID: 37511010 PMCID: PMC10379393 DOI: 10.3390/ijms241411251] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Neuroinflammation is a common pathological feature of amyotrophic lateral sclerosis (ALS). Although scientific evidence to date does not allow defining neuroinflammation as an ALS trigger, its role in exacerbating motor neuron (MNs) degeneration and disease progression is attracting research interest. Activated CNS (Central Nervous System) glial cells, proinflammatory peripheral and infiltrated T lymphocytes and monocytes/macrophages, as well as the immunoreactive molecules they release, represent the active players for the role of immune dysregulation enhancing neuroinflammation. The crosstalk between the peripheral and CNS immune cells significantly correlates with the survival of ALS patients since the modification of peripheral macrophages can downregulate inflammation at the periphery along the nerves and in the CNS. As putative vehicles for misfolded protein and inflammatory mediators between cells, extracellular vesicles (EVs) have also drawn particular attention in the field of ALS. Both CNS and peripheral immune cells release EVs, which are able to modulate the behavior of neighboring recipient cells; unfortunately, the mechanisms involved in EVs-mediated communication in neuroinflammation remain unclear. This review aims to synthesize the current literature regarding EV-mediated cell-to-cell communication in the brain under ALS, with a particular point of view on the role of peripheral macrophages in responding to inflammation to understand the biological process and exploit it for ALS management.
Collapse
Affiliation(s)
- Elisabetta Carata
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Marco Muci
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Simona Di Giulio
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Stefania Mariano
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| | - Elisa Panzarini
- Department of Biological Sciences and Technologies (Di.S.Te.B.A.), University of Salento, 73100 Lecce, Italy
| |
Collapse
|
22
|
Khan AW, Farooq M, Hwang MJ, Haseeb M, Choi S. Autoimmune Neuroinflammatory Diseases: Role of Interleukins. Int J Mol Sci 2023; 24:7960. [PMID: 37175665 PMCID: PMC10178921 DOI: 10.3390/ijms24097960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Autoimmune neuroinflammatory diseases are a group of disorders resulting from abnormal immune responses in the nervous system, causing inflammation and tissue damage. The interleukin (IL) family of cytokines, especially IL-1, IL-6, and IL-17, plays a critical role in the pathogenesis of these diseases. IL-1 is involved in the activation of immune cells, production of pro-inflammatory cytokines, and promotion of blood-brain barrier breakdown. IL-6 is essential for the differentiation of T cells into Th17 cells and has been implicated in the initiation and progression of neuroinflammation. IL-17 is a potent pro-inflammatory cytokine produced by Th17 cells that plays a crucial role in recruiting immune cells to sites of inflammation. This review summarizes the current understanding of the roles of different interleukins in autoimmune neuroinflammatory diseases, including multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer's disease, neuromyelitis optica, and autoimmune encephalitis, and discusses the potential of targeting ILs as a therapeutic strategy against these diseases. We also highlight the need for further research to better understand the roles of ILs in autoimmune neuroinflammatory diseases and to identify new targets for treating these debilitating diseases.
Collapse
Affiliation(s)
- Abdul Waheed Khan
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Mariya Farooq
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Moon-Jung Hwang
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Muhammad Haseeb
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Republic of Korea
- S&K Therapeutics, Ajou University Campus Plaza 418, 199 Worldcup-ro, Yeongtong-gu, Suwon 16502, Republic of Korea
| |
Collapse
|
23
|
Kurlawala Z, McMillan JD, Singhal RA, Morehouse J, Burke DA, Sears SM, Duregon E, Beverly LJ, Siskind LJ, Friedland RP. Mutant and curli-producing E. coli enhance the disease phenotype in a hSOD1-G93A mouse model of ALS. Sci Rep 2023; 13:5945. [PMID: 37045868 PMCID: PMC10097672 DOI: 10.1038/s41598-023-32594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 03/29/2023] [Indexed: 04/14/2023] Open
Abstract
The gut microbiome is a potential non-genetic contributing factor for Amyotrophic Lateral Sclerosis. Differences in gut microbial communities have been detected between ALS subjects and healthy controls, including an increase in Escherichia coli in ALS subjects. E. coli and other gram-negative bacteria produce curli proteins, which are functional bacterial amyloids. We examined whether long-term curli overexposure in the gut can exacerbate the development and progression of ALS. We utilized the slow-developing hSOD1-G93A mouse model of ALS with their C57BL/6J WT littermate controls, including males and females, with a total of 91 animals. These mice were on a normal chow diet and fed curli-producing or curli-nonproducing (mutant) E. coli in applesauce (vehicle) 3 times/week, from 1 through 7 months of age. Male hSOD1 mice demonstrated gradual slowing in running speed month 4 onwards, while females exhibited no signs of locomotive impairment even at 7 months of age. Around the same time, male hSOD1 mice showed a gradual increase in frequency of peripheral CD19+ B cells. Among the male hSOD1 group, chronic gut exposure to curli-producing E. coli led to significant shifts in α- and β-diversities. Curli-exposed males showed suppression of immune responses in circulation, but an increase in markers of inflammation, autophagy and protein turnover in skeletal muscle. Some of these markers were also changed in mutant E. coli-exposed mice, including astrogliosis in the brainstem and demyelination in the lumbar spinal cord. Overall, chronic overexposure to a commensal bacteria like E. coli led to distant organ pathology in our model, without the presence of a leaky gut at 6 months. Mechanisms underlying gut-distant organ communication are of tremendous interest to all disciplines.
Collapse
Affiliation(s)
- Zimple Kurlawala
- Department of Neurology, University of Louisville, Louisville, KY, 40202, USA
| | | | - Richa A Singhal
- KY IDeA Networks of Biomedical Research Excellence Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
| | - Johnny Morehouse
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
| | - Darlene A Burke
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, 40202, USA
| | - Sophia M Sears
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Eleonora Duregon
- National Institute on Aging, Translational Gerontology, NIH, Bethesda, USA, Maryland
| | - Levi J Beverly
- School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Leah J Siskind
- Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA
| | - Robert P Friedland
- Department of Neurology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
24
|
Alessenko AV, Gutner UA, Shupik MA. Involvement of Lipids in the Pathogenesis of Amyotrophic Lateral Sclerosis. Life (Basel) 2023; 13:life13020510. [PMID: 36836867 PMCID: PMC9966871 DOI: 10.3390/life13020510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of upper and lower motor neurons. To study its underlying mechanisms, a variety of models are currently used at the cellular level and in animals with mutations in multiple ALS associated genes, including SOD1, C9ORF72, TDP-43, and FUS. Key mechanisms involved in the disease include excitotoxicity, oxidative stress, mitochondrial dysfunction, neuroinflammatory, and immune reactions. In addition, significant metabolism alterations of various lipids classes, including phospholipids, fatty acids, sphingolipids, and others have been increasingly recognized. Recently, the mechanisms of programmed cell death (apoptosis), which may be responsible for the degeneration of motor neurons observed in the disease, have been intensively studied. In this context, sphingolipids, which are the most important sources of secondary messengers transmitting signals for cell proliferation, differentiation, and apoptosis, are gaining increasing attention in the context of ALS pathogenesis given their role in the development of neuroinflammatory and immune responses. This review describes changes in lipids content and activity of enzymes involved in their metabolism in ALS, both summarizing current evidence from animal models and clinical studies and discussing the potential of new drugs among modulators of lipid metabolism enzymes.
Collapse
|
25
|
Muzio L, Ghirelli A, Agosta F, Martino G. Novel therapeutic approaches for motor neuron disease. HANDBOOK OF CLINICAL NEUROLOGY 2023; 196:523-537. [PMID: 37620088 DOI: 10.1016/b978-0-323-98817-9.00027-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that leads to the neurodegeneration and death of upper and lower motor neurons (MNs). Although MNs are the main cells involved in the process of neurodegeneration, a growing body of evidence points toward other cell types as concurrent to disease initiation and propagation. Given the current absence of effective therapies, the quest for other therapeutic targets remains open and still challenges the scientific community. Both neuronal and extra-neuronal mechanisms of cellular stress and damage have been studied and have posed the basis for the development of novel therapies that have been investigated on both animal models and humans. In this chapter, a thorough review of the main mechanisms of cellular damage and the respective therapeutic attempts targeting them is reported. The main areas covered include neuroinflammation, protein aggregation, RNA metabolism, and oxidative stress.
Collapse
Affiliation(s)
- Luca Muzio
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy
| | - Alma Ghirelli
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Agosta
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | - Gianvito Martino
- San Raffaele Scientific Institute, Division of Neuroscience, InsPE, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
26
|
Soares P, Silva C, Chavarria D, Silva FSG, Oliveira PJ, Borges F. Drug discovery and amyotrophic lateral sclerosis: Emerging challenges and therapeutic opportunities. Ageing Res Rev 2023; 83:101790. [PMID: 36402404 DOI: 10.1016/j.arr.2022.101790] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 11/12/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is characterized by the degeneration of upper and lower motor neurons (MNs) leading to paralysis and, ultimately, death by respiratory failure 3-5 years after diagnosis. Edaravone and Riluzole, the only drugs currently approved for ALS treatment, only provide mild symptomatic relief to patients. Extraordinary progress in understanding the biology of ALS provided new grounds for drug discovery. Over the last two decades, mitochondria and oxidative stress (OS), iron metabolism and ferroptosis, and the major regulators of hypoxia and inflammation - HIF and NF-κB - emerged as promising targets for ALS therapeutic intervention. In this review, we focused our attention on these targets to outline and discuss current advances in ALS drug development. Based on the challenges and the roadblocks, we believe that the rational design of multi-target ligands able to modulate the complex network of events behind the disease can provide effective therapies in a foreseeable future.
Collapse
Affiliation(s)
- Pedro Soares
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| | - Catia Silva
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Filomena S G Silva
- CNC - CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Paulo J Oliveira
- CNC - CNC-Center for Neuroscience and Cell Biology, CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal; IIUC - Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
27
|
Butler R, Bradford D, Rodgers KE. Analysis of shared underlying mechanism in neurodegenerative disease. Front Aging Neurosci 2022; 14:1006089. [PMID: 36523957 PMCID: PMC9745190 DOI: 10.3389/fnagi.2022.1006089] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/08/2022] [Indexed: 08/27/2023] Open
Abstract
In this review, the relationship between bioenergetics, mitochondrial dysfunction, and inflammation will be and how they contribute to neurodegeneration, specifically in Alzheimer's disease (AD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS) will be reviewed. Long-term changes in mitochondrial function, autophagy dysfunction, and immune activation are commonalities shared across these age-related disorders. Genetic risk factors for these diseases support an autophagy-immune connection in the underlying pathophysiology. Critical areas of deeper evaluation in these bioenergetic processes may lead to potential therapeutics with efficacy across multiple neurodegenerative diseases.
Collapse
Affiliation(s)
| | | | - Kathleen E. Rodgers
- Department of Medical Pharmacology, Center for Innovation in Brain Science, University of Arizona College of Medicine, Tucson, AZ, United States
| |
Collapse
|
28
|
Chakraborty A, Diwan A. Biomarkers and molecular mechanisms of Amyotrophic Lateral Sclerosis. AIMS Neurosci 2022; 9:423-443. [PMID: 36660079 PMCID: PMC9826749 DOI: 10.3934/neuroscience.2022023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 10/29/2022] [Accepted: 11/02/2022] [Indexed: 11/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease in adults involving non-demyelinating motor disorders. About 90% of ALS cases are sporadic, while 10-12% of cases are due to some genetic reasons. Mutations in superoxide dismutase 1 (SOD1), TAR, c9orf72 (chromosome 9 open reading frame 72) and VAPB genes are commonly found in ALS patients. Therefore, the mechanism of ALS development involves oxidative stress, endoplasmic reticulum stress, glutamate excitotoxicity and aggregation of proteins, neuro-inflammation and defective RNA function. Cholesterol and LDL/HDL levels are also associated with ALS development. As a result, sterols could be a suitable biomarker for this ailment. The main mechanisms of ALS development are reticulum stress, neuroinflammation and RNA metabolism. The multi-nature development of ALS makes it more challenging to pinpoint a treatment.
Collapse
|
29
|
Levite M. Neuro faces of beneficial T cells: essential in brain, impaired in aging and neurological diseases, and activated functionally by neurotransmitters and neuropeptides. Neural Regen Res 2022; 18:1165-1178. [PMID: 36453390 PMCID: PMC9838142 DOI: 10.4103/1673-5374.357903] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
T cells are essential for a healthy life, performing continuously: immune surveillance, recognition, protection, activation, suppression, assistance, eradication, secretion, adhesion, migration, homing, communications, and additional tasks. This paper describes five aspects of normal beneficial T cells in the healthy or diseased brain. First, normal beneficial T cells are essential for normal healthy brain functions: cognition, spatial learning, memory, adult neurogenesis, and neuroprotection. T cells decrease secondary neuronal degeneration, increase neuronal survival after central nervous system (CNS) injury, and limit CNS inflammation and damage upon injury and infection. Second, while pathogenic T cells contribute to CNS disorders, recent studies, mostly in animal models, show that specific subpopulations of normal beneficial T cells have protective and regenerative effects in several neuroinflammatory and neurodegenerative diseases. These include Multiple Sclerosis (MS), Alzheimer's disease, Parkinson's disease, Amyotrophic Lateral Sclerosis (ALS), stroke, CNS trauma, chronic pain, and others. Both T cell-secreted molecules and direct cell-cell contacts deliver T cell neuroprotective, neuroregenerative and immunomodulatory effects. Third, normal beneficial T cells are abnormal, impaired, and dysfunctional in aging and multiple neurological diseases. Different T cell impairments are evident in aging, brain tumors (mainly Glioblastoma), severe viral infections (including COVID-19), chronic stress, major depression, schizophrenia, Parkinson's disease, Alzheimer's disease, ALS, MS, stroke, and other neuro-pathologies. The main detrimental mechanisms that impair T cell function are activation-induced cell death, exhaustion, senescence, and impaired T cell stemness. Fourth, several physiological neurotransmitters and neuropeptides induce by themselves multiple direct, potent, beneficial, and therapeutically-relevant effects on normal human T cells, via their receptors in T cells. This scientific field is called "Nerve-Driven Immunity". The main neurotransmitters and neuropeptides that induce directly activating and beneficial effects on naïve normal human T cells are: dopamine, glutamate, GnRH-II, neuropeptide Y, calcitonin gene-related peptide, and somatostatin. Fifth, "Personalized Adoptive Neuro-Immunotherapy". This is a novel unique cellular immunotherapy, based on the "Nerve-Driven Immunity" findings, which was recently designed and patented for safe and repeated rejuvenation, activation, and improvement of impaired and dysfunctional T cells of any person in need, by ex vivo exposure of the person's T cells to neurotransmitters and neuropeptides. Personalized adoptive neuro-immunotherapy includes an early ex vivo personalized diagnosis, and subsequent ex vivo → in vivo personalized adoptive therapy, tailored according to the diagnosis. The Personalized Adoptive Neuro-Immunotherapy has not yet been tested in humans, pending validation of safety and efficacy in clinical trials, especially in brain tumors, chronic infectious diseases, and aging, in which T cells are exhausted and/or senescent and dysfunctional.
Collapse
Affiliation(s)
- Mia Levite
- Faculty of Medicine, The Hebrew University of Jerusalem, Campus Ein Karem, Jerusalem, Israel,Institute of Gene Therapy, The Hadassah University Hospital-Ein Karem, Jerusalem, Israel,Correspondence to: Mia Levite, or .
| |
Collapse
|
30
|
Khamaysa M, Pradat PF. Status of ALS Treatment, Insights into Therapeutic Challenges and Dilemmas. J Pers Med 2022; 12:1601. [PMID: 36294741 PMCID: PMC9605458 DOI: 10.3390/jpm12101601] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/14/2022] [Accepted: 09/23/2022] [Indexed: 12/18/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an extremely heterogeneous disease of motor neurons that eventually leads to death. Despite impressive advances in understanding the genetic, molecular, and pathological mechanisms of the disease, the only drug approved to date by both the FDA and EMA is riluzole, with a modest effect on survival. In this opinion view paper, we will discuss how to address some challenges for drug development in ALS at the conceptual, technological, and methodological levels. In addition, socioeconomic and ethical issues related to the legitimate need of patients to benefit quickly from new treatments will also be addressed. In conclusion, this brief review takes a more optimistic view, given the recent approval of two new drugs in some countries and the development of targeted gene therapies.
Collapse
Affiliation(s)
- Mohammed Khamaysa
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, 75006 Paris, France
| | - Pierre-François Pradat
- Laboratoire d’Imagerie Biomédicale, Sorbonne Université, CNRS, INSERM, 75006 Paris, France
- Centre Référent SLA, Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Northern Ireland Centre for Stratified Medicine, Biomedical Sciences Research Institute, Ulster University, C-TRIC, Altnagelvin Hospital, Derry-Londonderry BT47 6SB, UK
| |
Collapse
|
31
|
Cao MC, Cawston EE, Chen G, Brooks C, Douwes J, McLean D, Graham ES, Dragunow M, Scotter EL. Serum biomarkers of neuroinflammation and blood-brain barrier leakage in amyotrophic lateral sclerosis. BMC Neurol 2022; 22:216. [PMID: 35690735 PMCID: PMC9188104 DOI: 10.1186/s12883-022-02730-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable and rapidly progressive neurological disorder. Biomarkers are critical to understanding disease causation, monitoring disease progression and assessing the efficacy of treatments. However, robust peripheral biomarkers are yet to be identified. Neuroinflammation and breakdown of the blood-brain barrier (BBB) are common to familial and sporadic ALS and may produce a unique biomarker signature in peripheral blood. Using cytometric bead array (n = 15 participants per group (ALS or control)) and proteome profiling (n = 6 participants per group (ALS or control)), we assessed a total of 106 serum cytokines, growth factors, and BBB breakdown markers in the serum of control and ALS participants. Further, primary human brain pericytes, which maintain the BBB, were used as a biosensor of inflammation following pre-treatment with ALS serum. Principal components analysis of all proteome profile data showed no clustering of control or ALS sera, and no individual serum proteins met the threshold for statistical difference between ALS and controls (adjusted P values). However, the 20 most changed proteins between control and ALS sera showed a medium effect size (Cohen’s d = 0.67) and cluster analysis of their levels together identified three sample subsets; control-only, mixed control-ALS, and ALS-only. These 20 proteins were predominantly pro-angiogenic and growth factors, including fractalkine, BDNF, EGF, PDGF, Dkk-1, MIF and angiopoietin-2. S100β, a protein highly concentrated in glial cells and therefore a marker of BBB leakage when found in blood, was unchanged in ALS serum, suggesting that serum protein profiles were reflective of peripheral rather than CNS biofluids. Finally, primary human brain pericytes remained proliferative and their secretome was unchanged by chronic exposure to ALS serum. Our exploratory study suggests that individual serum cytokine levels may not be robust biomarkers in small studies of ALS, but that larger studies using multiplexed analysis of pro-angiogenic and growth factors may identify a peripheral signature of ALS pathogenesis.
Collapse
Affiliation(s)
- Maize C Cao
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, 85 Park Road, Auckland, 1023, New Zealand.,Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Erin E Cawston
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, 85 Park Road, Auckland, 1023, New Zealand.,Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Grace Chen
- Centre for Public Health Research, Massey University, PO Box 75, Wellington, 6140, New Zealand
| | - Collin Brooks
- Centre for Public Health Research, Massey University, PO Box 75, Wellington, 6140, New Zealand
| | - Jeroen Douwes
- Centre for Public Health Research, Massey University, PO Box 75, Wellington, 6140, New Zealand
| | - Dave McLean
- Centre for Public Health Research, Massey University, PO Box 75, Wellington, 6140, New Zealand
| | - E Scott Graham
- Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,Department of Molecular Medicine and Pathology, University of Auckland, 85 Park Road, Auckland, 1023, New Zealand
| | - Mike Dragunow
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, 85 Park Road, Auckland, 1023, New Zealand. .,Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| | - Emma L Scotter
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, 85 Park Road, Auckland, 1023, New Zealand. .,Centre for Brain Research, University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.
| |
Collapse
|
32
|
Yildiz O, Schroth J, Lombardi V, Pucino V, Bobeva Y, Yip PK, Schmierer K, Mauro C, Tree T, Henson SM, Malaspina A. The Expression of Active CD11b Monocytes in Blood and Disease Progression in Amyotrophic Lateral Sclerosis. Int J Mol Sci 2022; 23:3370. [PMID: 35328793 PMCID: PMC8952310 DOI: 10.3390/ijms23063370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 12/15/2022] Open
Abstract
Monocytes expressing the inflammation suppressing active CD11b, a beta2 integrin, may regulate neuroinflammation and modify clinical outcomes in amyotrophic lateral sclerosis (ALS). In this single site, retrospective study, peripheral blood mononuclear cells from 38 individuals living with ALS and 20 non-neurological controls (NNC) were investigated using flow cytometry to study active CD11b integrin classical (CM), intermediate (IM) and non-classical (NCM) monocytes during ALS progression. Seventeen ALS participants were sampled at the baseline (V1) and at two additional time points (V2 and V3) for longitudinal analysis. Active CD11b+ CM frequencies increased steeply between the baseline and V3 (ANOVA repeated measurement, p < 0.001), and the V2/V1 ratio negatively correlated with the disease progression rate, similar to higher frequencies of active CD11b+ NCM at the baseline (R = −0.6567; p = 0.0031 and R = 0.3862; p = 0.0168, respectively). CD11b NCM, clinical covariates and neurofilament light-chain plasma concentration at the baseline predicted shorter survival in a multivariable and univariate analysis (CD11b NCM—HR: 1.05, CI: 1.01−1.11, p = 0.013. Log rank: above median: 43 months and below median: 21.22 months; p = 0.0022). Blood samples with the highest frequencies of active CD11b+ IM and NCM contained the lowest concentrations of soluble CD11b. Our preliminary data suggest that the levels of active CD11b+ monocytes and NCM in the blood predict different clinical outcomes in ALS.
Collapse
Affiliation(s)
- Ozlem Yildiz
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (V.L.); (Y.B.); (P.K.Y.); (K.S.)
- Neuromuscular Department, Queen Square Motor Neuron Disease Centre, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Johannes Schroth
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London EC1M 6BQ, UK; (J.S.); (S.M.H.)
| | - Vittoria Lombardi
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (V.L.); (Y.B.); (P.K.Y.); (K.S.)
- Neuromuscular Department, Queen Square Motor Neuron Disease Centre, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Valentina Pucino
- Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TT, UK; (V.P.); (C.M.)
| | - Yoana Bobeva
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (V.L.); (Y.B.); (P.K.Y.); (K.S.)
- Neuromuscular Department, Queen Square Motor Neuron Disease Centre, Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Ping Kei Yip
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (V.L.); (Y.B.); (P.K.Y.); (K.S.)
| | - Klaus Schmierer
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (V.L.); (Y.B.); (P.K.Y.); (K.S.)
- Clinical Board Medicine (Neuroscience), The Royal London Hospital, Barts Health NHS Trust, London E1 1BB, UK
| | - Claudio Mauro
- Institute of Inflammation and Aging, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TT, UK; (V.P.); (C.M.)
| | - Timothy Tree
- Department of Immunobiology, School of Immunology and Microbial Sciences, King’s College London, London WC2R 2LS, UK;
| | - Sian Mari Henson
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and the London, Queen Mary University of London, London EC1M 6BQ, UK; (J.S.); (S.M.H.)
| | - Andrea Malaspina
- Centre for Neuroscience, Surgery and Trauma, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, UK; (V.L.); (Y.B.); (P.K.Y.); (K.S.)
- Neuromuscular Department, Queen Square Motor Neuron Disease Centre, Institute of Neurology, University College London, London WC1N 3BG, UK
| |
Collapse
|
33
|
Hong M, Kang MJ, Pak S, Han IH, Bae H. Bee venom phospholipase A2 ameliorates amyotrophic lateral sclerosis by increasing regulatory T cell population. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00631-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
34
|
Liu E, Karpf L, Bohl D. Neuroinflammation in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia and the Interest of Induced Pluripotent Stem Cells to Study Immune Cells Interactions With Neurons. Front Mol Neurosci 2022; 14:767041. [PMID: 34970118 PMCID: PMC8712677 DOI: 10.3389/fnmol.2021.767041] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Inflammation is a shared hallmark between amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). For long, studies were conducted on tissues of post-mortem patients and neuroinflammation was thought to be only bystander result of the disease with the immune system reacting to dying neurons. In the last two decades, thanks to improving technologies, the identification of causal genes and the development of new tools and models, the involvement of inflammation has emerged as a potential driver of the diseases and evolved as a new area of intense research. In this review, we present the current knowledge about neuroinflammation in ALS, ALS-FTD, and FTD patients and animal models and we discuss reasons of failures linked to therapeutic trials with immunomodulator drugs. Then we present the induced pluripotent stem cell (iPSC) technology and its interest as a new tool to have a better immunopathological comprehension of both diseases in a human context. The iPSC technology giving the unique opportunity to study cells across differentiation and maturation times, brings the hope to shed light on the different mechanisms linking neurodegeneration and activation of the immune system. Protocols available to differentiate iPSC into different immune cell types are presented. Finally, we discuss the interest in studying monocultures of iPS-derived immune cells, co-cultures with neurons and 3D cultures with different cell types, as more integrated cellular approaches. The hope is that the future work with human iPS-derived cells helps not only to identify disease-specific defects in the different cell types but also to decipher the synergistic effects between neurons and immune cells. These new cellular tools could help to find new therapeutic approaches for all patients with ALS, ALS-FTD, and FTD.
Collapse
Affiliation(s)
- Elise Liu
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Léa Karpf
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, INSERM, CNRS, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
35
|
Sahu R, Upadhayay S, Mehan S. Inhibition of extracellular regulated kinase (ERK)-1/2 signaling pathway in the prevention of ALS: Target inhibitors and influences on neurological dysfunctions. Eur J Cell Biol 2021; 100:151179. [PMID: 34560374 DOI: 10.1016/j.ejcb.2021.151179] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Cell signal transduction pathways are essential modulators of several physiological and pathological processes in the brain. During overactivation, these signaling processes may lead to disease progression. Abnormal protein kinase activation is associated with several biological dysfunctions that facilitate neurodegeneration under different biological conditions. As a result, these signaling pathways are essential in understanding brain disorders' development or progression. Recent research findings indicate the crucial role of extracellular signal-regulated kinase-1/2 (ERK-1/2) signaling during the neuronal development process. ERK-1/2 is a key component of its mitogen-activated protein kinase (MAPK) group, controlling certain neurological activities by regulating metabolic pathways, cell proliferation, differentiation, and apoptosis. ERK-1/2 also influences neuronal elastic properties, nerve growth, and neurological and cognitive processing during brain injuries. The primary goal of this review is to elucidate the activation of ERK1/2 signaling, which is involved in the development of several ALS-related neuropathological dysfunctions. ALS is a rare neurological disorder category that mainly affects the nerve cells responsible for regulating voluntary muscle activity. ALS is progressive, which means that the symptoms are getting worse over time, and there is no cure for ALS and no effective treatment to avoid or reverse. Genetic abnormalities, oligodendrocyte degradation, glial overactivation, and immune deregulation are associated with ALS progression. Furthermore, the current review also identifies ERK-1/2 signaling inhibitors that can promote neuroprotection and neurotrophic effects against the clinical-pathological presentation of ALS. As a result, in the future, the potential ERK-1/2 signaling inhibitors could be used in the treatment of ALS and related neurocomplications.
Collapse
Affiliation(s)
- Rakesh Sahu
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Shubham Upadhayay
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
| |
Collapse
|
36
|
Alessenko AV, Gutner UA, Nebogatikov VO, Shupik MA, Ustyugov AA. [The role of sphingolipids in pathogenesis of amyotrophic lateral sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova 2021; 121:131-140. [PMID: 34481449 DOI: 10.17116/jnevro2021121081131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease characterized by selective degeneration of motor neurons of the spinal cord and motor cortex and brain stem. The key features of the course of this disease are excitotoxicity, oxidative stress, mitochondrial dysfunction, neuro-inflammatory and immune reactions. Recently, the mechanisms of programmed cell death (apoptosis), which may be responsible for the degeneration of motor neurons in this disease, have been intensively studied. In this regard, sphingolipids, which are the most important sources of secondary messengers that transmit cell proliferation, differentiation and apoptosis signals, and are involved in the development of neuroinflammatory and immune responses, are of particular interest in the context of ALS pathogenesis. The review provides information from domestic and foreign authors on the involvement of various sphingolipids (sphingomyelins, ceramides, sphingosine, sphinganin, sphingosine-1-phosphate, galactosylceramides, glucosylceramides, gangliosides) in the development of pro-inflammatory reactions and apoptosis of motor neurons in ALS. The authors discuss the prospects of using new drugs that control the metabolism of sphingolipids for the treatment of ALS.
Collapse
Affiliation(s)
| | - U A Gutner
- Institute of Biochemical Physic, Moscow, Russia
| | - V O Nebogatikov
- Institute of Physiologically Active Compounds, Chernogolovka, Russia
| | - M A Shupik
- Institute of Biochemical Physic, Moscow, Russia
| | - A A Ustyugov
- Institute of Physiologically Active Compounds, Chernogolovka, Russia
| |
Collapse
|
37
|
Giovannelli I, Bayatti N, Brown A, Wang D, Mickunas M, Camu W, Veyrune JL, Payan C, Garlanda C, Locati M, Juntas-Morales R, Pageot N, Malaspina A, Andreasson U, Suehs C, Saker S, Masseguin C, de Vos J, Zetterberg H, Al-Chalabi A, Leigh PN, Tree T, Bensimon G, Heath PR, Shaw PJ, Kirby J. Amyotrophic lateral sclerosis transcriptomics reveals immunological effects of low-dose interleukin-2. Brain Commun 2021; 3:fcab141. [PMID: 34409288 PMCID: PMC8364666 DOI: 10.1093/braincomms/fcab141] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 11/30/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease causing upper and lower motor neuron loss and currently no effective disease-modifying treatment is available. A pathological feature of this disease is neuroinflammation, a mechanism which involves both CNS-resident and peripheral immune system cells. Regulatory T-cells are immune-suppressive agents known to be dramatically and progressively decreased in patients with amyotrophic lateral sclerosis. Low-dose interleukin-2 promotes regulatory T-cell expansion and was proposed as an immune-modulatory strategy for this disease. A randomized placebo-controlled pilot phase-II clinical trial called Immuno-Modulation in Amyotrophic Lateral Sclerosis was carried out to test safety and activity of low-dose interleukin-2 in 36 amyotrophic lateral sclerosis patients (NCT02059759). Participants were randomized to 1MIU, 2MIU-low-dose interleukin-2 or placebo and underwent one injection daily for 5 days every 28 days for three cycles. In this report, we describe the results of microarray gene expression profiling of trial participants' leukocyte population. We identified a dose-dependent increase in regulatory T-cell markers at the end of the treatment period. Longitudinal analysis revealed an alteration and inhibition of inflammatory pathways occurring promptly at the end of the first treatment cycle. These responses are less pronounced following the end of the third treatment cycle, although an activation of immune-regulatory pathways, involving regulatory T-cells and T helper 2 cells, was evident only after the last cycle. This indicates a cumulative effect of repeated low-dose interleukin-2 administration on regulatory T-cells. Our analysis suggested the existence of inter-individual variation amongst trial participants and we therefore classified patients into low, moderate and high-regulatory T-cell-responders. NanoString profiling revealed substantial baseline differences between participant immunological transcript expression profiles with the least responsive patients showing a more inflammatory-prone phenotype at the beginning of the trial. Finally, we identified two genes in which pre-treatment expression levels correlated with the magnitude of drug responsiveness. Therefore, we proposed a two-biomarker based regression model able to predict patient regulatory T-cell-response to low-dose interleukin-2. These findings and the application of this methodology could be particularly relevant for future precision medicine approaches to treat amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Ilaria Giovannelli
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Nadhim Bayatti
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Abigail Brown
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Dennis Wang
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK.,Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Marius Mickunas
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK
| | - William Camu
- Department of Immunobiology, Faculty of Life Science and Medicine, King's College London, London SE1 9RT, UK
| | - Jean-Luc Veyrune
- Clinique du Motoneurone, CHU Gui de Chaliac, University of Montpellier, Montpellier 34295, France
| | - Christine Payan
- Department of Cell and Tissue Engineering, University of Montpellier, CHU Montpellier, Montpellier 34000, France.,Department of Biostatistics, Clinical Epidemiology, Public Health and Innovation in Methodology (BESPIM), Nîmes University Hospital, Nîmes 30029, France
| | - Cecilia Garlanda
- Department of Pharmacology, AP-HP Sorbonne University, Pitié-Salpêtrière Hospital, F-75013 Paris, 75013 France.,Humanitas Clinical & Research Center-IRCCS, Milan 20089, Italy
| | - Massimo Locati
- Humanitas University, Pieve Emanuele, Milan 20090, Italy.,Department of Medical Biotechnologies and Translational Medicine, University Milan, Milan 20133, Italy
| | - Raul Juntas-Morales
- Department of Immunobiology, Faculty of Life Science and Medicine, King's College London, London SE1 9RT, UK
| | - Nicolas Pageot
- Department of Immunobiology, Faculty of Life Science and Medicine, King's College London, London SE1 9RT, UK
| | - Andrea Malaspina
- Department of Neuroimmunology, Barts and the London School of Medicine and Dentistry, Neuroscience and Trauma Centre, Institute of Cell and Molecular Medicine, London E1 2AT, UK
| | - Ulf Andreasson
- Department of Psychiatry & Neurochemistry, University of Gothenburg, Mölndal 41345, Sweden
| | - Carey Suehs
- Department of Biostatistics, Clinical Epidemiology, Public Health and Innovation in Methodology (BESPIM), Nîmes University Hospital, Nîmes 30029, France.,Department of Medical Information, University of Montpellier, CHU Montpellier, Montpellier, France.,Department of Respiratory Diseases, University of Montpellier, CHU Montpellier, Montpellier 34090, France
| | - Safa Saker
- DNA and Cell Bank, Genethon, Evry 91000, France
| | - Christophe Masseguin
- Delegation for Clinical Research and Innovation, Nîmes University Hospital, Nîmes 30029, France
| | - John de Vos
- Clinique du Motoneurone, CHU Gui de Chaliac, University of Montpellier, Montpellier 34295, France
| | - Henrik Zetterberg
- Department of Psychiatry & Neurochemistry, University of Gothenburg, Mölndal 41345, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 43180, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK.,UK Dementia Research Institute at UCL, London WC1E 6BT, UK
| | - Ammar Al-Chalabi
- Department of Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute, King's College London, London SE5 9RX, UK.,Department of Neurology, King's College Hospital, London SE5 9RS, UK
| | - P Nigel Leigh
- Brighton and Sussex Medical School, The Trafford Centre for Biomedical Research, Falmer, Brighton BN1 9RY, UK
| | - Timothy Tree
- Department of Computer Science, University of Sheffield, Sheffield S1 4DP, UK.,NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London SE1 9RT, UK
| | - Gilbert Bensimon
- Department of Cell and Tissue Engineering, University of Montpellier, CHU Montpellier, Montpellier 34000, France.,Department of Biostatistics, Clinical Epidemiology, Public Health and Innovation in Methodology (BESPIM), Nîmes University Hospital, Nîmes 30029, France.,Department of Pharmacology, Sorbonne University Médecine, F-75013 Paris 75013, France
| | - Paul R Heath
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| | - Janine Kirby
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield S10 2HQ, UK
| |
Collapse
|
38
|
Rolfes L, Schulte-Mecklenbeck A, Schreiber S, Vielhaber S, Herty M, Marten A, Pfeuffer S, Ruck T, Wiendl H, Gross CC, Meuth SG, Boentert M, Pawlitzki M. Amyotrophic lateral sclerosis patients show increased peripheral and intrathecal T-cell activation. Brain Commun 2021; 3:fcab157. [PMID: 34405141 PMCID: PMC8363480 DOI: 10.1093/braincomms/fcab157] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 11/30/2022] Open
Abstract
Several studies suggest a role for the peripheral immune system in the pathophysiology of amyotrophic lateral sclerosis. However, comprehensive studies investigating the intrathecal immune system in amyotrophic lateral sclerosis are rare. To elucidate whether compartment-specific inflammation contributes to amyotrophic lateral sclerosis pathophysiology, we here investigated intrathecal and peripheral immune profiles in amyotrophic lateral sclerosis patients and compared them with controls free of neurological disorders (controls) and patients with dementia or primary progressive multiple sclerosis. Routine CSF parameters were examined in 308 patients, including 132 amyotrophic lateral sclerosis patients. In a subgroup of 41 amyotrophic lateral sclerosis patients, extensive flow-cytometric immune cell profiling in peripheral blood and CSF was performed and compared with data from 26 controls, 25 dementia and 21 multiple sclerosis patients. Amyotrophic lateral sclerosis patients presented with significantly altered proportions of monocyte subsets in peripheral blood and increased frequencies of CD4+ and CD8+ T cells expressing the activation marker HLA-DR in peripheral blood (CD8+) and CSF (CD4+ and CD8+) compared with controls. While dementia and multiple sclerosis patients exhibited a comparable increase in intrathecal CD8+ T-cell activation, CD8+ T-cell activation in the peripheral blood in amyotrophic lateral sclerosis was higher than in multiple sclerosis patients. Furthermore, intrathecal CD4+ T-cell activation in amyotrophic lateral sclerosis surpassed levels in dementia patients. Intrathecal T-cell activation resulted from in situ activation rather than transmigration of activated T cells from the blood. While T-cell activation did not correlate with amyotrophic lateral sclerosis progression, patients with rapid disease progression showed reduced intrathecal levels of immune-regulatory CD56bright natural killer cells. The integration of these parameters into a composite score facilitated the differentiation of amyotrophic lateral sclerosis patients from patients of all other cohorts. To conclude, alterations in peripheral monocyte subsets, as well as increased peripheral and intrathecal activation of CD4+ and CD8+ T cells concomitant with diminished immune regulation by CD56bright natural killer cells, suggest an involvement of these immune cells in amyotrophic lateral sclerosis pathophysiology.
Collapse
Affiliation(s)
- Leoni Rolfes
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany.,Department of Neurology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - Stefanie Schreiber
- Department of Neurology, Otto-von-Guericke University, Magdeburg 39120, Germany.,German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg 39106, Germany
| | - Stefan Vielhaber
- Department of Neurology, Otto-von-Guericke University, Magdeburg 39120, Germany.,German Center for Neurodegenerative Diseases, Magdeburg 39120, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg 39106, Germany
| | - Michael Herty
- Institute of Geometry and Applied Mathematics, RWTH Aachen University, Aachen 52062, Germany
| | - Anika Marten
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - Steffen Pfeuffer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - Tobias Ruck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany.,Department of Neurology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - Sven G Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany.,Department of Neurology, University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf 40225, Germany
| | - Matthias Boentert
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - Marc Pawlitzki
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| |
Collapse
|
39
|
Mcgill RB, Steyn FJ, Ngo ST, Thorpe KA, Heggie S, Henderson RD, Mccombe PA, Woodruff TM. Monocyte CD14 and HLA-DR expression increases with disease duration and severity in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2021; 23:430-437. [PMID: 34396845 DOI: 10.1080/21678421.2021.1964531] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objective: To investigate changes in immune markers and frequencies throughout disease progression in patients with amyotrophic lateral sclerosis (ALS). Methods: In this longitudinal study, serial blood samples were collected from 21 patients with ALS over a time period of up to 16 months. Flow cytometry was used to quantitate CD14, HLA-DR, and CD16 marker expression on monocyte subpopulations and neutrophils, as well as their cell population frequencies. A Generalized Estimating Equation model was used to assess the association between changes in these immune parameters and disease duration and the Revised Amyotrophic Lateral Sclerosis Functional Rating Scale (ALSFRS-R). Results: CD14 expression on monocyte subpopulations increased with both disease duration and a decrease in ALSFRS-R score in patients with ALS. HLA-DR expression on monocyte subpopulations also increased with disease severity and/or duration. The expression of CD16 did not change relative to disease duration or ALSFRS-R. Finally, patients had a reduction in non-classical monocytes and an increase in the classical to non-classical monocyte ratio throughout disease duration. Conclusion: The progressive immunological changes observed in this study provide further support that monocytes are implicated in ALS pathology. Monocytic CD14 and HLA-DR surface proteins may serve as a therapeutic target or criteria for the recruitment of patients with ALS into clinical trials for immunomodulatory therapies.
Collapse
Affiliation(s)
- R B Mcgill
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - F J Steyn
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.,Wesley Medical Research, The Wesley Hospital, Brisbane, Australia.,University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - S T Ngo
- Wesley Medical Research, The Wesley Hospital, Brisbane, Australia.,University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Australia, and.,Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Australia
| | - K A Thorpe
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - S Heggie
- Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - R D Henderson
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - P A Mccombe
- University of Queensland Centre for Clinical Research, The University of Queensland, Brisbane, Australia.,Department of Neurology, Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - T M Woodruff
- School of Biomedical Sciences, The University of Queensland, Brisbane, Australia.,Wesley Medical Research, The Wesley Hospital, Brisbane, Australia.,Queensland Brain Institute, The University of Queensland, Brisbane, Australia, and
| |
Collapse
|
40
|
Shiraishi W, Yamasaki R, Hashimoto Y, Ko S, Kobayakawa Y, Isobe N, Matsushita T, Kira JI. Clearance of peripheral nerve misfolded mutant protein by infiltrated macrophages correlates with motor neuron disease progression. Sci Rep 2021; 11:16438. [PMID: 34385589 PMCID: PMC8360983 DOI: 10.1038/s41598-021-96064-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/04/2021] [Indexed: 02/07/2023] Open
Abstract
Macrophages expressing C-C chemokine receptor type 2 (CCR2) infiltrate the central and peripheral neural tissues of amyotrophic lateral sclerosis (ALS) patients. To identify the functional role of CCR2+ macrophages in the pathomechanisms of ALS, we used an ALS animal model, mutant Cu/Zn superoxide dismutase 1G93A (mSOD1)-transgenic (Tg) mice. To clarify the CCR2 function in the model, we generated SOD1G93A/CCR2Red fluorescence protein (RFP)/Wild type (WT)/CX3CR1Green fluorescence protein (GFP)/WT-Tg mice, which heterozygously express CCR2-RFP and CX3CR1-GFP, and SOD1G93A/CCR2RFP/RFP-Tg mice, which lack CCR2 protein expression and present with a CCR2-deficient phenotype. In mSOD1-Tg mice, mSOD1 accumulated in the sciatic nerve earlier than in the spinal cord. Furthermore, spinal cords of SOD1G93A/CCR2RFP/WT/CX3CR1GFP/WT mice showed peripheral macrophage infiltration that emerged at the end-stage, whereas in peripheral nerves, macrophage infiltration started from the pre-symptomatic stage. Before disease onset, CCR2+ macrophages harboring mSOD1 infiltrated sciatic nerves earlier than the lumbar cord. CCR2-deficient mSOD1-Tg mice showed an earlier onset and axonal derangement in the sciatic nerve than CCR2-positive mSOD1-Tg mice. CCR2-deficient mSOD1-Tg mice showed an increase in deposited mSOD1 in the sciatic nerve compared with CCR2-positive mice. These findings suggest that CCR2+ and CX3CR1+ macrophages exert neuroprotective functions in mSOD1 ALS via mSOD1 clearance from the peripheral nerves.
Collapse
Affiliation(s)
- Wataru Shiraishi
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan ,grid.415432.50000 0004 0377 9814Department of Neurology, Kokura Memorial Hospital, Fukuoka, 802-8555 Japan
| | - Ryo Yamasaki
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Yu Hashimoto
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Senri Ko
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Yuko Kobayakawa
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Noriko Isobe
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Takuya Matsushita
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Jun-ichi Kira
- grid.177174.30000 0001 2242 4849Department of Neurology, Neurological Institute, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582 Japan ,grid.411731.10000 0004 0531 3030Translational Neuroscience Center, Graduate School of Medicine, and School of Pharmacy At Fukuoka, International University of Health and Welfare, 137-1 Enokizu, Ookawa, Fukuoka 831-8501 Japan ,grid.411731.10000 0004 0531 3030Department of Neurology, Brain and Nerve Center, Fukuoka Central Hospital, International University of Health and Welfare, 2-6-11 Yakuin, Chuo-ku, Fukuoka, 810-0022 Japan
| |
Collapse
|
41
|
De Marchi F, Munitic I, Amedei A, Berry JD, Feldman EL, Aronica E, Nardo G, Van Weehaeghe D, Niccolai E, Prtenjaca N, Sakowski SA, Bendotti C, Mazzini L. Interplay between immunity and amyotrophic lateral sclerosis: Clinical impact. Neurosci Biobehav Rev 2021; 127:958-978. [PMID: 34153344 PMCID: PMC8428677 DOI: 10.1016/j.neubiorev.2021.06.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/07/2021] [Accepted: 06/17/2021] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a debilitating and rapidly fatal neurodegenerative disease. Despite decades of research and many new insights into disease biology over the 150 years since the disease was first described, causative pathogenic mechanisms in ALS remain poorly understood, especially in sporadic cases. Our understanding of the role of the immune system in ALS pathophysiology, however, is rapidly expanding. The aim of this manuscript is to summarize the recent advances regarding the immune system involvement in ALS, with particular attention to clinical translation. We focus on the potential pathophysiologic mechanism of the immune system in ALS, discussing local and systemic factors (blood, cerebrospinal fluid, and microbiota) that influence ALS onset and progression in animal models and people. We also explore the potential of Positron Emission Tomography to detect neuroinflammation in vivo, and discuss ongoing clinical trials of therapies targeting the immune system. With validation in human patients, new evidence in this emerging field will serve to identify novel therapeutic targets and provide realistic hope for personalized treatment strategies.
Collapse
Affiliation(s)
- Fabiola De Marchi
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy
| | - Ivana Munitic
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Amedeo Amedei
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - James D Berry
- Sean M. Healey & AMG Center for ALS, Department of Neurology, Massachusetts General Hospital, 165 Cambridge Street, Suite 600, Boston, MA, 02114, USA
| | - Eva L Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Eleonora Aronica
- Amsterdam UMC, University of Amsterdam, Department of (Neuro) Pathology, Amsterdam Neuroscience, Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Giovanni Nardo
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Donatienne Van Weehaeghe
- Division of Nuclear Medicine, Department of Imaging and Pathology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Elena Niccolai
- Department of Clinical and Experimental Medicine, University of Florence, Florence, Italy
| | - Nikolina Prtenjaca
- Laboratory for Molecular Immunology, Department of Biotechnology, University of Rijeka, R. Matejcic 2, 51000, Rijeka, Croatia
| | - Stacey A Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Caterina Bendotti
- Laboratory of Molecular Neurobiology, Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, Milanm, 20156, Italy
| | - Letizia Mazzini
- Department of Neurology and ALS Centre, University of Piemonte Orientale, Maggiore Della Carità Hospital, Corso Mazzini 18, Novara, 28100, Italy.
| |
Collapse
|
42
|
Wang M, Liu Z, Du J, Yuan Y, Jiao B, Zhang X, Hou X, Shen L, Guo J, Jiang H, Xia K, Tang J, Zhang R, Tang B, Wang J. Evaluation of Peripheral Immune Activation in Amyotrophic Lateral Sclerosis. Front Neurol 2021; 12:628710. [PMID: 34248812 PMCID: PMC8264193 DOI: 10.3389/fneur.2021.628710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/27/2021] [Indexed: 01/11/2023] Open
Abstract
Accumulating evidence has revealed that immunity plays an important role in amyotrophic lateral sclerosis (ALS) progression. However, the results regarding the serum levels of immunoglobulin and complement are inconsistent in patients with ALS. Although immune dysfunctions have also been reported in patients with other neurodegenerative diseases, few studies have explored whether immune dysfunction in ALS is similar to that in other neurodegenerative diseases. Therefore, we performed this study to address these gaps. In the present study, serum levels of immunoglobulin and complement were measured in 245 patients with ALS, 65 patients with multiple system atrophy (MSA), 60 patients with Parkinson's disease (PD), and 82 healthy controls (HCs). Multiple comparisons revealed that no significant differences existed between patients with ALS and other neurodegenerative diseases in immunoglobulin and complement levels. Meta-analysis based on data from our cohort and eight published articles was performed to evaluate the serum immunoglobulin and complement between patients with ALS and HCs. The pooled results showed that patients with ALS had higher C4 levels than HCs. In addition, we found that the IgG levels were lower in early-onset ALS patients than in late-onset ALS patients and HCs, and the correlations between age at onset of ALS and IgG or IgA levels were significant positive. In conclusion, our data supplement existing literature on understanding the role of peripheral immunity in ALS.
Collapse
Affiliation(s)
- Mengli Wang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Du
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xuewei Zhang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xuan Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xia
- Laboratory of Medical Genetics, Central South University, Changsha, China
| | - Jianguang Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Laboratory of Medical Genetics, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Amyotrophic Lateral Sclerosis: Molecular Mechanisms, Biomarkers, and Therapeutic Strategies. Antioxidants (Basel) 2021; 10:antiox10071012. [PMID: 34202494 PMCID: PMC8300638 DOI: 10.3390/antiox10071012] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 06/16/2021] [Accepted: 06/23/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease with the progressive loss of motor neurons, leading to a fatal paralysis. According to whether there is a family history of ALS, ALS can be roughly divided into two types: familial and sporadic. Despite decades of research, the pathogenesis of ALS is still unelucidated. To this end, we review the recent progress of ALS pathogenesis, biomarkers, and treatment strategies, mainly discuss the roles of immune disorders, redox imbalance, autophagy dysfunction, and disordered iron homeostasis in the pathogenesis of ALS, and introduce the effects of RNA binding proteins, ALS-related genes, and non-coding RNA as biomarkers on ALS. In addition, we also mention other ALS biomarkers such as serum uric acid (UA), cardiolipin (CL), chitotriosidase (CHIT1), and neurofilament light chain (NFL). Finally, we discuss the drug therapy, gene therapy, immunotherapy, and stem cell-exosomal therapy for ALS, attempting to find new therapeutic targets and strategies. A challenge is to study the various mechanisms of ALS as a syndrome. Biomarkers that have been widely explored are indispensable for the diagnosis, treatment, and prevention of ALS. Moreover, the development of new genes and targets is an urgent task in this field.
Collapse
|
44
|
Passaro AP, Lebos AL, Yao Y, Stice SL. Immune Response in Neurological Pathology: Emerging Role of Central and Peripheral Immune Crosstalk. Front Immunol 2021; 12:676621. [PMID: 34177918 PMCID: PMC8222736 DOI: 10.3389/fimmu.2021.676621] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is a key component of neurological disorders and is an important therapeutic target; however, immunotherapies have been largely unsuccessful. In cases where these therapies have succeeded, particularly multiple sclerosis, they have primarily focused on one aspect of the disease and leave room for improvement. More recently, the impact of the peripheral immune system is being recognized, since it has become evident that the central nervous system is not immune-privileged, as once thought. In this review, we highlight key interactions between central and peripheral immune cells in neurological disorders. While traditional approaches have examined these systems separately, the immune responses and processes in neurological disorders consist of substantial crosstalk between cells of the central and peripheral immune systems. Here, we provide an overview of major immune effector cells and the role of the blood-brain barrier in regard to neurological disorders and provide examples of this crosstalk in various disorders, including stroke and traumatic brain injury, multiple sclerosis, neurodegenerative diseases, and brain cancer. Finally, we propose targeting central-peripheral immune interactions as a potential improved therapeutic strategy to overcome failures in clinical translation.
Collapse
Affiliation(s)
- Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical Health and Sciences Institute, University of Georgia, Athens, GA, United States
| | - Abraham L. Lebos
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Biochemistry and Microbiology, University of Georgia, Athens, GA, United States
| | - Yao Yao
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| | - Steven L. Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical Health and Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
45
|
Melnick M, Gonzales P, LaRocca TJ, Song Y, Wuu J, Benatar M, Oskarsson B, Petrucelli L, Dowell RD, Link CD, Prudencio M. Application of a bioinformatic pipeline to RNA-seq data identifies novel viruslike sequence in human blood. G3-GENES GENOMES GENETICS 2021; 11:6259144. [PMID: 33914880 PMCID: PMC8661426 DOI: 10.1093/g3journal/jkab141] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Numerous reports have suggested that infectious agents could play a role in neurodegenerative diseases, but specific etiological agents have not been convincingly demonstrated. To search for candidate agents in an unbiased fashion, we have developed a bioinformatic pipeline that identifies microbial sequences in mammalian RNA-seq data, including sequences with no significant nucleotide similarity hits in GenBank. Effectiveness of the pipeline was tested using publicly available RNA-seq data and in a reconstruction experiment using synthetic data. We then applied this pipeline to a novel RNA-seq dataset generated from a cohort of 120 samples from amyotrophic lateral sclerosis patients and controls, and identified sequences corresponding to known bacteria and viruses, as well as novel virus-like sequences. The presence of these novel virus-like sequences, which were identified in subsets of both patients and controls, were confirmed by quantitative RT-PCR. We believe this pipeline will be a useful tool for the identification of potential etiological agents in the many RNA-seq datasets currently being generated.
Collapse
Affiliation(s)
- Marko Melnick
- Integrative Physiology, University of Colorado, Boulder, Colorado, 80303, USA
| | - Patrick Gonzales
- Integrative Physiology, University of Colorado, Boulder, Colorado, 80303, USA
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Center for Healthy Aging, Colorado State University, Fort Collins, Colorado, 80523, USA
| | - Yuping Song
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA
| | - Joanne Wuu
- Department of Neurology, University of Miami, Miami, Florida, 33136, USA
| | - Michael Benatar
- Department of Neurology, University of Miami, Miami, Florida, 33136, USA
| | - Björn Oskarsson
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Jacksonville FL, 32224, USA
| | - Leonard Petrucelli
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, 32224, USA
| | - Robin D Dowell
- BioFrontiers Institute and Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado, 80303, USA
| | - Christopher D Link
- Integrative Physiology, University of Colorado, Boulder, Colorado, 80303, USA.,Institute for Behavioral Genetics, University of Colorado, Boulder, Colorado, 80303, USA
| | - Mercedes Prudencio
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, Florida, 32224, USA.,Neuroscience Graduate Program, Mayo Clinic Graduate School of Biomedical Sciences, Jacksonville, Florida, 32224, USA
| |
Collapse
|
46
|
Yang Y, Pan D, Gong Z, Tang J, Li Z, Ding F, Liu M, Zhang M. Decreased blood CD4+ T lymphocyte helps predict cognitive impairment in patients with amyotrophic lateral sclerosis. BMC Neurol 2021; 21:157. [PMID: 33845794 PMCID: PMC8039093 DOI: 10.1186/s12883-021-02185-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 03/24/2021] [Indexed: 01/08/2023] Open
Abstract
Background ALS patients have changed peripheral immunity. It is unknown whether peripheral immunity is related to cognitive dysfunction in ALS patients. Objective To explore the relationship between the peripheral blood lymphocyte subsets and the cognitive status in ALS patients. Methods Among 81 ALS patients, we compared the demographic, clinical, and peripheral levels of total T lymphocyte, CD4+ T lymphocyte, CD8+ T lymphocyte, B lymphocyte, and NK cell between those with cognitive impairment (ALS-ci) and those without (ALS-nci). The cognitive status was evaluated via the Chinese version of the Edinburgh cognitive and behavioral screen (ECAS). Significant predictors of cognitive impairment in univariate logistic regression analysis were further examined using multivariate logistic regression analysis. Results 39.5% of all ALS patients had cognitive impairment. The ALS-ci group had shorter education time, older age at both symptom onset and testing, longer disease duration, and lower levels of peripheral total, CD4+, and CD8+ T lymphocyte and B lymphocyte than the ALS-nci group. Frequency of behavioral impairment did not differ between the two groups. While parameters with significant differences identified by group comparison were also significant predictors of cognitive impairment in univariate logistic regression analysis except the level of B lymphocyte, only older age at testing, education time less than 9 years, and lower level of CD4+ T lymphocyte remained significant in multivariate logistic regression analysis. The predictive model combining these three parameters had an area under the receiver operating characteristic curve value of 0.842 with a sensitivity of 90.6% and a specificity of 67.3%. Conclusion In Chinese ALS patients, blood CD4+ T lymphocyte might help evaluate cognitive impairment along with age and education level. Supplementary Information The online version contains supplementary material available at 10.1186/s12883-021-02185-w.
Collapse
Affiliation(s)
- Yuan Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Avenue 1095, 430030, Wuhan, Hubei, PR China
| | - Dengji Pan
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Avenue 1095, 430030, Wuhan, Hubei, PR China
| | - Zhenxiang Gong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Avenue 1095, 430030, Wuhan, Hubei, PR China
| | - Jiahui Tang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Avenue 1095, 430030, Wuhan, Hubei, PR China
| | - Zehui Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Avenue 1095, 430030, Wuhan, Hubei, PR China
| | - Fengfei Ding
- Department of Pharmacology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Mao Liu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Avenue 1095, 430030, Wuhan, Hubei, PR China.
| | - Min Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jie Fang Avenue 1095, 430030, Wuhan, Hubei, PR China.
| |
Collapse
|
47
|
Zhao G, Liu Z, Wang M, Yuan Y, Ni J, Li W, Huang L, Hu Y, Liu P, Hou X, Guo J, Jiang H, Shen L, Tang B, Li J, Wang J. Gene4MND: An Integrative Genetic Database and Analytic Platform for Motor Neuron Disease. Front Mol Neurosci 2021; 14:644202. [PMID: 33867934 PMCID: PMC8047132 DOI: 10.3389/fnmol.2021.644202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/04/2021] [Indexed: 12/12/2022] Open
Affiliation(s)
- Guihu Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengli Wang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yanchun Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jie Ni
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Wanzhen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ling Huang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yiting Hu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Pan Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaorong Hou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Jinchen Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Junling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Medical Genetics, Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| |
Collapse
|
48
|
Keon M, Musrie B, Dinger M, Brennan SE, Santos J, Saksena NK. Destination Amyotrophic Lateral Sclerosis. Front Neurol 2021; 12:596006. [PMID: 33854469 PMCID: PMC8039771 DOI: 10.3389/fneur.2021.596006] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a prototypical neurodegenerative disease characterized by progressive degeneration of motor neurons both in the brain and spinal cord. The constantly evolving nature of ALS represents a fundamental dimension of individual differences that underlie this disorder, yet it involves multiple levels of functional entities that alternate in different directions and finally converge functionally to define ALS disease progression. ALS may start from a single entity and gradually becomes multifactorial. However, the functional convergence of these diverse entities in eventually defining ALS progression is poorly understood. Various hypotheses have been proposed without any consensus between the for-and-against schools of thought. The present review aims to capture explanatory hierarchy both in terms of hypotheses and mechanisms to provide better insights on how they functionally connect. We can then integrate them within a common functional frame of reference for a better understanding of ALS and defining future treatments and possible therapeutic strategies. Here, we provide a philosophical understanding of how early leads are crucial to understanding the endpoints in ALS, because invariably, all early symptomatic leads are underpinned by neurodegeneration at the cellular, molecular and genomic levels. Consolidation of these ideas could be applied to other neurodegenerative diseases (NDs) and guide further critical thinking to unveil their roadmap of destination ALS.
Collapse
Affiliation(s)
- Matt Keon
- GenieUs Genomics Pty Ltd., Sydney, NSW, Australia
| | | | - Marcel Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Jerran Santos
- Advanced Tissue Engineering and Stem Cell Biology Group, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | | |
Collapse
|
49
|
Rodrigues Lima-Junior J, Sulzer D, Lindestam Arlehamn CS, Sette A. The role of immune-mediated alterations and disorders in ALS disease. Hum Immunol 2021; 82:155-161. [PMID: 33583639 PMCID: PMC7942756 DOI: 10.1016/j.humimm.2021.01.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 12/11/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that leads to neuronal death in the brain and spinal cord. Over the last decades, evidence has emerged regarding the functional diversity of astrocytes, microglia, and T cells in the central nervous system (CNS), and the role of neuroinflammation in ALS. In this review, we summarize current knowledge regarding neuroinflammation in ALS, both at the level of specific molecular pathways and potential cellular pathways as well as outline questions about the immune mechanisms involved in ALS pathogenesis.
Collapse
Affiliation(s)
| | - David Sulzer
- Department of Neurology, Columbia University; New York State Psychiatric Institute, New York, NY 10032, USA; Departments of Psychiatry and Pharmacology, Columbia University; New York State Psychiatric Institute, New York, NY 10032, USA
| | | | - Alessandro Sette
- La Jolla Institute for Immunology, Center for Autoimmunity and Inflammation, La Jolla, CA 92037, USA; Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
50
|
Nielsen AK, Folke J, Owczarek S, Svenstrup K, Winge K, Pakkenberg B, Aznar S, Brudek T. TDP-43-specific Autoantibody Decline in Patients With Amyotrophic Lateral Sclerosis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2020; 8:8/2/e937. [PMID: 33361387 PMCID: PMC7768943 DOI: 10.1212/nxi.0000000000000937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/16/2020] [Indexed: 01/13/2023]
Abstract
OBJECTIVE We hypothesize alterations in the quality and quantity of anti-43-kDa TAR DNA-binding protein (TDP-43) naturally occurring autoantibodies (NAbs) in patients with amyotrophic lateral sclerosis (ALS); therefore, we assessed relative binding properties of anti-TDP-43 NAbs composite in plasma from patients with ALS in comparison with healthy individuals. METHODS ELISA competition assay was used to explore the apparent avidity/affinity of anti-TDP-43 NAbs in plasma from 51 normal controls and 30 patients with ALS. Furthermore, the relative levels of anti-TDP-43 NAbs within the immunoglobulin (Ig) classes of IgG (isotype IgG1-4) and IgMs were measured using classical indirect ELISA. The occurring results were hereafter correlated with the measures of disease duration and disease progression. RESULTS High-avidity/affinity anti-TDP-43 NAbs levels were significantly reduced in plasma samples from patients with ALS. In addition, a significant decrease in relative levels of anti-TDP-43 IgG3 and IgM NAbs and a significant increase in anti-TDP-43 IgG4 NAbs were observed in ALS plasma vs controls. Furthermore, a decrease in global IgM and an increase in IgG4 levels were observed in ALS. These aberrations of humoral immunity correlated with disease duration, but did not correlate with ALS Functional Rating Scale-Revised scores. CONCLUSIONS Our results may suggest TDP-43-specific immune aberrations in patients with ALS. The skewed immune profiles observed in patients with ALS could indicate a deficiency in the clearance capacity and/or blocking of TDP-43 transmission and propagation. The decrease in levels of high affinity/avidity anti-TDP-43 NAbs and IgMs correlates with disease progression and may be disease predictors.
Collapse
Affiliation(s)
- Anne Kallehauge Nielsen
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Jonas Folke
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Sylwia Owczarek
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Kirsten Svenstrup
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Kristian Winge
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Bente Pakkenberg
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Susana Aznar
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark
| | - Tomasz Brudek
- From the Research Laboratory for Stereology and Neuroscience (A.K.N., J.F., S.O., B.P., S.A., T.B.), and Department of Neurology (K.S., K.W.), Bispebjerg-Frederiksberg Hospital, University Hospital of Copenhagen; Neuromuscular Clinic (K.S.), Department of Neurology, Rigshospitalet, Copenhagen; Institute of Clinical Medicine (B.P.), Faculty of Health and Medical Sciences, University of Copenhagen; and Copenhagen Center for Translational Research (S.A., T.B.), Copenhagen University Hospital, Bispebjerg and Frederiksberg, Denmark.
| |
Collapse
|